Decomposition of Relationships through
Pivoting™*

Joachim Biskup', Ralf Menzel', Torsten Polle! and Yehoshua Sagiv?

! Institut fir Informatik, Universitit Dortmund, Germany
2 Department of Computer Science, Hebrew University of Jerusalem, Israel

Abstract. In the literature there are several proposals to map entity-
relationship schemas onto object-oriented schemas, but they only treat
relationship sets naively or restrict them to binary relationship sets. We
follow a different approach in the treatment of relationship sets. Our goal
is to let the designer specify relationships of any arity and then to em-
ploy semantic constraints to decompose relationships into smaller frag-
ments. The semantic constraints in use are functional constraints, which
are defined in the object-oriented framework. The decomposition process
guided by functional constraints is similar to the decomposition process
in the relational approach with functional dependencies, but it takes ad-
vantage of the features provided by the object-oriented data model. In
object-oriented schemas it is possible to enforce a certain kind of func-
tional constraints automatically, namely unary functional constraints.

1 Introduction

The Entity-Relationship approach (ER approach) to modelling data, as proposed
by Chen [7], is a simple way of representing data in the form of entities and
relationships among entities. Because of its simplicity, it has found a wide spread
acceptance and serves as starting point for transformations into different data
models. One of the target data models is the object-oriented model (OO model)
[3, 1, 14], and there are numerous proposals to map ER-schemas, their variations
or different conceptual schemas onto object-oriented schemas [12, 19, 11, 20,
15, 18, 4]. The basic idea of these transformations is to map entity sets onto
(entity) classes in the object-oriented data model and relationship sets, also
called associations, onto (relationship) classes. This mapping seems unnatural
in the object-oriented framework, when it comes to n-ary relationships. Therefore
the common approach is to restrict relationships to binary relationships as, e.g.
in [15], or to nest relationships [18], which clears the path to represent these
relationships by means of methods. Another way is to make relationships first
class citizens of the object-oriented data model as it is done in the object-relation
model [21]. But even there it is claimed that in practice only binary relationships
or special ternary relationships occur. The difficulties to decompose ternary or
even n-ary relationships into binary relationships is discussed by Thalheim [22].

* Appeared in: Proc. 15th International Conference on Conceptual Modeling, LNCS
1157, Springer-Verlag, Berlin 1996, 28-41.

We follow a different approach in the treatment of relationship classes. Our
goal is to let the designer specify relationships of any arity in the conceptual
model, i.e., the ER model, and then to employ semantic constraints given by
the designer to decompose the corresponding relationship classes losslessly into
smaller fragments in the object-oriented data model. For this decomposition we
use mainly functional dependencies, which are defined in the object-oriented data
model. The difference in the decomposition in this setting to the decomposition
in the relational approach is that we use the features of the object-oriented data
model. The decomposition relies heavily on a transformation called pivoting.
This transformation is a special case of pivoting introduced in [4], and hence
called property pivoting. Since we do not refer to (general) pivoting in this article,
we use the term pivoting meaning property pivoting.

This paper is organised as follows. In Sect. 2 a simple object-oriented data
model is introduced. The transformation pivoting used at the core of the de-
composition is presented in Sect. 3. We start with briefly outlining the mapping
from ER-schemas to OO-schemas and then give a simple definition of pivoting
and later on extend it to recursive pivoting, leading to a transformation suitable
to decompose relationships. Finally, we discuss the interplay between the be-
haviour of pivoting and the characteristics of semantic constraints, which guide
the transformation process. Here we put special emphasis on the features of
object-oriented models influencing the decomposition process.

2 Object-Oriented Data Model

2.1 Overview

In this section we present the basic terms relevant to our notion of an object-
oriented data model, concentrating only on the main concepts that are important
for our transformations. This is in particular the capability to reference objects.
Therefore our type system is only rudimentarily developed. The data model does
not even contain inheritance, although it is needed for the transformations. The
reason is that inheritance is only required for technical purpose, and therefore
we decided to leave it out to facilitate the presentation. This simplification shifts
our data model closer to the network model and even to the relational model, but
still these lack the concept of an object identifier, which is used for the reference
mechanism, and hence essential for pivoting. In Sect. 2.2 we will give an good
sized example for this model.

Our idea of a database is that it consists of two parts. One part, the database
schema, is relatively stable over the time. It is used to describe the structural
part of applications.

Definition1. A (database) schema D consists of a finite set of class schemes
of the form

e{pricryo pnicn}F

c is the name of the class scheme. Each property name® p; is unique in a given
class scheme. Its type, written Ranp(e,p;), is the name ¢; of another class
scheme. The set of names of class schemes in D is written Class(D), and the set
of property names occurring in the definition of a particular class scheme with
name c is written Props(c). The set F' consists of

— functional constraints of the form ¢(mq -+-my — Mmpaq - m,) where 1 <
n < o and where m; € Props(c) W {Id}*, for 1 <i < 0 and,
— (range) completeness constraints of the form ¢{m} where m € Props(c).

Functional constraints play a similar role in our data model as functional de-
pendencies in the relational data model, where they ensure that tuples agree on
the values of the attributes on the right-hand side, whenever they have the same
values for the attributes on the left-hand side. So functional constraints ensure
that objects agree on the values of the properties on the right-hand side, when-
ever they have the same values for properties on the left-hand side. Functional
constraints correspond to Weddell’s path functional dependencies [23], where
the length of all paths is not greater than one. If the property Id occurs on the
right-hand side of a functional constraint, this functional constraint is called a
key constraint. If in the relational model a set of attributes forms a key, the
values for these key attributes uniquely determine a tuple. Key constraints are
used if a set of property values is to uniquely determine an object.

A (range) completeness constraint for a property states that all objects of
the type of the property are referenced by an object through this property.

The other part of a database is a database instance. It describes the time-
varying part of a database, and is used to understand formally that semantic
constraints are satisfied. We found it natural and intuitive to think of objects
as vertices and of property values as edges in a graph, following the approach of
Beeri [3].

Definition 2. An (database) instance of a database schema D is a directed
graph G(V, E) with vertex and edge labelling as class and property names re-
spectively. G must also satisfy the following constraints, where the class name
label of a vertex v is denoted l¢(v).

1. (property value integrity) If u %> v € E, then p € Props(loi(u)) and oy (v) =
Ranp(lci(u), p).

2. (property functionality) If u L v,ub weFE, then v = w.

3. (property value completeness) If w € V', then there exists u 2, v € E for all
p € Props(lci(u)).

3 We will often use the terms property and class instead of property name and class
name.

* 1d is the identity property. We assume that it does not correspond to the name of
any property in D, and furthermore Ranp(c,Id) := ¢ for all classes ¢ € Class(D). It
is used to refer to the object itself. This is necessary for so-called key constraints.

Property value integrity ensures that property values are of the type given in the
corresponding database schema. Property functionality ensures that properties
are scalar, i.e., single-valued. Property value completeness forbids null values,
i.e., the property value for an object must always be defined. We can construct
a database instance out of a database schema. For the schema depicted in Fig. 2
this is done in Fig. 3.

If we have an object, i.e., a vertex, in an instance, and a property that is
defined for the class name label of the object, we can reach another object
by following the edge labelled by the property. If the property is the identity
property Id, we arrive at the original object again.

Definition 3. Let G(V, E) be an instance of schema D, u € V be a vertex, and
p € Props(lgi(u)) U {Id} be a property. Then u.p denotes the vertex u if p = Id
and the vertex v, where u 2 v € E, if p € Props(lc;(u)).

Definition 4. A functional constraint ¢(p; - -+ pn — Pnt1 Do) Over a schema
D is satisfied by an instance G(V, E) for D iff for any pair of vertices u,v € V,
where lci(u) = lci(v) = ¢, u.p; = v.p;, 1 <i < n implies u.p; = v.p;, n < j < o.

Definition 5. A completeness constraint ¢{p} over a schema D is satisfied by
an instance G(V, E) for D iff for any vertex v, where l¢;(v) = Ranp(c,p), there

is an incoming edge u % v € E and lo(u) = c.

Asg in the relational data model, it is also possible to define the logical conse-
quences of a set of functional constraints and give a sound and complete deriva-
tion system for the implication of functional and completeness constraints.

By means of this derivation system we can calculate for a class scheme the
set of properties uniquely determined by a given set of properties. This set of
properties is called the closure of X under F, denoted Clp(X), for a given set
X of properties and a given set F' of functional constraints.

2.2 Example

A designer should be supported to focus on the essential parts of the applica-
tions in the conceptual design phase, i.e., he has to find out what are the vital
things and associations among them that constitute the application and their
abstractions. He should not be burdened to deal with restrictions or to take
the characteristics of further steps into account, i.e., to break relationships into
smaller ones.

We give in Fig. 1 an example of a conceptual schema an experienced designer
would intuitively tend to model with smaller relationships. The ER-diagram
reflects the Assignment from Teachers and Assistants to Courses in combination
with the Date they take place at, and Rooms and Wings they are given in. The
object-oriented database schema (displayed in Fig. 2) is obtained by the mapping
sketched in Sect. 3. The semantic constraints are added later in a refinement of
the original conceptual schema. They can already be declared in the conceptual
schema, but we refrained from doing so because it would overload the diagram.

Fig. 1. ER-diagram

Course{title : String}{Course(title — Id)}
Teacher{name: String, .. .}{Teacher(name — Id)}
Assistant{name: String,...}{Assistant(name — Id)}
Date{year : Int,month : Int,day : Int}{Date(year month day — 1d)}
Room{size : Int}{}
Wing{address : String}{}
Assignment{course : Course, assistant : Assistant, date : Date, teacher : Teacher,
room : Room, wing : Wing}
{Assignment(course — assistant date),
Assignment(teacher — room),
Assignment(room — wing),
Assignment(course teacher — Id)}

Int{}{} String{}{}

Fig. 2. Database schema

The semantic constraints declared for the class scheme Assignment are of main
interest. For every Course there is exactly one Assistant and it takes place at only
one Date. The functional constraint Assignment(course — assistant date) enforces
that this restriction is met. Imagine that in the application at hand a Teacher is
assigned a fixed Room, then the semantic constraint Assignment(teacher — room)
ensures just this requirement. Additionally, the constraint that a Room is situ-
ated in only one Wing is reflected in the functional constraint Assignment(room —
wing).

An instance for the schema in Fig. 2 is depicted in Fig. 3. Here we took the
approach to view the schema as an instance. This is quite easily accomplished by

making every class scheme name an object of itself, yielding an abstract instance.
Then for every property in a class scheme we introduce an edge labelled with the
property going from the vertex corresponding to the class scheme to the vertex
corresponding to the property type. Viewing schemas as instances helps us to
display the schema as a graph. Therefore we will subsequently present schemas
as instances in this paper. To simplify the representation further, we displayed
some of the vertices several times instead of once, e.g., the vertex with label
String.

Room SlZ€g Int

room

string € Course Qurse achere- Teacher NaMG. String

i te
Assignment

assistant date
. wing
name. Assistant Date ¥ e int
/ year* \Tnth
String address i Int
String 4 Wing Int

Fig. 3. Database instance

3 Object-Oriented Formalisation of Relationships

3.1 Mapping from ER to OO

For the design of object-oriented schemas, entity sets are simply formalised as
(entity) classes the basic types of which are determined by the pertinent prop-
erties of the entities. In order to formalise a relationship set, we can always
canonically simulate the relational approach [12, 11, 18, 21]. For every individ-
ual relationship we construct an object that is counterpart to the corresponding
tuple in the relational approach. Then these objects are understood as instances
of a (relationship) class. As objects correspond in this case to tuples we also
need canonical semantic constraints to ensure that they behave as such. These
constraints require that the property values of a relationship object uniquely
represent the relationship, i.e., there is at most one object for any value com-
bination. This kind of constraint is formalised as a key constraint for the class.
The constraint usually accommodates all properties for this class. For exam-
ple, the ER diagram that leads to the database schema in Fig. 2 is depicted in

Fig. 1. In this example the key constraint for the relationship class Assignment
is Assignment(course teacher — Id). Here the application-dependent constraints
allowed a reduction of the left-hand side of the constraint to the properties course
and teacher.

3.2 Pivoting

Our goal is to decompose (relationship) classes into smaller fragments. Roughly
speaking, we cut properties from (relationship) classes (e.g., introduced by the
canonical formalisation) and graft these properties onto (entity) classes partici-
pating in the relationship.

The effect of the transformation can be redundancy reducing and that con-
straints are implicitly enforced. We call this implicit enforcement natural en-
forcement of constraints. The classes chosen to receive new properties are called
pivot classes.

Now we present (property) pivoting in detail, i.e., we define how we can
obtain the target schema and transformation rules from a given source schema.
The effect of pivoting is concentrated in one class scheme. So we suppose we
consider a class scheme with the form

RelCl{PivPr: PivCl, py : ¢1,...,Dn : Cny -} FRelCI

pivoted prop.
with types

where PivPr is called the pivot property, PivCl is the pivot class and properties
p; are the pivoted properties.

— We add now the class scheme p{RelCl_.PivPr_p; : ¢i,...,RelCl_PivPr_p, :
¢n} to the database schema, remove p; : ¢1,...,py @ ¢, from the class scheme
RelCl, replace PivCl with p in the class scheme RelCl and finally make the
class p a subclass of class PivCl. In this process we introduce new property
names for the class scheme p, assuming that this prevents name clashes with
already existing property names.

— Then we adjust the semantic constraints of the classes RelCl and p to the new
class schemes. Basically, this means for class scheme RelCl that we project
the semantic constraints on the altered set of property names, and for class p
this is a kind of projection, too, taking the newly introduced property names
into account. Finally, we add a completeness constraint RelCl{PivPr} for the
class scheme RelCl.

The relationship between the original schema and the transformed schema is
described by a notion of schema equivalence [2, 5, 13]. It is based on transforma-
tions on instances, i.e., an instance of one schema is transformed into an instance
of a different schema. These transformations are defined by so-called transfor-
mation rules. For example to transform instances of a schema into instances of
its pivoted schema, we give the following transformation rules.

— If u is an object of class RelCl (Ig;(u) = RelCl), the property value for the
pivot property is v (u PPy e E) and the property value for some pivoted
property p; is w (u Pow e E), we add the property value w for property
RelCl_PivPr_p; to the object v and make v an element of class p (Ici(v) := p).

— Finally we remove the property value v for property p; from object u.

We say two schemas are equivalent if there are transformation rules, such that the
transformation rules define a one-to-one and onto function that maps instances
of one schema onto instances of the other.

Now we can make the following observation.

Theorem 6. A database schema and its pivoted schema are equivalent in the
above sense iff

1. each pivoted property is uniquely determined by the pivot property, i.e, the
property values for the pivoted properties agree for two objects, whenever they
hold the same property value for the pivot property, and

2. for all property sets M for RelCl, M C Props(RelCl), the following condi-
tions hold with M := {p1,...,pn} the set of pivoted properties:

(a) ClFRelCl(M) = ClFRelCl(M\M) U ClFRelCl(M nM),
(b) Clpg.c (MAM) C Props(RelCI)\ M or PivPr € Clp, ., (M\M), and

(¢) Clpgoe (M NM) C M.

We merely give a brief motivation for the above conditions omitting the formal
proof. The first condition is necessary because the transformation shifts proper-
ties from the relationship class to the pivot class. This means on the instance level
that we cut the property values from a relationship object and graft them onto
the property value of the corresponding pivot property. Thus the pivot property
value must uniquely determine the pivoted property values otherwise we get a
violation of property functionality for instances. So what has to be enforced in
the original schema by means of functional constraints is naturally enforced in
the pivoted schema due to the property functionality. Therefore we speak of a
natural enforcement of functional constraints in the pivoted schema. The reason
for the second condition is that, although we are interested in dropping specific
constraints, namely those enforced naturally, this condition is necessary to pre-
serve the effect of semantic constraints. Condition 2a ensures that the effect of
constraints of the form that the left-hand side has attributes both in M and in
M\M are not lost because such constraints are dropped in the transformation
process. The same line of argumentation is used for the conditions 2b and 2c.
Basically, they ensure that there is not a constraint whose left-hand side is a
subset of M or M\M and the right-hand side is a subset of M\ M or M re-
spectively. The reason for the more complex treatment of condition 2b is that
sets of attributes that have the pivot attribute PivPr in their closure have to be
dealt with in a special way.

That these conditions are sufficient indeed can be shown be lifting the whole
consideration onto a level where we look solely at the semantic constraints.

In Fig. 4 the pivoted instance of the instance in Fig. 3 is presented. In the
transformation property course was used as pivot property and properties assist-
ant and date played the role of pivoted properties. To simplify the presentation
we did not introduce new cryptic method names rather reusing the old ones
and we dispense with the introduction of a subclass of Course. The graphical
display of the pivoted instance in Fig. 4 lacks the representation of semantic
constraints, which are part of a schema. Pivoting alters merely the semantic
constraints for the relationship class and the pivot class, so it suffices to exhibit
them. As the semantic constraint Assignment(course — assistant date) is natu-
rally enforced in the pivoted schema, the semantic constraints for the pivot class
Course are not affected by the transformation. This means that the semantic con-
straints remaining for class scheme Assignment are Assignment(teacher — room)
Assignment(room — wing) and Assignment(course teacher — Id).

Y

Int Int

mo:% ?year Room e it

Int ‘d_ay Date
room
date

stiing <€ Course ourse, teacheg Teacher “2%- String
ist Assignment
assistan,

Assistant

nirV wing

String

String «2ddress \ing

Fig. 4. Pivoted instance

Before we continue in our task to define a decomposition for relationships,
we concern ourselves with special properties and their subsequent treatment,
i.e., properties the closures of which are equal. The crucial point is that they
are not treated equally by pivoting, namely if we want to make one a pivoted
property for the other, we get a violation of condition 2c. This can be remedied
by introducing a new property for the type of the pivoted property and stating
that the pivoted property and the newly introduced property are inverses of each
other [6]. Therefore we assume in the sequel that for all properties occurring in
a class scheme the closures are different.

3.3 Natural Enforcement of Functional Constraints

Our goal is to transform a schema such that all original functional constraints
are naturally enforced except for functional constraints being key constraints. In
order to reach this goal, we have to consider two things. First of all, it is in general
impossible to discard all functional constraints in one transformation step. This
leads to a recursive application of the transformation as shown in Fig. 5. We
first chose teacher as pivot property with room and wing as pivoted properties.
Then we performed pivoting on the resulting schema with pivot property room
and pivoted property wing. We get the same outcome if we take first room as
pivot property and wing as pivoted property and afterwards choose teacher as
pivot property and room as only pivoted property.

Int Int

mok ?year

Int ‘_day Date

date
String 1€ course <gours teacheg- Teacher Name. string

e
. Assignment
assistan,

Assistant

nim}V room

String

String «24dress \ying e——9 _ Room 528 |nt

Fig. 5. Recursive pivoted instance

This example indicates that the outcome of recursive pivoting is in a sense
independent of the order in which the single pivoting steps are performed. This
interesting feature of recursive pivoting is captured in the following theorem.

Theorem 7. If we choose pivot properties with appropriate pivoted properties,
such that the application of pivoting with each of the pivot properties leads to an
equivalent pivoted schema, we can apply pivoting recursively and the outcome is
independent of the order in which we chose the pivot properties®.

Secondly, not all kinds of functional constraints can be naturally enforced and the
second condition of Theorem 6 imposes further restriction on the set of semantic

5 In the recursive pivoting the originally chosen set of pivoted properties has to be
adapted to the new context, namely the properties for the class in which the pivot
property is declared in.

constraints. The natural enforcement of functional constraints works only for
those the left-hand side of which is a singleton because pivoting can be applied
only with one pivot property at a time. Functional dependencies of this form
are called unary functional dependencies [16]. We follow this notation and call
functional constraints the left-hand side of which are singletons unary functional
constraints.

Unfortunately the restriction to unary functional constraints is not sufficient
in order to eliminate all functional constraints by recursive pivoting. To achieve
that we further have to make the set of pivoted properties comprise the complete
closure of the pivot property in each transformation step. If we select as pivoted
properties the whole closure of the pivot property, we call the underlying piv-
oting maximal pivoting. Now what thwarts maximal pivoting? The obstacle is
a possible violation of the conditions given in Theorem 6 referring to the equiv-
alence of schemas. The first condition is fulfilled due to the confinement to the
closure of the pivot property. The second condition has to be investigated in
more depth. Conditions 2a and 2c are satisfied since we limit the use to unary
functional constraints. Having only sets of unary functional constraints means
that their closures are topological [9]. Therefore the equation

Clp(X) = | Clr(4) (1)
AeX

holds for sets F' of unary functional constraints, ensuing the fulfilment of condi-
tions 2a and 2c.

Condition 2b is harder to deal with. Here we consider a selection of a pivot
property PivPr with a corresponding set M of pivoted properties such that
the selection violates condition 2b. This means that there is a set of properties
or to be more precise due to equation (1) a property m € Props(RelCl)\ M
such that Clp, ., (m) ¢ Props(RelC1)\ M and PivPr ¢ Clp,_,(m). To describe
this situation in a better way, we build a constraint graph for the set Freicy of
functional constraints. The set of vertices is the set of properties occurring in
Freicy. For each L — Ry -+ R,, € Freic) we add the edges (L, R;) to the graph.
An example for this graph can be found in Fig. 6, which uses the functional
constraints of the class scheme Assignment in Fig. 2.

course teacher
assistant date room
wing

Fig. 6. Functional constraint graph

The graph describing the situation with the violation of condition 2b above
is as depicted in Fig. 7. There is a path from m to a property m' € M and due
to the fact that m’ € M there is a path from PivPr to m'. In addition there is
no path from m to PivPr and vice versa. This kind of structure can be forbidden
if we say that the graph has to form a forest, i.e., whenever there is one vertex
reachable from two other nodes, one of these two nodes must be reachable by
the other.

m%,z PivPr

ml

Fig. 7. Constraint graph describing the violation of condition 2b

We can make the following observation.

Theorem 8. The two statements below concerning a class scheme are equiva-
lent.

— The set of functional constraints consists merely of unary functional con-
straints and the corresponding graph forms a forest.

— Mazimal recursive pivoting leads to a natural enforcement of all functional
constraints occurring in the class scheme.

4 Conclusion

In this paper we introduced a method to decompose relationship classes in an
object-oriented data model that stem originally from a relationships in the ER
model, and thereby improving already existing mappings from ER models to OO
models. Therefore we support a user in the design process since he can concen-
trate on identifying the essential things of the application and their associations
(later on modelled as relationships), without burdening with the task to break
associations into smaller ones at this phase of the design process.

Comparing pivoting with the decomposition of a relational scheme into
Boyce-Codd normal form based on the work of Delobel and Casey [8], we find
a strong resemblance between both transformations. This is not astonishing as
both transformation consider mainly sets of attributes and sets of functional
dependencies. In fact we can even simulate pivoting in the relational model.
Then it comes really close to the decomposition into Boyce-Codd normal form.

In this case we use foreign keys in relations that represent relationship sets in
order to access represented entities participating in a relationship. A subtle dif-
ference between both transformations is that pivoting uses object identifiers for
the reference mechanism whereas the relational model uses foreign keys, which
are value oriented. Often, in the modelling process using the relational model,
foreign keys are introduced that comprise only one attribute, e.g. a student num-
ber to uniquely identify a student. This can be seen as an attempt to simulate
object identifiers. Using this approach throughout the modelling process shifts
pivoting even closer to the decomposition into Boyce-Codd normal form. Now
Theorem 6 gives conditions for pivoting to be lossless and dependency preserv-
ing [17]. Condition 2a guarantees the lossless property and conditions 2b and 2c
guarantee dependency preservation. Theorem 7 gives as result that dependency
preservation leads to the fact that the transformation process is independent of
the order in which pivot attributes are chosen. Theorem 8 underlines the im-
portance of unary constraints as these constraints can be naturally supported.
As a by-product we know that if a set of functional dependencies consists only
of unary functional dependencies, the corresponding Armstrong relation can be
found in polynomial time [16].

The effect of the decomposition is not only to break relationship classes into
smaller fragments but also to discard a certain kind of functional constraints,
so-called unary functional constraints. What remains to be investigated is the
trade-off between discarding a functional constraint and introducing a new com-
pleteness constraint with respect to costs for updates.

References

1. S. Abiteboul and P. C. Kanellakis. Object identity as a query language primitive.
In J. Clifford, B. G. Lindsay, and D. Maier, editors, Proc. 1989 ACM SIGMOD
Int. Conf. Management of Data, pages 159-173, 1989.

2. P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. Inclusion and equivalence
between relational database schemata. Theoretical Comput. Sci., 19:267-285, 1982.

3. C. Beeri. Formal models for object-oriented databases. In W. Kim, J.-M. Nico-
las, and S. Nishio, editors, Proc. 1st Deductive and Object-Oriented Databases
(DOOD ’89), pages 405-430, Kyoto, Japan, 1989. Elsevier Science Publishers
(North-Holland).

4. J. Biskup, R. Menzel, and T. Polle. Transforming an entity-relationship schema
into object-oriented database schemas. In J. Eder and L. A. Kalinichenko, editors,
Adv. in Databases and Inf. Syst., Moscow 95, Workshops in Computing, pages
109-136. Springer, 1996.

5. J. Biskup and U. Résch. The equivalence problem for relational database schemes.
In J. Biskup, J. Demetrovics, J. Paredaens, and B. Thalheim, editors, Proc. 1st
Symp. Mathematical Fundamentals of Database Syst., number 305 in LNCS, pages
42-70. Springer, 1988.

6. R. G. G. Cattell and T. Atwood, editors. The object database standard: ODMG-93;
release 1.1. Morgan Kaufmann, 1994.

7. P. P.-S. Chen. The entity-relationship-model — towards a unified view of data.
ACM Trans. Database Syst., 1(1):9-36, Mar. 1976.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

C. Delobel and R. G. Casey. Decomposition of a data base and the theory of
boolean switching functions. IBM J. Res. Dev., 17(5):374-386, 1973.

J. Demetrovics, L. O. Libkin, and I. B. Muchnik. Functional dependencies in rela-
tional databases: a lattice point of view. Discrete Applied Mathematics, 40:155-185,
1992.

R. A. Elmasri, V. Kouramajian, and B. Thalheim, editors. Proc. 12th Int. Conf.
on Entity-Relationship Approach, Arlington, Texas, USA, 1993.

M. Gogolla, R. Herzig, S. Conrad, G. Denker, and N. Vlachantonis. Integrating
the ER approach in an OO environment. In Elmasri et al. [10], pages 376-389.
R. Herzig and M. Gogolla. Transforming conceptual data models into an object
model. In G. Pernul and A. M. Tjoa, editors, Proc. 11th Int. Conf. on Entity-
Relationship Approach, number 645 in LNCS, pages 280298, Karlsruhe, Germany,
1992. Springer.

R. Hull. Relative information capacity of simple relational database schemata.
SIAM J. Comput., 15(3):856-886, 1986.

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. J. ACM, 42(4):741-843, 1995.

Y. Kornatzky and P. Shoval. Conceptual design of object-oriented schemes using
the binary-relationship model. Data & Knowledge Eng., 14(3):265-288, 1995.

H. Mannila and K.-J. Réihé. Practical algorithms for finding prime attributes and
testing normal forms. In Proc. Eighth ACM PODS, pages 128-133, 1989.

H. Mannila and K.-J. Rdihd. The Design of Relational Databases. Addison-Wesley,
Wokingham, England, 1992.

R. Missaoui, J.-M. Gagnon, and R. Godin. = Mapping an extended entity-
relationship schema into a schema of complex objects. In M. P. Papazoglou, editor,
Proc. 14th Int. Conf. on Object-Oriented and Entity Relationship Modelling, pages
205-215, Brisbane, Australia, 1995.

B. Narasimhan, S. B. Navathe, and S. Jayaraman. On mapping ER and relational
models into OO schemas. In Elmasri et al. [10], pages 403-413.

P. Poncelet, M. Teisseire, R. Cicchetti, and L. Lakhal. Towards a formal approach
for object database design. In R. Agrawal, editor, Proc. 19th Int. Conf. on Very
Large Data Bases, pages 278-289, Dublin, Irland, 1993.

J. Rumbaugh. Relations as semantic constructs in an object-oriented language. In
N. Meyrowitz, editor, OOPSLA’87, pages 462-481, Orlando, Florida, 1987. acm
Press.

B. Thalheim. Fundamentals of Entity-Relationship Modeling. Springer, 1996.

G. E. Weddell. Reasoning about functional dependencies generalized for semantic
data models. ACM Trans. Database Syst., 17(1):32-64, Mar. 1992.

This article was processed using the IATEX macro package with LLNCS style

