
Decomposition of Relationships throughPivoting?Joachim Biskup1, Ralf Menzel1, Torsten Polle1 and Yehoshua Sagiv21 Institut f�ur Informatik, Universit�at Dortmund, Germany2 Department of Computer Science, Hebrew University of Jerusalem, IsraelAbstract. In the literature there are several proposals to map entity-relationship schemas onto object-oriented schemas, but they only treatrelationship sets na��vely or restrict them to binary relationship sets. Wefollow a di�erent approach in the treatment of relationship sets. Our goalis to let the designer specify relationships of any arity and then to em-ploy semantic constraints to decompose relationships into smaller frag-ments. The semantic constraints in use are functional constraints, whichare de�ned in the object-oriented framework. The decomposition processguided by functional constraints is similar to the decomposition processin the relational approach with functional dependencies, but it takes ad-vantage of the features provided by the object-oriented data model. Inobject-oriented schemas it is possible to enforce a certain kind of func-tional constraints automatically, namely unary functional constraints.1 IntroductionThe Entity-Relationship approach (ER approach) to modelling data, as proposedby Chen [7], is a simple way of representing data in the form of entities andrelationships among entities. Because of its simplicity, it has found a wide spreadacceptance and serves as starting point for transformations into di�erent datamodels. One of the target data models is the object-oriented model (OO model)[3, 1, 14], and there are numerous proposals to map ER-schemas, their variationsor di�erent conceptual schemas onto object-oriented schemas [12, 19, 11, 20,15, 18, 4]. The basic idea of these transformations is to map entity sets onto(entity) classes in the object-oriented data model and relationship sets, alsocalled associations, onto (relationship) classes. This mapping seems unnaturalin the object-oriented framework, when it comes to n-ary relationships. Thereforethe common approach is to restrict relationships to binary relationships as, e.g.in [15], or to nest relationships [18], which clears the path to represent theserelationships by means of methods. Another way is to make relationships �rstclass citizens of the object-oriented data model as it is done in the object-relationmodel [21]. But even there it is claimed that in practice only binary relationshipsor special ternary relationships occur. The di�culties to decompose ternary oreven n-ary relationships into binary relationships is discussed by Thalheim [22].? Appeared in: Proc. 15th International Conference on Conceptual Modeling, LNCS1157, Springer-Verlag, Berlin 1996, 28-41.

We follow a di�erent approach in the treatment of relationship classes. Ourgoal is to let the designer specify relationships of any arity in the conceptualmodel, i.e., the ER model, and then to employ semantic constraints given bythe designer to decompose the corresponding relationship classes losslessly intosmaller fragments in the object-oriented data model. For this decomposition weuse mainly functional dependencies, which are de�ned in the object-oriented datamodel. The di�erence in the decomposition in this setting to the decompositionin the relational approach is that we use the features of the object-oriented datamodel. The decomposition relies heavily on a transformation called pivoting.This transformation is a special case of pivoting introduced in [4], and hencecalled property pivoting. Since we do not refer to (general) pivoting in this article,we use the term pivoting meaning property pivoting.This paper is organised as follows. In Sect. 2 a simple object-oriented datamodel is introduced. The transformation pivoting used at the core of the de-composition is presented in Sect. 3. We start with briey outlining the mappingfrom ER-schemas to OO-schemas and then give a simple de�nition of pivotingand later on extend it to recursive pivoting, leading to a transformation suitableto decompose relationships. Finally, we discuss the interplay between the be-haviour of pivoting and the characteristics of semantic constraints, which guidethe transformation process. Here we put special emphasis on the features ofobject-oriented models inuencing the decomposition process.2 Object-Oriented Data Model2.1 OverviewIn this section we present the basic terms relevant to our notion of an object-oriented data model, concentrating only on themain concepts that are importantfor our transformations. This is in particular the capability to reference objects.Therefore our type system is only rudimentarily developed. The data model doesnot even contain inheritance, although it is needed for the transformations. Thereason is that inheritance is only required for technical purpose, and thereforewe decided to leave it out to facilitate the presentation. This simpli�cation shiftsour data model closer to the network model and even to the relational model, butstill these lack the concept of an object identi�er, which is used for the referencemechanism, and hence essential for pivoting. In Sect. 2.2 we will give an goodsized example for this model.Our idea of a database is that it consists of two parts. One part, the databaseschema, is relatively stable over the time. It is used to describe the structuralpart of applications.De�nition 1. A (database) schema D consists of a �nite set of class schemesof the form cfp1 : c1; : : : ; pn : cngF:

c is the name of the class scheme. Each property name3 pi is unique in a givenclass scheme. Its type, written RanD(c; pi), is the name ci of another classscheme. The set of names of class schemes in D is written Class(D), and the setof property names occurring in the de�nition of a particular class scheme withname c is written Props(c). The set F consists of{ functional constraints of the form c(m1 � � �mn ! mn+1 � � �mo) where 1 �n < o and where mi 2 Props(c)] fIdg4, for 1 � i � o and,{ (range) completeness constraints of the form cfmg where m 2 Props(c).Functional constraints play a similar rôle in our data model as functional de-pendencies in the relational data model, where they ensure that tuples agree onthe values of the attributes on the right-hand side, whenever they have the samevalues for the attributes on the left-hand side. So functional constraints ensurethat objects agree on the values of the properties on the right-hand side, when-ever they have the same values for properties on the left-hand side. Functionalconstraints correspond to Weddell's path functional dependencies [23], wherethe length of all paths is not greater than one. If the property Id occurs on theright-hand side of a functional constraint, this functional constraint is called akey constraint. If in the relational model a set of attributes forms a key, thevalues for these key attributes uniquely determine a tuple. Key constraints areused if a set of property values is to uniquely determine an object.A (range) completeness constraint for a property states that all objects ofthe type of the property are referenced by an object through this property.The other part of a database is a database instance. It describes the time-varying part of a database, and is used to understand formally that semanticconstraints are satis�ed. We found it natural and intuitive to think of objectsas vertices and of property values as edges in a graph, following the approach ofBeeri [3].De�nition 2. An (database) instance of a database schema D is a directedgraph G(V;E) with vertex and edge labelling as class and property names re-spectively. G must also satisfy the following constraints, where the class namelabel of a vertex v is denoted lCl(v).1. (property value integrity) If u p! v 2 E, then p 2 Props(lCl(u)) and lCl(v) =RanD(lCl(u); p).2. (property functionality) If u p! v; u p! w 2 E, then v = w.3. (property value completeness) If u 2 V , then there exists u p! v 2 E for allp 2 Props(lCl(u)).3 We will often use the terms property and class instead of property name and classname.4 Id is the identity property. We assume that it does not correspond to the name ofany property in D, and furthermore RanD(c; Id) := c for all classes c 2 Class(D). Itis used to refer to the object itself. This is necessary for so-called key constraints.

Property value integrity ensures that property values are of the type given in thecorresponding database schema. Property functionality ensures that propertiesare scalar, i.e., single-valued. Property value completeness forbids null values,i.e., the property value for an object must always be de�ned. We can constructa database instance out of a database schema. For the schema depicted in Fig. 2this is done in Fig. 3.If we have an object, i.e., a vertex, in an instance, and a property that isde�ned for the class name label of the object, we can reach another objectby following the edge labelled by the property. If the property is the identityproperty Id, we arrive at the original object again.De�nition 3. Let G(V;E) be an instance of schema D, u 2 V be a vertex, andp 2 Props(lCl(u)) [fIdg be a property. Then u:p denotes the vertex u if p = Idand the vertex v, where u p! v 2 E, if p 2 Props(lCl(u)).De�nition 4. A functional constraint c(p1 � � � pn ! pn+1 � � � po) over a schemaD is satis�ed by an instance G(V;E) for D i� for any pair of vertices u; v 2 V ,where lCl(u) = lCl(v) = c, u:pi = v:pi, 1 � i � n implies u:pj = v:pj , n < j � o.De�nition 5. A completeness constraint cfpg over a schema D is satis�ed byan instance G(V;E) for D i� for any vertex v, where lCl(v) = RanD(c; p), thereis an incoming edge u p! v 2 E and lCl(u) = c.As in the relational data model, it is also possible to de�ne the logical conse-quences of a set of functional constraints and give a sound and complete deriva-tion system for the implication of functional and completeness constraints.By means of this derivation system we can calculate for a class scheme theset of properties uniquely determined by a given set of properties. This set ofproperties is called the closure of X under F , denoted ClF (X), for a given setX of properties and a given set F of functional constraints.2.2 ExampleA designer should be supported to focus on the essential parts of the applica-tions in the conceptual design phase, i.e., he has to �nd out what are the vitalthings and associations among them that constitute the application and theirabstractions. He should not be burdened to deal with restrictions or to takethe characteristics of further steps into account, i.e., to break relationships intosmaller ones.We give in Fig. 1 an example of a conceptual schema an experienced designerwould intuitively tend to model with smaller relationships. The ER-diagramreects the Assignment from Teachers and Assistants to Courses in combinationwith the Date they take place at, and Rooms and Wings they are given in. Theobject-oriented database schema (displayed in Fig. 2) is obtained by the mappingsketched in Sect. 3. The semantic constraints are added later in a re�nement ofthe original conceptual schema. They can already be declared in the conceptualschema, but we refrained from doing so because it would overload the diagram.

title

Assistant

Course

name

address Wing year

Date

month

daywing

assistant date

teacher Teacher name

name Room

course
Assignment

size

room

Fig. 1. ER-diagramCourseftitle : StringgfCourse(title! Id)gTeacherfname : String; : : :gfTeacher(name! Id)gAssistantfname : String; : : :gfAssistant(name! Id)gDatefyear : Int;month : Int; day : IntgfDate(year month day! Id)gRoomfsize : IntgfgWingfaddress : StringgfgAssignmentfcourse : Course; assistant : Assistant; date : Date; teacher : Teacher;room : Room;wing : WinggfAssignment(course! assistant date);Assignment(teacher! room);Assignment(room! wing);Assignment(course teacher! Id)gIntfgfg Stringfgfg Fig. 2. Database schemaThe semantic constraints declared for the class scheme Assignment are of maininterest. For every Course there is exactly one Assistant and it takes place at onlyone Date. The functional constraint Assignment(course! assistant date) enforcesthat this restriction is met. Imagine that in the application at hand a Teacher isassigned a �xed Room, then the semantic constraint Assignment(teacher! room)ensures just this requirement. Additionally, the constraint that a Room is situ-ated in only oneWing is reected in the functional constraint Assignment(room!wing).An instance for the schema in Fig. 2 is depicted in Fig. 3. Here we took theapproach to view the schema as an instance. This is quite easily accomplished by

making every class scheme name an object of itself, yielding an abstract instance.Then for every property in a class scheme we introduce an edge labelled with theproperty going from the vertex corresponding to the class scheme to the vertexcorresponding to the property type. Viewing schemas as instances helps us todisplay the schema as a graph. Therefore we will subsequently present schemasas instances in this paper. To simplify the representation further, we displayedsome of the vertices several times instead of once, e.g., the vertex with labelString.

String

Assistant

String title
Assignment

Room size Int

teacher Teacher name String

Int Int

Int

course

room

assistant

wing

date

year

day

month

Course

String
address Wing

Datename Fig. 3. Database instance
3 Object-Oriented Formalisation of Relationships3.1 Mapping from ER to OOFor the design of object-oriented schemas, entity sets are simply formalised as(entity) classes the basic types of which are determined by the pertinent prop-erties of the entities. In order to formalise a relationship set, we can alwayscanonically simulate the relational approach [12, 11, 18, 21]. For every individ-ual relationship we construct an object that is counterpart to the correspondingtuple in the relational approach. Then these objects are understood as instancesof a (relationship) class. As objects correspond in this case to tuples we alsoneed canonical semantic constraints to ensure that they behave as such. Theseconstraints require that the property values of a relationship object uniquelyrepresent the relationship, i.e., there is at most one object for any value com-bination. This kind of constraint is formalised as a key constraint for the class.The constraint usually accommodates all properties for this class. For exam-ple, the ER diagram that leads to the database schema in Fig. 2 is depicted in

Fig. 1. In this example the key constraint for the relationship class Assignmentis Assignment(course teacher ! Id). Here the application-dependent constraintsallowed a reduction of the left-hand side of the constraint to the properties courseand teacher.3.2 PivotingOur goal is to decompose (relationship) classes into smaller fragments. Roughlyspeaking, we cut properties from (relationship) classes (e.g., introduced by thecanonical formalisation) and graft these properties onto (entity) classes partici-pating in the relationship.The e�ect of the transformation can be redundancy reducing and that con-straints are implicitly enforced. We call this implicit enforcement natural en-forcement of constraints. The classes chosen to receive new properties are calledpivot classes.Now we present (property) pivoting in detail, i.e., we de�ne how we canobtain the target schema and transformation rules from a given source schema.The e�ect of pivoting is concentrated in one class scheme. So we suppose weconsider a class scheme with the formRelClfPivPr : PivCl; p1 : c1; : : : ; pn : cn| {z }pivoted prop.with types ; : : :gFRelClwhere PivPr is called the pivot property, PivCl is the pivot class and propertiespi are the pivoted properties.{ We add now the class scheme pfRelCl PivPr p1 : c1; : : : ;RelCl PivPr pn :cng to the database schema, remove p1 : c1; : : : ; pn : cn from the class schemeRelCl, replace PivCl with p in the class scheme RelCl and �nally make theclass p a subclass of class PivCl. In this process we introduce new propertynames for the class scheme p, assuming that this prevents name clashes withalready existing property names.{ Then we adjust the semantic constraints of the classes RelCl and p to the newclass schemes. Basically, this means for class scheme RelCl that we projectthe semantic constraints on the altered set of property names, and for class pthis is a kind of projection, too, taking the newly introduced property namesinto account. Finally, we add a completeness constraint RelClfPivPrg for theclass scheme RelCl.The relationship between the original schema and the transformed schema isdescribed by a notion of schema equivalence [2, 5, 13]. It is based on transforma-tions on instances, i.e., an instance of one schema is transformed into an instanceof a di�erent schema. These transformations are de�ned by so-called transfor-mation rules. For example to transform instances of a schema into instances ofits pivoted schema, we give the following transformation rules.

{ If u is an object of class RelCl (lCl(u) = RelCl), the property value for thepivot property is v (u PivPr! v 2 E) and the property value for some pivotedproperty pi is w (u pi! w 2 E), we add the property value w for propertyRelCl PivPr pi to the object v and make v an element of class p (lCl(v) := p).{ Finally we remove the property value v for property pi from object u.We say two schemas are equivalent if there are transformation rules, such that thetransformation rules de�ne a one-to-one and onto function that maps instancesof one schema onto instances of the other.Now we can make the following observation.Theorem6. A database schema and its pivoted schema are equivalent in theabove sense i�1. each pivoted property is uniquely determined by the pivot property, i.e, theproperty values for the pivoted properties agree for two objects, whenever theyhold the same property value for the pivot property, and2. for all property sets M for RelCl, M � Props(RelCl), the following condi-tions hold with M := fp1; : : : ; png the set of pivoted properties:(a) ClFRelCl(M) = ClFRelCl(MnM) [ClFRelCl(M \M),(b) ClFRelCl(MnM) � Props(RelCl)nM or PivPr 2 ClFRelCl(MnM), and(c) ClFRelCl(M \M) �M.We merely give a brief motivation for the above conditions omitting the formalproof. The �rst condition is necessary because the transformation shifts proper-ties from the relationship class to the pivot class. This means on the instance levelthat we cut the property values from a relationship object and graft them ontothe property value of the corresponding pivot property. Thus the pivot propertyvalue must uniquely determine the pivoted property values otherwise we get aviolation of property functionality for instances. So what has to be enforced inthe original schema by means of functional constraints is naturally enforced inthe pivoted schema due to the property functionality. Therefore we speak of anatural enforcement of functional constraints in the pivoted schema. The reasonfor the second condition is that, although we are interested in dropping speci�cconstraints, namely those enforced naturally, this condition is necessary to pre-serve the e�ect of semantic constraints. Condition 2a ensures that the e�ect ofconstraints of the form that the left-hand side has attributes both in M and inMnM are not lost because such constraints are dropped in the transformationprocess. The same line of argumentation is used for the conditions 2b and 2c.Basically, they ensure that there is not a constraint whose left-hand side is asubset of M or MnM and the right-hand side is a subset of MnM or M re-spectively. The reason for the more complex treatment of condition 2b is thatsets of attributes that have the pivot attribute PivPr in their closure have to bedealt with in a special way.That these conditions are su�cient indeed can be shown be lifting the wholeconsideration onto a level where we look solely at the semantic constraints.

In Fig. 4 the pivoted instance of the instance in Fig. 3 is presented. In thetransformation property course was used as pivot property and properties assist-ant and date played the rôle of pivoted properties. To simplify the presentationwe did not introduce new cryptic method names rather reusing the old onesand we dispense with the introduction of a subclass of Course. The graphicaldisplay of the pivoted instance in Fig. 4 lacks the representation of semanticconstraints, which are part of a schema. Pivoting alters merely the semanticconstraints for the relationship class and the pivot class, so it su�ces to exhibitthem. As the semantic constraint Assignment(course ! assistant date) is natu-rally enforced in the pivoted schema, the semantic constraints for the pivot classCourse are not a�ected by the transformation. This means that the semantic con-straints remaining for class scheme Assignment are Assignment(teacher! room),Assignment(room! wing) and Assignment(course teacher! Id).

String Wing

String

Assistant

CoursetitleString

Date

Assignment

Room size Int

Teacher name String

date

day

month year

address

course

Int

Int Int

teacher

wing

room

name

assistant

Fig. 4. Pivoted instance
Before we continue in our task to de�ne a decomposition for relationships,we concern ourselves with special properties and their subsequent treatment,i.e., properties the closures of which are equal. The crucial point is that theyare not treated equally by pivoting, namely if we want to make one a pivotedproperty for the other, we get a violation of condition 2c. This can be remediedby introducing a new property for the type of the pivoted property and statingthat the pivoted property and the newly introduced property are inverses of eachother [6]. Therefore we assume in the sequel that for all properties occurring ina class scheme the closures are di�erent.

3.3 Natural Enforcement of Functional ConstraintsOur goal is to transform a schema such that all original functional constraintsare naturally enforced except for functional constraints being key constraints. Inorder to reach this goal, we have to consider two things. First of all, it is in generalimpossible to discard all functional constraints in one transformation step. Thisleads to a recursive application of the transformation as shown in Fig. 5. We�rst chose teacher as pivot property with room and wing as pivoted properties.Then we performed pivoting on the resulting schema with pivot property roomand pivoted property wing. We get the same outcome if we take �rst room aspivot property and wing as pivoted property and afterwards choose teacher aspivot property and room as only pivoted property.

String

String

Assistant

titleString

Date

Teacher name String

date

day

month year

address

course

Int

Int Int

teacher

name

assistant

Course

Wing Room size Int
wing

Assignment

room

Fig. 5. Recursive pivoted instanceThis example indicates that the outcome of recursive pivoting is in a senseindependent of the order in which the single pivoting steps are performed. Thisinteresting feature of recursive pivoting is captured in the following theorem.Theorem7. If we choose pivot properties with appropriate pivoted properties,such that the application of pivoting with each of the pivot properties leads to anequivalent pivoted schema, we can apply pivoting recursively and the outcome isindependent of the order in which we chose the pivot properties5.Secondly, not all kinds of functional constraints can be naturally enforced and thesecond condition of Theorem 6 imposes further restriction on the set of semantic5 In the recursive pivoting the originally chosen set of pivoted properties has to beadapted to the new context, namely the properties for the class in which the pivotproperty is declared in.

constraints. The natural enforcement of functional constraints works only forthose the left-hand side of which is a singleton because pivoting can be appliedonly with one pivot property at a time. Functional dependencies of this formare called unary functional dependencies [16]. We follow this notation and callfunctional constraints the left-hand side of which are singletons unary functionalconstraints.Unfortunately the restriction to unary functional constraints is not su�cientin order to eliminate all functional constraints by recursive pivoting. To achievethat we further have to make the set of pivoted properties comprise the completeclosure of the pivot property in each transformation step. If we select as pivotedproperties the whole closure of the pivot property, we call the underlying piv-oting maximal pivoting. Now what thwarts maximal pivoting? The obstacle isa possible violation of the conditions given in Theorem 6 referring to the equiv-alence of schemas. The �rst condition is ful�lled due to the con�nement to theclosure of the pivot property. The second condition has to be investigated inmore depth. Conditions 2a and 2c are satis�ed since we limit the use to unaryfunctional constraints. Having only sets of unary functional constraints meansthat their closures are topological [9]. Therefore the equationClF (X) = [A2X ClF (A) (1)holds for sets F of unary functional constraints, ensuing the ful�lment of condi-tions 2a and 2c.Condition 2b is harder to deal with. Here we consider a selection of a pivotproperty PivPr with a corresponding set M of pivoted properties such thatthe selection violates condition 2b. This means that there is a set of propertiesor to be more precise due to equation (1) a property m 2 Props(RelCl)nMsuch that ClFRelCl(m) 6� Props(RelCl)nM and PivPr 62 ClFRelCl(m). To describethis situation in a better way, we build a constraint graph for the set FRelCl offunctional constraints. The set of vertices is the set of properties occurring inFRelCl. For each L! R1 � � �Rn 2 FRelCl we add the edges (L;Ri) to the graph.An example for this graph can be found in Fig. 6, which uses the functionalconstraints of the class scheme Assignment in Fig. 2.���+ QQQs ??courseassistant date teacherroomwingFig. 6. Functional constraint graph

The graph describing the situation with the violation of condition 2b aboveis as depicted in Fig. 7. There is a path from m to a property m0 2 M and dueto the fact that m0 2 M there is a path from PivPr to m0. In addition there isno path from m to PivPr and vice versa. This kind of structure can be forbiddenif we say that the graph has to form a forest, i.e., whenever there is one vertexreachable from two other nodes, one of these two nodes must be reachable bythe other.
AAAAU ������ -@@@@ PivPrm m0Fig. 7. Constraint graph describing the violation of condition 2bWe can make the following observation.Theorem8. The two statements below concerning a class scheme are equiva-lent.{ The set of functional constraints consists merely of unary functional con-straints and the corresponding graph forms a forest.{ Maximal recursive pivoting leads to a natural enforcement of all functionalconstraints occurring in the class scheme.4 ConclusionIn this paper we introduced a method to decompose relationship classes in anobject-oriented data model that stem originally from a relationships in the ERmodel, and thereby improving already existing mappings from ER models to OOmodels. Therefore we support a user in the design process since he can concen-trate on identifying the essential things of the application and their associations(later on modelled as relationships), without burdening with the task to breakassociations into smaller ones at this phase of the design process.Comparing pivoting with the decomposition of a relational scheme intoBoyce-Codd normal form based on the work of Delobel and Casey [8], we �nda strong resemblance between both transformations. This is not astonishing asboth transformation consider mainly sets of attributes and sets of functionaldependencies. In fact we can even simulate pivoting in the relational model.Then it comes really close to the decomposition into Boyce-Codd normal form.

In this case we use foreign keys in relations that represent relationship sets inorder to access represented entities participating in a relationship. A subtle dif-ference between both transformations is that pivoting uses object identi�ers forthe reference mechanism whereas the relational model uses foreign keys, whichare value oriented. Often, in the modelling process using the relational model,foreign keys are introduced that comprise only one attribute, e.g. a student num-ber to uniquely identify a student. This can be seen as an attempt to simulateobject identi�ers. Using this approach throughout the modelling process shiftspivoting even closer to the decomposition into Boyce-Codd normal form. NowTheorem 6 gives conditions for pivoting to be lossless and dependency preserv-ing [17]. Condition 2a guarantees the lossless property and conditions 2b and 2cguarantee dependency preservation. Theorem 7 gives as result that dependencypreservation leads to the fact that the transformation process is independent ofthe order in which pivot attributes are chosen. Theorem 8 underlines the im-portance of unary constraints as these constraints can be naturally supported.As a by-product we know that if a set of functional dependencies consists onlyof unary functional dependencies, the corresponding Armstrong relation can befound in polynomial time [16].The e�ect of the decomposition is not only to break relationship classes intosmaller fragments but also to discard a certain kind of functional constraints,so-called unary functional constraints. What remains to be investigated is thetrade-o� between discarding a functional constraint and introducing a new com-pleteness constraint with respect to costs for updates.References1. S. Abiteboul and P. C. Kanellakis. Object identity as a query language primitive.In J. Cli�ord, B. G. Lindsay, and D. Maier, editors, Proc. 1989 ACM SIGMODInt. Conf. Management of Data, pages 159{173, 1989.2. P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. Inclusion and equivalencebetween relational database schemata. Theoretical Comput. Sci., 19:267{285, 1982.3. C. Beeri. Formal models for object-oriented databases. In W. Kim, J.-M. Nico-las, and S. Nishio, editors, Proc. 1st Deductive and Object-Oriented Databases(DOOD '89), pages 405{430, Kyoto, Japan, 1989. Elsevier Science Publishers(North-Holland).4. J. Biskup, R. Menzel, and T. Polle. Transforming an entity-relationship schemainto object-oriented database schemas. In J. Eder and L. A. Kalinichenko, editors,Adv. in Databases and Inf. Syst., Moscow 95, Workshops in Computing, pages109{136. Springer, 1996.5. J. Biskup and U. R�asch. The equivalence problem for relational database schemes.In J. Biskup, J. Demetrovics, J. Paredaens, and B. Thalheim, editors, Proc. 1stSymp. Mathematical Fundamentals of Database Syst., number 305 in LNCS, pages42{70. Springer, 1988.6. R. G. G. Cattell and T. Atwood, editors. The object database standard: ODMG-93;release 1.1. Morgan Kaufmann, 1994.7. P. P.-S. Chen. The entity-relationship-model | towards a uni�ed view of data.ACM Trans. Database Syst., 1(1):9{36, Mar. 1976.

8. C. Delobel and R. G. Casey. Decomposition of a data base and the theory ofboolean switching functions. IBM J. Res. Dev., 17(5):374{386, 1973.9. J. Demetrovics, L. O. Libkin, and I. B. Muchnik. Functional dependencies in rela-tional databases: a lattice point of view. Discrete Applied Mathematics, 40:155{185,1992.10. R. A. Elmasri, V. Kouramajian, and B. Thalheim, editors. Proc. 12th Int. Conf.on Entity-Relationship Approach, Arlington, Texas, USA, 1993.11. M. Gogolla, R. Herzig, S. Conrad, G. Denker, and N. Vlachantonis. Integratingthe ER approach in an OO environment. In Elmasri et al. [10], pages 376{389.12. R. Herzig and M. Gogolla. Transforming conceptual data models into an objectmodel. In G. Pernul and A. M. Tjoa, editors, Proc. 11th Int. Conf. on Entity-Relationship Approach, number 645 in LNCS, pages 280{298, Karlsruhe, Germany,1992. Springer.13. R. Hull. Relative information capacity of simple relational database schemata.SIAM J. Comput., 15(3):856{886, 1986.14. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages. J. ACM, 42(4):741{843, 1995.15. Y. Kornatzky and P. Shoval. Conceptual design of object-oriented schemes usingthe binary-relationship model. Data & Knowledge Eng., 14(3):265{288, 1995.16. H. Mannila and K.-J. R�aih�a. Practical algorithms for �nding prime attributes andtesting normal forms. In Proc. Eighth ACM PODS, pages 128{133, 1989.17. H. Mannila and K.-J. R�aih�a. The Design of Relational Databases. Addison-Wesley,Wokingham, England, 1992.18. R. Missaoui, J.-M. Gagnon, and R. Godin. Mapping an extended entity-relationship schema into a schema of complex objects. In M. P. Papazoglou, editor,Proc. 14th Int. Conf. on Object-Oriented and Entity Relationship Modelling, pages205{215, Brisbane, Australia, 1995.19. B. Narasimhan, S. B. Navathe, and S. Jayaraman. On mapping ER and relationalmodels into OO schemas. In Elmasri et al. [10], pages 403{413.20. P. Poncelet, M. Teisseire, R. Cicchetti, and L. Lakhal. Towards a formal approachfor object database design. In R. Agrawal, editor, Proc. 19th Int. Conf. on VeryLarge Data Bases, pages 278{289, Dublin, Irland, 1993.21. J. Rumbaugh. Relations as semantic constructs in an object-oriented language. InN. Meyrowitz, editor, OOPSLA'87, pages 462{481, Orlando, Florida, 1987. acmPress.22. B. Thalheim. Fundamentals of Entity-Relationship Modeling. Springer, 1996.23. G. E. Weddell. Reasoning about functional dependencies generalized for semanticdata models. ACM Trans. Database Syst., 17(1):32{64, Mar. 1992.
This article was processed using the LaTEX macro package with LLNCS style

