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A Message from the JTRF
Co-General Editors
The Spring 2013 issue of JTRF contains the usual wide variety of contemporary transportation 
topics that is the distinguishing characteristic of JTRF.  Topics in this issue include the following:

•	 Injury severity of young drivers
•	 Airline strategy
•	 Airport efficiency
•	 Fatigue-induced collision risk of transit bus operators 
•	 Truck use on Texas toll roads
•	 Exhaust emission and fuel economy
•	 Gate violations at highway-rail grade crossings
In “Modeling Injury Severity of Young Drivers Using Highway Crash Data From Kansas,” 

Niranga Amarasingha and Sunanda Dissanayake investigated characteristics and contributory 
causes of young-driver crashes and developed multinomial logit models to identify severity 
affecting factors. The authors’ objectives were to investigate the characteristics and contributory 
causes by numbers and percentages, crash rates, and crash-severity factors related to highway 
crashes involving teen and young-adult drivers in Kansas. The authors found that teen drivers were 
more likely to be involved in crashes due to failure to give time and attention as well as falling 
asleep. They also found that alcohol involvement, not wearing seat belts, driving without a license 
and involvement with off-road crashes were factors that increased young driver injury severity. 

Paul Caster and Carl Scheraga assess Alaska Airlines’ 2010 strategic transformation in “An 
Analysis of a Strategic Transformation Plan: The Case of Alaska Airlines.” To do this the authors 
employ strategic variance analysis (SVA). SVA is used to analyze a company’s profitability by 
breaking it down into strategic components including cost leadership, product differentiation, 
growth, and capacity underutilization. The authors found that Alaska Airlines focused primarily on 
growing its share of the market and on productivity gains by cutting costs. They also made changes 
in their routes to achieve better use of capacity. The authors found that by 2009 Alaska ranked first 
in both productivity and price recovery, and third in market share growth. 

In “Efficiency Benchmarking of North American Airports,” Zhuo Lin, Yap Yin Choo, and Tae 
Hoon Oum use three different methods to examine the efficiency performance of 62 Canadian and 
U.S. airports.  The methodologies employed by the authors include the productivity index method, the 
Data Envelopment Analysis (DEA) method, and the stochastic frontier analysis (SFA) method. The 
authors use a comprehensive output measure that includes both aeronautical and non-aeronautical 
service outputs. The data set consists of a cross section of 55 U.S. and seven Canadian airports in 
2006. The authors found the efficiency scores and rankings measured by the three alternative methods 
are quite similar in the top 15 and bottom 15 ranked airports, whereas considerable differences exist 
among airports in the middle range.  The authors also found that the percentage of non-aeronautical 
revenue, passenger volume, average aircraft size, and percentages of international and connecting 
traffic significantly affect the efficiency estimates of all three alternative approaches. 

Enock T. Mtoi, Ren Moses, and Thobias Sando explore the relationship between fatigue-
induced crash risk, transit operator hours of service, and fatigue management policies in “Modeling 
Fatigue-Induced Collision Relative Risk: Implications of Service Hours and Fatigue Management 
Policies on Transit Bus Operations in Florida.”  The objective of this study is to analyze bus operator 
hours-of-duty policies in Florida and determine if there are safety impacts that may prompt changes 
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for these policies. The authors use incident reports and operator schedule data archived by transit 
agencies to determine the relationship between crash involvement and operator schedules, using 
logistic regression. Regression results revealed a decreasing trend of collision risk when drivers start 
their schedules in the late morning or in the afternoon compared to early morning. The authors found 
increasing collision risk for driving long hours without enough off-duty time. They also found that 
drivers who work split-shifts have higher relative crash risks than drivers who work straight-runs.

In “Truck Use on Texas Toll Roads,” Dan Seedah, Joshua Muckelston, and Robert Harrison 
examine the current failure of Texas toll road SH-130 to attract truckers from IH-35 in Austin, one 
of the most congested Texas corridors. The objective of the study is to introduce a methodology 
that can be used to estimate truck operating cost over any user-defined route profile. The authors 
also present a case study that illustrates how planners and toll entities can determine which routes 
trucking companies will choose based on factors such as distance, travel time, congestion levels, 
travel speeds, toll charges, and pavement conditions. The authors achieve the objective by developing 
CT-VCOST, a comprehensive vehicle operating cost toolkit, which can be used to calculate truck 
operating cost on both SH-130 and IH-35. The results indicate why few truckers are using the toll 
facility.

Jun Tu, Scott Wayne, and Mario Perhinschi use correlation analysis to investigate the effects of 
drive cycle characteristics on distance-specific emissions and fuel economy in “Correlation Analysis 
of Duty Cycle Effects on Exhaust Emissions and Fuel Economy.” The purpose of the paper is to 
investigate the drive effects of cycle characteristics, or metrics based on second-by-second vehicle 
speed data, on distance-specific emissions in order to identify the most important parameters to be 
included in a predictive emissions model.  This information is used as an input to bus procurement 
decisions.  The authors found that average speed, number of stops per mile, percentage idle, and 
kinetic intensity were the most important cycle metrics affecting emissions and fuel economy.  

In “Gate Violations by Truck Drivers at Highway-Rail Grade Crossings in Two Cities,” Aemal 
Khattak investigated gate violations during train crossing events by truck drivers at highway-rail 
grade crossings in two Nebraska cities. The methodology consisted of collecting data at two gated 
highway-rail crossings where truck drivers were observed during train crossing events. The data 
was statistically analyzed to assess the prevalence of gate violations by truck drivers. The author 
found that the frequency of violations increased with higher truck traffic during crossing events, 
and drivers of single unit trucks had a greater propensity for gate violations compared to drivers of 
trucks with trailers.  Also he found that violations were more frequent with longer times between the 
onset of flashing lights and train arrivals at crossings. 

Michael W. Babcock					     Kofi Obeng 
Co-General Editor					     Co-General Editor
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by Niranga Amarasingha and Sunanda Dissanayake

Young drivers have higher motor vehicle crash rates compared to other drivers, and understanding 
the reasons for this would help to improve safety. This study, therefore, investigated characteristics 
and contributory causes of young-driver crashes and developed multinomial logit models to identify 
severity affecting factors. It was found that teen drivers were more likely to be involved in crashes due 
to failure to give time and attention and falling asleep. Among other factors, alcohol involvement, 
not wearing a seat belt, driving without a valid license, having restrictions on driver’s license, and 
involvement in off-roadway crashes were factors that increased young-driver injury severity. Based 
on identified factors, countermeasure ideas for improving safety have also been suggested. 

INTRODUCTION

Teen and young-adult drivers have much higher motor vehicle crash rates per licensed driver than 
other drivers, both in Kansas and throughout the United States (U.S.) (Ballesteros and Dischinger 
2002). The higher crash propensity among young or beginning drivers may result from lack of 
driving experience and their risk-taking behavior. Motor vehicle crashes are the leading cause of 
death among young drivers in the U.S. (IIHS 2008). National statistics in 2008 showed teenage 
drivers accounted for 12% of all drivers involved in fatal crashes and 14% of all drivers involved in 
all police-reported crashes but they accounted for less than 5% of all drivers (IIHS 2008, USDOT 
2008). Also, beginning drivers were three times more likely to die in a motor vehicle crash than 
an average driver (IIHS 2008). In Kansas, the young-driver safety issue has been identified by 
the Kansas Strategic Highway Safety Plan as one of the major concerns that leads to increased 
fatalities and serious injuries (KDOT 2010). Hence, it is important to investigate characteristics 
and contributory circumstances related to young-driver crashes and associated severities while 
identifying over-represented factors. Such results can be used to recommend better crash mitigation 
strategies, thereby improving the safety of young drivers.  

Accordingly, the objectives of this study were to investigate the characteristics, contributory 
causes by numbers and percentages, crash rates, and crash-severity factors related to highway crashes 
involving teen and young-adult drivers by investigating coefficient estimates through development 
of a multinomial logit model. Crash rates were calculated in terms of crashes per 1,000 drivers 
and Vehicle Miles of Travel (VMT). Comparisons between teen drivers, young-adult drivers, and 
experienced drivers were also carried out in order to identify young-driver over-representation in 
various crash characteristics and contributory causes of young-driver-involved crashes.

LITERATURE REVIEW

High crash rates by young drivers are well documented in the literature, whichever exposure 
data (e.g., number of licensed drivers, vehicle miles travel) are used in calculating the rates. In 
Maryland, for example, the youngest drivers have been found to have the highest rate of motor 
vehicle crashes per licensed driver and per annual miles driven (Ballesteros and Dischinger 2002). 
In particular, young drivers have greater risk of crashes than their older counterparts. Numerous 
contributory factors have been related to crash risk of young drivers such as risk-taking behavior, 

Modeling Injury Severity of Young Drivers 
Using Highway Crash Data from Kansas
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nighttime driving, driving with young passengers, and being under the influence of alcohol (Fu and 
Wilmot 2008). Inattention and distraction were also identified as critical factors that increase injury 
severity of young drivers involved in motor vehicle crashes (Neyens and Boyle 2007). Many studies 
have focused on young-driver crash involvement and crash risk. Based on the study conducted in 
Louisiana using crash data from 1999 to 2004, young driver risk-taking behavior was much more 
present in male drivers with the presence of male peers than the female-to-female, driver-passenger 
combination (Fu and Wilmot 2008). The risk of being involved in a fatal crash was much higher 
for teenage drivers when passengers were present. Cooper et al. (2005), using fatality and crash 
data from 1991 to 1997, studied the new passenger restrictions in California, which are that new 
provisional license holders are restricted from transporting those under 20 years old for the first six 
months. The law has been effective in reducing these rates, and the reduction of passengers in crash-
involved cars resulted in an estimated saving of eight lives and 684 injuries over three years. Hanna 
et al. (2006) investigated young unlicensed drivers’ involvement in fatal crashes, using data from 
Fatality Analysis Reporting System (FARS).

Young unlicensed driver involvement in fatal crashes was similar to young licensed drivers’ 
involvement in fatal crashes. However, the errors for experienced young drivers were relatively 
few in number and small in magnitude, according to the study conducted in California from 1996 
to 2000 by McKnight and McKnight (2003). Benefits of experience apply rather generally across 
all aspects of driving, as behavioral shortcomings such as failure to employ routine safe operating 
practices, failure to recognize danger, and risk-taking are high in beginning drivers. A logit model of 
teen-driver injury crashes, which was developed by Vachal and Malchose (2009), using crash data 
from 2001 to 2007, offered insight for creating a safer driving environment for teen drivers. They 
found that increased licensing age and seat belt emphasis might reduce teen traffic injuries. The risk 
attached to lower age, lack of seat belt use, and impaired driving is evident. Also, gender is a factor 
in teen-driver injury severity, with females at higher risk.  For several years, many efforts such as the 
introduction of graduated licenses have been focused on reducing young-driver crash involvement 
in the U.S. It has resulted in some progress nationally in reducing fatal crashes among 16 year olds 
but young drivers’ over involvement in crashes was still a big problem (Williams, Ferguson, and 
Wells 2005). Gonzales et al. (2005) studied 16-year-old drivers involved in fatal vehicle crashes 
during 1995-2000 and compared them with fatal-crash-involved experienced drivers with respect to 
characteristics and driver behaviors. According to the study, new drivers must be given a top priority 
to improve traffic safety as they bear considerable responsibility for fatal crashes.

Numbers of young-driver-related studies have used state-level databases or national-level 
databases such as FARS and the General Estimate System (GES). Also, many research studies have 
focused on young-driver crash involvement and crash risk. Most of the preliminary analyses were 
done using the absolute number of crashes at each age, frequencies, percentages, and Pearson Chi-
Square tests (Hanna et al. 2006; McKnight and McKnight 2003; Williams, Ferguson, and Wells 
2003). Second, more comprehensive analyses such as multiple logistic regression and multiple 
probit analyses were done to check the association between driver injury severity and related 
factors. For example, binary logistic regression models were developed to compare teen drivers and 
experienced drivers in Colorado using FARS data (Gonzales et al. 2005). In order to investigate the 
crash severity of young-driver crashes, Dissanayake and Lu (2002) developed a sequential binary 
logistic regression model using the Florida traffic database. Crash severity was defined under five 
categories: no-injury, possible injury, non-incapacitating injury, incapacitating injury, and fatal 
injury.  Neyens and Boyle (2007) used GES data, which contain both teenage drivers and their 
passengers, to develop an ordered logit model. The dependent variable, which was injury severity, 
was also defined under five categories. Results showed that teen drivers have an increased likelihood 
of more severe injuries if distracted by a cell phone or passengers than other sources of distraction. 
Using injury crash records, a multinomial logit model was developed to study driver, vehicle, and 
road-related factors for North Dakota teenage drivers (Vachal and Malchose 2009). The relative 
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likelihood of severity, which is driver fatality or disabling injury, in a crash was the dependent 
variable.

Mercier et al. (1997) assessed whether age and gender, or both, influenced injury severity 
in head-on automobile collisions on rural roads. Data were obtained from Iowa Department of 
Transportation’s Accident File, beginning from 1986 through part of 1993. All the collisions could 
be divided into three groups; head-on, broadside, and angle approach. Since the head-on collisions 
were the most severe crashes, the study was limited to those crashes. Also, this study limited for 
crashes on paved surfaces, and front seat occupants. The principal components logistic regression 
and hierarchical logistic regression models were developed using injury severity as the dependent 
variable, which was measured as fatal, major, or minor. In the preliminary analysis, 14 independent 
variables were considered. Results showed that age remains as a very important factor for predicting 
injury severity. The deployed air bags seemed more beneficial for women than for men, whereas 
use of lap and shoulder restraints appeared to be more beneficial for men. This study recommended 
reexamining the design parameters for protective systems in automobiles.

Aldridge et al. (1999) investigated the effect of passengers on young driver accident propensity 
using crash data that were extracted from a Kentucky accident database between 1994 and 1996. 
In this study, young drivers were individuals between the ages of 16 and 20 years and peers to 
these young drivers were individuals between 12 and 24 years old. The analysis was done using 
the induced-exposure technique, which measures the Relative Accident Ratio (RAIR) by taking 
the ratio of the percentage of at-fault drivers in a specific subgroup to the percentage of not-at-fault 
drivers for the same subgroup. Seven possible interaction variables, driver gender, total occupant 
gender, time of the week, time of the day, vehicle age, and safety restraint usage were considered. 
Young drivers have a high propensity for causing single-vehicle crashes when traveling with peers, 
but they have lower propensity to cause either single-vehicle crashes or multi-vehicle crashes when 
traveling with adult/child passengers. These findings of this study supported for the Kentucky’s 
graduated license program. Further, it suggested increased education and a training period for young 
drivers under adult supervision.

Despite these suggestions, young drivers still have higher crash rates compared with other 
drivers. Using a multinomial logit model, this study compared the young drivers’ crash rates for 
each characteristic with experienced drivers’ crash rate that may add new information to the young 
driver safety literature. Also, no research has been done to investigate young driver safety issues 
using Kansas crash data. 

Kansas Law Related to Young Drivers

The Kansas law prior to 2010 covering licenses is summarized in this section (KDOT 2009). The 
minimum age to obtain an instruction permit in Kansas was 14 years, with the requirement of adult 
supervision at all times. Restricted licenses were issued at 15 years with only driving to, from, or in 
connection with any job- or employment-related work or school allowed. Even then, the most direct 
and accessible route between the driver’s home and school or work was to be used.  However, a 
restricted license holder could drive anywhere, anytime with a licensed adult driver’s supervision. 
Passenger restrictions included transportation of non-sibling minor passengers. At age 16, a full 
license was granted if a 50-hour affidavit, which is proof of completion of 50 hours of driving, had 
been turned in. The law changed in 2010 with the current law allowing fewer restricted licenses at 
age 16 instead of a full license, and after six months a full license is granted. Even though the law 
changed in 2010, it did not have any effect on this study because all data for this analysis were from 
the period before the law changed.

In Kansas, the minimum age to have a restricted license was 15 years. Most of the past studies 
which focused on young drivers commonly investigated the age limit from the time the restricted 
license was granted to 25 years (Ballesteros and Dischinger 2002; McKnight and McKnight 2003). 
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This age range shows similar driving behavior and crash risk (KDOT 2010). Hence, in this study 
the range of young drivers considered was from age 15 to 24. In order to investigate young-driver 
characteristics in detail, they were further divided into two groups: the teen-driver group from age 
15 to 19 and the young-adult-driver group from age 20 to 24. In order to compare young-driver 
characteristics with other driver characteristics, all middle-age drivers in Kansas were taken into 
account. Those middle-age drivers were defined as “experienced drivers” whose ages ranged from 
25 to 64 (Ballesteros and Dischinger 2002; Gonzales et al. 2005). Those above age 65 were not 
considered to compare with young drivers because older-driver characteristics may be different 
from those of 25- to 64-year-old drivers, and older drivers have also been found to have unique 
highway safety challenges (Gonzales et al. 2005; Kostyniuk and Shope 2003). 

DATA AND METHODOLOGY

Data

Crash data from 2006 to 2008 were obtained from the Kansas Department of Transportation 
(KDOT). This data set, Kansas Accident Reporting System (KARS) database, comprises all police-
reported crashes that have occurred in Kansas. Motor vehicle young-driver-involved crashes on 
highways were taken into account, excluding motorcycle and motor scooter crashes. The KARS 
database from 2006 to 2008 contained 94,817 (30% of total crashes) young-driver-involved crashes 
and 186,600 (58% of total crashes) experienced-driver-involved crashes. Driver contributory factors 
for 54,349 crashes were recorded for the 94,817 young-driver-involved crashes. There were up to 
10 contributing factors recorded in the traffic crash database for some crashes, while contributory 
factors were not recorded at all in some other crashes. Environment-related contributory causes 
were recorded for 636 crashes involving teen drivers, 527 crashes involving young-adult drivers, 
and 1,867 crashes involving experienced drivers. 

Crash Rates

In order to calculate crash rates, driver’s license information for each year by age was obtained 
from the U.S. Department of Transportation (USDOT 2008; USDOT 2007; USDOT 2006). Table 
1 provides the number of licensed drivers in Kansas during 2006 through 2008 by age group and 
gender. From 2006 to 2008, the number of licensed teen drivers increased from 159,655 to 166,663, 
and the number of licensed young-adult drivers increased from 177,407 to 181,616 in Kansas. 
However, the number of experienced drivers dropped from 1,361,297 to 1,343,497. Vehicle Miles 
Traveled (VMT) was calculated using from National Household Travel Survey (NHTS) data for 
the Midwest region, because the sample size for Kansas was too small (NHTS 2009). The Midwest 
region consists of Iowa, Illinois, Indiana, Kansas, Michigan, Minnesota, Missouri, North Dakota, 
Nebraska, Ohio, South Dakota, and Wisconsin. Annualized travel day VMT by each age for the 
Midwest were extracted from the NHTS database (NHTS 2009). This gives the average VMT by 
the interviewed drivers in each age, and the VMTs were divided by the respective sample size to 
obtain VMT per driver. The VMT per driver were categorized for each age group. Then multiplying 
those values by the number of Kansas drivers in their respective age group, the total annual VMT 
by Kansas drivers in each age group was estimated. Estimated Kansas VMT for teen, young-adult, 
and experienced groups were 920, 1,724, and 17,750 million per year, respectively (NHTS 2009). 
Those values were then multiplied by three in order to obtain total VMT for three years. The crash 
rates per VMT were calculated for each age group by dividing the number of crashes of age group 
by VMT of respective age group. 
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Table 1: Number of Licensed Drivers in Kansas
Driver Category 2006 2007 2008

Teen (15-19)
Male 81,815 83,689 85,138

Female 77,840 80,033 81,525
Total 159,655 163,722 166,663

   Young-adult 
(20-24)

Male 89,475 91,088 91,788
Female 87,932 90,084 89,828
Total 177,407 181,172 181,616

           
Experienced    

(25-64)

Male 681,280 679,586 698,566
Female 680,017 675,804 1,397,132
Total 1,361,297 1,355,390 1,343,497

Source: USDOT 2008; USDOT 2007; USDOT 2006

Multinomial Logit Model 

A multinomial logit model was developed to identify variables expected to have an explanatory 
effect on injury severity of young drivers involved in crashes. Using the coefficient of the explanatory 
variables, risk factors that increase young-driver injury severity could be determined. The dependent 
variable, injury severity, has several discrete categories. The dichotomous nature of the dependent 
variable facilitates the application of logit analysis, for which the probability of fatal injury against 
other injury-severity categories is estimated by the maximum likelihood method (Long 1997). The 
probability of driver n  being injured with severity outcome i is

(1)

where,
Π(x)	 =	 the probability of x injury category,
n	 =	 a driver,
i	 =	 the injury severity of n driver (e.g., fatal injury, incapacitating injury, minor injury, 
no  
		  injury),
Uni	 =	 a function determining injury severity outcome i of the n driver,
Uniʹ 	 =	 a function determining injury severity outcome iʹ of the n driver, and
I	 =	 a set of I possible, mutually exclusive severity categories.

The logit model assumes a driver-injury severity function has a linear-in-parameters form as 

(2) 

where
βi	 =	 a vector of estimable coefficients for injury severity i and xi is a vector of variables 	
		  for driver n; and
ɛi	 =	 a random component which has identically and independently distributed error 
		  terms.
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Then the multinomial logit model is defined as follows (Long 1997):

(3)		

The maximum likelihood method is then used to estimate the coefficients. 
In some cases, logistic regression results may seem paradoxical, which means the model fits 

the data well, even though none of the independent variables has a statistically significant impact 
on predicting the dependent variable. This has happened due to the correlation of two or more 
independent variables. Neither variable may contribute significantly to the model after the other 
one is included. However, model fit will be worse if both variables were removed from the model. 
This is because the independent variables are collinear and the results show multicollinearity.  In 
traffic safety analysis, the goal is to understand how various independent variables impact the 
dependent variable; hence, multicollinearity is a considerable problem (Motulsky 2011). One 
problem is that even though the variable is important, model results show it is not significant. 
The second problem is that confidence intervals on the model coefficients will be very wide. To 
help assess multicollinearity, the correlation matrix of the independent variables was investigated. 
If the element of correlation matrix has high value, model fit is affected by multicollinearity of 
the independent variable correspondent to that element. Also, each independent variable can be 
predicted from other independent variables. The model-fit statistic such as individual R2 value and a 
variance inflation factor (VIF) are high for any of the independent variables, and model fit is affected 
by multicollinearity. In such cases, only one of those two variables was used for development of the 
model.

RESULTS

Driver, Environment, and Road-Related Characteristics

Crash rates were higher for teen drivers than young-adult drivers, and rates for young-adult drivers 
were higher than for experienced drivers, as shown in Table 2. 

Table 2: Crash Frequencies, Percentages, and Crash Rates by Driver Group:
	 Driver, Environment and Road-Related Characteristics

Characteristic

Number of Crashes Involving Drivers Crashes per 1000 
Drivers Crashes per Million VMTTeen Young adult Experienced

Number % Number % Number % Teen
Young 
adult Exp. Teen

Young 
adult Exp.

Total 49,165 100 44,802 100 184,079 100 100.3 82.9 45.3 17.8 8.7 3.5

Gender

  Female 23,061 47 19,918 44 79,816 43 96.3 74.4 39.4 8.3 3.9 1.5

  Male 26,098 53 24,878 56 104,222 57 104.1 91.3 51.2 9.4 4.8 2.0

License Compliance

  Valid licensed 46,137 94 40,565 91 173,343 94 94.1 75.1 42.7 16.7 7.8 3.3

  Not licensed 2,532 5 3,772 8 9,055 5 5.2 7.0 2.2 0.9 0.7 0.2

Restriction Compliance

 
No restrictions on 
driver’s license 31,447 64 28,721 64 108,060 59 64.2 53.2 26.6 11.4 5.6 2.0

  Restricted license 14,874 30 13,118 29 67,997 37 30.4 24.3 16.7 5.4 2.5 1.3

Safety belt not used 2,993 6 2,641 6 6,261 3 6.1 4.9 1.5 1.1 0.5 0.1
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Characteristic

Number of Crashes Involving Drivers Crashes per 1000 
Drivers Crashes per Million VMTTeen Young adult Experienced

Number % Number % Number % Teen
Young 
adult Exp. Teen

Young 
adult Exp.

Total 49,165 100 44,802 100 184,079 100 100.3 82.9 45.3 17.8 8.7 3.5

Alcohol related 1,261 3 2,454 5 5,640 3 2.6 4.5 1.4 0.5 0.5 0.1

Light Conditions

  Daylight 33,862 69 29,250 65 129,084 70 69.1 54.1 31.8 12.3 5.7 2.4

  Night or dark 15,195 31 15,449 34 54,634 30 31.0 28.6 13.5 5.5 3.0 1.0

 Weather Conditions

  Good 41,262 84 36,601 82 152,284 83 84.2 67.8 37.5 14.9 7.1 2.9

  Rain 4,780 10 4,522 10 16,873 9 9.8 8.4 4.2 1.7 0.9 0.3

  Adverse conditions 2,937 6 3,527 8 14,371 8 6.0 6.5 3.5 1.1 0.7 0.3

Time of Crash

  5.00 - 9.00 6,242 13 5,653 13 32,260 18 12.7 10.5 7.9 2.3 1.1 0.6

  9.00 - 13.00 6,986 14 7,592 17 34,857 19 14.3 14.1 8.6 2.5 1.5 0.7

  13.00 - 17.00 15,586 32 12,058 27 51,123 28 31.8 22.3 12.6 5.6 2.3 1.0

  17.00 - 21.00 12,067 25 10,791 24 44,091 24 24.6 20.0 10.9 4.4 2.1 0.8

  21.00 - 5.00 8,263 17 8,684 19 21,661 12 16.9 16.1 5.3 3.0 1.7 0.4

Day of Week

  Weekdays 37,434 76 33,481 75 145,755 79 76.4 62.0 35.9 13.6 6.5 2.7

  Weekend 11,727 24 11,311 25 38,295 21 23.9 20.9 9.4 4.2 2.2 0.7

Functional Class

  Rural roads 9,380 19 5,291 12 22,988 12 19.1 9.8 5.7 3.4 1.0 0.4

  Urban interstate 113 0 163 0 799 0 0.2 0.3 0.2 0.0 0.0 0.0

  Urban arterial 16,519 34 14,983 33 57,881 31 33.7 27.7 14.3 6.0 2.9 1.1

  Urban collector 3,741 8 2,801 6 10,606 6 7.6 5.2 2.6 1.4 0.5 0.2

  Urban local street 6,840 14 5,749 13 19,734 11 14.0 10.6 4.9 2.5 1.1 0.4

Crash Location

  On roadway 18,347 37 17,670 39 78,379 43 37.4 32.7 19.3 6.6 3.4 1.5

  Intersection 26,619 54 23,500 52 95,470 52 54.3 43.5 23.5 9.6 4.5 1.8

  Off roadway 4,188 9 3,615 8 10,194 6 8.5 6.7 2.5 1.5 0.7 0.2

Road Surface Conditions

  Dry 38,565 78 34,010 76 143,223 78 78.7 63.0 35.3 14.0 6.6 2.7

  Wet 6,404 13 6,070 14 22,949 12 13.1 11.2 5.7 2.3 1.2 0.4

  Debris 3,965 8 4,515 10 17,191 9 8.1 8.4 4.2 1.4 0.9 0.3

Work zones 1,061 2 1,294 3 2,355 1 2.2 2.4 0.6 1.2 0.8 0.0

 Road Surface Character

  Straight and level 36,164 74 32,778 73 134,254 73 73.8 60.7 33.1 13.1 6.3 2.5

  Straight not level 9,176 19 8,350 19 35,888 19 18.7 15.5 8.8 3.3 1.6 0.7

  Curved 3,479 7 3,389 8 12,833 7 7.1 6.3 3.2 1.3 0.7 0.2

Table 2: continued
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The teen-driver crash rate per 1,000 drivers was 100.3 while the young-adult driver crash rate 
was 82.9 and experienced-driver crash rate was 45.3. Teen-driver crash rate per million VMT was 
17.80 while rates were 8.66 and 3.46 for young-adult and experienced drivers, respectively. Both 
teenage-driver and young-adult-driver involved crash rates per 1,000 licensed drivers were about 
twice that of experienced drivers. Teenage-driver crashes per million VMT were approximately five 
times that of experienced drivers, while young-driver crashes per million VMT were about two times 
that of experienced drivers. This indicated that teenage drivers have much more critical highway 
safety concerns on a per-mile-driven basis. Teen male-driver crash involvement (53%) was higher 
than that of teen female drivers (47%). Teen male drivers had higher crash rates than teen female 
drivers, as shown in Table 2. Teen female-driver involvement in crashes per 1,000 drivers was 96.3, 
while teen male-driver involvement in crashes per 1,000 drivers was 104.1. Female young-adult-
driver crash rate per 1,000 teen female licensed drivers was about two times that of experienced 
drivers. The trend was similar for male drivers. Both teen-male and female-driver crashes per 
million VMT by licensed drivers were approximately five times that of experienced drivers, while 
young-adult driver crashes per million VMT by licensed drivers were about two to three times that 
of experienced drivers.

A majority of drivers involved in crashes had valid driver’s licenses. More than 6% of teen 
drivers were not wearing seat belts, while 3% of teen drivers were under the influence of alcohol at 
the time of the crash. Teen drivers had a slightly higher crash involvement (54%) at intersections 
than experienced drivers (52%). On weekends and in dark lighting conditions, teen-driver crash 
involvement was slightly higher than that of experienced drivers. Teen-driver crash rates per 1,000 
licensed teen drivers, when they were traveling on rural local roads or in the nighttime, were two to 
three times that of experienced drivers. In other cases, crash-involvement percentages were similar 
among teen and young-adult drivers as well as experienced drivers. 

Vehicle and Crash-Related Characteristics

Teen drivers had higher crash involvement (68%) than that of experienced drivers (46%), as shown 
in Table 3. Almost 29% of teens were involved in crashes when they were driving vehicles made 
in 1994 or earlier, while only 16% of experienced drivers were involved in crashes driving those 
vehicles. This may be due to teens driving older vehicles more often.

A higher percentage of vehicles were destroyed due to crashes involving teen drivers (8%) 
compared with experienced drivers (5%). Teen drivers also had a higher crash-involvement 
percentage in collisions with a fixed object (15%) than experienced drivers (10%). However, teen-
driver, crash-involvement percentages for many other vehicle and crash-related characteristics were 
similar to young-adult drivers as well as experienced drivers. Crash rates of vehicle and crash-
related characteristics had a similar pattern as driver, environment, and vehicle-related crash rates 
when comparing teen, young-adult, and experienced drivers.
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Table 3:	Crash Frequencies, Percentages, and Crash Rates by Driver Group: 
	 Vehicle- and Crash-Related Characteristics

Characteristic

Number of Crashes Involving Drivers Crashes per 1000 
Drivers

Crashes per Million 
VMTTeen Young adult Experienced

Number % Number % Number % Teen
Young 
adult Exp. Teen

Young 
adult Exp.

Vehicle Damage

  No damage 949 2 1,016 2 6,161 3 1.9 1.9 1.5 0.3 0.2 0.1

  Minor damage 11,262 23 10,465 23 52,083 28 23.0 19.4 12.8 4.1 2.0 1.0

  Functional 16836 34 16,007 36 67,953 37 34.4 29.6 16.7 6.1 3.1 1.3

  Disabling 16,012 33 14,110 31 48,165 26 32.7 26.1 11.9 5.8 2.7 0.9

  Destroyed 3,826 8 2,962 7 8,625 5 7.8 5.5 2.1 1.4 0.6 0.2

Vehicle Body Type

  Automobile 33,432 68 29,195 65 83,981 46 68.2 54.0 20.7 12.1 5.6 1.6

  Van 1,410 3 1,469 3 17,867 10 2.9 2.7 4.4 0.5 0.3 0.3

  Pickup truck 8,075 16 7,342 16 38,396 21 16.5 13.6 9.5 2.9 1.4 0.7

  Sport utility vehicle 6,062 12 5,930 13 32,730 18 12.4 11.0 8.1 2.2 1.1 0.6

  Other 176 0 861 2 11,051 6 0.4 1.6 2.7 0.1 0.2 0.2

Vehicle Year

<1990 4,184 9 2,551 6 9,954 5 8.5 4.7 2.5 1.5 0.5 0.2

1990 - 1994 9,805 20 6,285 14 20,589 11 20.0 11.6 5.1 3.5 1.2 0.4

1995 - 1999 18,251 37 14,579 33 48,875 27 37.2 27.0 12.0 6.6 2.8 0.9

2000 - 2004 13,109 27 15,203 34 66,857 36 26.8 28.1 16.5 4.7 2.9 1.3

>2005 3,497 7 5,912 13 36,316 20 7.1 10.9 8.9 1.3 1.1 0.7

Vehicle Maneuver

 
Straight-following 
road 29,820 61 27,417 61 109,217 59 60.9 50.8 26.9 10.8 5.3 2.1

 
Turn or changing 
lanes 9,474 19 7,400 17 26,650 14 19.3 13.7 6.6 3.4 1.4 0.5

  Avoiding maneuver 1,724 4 1,591 4 5,287 3 3.5 2.9 1.3 0.6 0.3 0.1

 
Stopped, parking, 
or backing 7,499 15 7,769 17 40,935 22 15.3 14.4 10.1 2.7 1.5 0.8

  Other 431 1 413 1 1,352 1 0.9 0.8 0.3 0.2 0.1 0.0

Accident Class

 
Other non-collision 
and overturned 2,055 4 1,622 4 5,023 3 4.2 3.0 1.2 0.7 0.3 0.1

 
Collision with 
vehicle 37,231 76 33,269 74 137,315 75 76.0 61.6 33.8 13.5 6.4 2.6

 
Collision with 
pedestrian or animal 2,325 5 3,268 7 23,161 13 4.7 6.0 5.7 0.8 0.6 0.4

 
Collision with 
object 7,544 15 6,631 15 18,542 10 15.4 12.3 4.6 2.7 1.3 0.3

Injury Severity

  Fatal injury 83 0 117 0 436 0 0.2 0.2 0.1 0.0 0.0 0.0

  Disabled injury 486 1 431 1 1,786 1 1.0 0.8 0.4 0.2 0.1 0.0

  Injury 3,522 7 3,033 7 10,190 6 7.2 5.6 2.5 1.3 0.6 0.2

  Possible injury 3,436 7 3,186 7 12,843 7 7.0 5.9 3.2 1.2 0.6 0.2

  Not injured 39,390 80 36,127 81 150,954 82 80.4 66.9 37.2 14.3 7.0 2.8
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Characteristic

Number of Crashes Involving Drivers Crashes per 1000 
Drivers

Crashes per Million 
VMTTeen Young adult Experienced

Number % Number % Number % Teen
Young 
adult Exp. Teen

Young 
adult Exp.

Ejection

  Ejected 278 1 234 1 613 0 0.6 0.4 0.2 0.1 0.0 0.0

  Not ejected 46,216 94 42,342 95 173,972 95 94.3 78.4 42.8 16.7 8.2 3.3

  Trapped 287 1 239 1 1,144 1 0.6 0.4 0.3 0.1 0.0 0.0

	
For example, teen crash rates per 1,000 drivers were higher than that of experienced drivers in 

most of vehicle- and crash-related characteristics as observed in driver, environmental and vehicle-
related crash rates. However, teen-driver crash rates per 1,000 drivers when operating an automobile, 
or making a turn, were about three times that of experienced drivers. Also, teen-driver crash rates 
per 1,000 drivers when the vehicle was destroyed, non-colliding/overturning, or colliding with other 
vehicles were much higher than that of experienced drivers. Teen-driver crash rates per million 
VMT in operating automobile, or turning, non-colliding and overturning, avoiding maneuver, or 
colliding with a fixed object were about six to nine times that of experienced drivers. 

Contributory Causes

Contributory causes for young-driver crashes were also investigated using Kansas crash data. 
Many factors might have combined to produce circumstances that led to a traffic crash; there was 
rarely a single cause of such an event. Mainly these contributory causes could be divided into four 
categories: driver, roadway, environment, and vehicle-related factors. Driver-related contributory 
causes involve actions taken by or the condition of the driver of the motor vehicle.  Contributory 
causes for teen, young-adult, and experienced drivers are provided in Table 4. Failure to give time 
and attention was the top-ranked driver contributory cause in teen-driver crashes, followed by 
speeding, failure to yield right of way, and disregarding traffic signs/signals. Those driver-related 
contributory causes were also the most critical factors among young-adult drivers and experienced 
drivers. 

Crash rates for teen driver-related contributory causes per 1,000 licensed drivers were much 
higher than that of experienced drivers. Corresponding young-adult-driver-contributed crash rates 
were also higher than that of experienced drivers. Teen-driver-involved crashes per million VMT due 
to failure to give enough time and attention, failure to yield right of way, and speeding exceeded eight 
to nine times that of experienced drivers and twice that of young-adult drivers. The most frequent 
environment-related contributory causes for teen-driver-involved crashes were identified as animals 
in the road, followed by raining and snowing. The most common vehicle-related contributory causes 
for teen-driver crashes were identified as failure of brakes, followed by failure of tires.

Icy or slushy conditions and wet road surfaces were the most frequent road-related contributory 
causes for all age groups. Teen drivers’ crash percentage due to animals in the road was less than 
that of young-adult drivers and experienced drivers. Conversely, the crash percentage of teen drivers 
due to rain was higher than that of young-adult drivers and experienced drivers. Teen drivers’ crash 
percentage due to failure of brakes was higher than that of young-adult drivers and experienced 
drivers. Also, the crash percentage for teen drivers involved in crashes due to wet road surfaces was 
higher than that of young-adult drivers and experienced drivers. 

Table 3:	continued
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Odds Ratios

To measure the association between teen drivers’ and experienced drivers’ contributory causes for 
crashes, Odds-Ratios (ORs) and 95% Confidence Intervals (CIs) were calculated using binary logit 
analysis (Long 1997). The OR is a widely used statistic in traffic safety studies for comparing 
whether the probability of a certain event is the same for two groups. The “odds” of an event (y) 
is defined as the probability of the outcome event occurring (y = 1/x1, x2,......, xp) divided by the 
probability of the event not occurring (Long 1997).

(4)  	

Characteristic

Number of Crashes Involving Drivers Crashes per 1000 
Drivers

Crashes per Million 
VMTTeen Young adult Experienced

Number % Number % Number % Teen
Young 
adult Exp. Teen

Young 
adult Exp.

Table 4:	Crash Frequencies, Percentages, and Crash Rates for Contributory Causes

Driver Related 

Failure to give time 
and attention 13,842 36 10,339 34 31,606 35 28.2 19.1 7.8 5.01 2.00 0.59

Speeding 5,699 15 4,608 15 11,518 13 11.6 8.5 2.8 2.06 0.89 0.22

Failure to yield right 
of way 5,193 14 3,649 12 11,575 13 10.6 6.8 2.9 1.88 0.71 0.22

Disregarding traffic 
sign/signal 4,942 13 4,108 13 12,231 13 10.1 7.6 3.0 1.79 0.79 0.23

Improper action 2,320 6 1,838 6 7,410 8 4.7 3.4 1.8 0.84 0.36 0.14

Turning or lane 
changing 1,361 4 1,040 3 3,577 4 2.8 1.9 0.9 0.49 0.20 0.07

Aggressive driving 1,335 3 1,122 4 2,000 2 2.7 2.1 0.5 0.48 0.22 0.04

Other driver factors 1,254 3 994 3 3,833 4 2.6 1.8 0.9 0.45 0.19 0.07

Alcohol impaired 1,190 3 2,208 7 5,345 6 2.4 4.1 1.3 0.43 0.43 0.10

Distraction 1,155 3 730 2 1,786 2 2.4 1.4 0.4 0.42 0.14 0.03

Environment Related 

Animal on road 1,742 50 2,290 54 15,226 68 3.6 4.2 3.8 0.63 0.44 0.29

Rain 681 20 716 17 2,372 11 1.4 1.3 0.6 0.25 0.14 0.04

Falling snow 257 7 420 10 1,514 7 0.5 0.8 0.4 0.09 0.08 0.03

Vision obstruction 
glare 249 7 143 3 607 3 0.5 0.3 0.1 0.09 0.03 0.01

Vehicle Related 

Brakes 218 34 133 25 369 20 0.4 0.2 0.1 0.08 0.03 0.01

Tires 157 25 151 29 486 26 0.3 0.3 0.1 0.06 0.03 0.01

Road Related

Icy or slushy 998 44 1,222 50 4,076 50 2.0 2.3 1.0 0.36 0.24 0.08

Wet 757 34 640 26 1,967 24 1.5 1.2 0.5 0.27 0.12 0.04

Snow packed 208 9 304 13 1,053 13 0.4 0.6 0.3 0.08 0.06 0.02
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The ratio of odds of one variable (odds1) and odds of other variable (odds0),

 (5)  	

is called Odds Ratio (OR). It gives the relative amount by which the odds a variable (odds1) increases 
(OR > 1.0) or decreases (OR < 1.0) when the value of one of the predictor variables (odds0) is 
increased by 1.0 unit.  In this study, OR is used to access the injury risk of a particular age group, 
if a certain factor is present. Results of ORs and CIs of driver-contributory causes were examined 
among the three driver age groups. Comparisons were made between teen versus experienced 
groups, between teen versus young-adult groups, and between experienced versus young drivers, 
whose ages range between 15 and 24, as shown in Table 5. 

Table 5: Odds Ratios (ORs) and Confidence Intervals (CIs) for Driver Contributory Factors 

Contributory Causes
Teen versus
Experienced

Teen versus
Young Adult

Young versus 
Experienced

OR’s 95% CI OR’s 95% CI OR’s 95% CI

    Lower Upper   Lower Upper   Lower Upper

Failed to give time and attention 
or fell asleep 1.08 1.04 1.11 1.11 1.08 1.15 1.01 0.98 1.04

Failed to yield right of way 1.06 1.04 1.09 1.16 1.11 1.21 1.01 0.99 1.04

Too fast for conditions 1.12 1.08 1.16 0.97 0.92 1.01 1.13 1.10 1.17

Followed too closely 1.06 1.02 1.11 1.01 0.96 1.06 1.06 1.02 1.09

Distraction 1.80 1.59 2.03 1.20 1.03 1.38 1.67 1.50 1.85

Disregard traffic signs, signal, 
or improper or no signal 0.81 0.77 0.86 0.88 0.82 0.95 0.86 0.82 0.90

Improper lane change, backing or 
passing 0.64 0.60 0.67 0.93 0.87 1.00 0.66 0.63 0.69

Restless/careless/aggressive/ 
antagonistic driving 1.61 1.50 1.72 0.95 0.88 1.03 1.64 1.55 1.75

Under influence of alcohol or drugs 0.51 0.48 0.55 0.41 0.38 0.44 0.83 0.79 0.87

Avoidance or evasive action 0.93 0.87 0.99 1.06 0.97 1.16 0.90 0.85 0.96

Made improper turn 0.95 0.88 1.02 1.16 1.06 1.28 0.89 0.84 0.95

Exceeded posted speed limit 2.03 1.85 2.23 1.14 1.02 1.27 1.92 1.77 2.09

Wrong side or wrong way, impeding 
traffic, too slow, improper parking 0.72 0.64 0.80 0.81 0.70 0.93 0.79 0.72 0.87

Ill medical condition 0.23 0.18 0.29 0.60 0.45 0.80 0.30 0.26 0.35

When interpreting results, ORs greater than one showed greater contribution from the particular 
factor for a considered driver-age group than the other driver-age group. For example, in teen versus 
experienced driver comparison, an OR value of 1.08 for failed to give and time and attention or fell 
asleep means teen drivers were 1.08 times more likely to be involved in crashes as experienced drivers 
due to failure to give enough time and attention or falling asleep. Similarly, teen drivers were more 
likely to be involved in crashes due to failure to yield right of way; driving too fast for conditions; 
following too closely; distractive, restless, careless, and aggressive driving; and exceeding posted 
speed limit compared with experienced drivers. Also, teen drivers were significantly more likely to 
have crashes due to failure to give time and attention or falling asleep, failure to yield right of way, 
distractive driving, making improper turns, or exceeding the posted speed limit when compared with 
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20- to 24-year-old drivers.  The findings for young versus experienced drivers are identical to those 
of teen versus experienced drivers. 

Multinomial Logit Model 

A multinomial logit model was developed to investigate the injury severity of crashes involving 
young drivers, age 15 to 24. The dataset included 93,964 crashes from 2004 to 2008. The dependent 
variable had four categories: fatally/severely injured, injured, possible injured, or not injured. 
All the characteristics in Tables 2 and 3 were considered in developing the model. Most of these 
independent variables were treated as categorical variables. Thus, the numbers in Table 2 and 3 
are summary statistics for variables in the estimations. Results of the young-driver injury-severity 
model are presented in Table 6.  The model diagnostics showed a Likelihood Ratio Chi Square 
statistic of 35,102 whose p-value is < 0.001. In addition to the overall p-value, the logit model also 
reports the individual p-value for each independent variable. A low p-value means this particular 
independent variable significantly improves the fit of the multinomial logit model, showing that the 
variable has a significant impact on the model. Those significant variables are directly associated 
with injury severity of young-driver crashes. Some of significant variables had limited observations, 
but the results were not affected when those variables were removed or combined. The estimated 
model intercepts represent the mean impact of all variables that influence each injury severity level 
that were not included in the model. Negative coefficient estimates of the developed model show 
the reduced probability of potential injury severity, while positive coefficient estimates show the 
increased probability of potential injury severity. The significant variables in the model were age, 
gender, seatbelt use, air bag deployed, alcohol involvement, light condition, good weather, crash 
type, vehicle damage, vehicle maneuver, driver ejection, vehicle manufacturing year, and posted 
speed limit. The effects of each of these variables are explained in the following paragraphs.

According to the coefficients of the estimated logit model, teen drivers showed higher injury 
severity when involved in crashes. This could be expected because young drivers’ inexperience may 
limit them to make necessary judgments and it may increase the severity when they are involved in 
crashes. The negative coefficient of the variable gender indicates that being a young male involved 
in a crash tends to decrease the probability of having a more severe injury. Seat belt-restrained 
young drivers were less likely to suffer severe injuries when involved in crashes. The effectiveness 
of seat belt restraint in reducing crash injuries is well known. The positive coefficient of the airbag 
deployed variable indicates that young drivers were more likely to suffer severe injuries when they 
were involved in crashes. This is not an expected result because generally air bags are used to reduce 
the injury severities when involved in crashes. Alcohol involvement was a significant factor that 
increased young-driver injury severity.  Alcohol increases the probability of severe injuries among 
young drivers.

Decreased injury severities could be expected when streets are lighted and increased injury 
severities could be expected when streets are dark. According to the developed model, young drivers 
were less likely to suffer severe crashes whether streets are lighted or dark. Young drivers were more 
likely to suffer severe injuries when they involved in crashes during good weather. This may be 
because they may drive without proper precautions during good weather conditions. The estimated 
coefficient for off roadway crashes had a positive sign as expected. This means that young drivers’ 
injury severity was higher when they were involved in run-off-the-road crashes. Collisions with 
fixed objects, other vehicles, pedestrians/animals increased young-driver injury severity. Also, 
involvement of non-collision and overturn crashes showed a higher injury severity for young drivers. 
Vehicle damage was a significant factor that increased young-driver injury severity, whether it was 
minor damage, functional, disabling, or destroyed at the time of crash. Young drivers were more 
likely to suffer severe injuries in crashes occurring when they were attempting a lane change or 
backing up. Conditions of ejection at the time of crash increased injury severity while non-ejection
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decreased injury severity of young drivers. Youth driving in newer vehicles were less likely to suffer 
severe injuries as expected. Driving on higher-posted speed limit roadways was also a significant 
factor that increased young drivers’ injury severity. 

The identified relationships for variables age, gender, seat belt use, airbag deployed, alcohol 
involvement, ejection, and speed were also identified in previous other young-driver-related research 
(Dissanayake and Lu 2002, Vachal and Malchose 2009). Variables such as valid licenses, restrictions 
on driver’s licenses, rainy weather conditions, driving through intersections on roadways, driving 
alone, and driving through work zones were not significant at 95% confidence interval. 

DISCUSSION AND COUNTERMEASURE IDEAS

Engineering-Related Countermeasure Ideas

Young drivers’ crash rates are higher than that of experienced drivers’, and therefore protective 
devices, crashworthy cars, and safer road infrastructures will particularly reduce young drivers’ 
risk. While driving, a young driver’s behavior is influenced by his or her general frame of mind, 
which among other things, reflects the situation just behind or approaching. As shown in the logit 
model results developed in this study, high speeds was one of the risk factors, as young drivers lack 
experience. Hence, predictable traffic situations and low complexity resulting from an improved 
road infrastructure are beneficial for young drivers. In particular, rural road and off-roadway crash 
involvement and high-injury risk could be reduced by safer road infrastructures such as rumble 
strips and lane departure warnings. Also, road infrastructures should be improved to avoid hitting 
animals. This is a main road-related contributory factor for crashes in Kansas.

Policy-Related Countermeasure Ideas

In particular, the Graduated Licensing System is designed to address teen and inexperienced young 
drivers’ crash risk by letting them acquire driving experience under low-risk conditions (Williams, 
Ferguson, and Wells 2003). The goal of the licensing process, including training, should be to create 
drivers who are safe, increasing awareness of their own limitations and of the risks inherent to 
drivers.

Education-Related Countermeasure Ideas

Failure to give time and attention, failure to yield right of way, driving too fast for conditions, 
and following too closely were the main contributory causes that could be included in education 
programs in order to increase awareness. These are also effective countermeasures for decreasing 
young-driver risk. A driver’s safety-related characteristics are formed well before the age at which 
he or she legally begins driving; hence, education programs and communication programs in schools 
can be focused on children at much younger ages than the legal driving age (OECD 2006). Training 
programs could be focused more on backing up, turning, and changing lanes because young drivers 
show high injury severity for those maneuvers when they are involved in crashes. Another factor 
is preventing teen drivers from adopting bad habits and informal rules in traffic such as speeding, 
drinking while driving, etc. (OECD 2006). According to the model developed, teen drivers are at 
high risk for injuries. Also, crash rates show teen drivers’ involvement in crashes are higher than 
young-adult drivers. Hence, parental management practices may be important influences on teen-
driver practices and safety.
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Enforcement-Related Countermeasure Ideas

Enforcement will have a proportionately higher impact on young drivers, as they more frequently 
violate traffic rules such as driving without a valid driving license and not obeying driver’s license 
restrictions (Hanna et al. 2006). The results show that 5% of young drivers were not licensed and 37% 
of young drivers have restrictions on their licenses. Special attention should be paid to unlicensed 
driving because the more regulated and demanding the driving process becomes, the more tempted 
teens will be to drop out of the licensing process and drive without a license. However, it is difficult 
for police to specifically identify young drivers on the road, making the young-driver-specific 
countermeasures difficult to enforce. 

According to the developed model, one of the significant variables for reducing injury risk 
is increasing seat belt usage. In 2010, Kansas turned to a primary seat belt-restraint law from a 
secondary law for teen drivers 15 to 17 years old. A primary seat belt law allows a law enforcement 
officer to stop a vehicle and issue a citation for not wearing a seat belt. A secondary seat belt-
restraint law only allows for a citation to be issued if the vehicle is stopped for another primary 
violation. Also, avoiding alcohol-involved driving is an important factor in reducing injury risk. It 
is also a factor in reducing crash involvement. Age 21 is the legal drinking age in Kansas, so young 
drivers are restricted from alcohol use, but alcohol-involved crashes are a significant factor for 
increased crash injuries. Hence, enforcement is needed especially in locations where high alcohol 
use is expected. Distraction is a main contributory cause of teen-driver crashes. Many drivers use 
audio entertainment systems and mobile phones, but very few use on-vehicle visual displays such as 
a DVD (OECD 2006).  Implementation of laws, such as prohibiting mobile phone use while driving 
and banning visual displays would be beneficial, particularly for young drivers.

Measures focusing on improving the safety of all road users under all conditions will also 
be beneficial for young drivers, who frequently exhibit dangerous behaviors. Not all effective 
countermeasures can be implemented simultaneously. However, some countermeasures are less 
effective when introduced in isolation (OECD 2006).

SUMMARY AND CONCLUSIONS

This study explored the detailed characteristics of young-driver-involved crashes and contributory 
factors in Kansas, and compared those with experienced drivers. Crash data were obtained from 
KDOT, driver’s license data were obtained from the US Department of Transportation, and annual 
vehicle miles driven were obtained from the National Household Travel Survey 2010.  Young 
drivers were further divided into two groups: teen and young adults. A detailed frequency analysis 
and crash-rate analysis were carried out for both groups. Furthermore, a detailed frequency analysis 
was carried out for experienced drivers and comparisons were made among each driver group. 
The number of teen-driver-involved crashes per 1,000 licensed teen drivers was higher than that of 
young and experienced drivers. Teen drivers in Kansas were at considerable risk of motor vehicle 
crashes compared with experienced drivers. Factors that increase young drivers’ injury severity, 
such as alcohol involvement and high speed, can be used for teen crash-prevention efforts. Many 
complex factors influence and contribute to teen-driving behavior. Increased crash frequency and 
risk for this age group has been attributed to failure to give time and attention, falling asleep, failure 
to yield right of way, driving too fast for conditions, following too closely, or distraction compared 
with experienced drivers. 

Based on identified critical factors, countermeasure ideas were suggested to improve the safety 
of young drivers. Understanding these contributory factors could lead to better crash mitigation 
strategies. It is important for teen drivers to gain better education about these critical factors that are 
helpful to increase training, prevent crashes, and minimize driving risk. 
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by Paul Caster and Carl Scheraga

In 2003, amid the turmoil of the U.S. airline industry in the post-9/11 environment, the senior 
management of the Alaska Air Group announced a “strategic vision” entitled “Alaska 2010.” The 
pronouncement articulated positions with regard to cost leadership, product differentiation, and 
growth. This study empirically assesses the efficacy of this decision with regard to the major network 
carrier of the air group, Alaska Airlines. The analysis focuses on the period beginning with the 
announcement and ending in 2010.

The implementation of such a strategic protocol is dynamic and inter-temporal in nature. 
Therefore, it is often difficult to assess the effectiveness of changes in strategies, particularly since 
such effectiveness is often a function of the confounding forces of organizational strategy and market 
conditions. Thus, this study utilizes the multi-period methodology of the strategic variance analysis 
of operating income.

This methodology decomposes operating income into three components: (1) growth, (2) price 
recovery, and (3) productivity. This is of particular interest from a strategic planning perspective, as 
the price component evaluates a company’s product differentiation strategy while the productivity 
component evaluates whether an airline’s low cost strategy was successful because of efficiency 
gains. 

INTRODUCTION

In 2003, the U.S. airline industry was in turmoil. Airline traffic continued to be below 2001 levels, 
still reeling from the aftermath of the 9/11 terrorist attacks. A slow U.S. economy combined with 
rising fuel costs produced billions of dollars in losses for airlines. In addition, both US Airways and 
United Airlines filed for bankruptcy protection in 2002. In such a challenging business environment, 
it was clear that airlines had to change their operating strategies.

The management of Alaska Air Group, led by Chairman, President, and CEO William S. Ayer, 
did just that, announcing a “strategic vision” called “Alaska 2010.”  The plan was communicated to 
employees in June 2003, and elements of the plan were made public in the company’s annual report 
to shareholders for the year ended December 31, 2003, as well as in subsequent years. Highlights 
of the plan included a goal of making permanent cost reductions to save the company $307 million 
per year, and to drive down the non-fuel unit cost to 7.25 cents per available seat mile (Ayer 2004). 
In the letter to shareholders, Ayer stated, “Our task is to make the critical changes necessary to 
transform ourselves into a thriving enterprise.”

Alaska Air Group consists of two airlines: Alaska Airlines and Horizon Air Industries. As 
explained in the annual report to shareholders, the “business plans, competition, and economic risks 
differ substantially” (SEC 2004). The focus of this research is on the impact of the Alaska 2010 
strategic plan on Alaska Airlines, since it is the major network carrier in the group.

From a research perspective, questions arose as to how Alaska Airlines was performing relative 
to other airlines. It was also asked if management was correct in perceiving a need to transform the 
company’s operations. After all, by its own perception, the company was doing very well relative 
to the industry. In 2001, the company reported that “Alaska [Airlines] posted remarkable results 
following the 9/11 tragedy. For instance, industry traffic was down 19% in the fourth quarter, and 

An Analysis of a Strategic Transformation Plan: 
The Case of Alaska Airlines
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Alaska’s was only down 5.6%. Likewise, yield per revenue passenger mile and unit revenues were 
down 17% and 20% respectively for the major carriers combined, while Alaska’s were down only 
7.3% and 5.5%.” (Kelly 2002). Similarly, in 2002, the company stated that “Alaska [Airlines] had 
the best traffic, revenue, and yield performance of the majors.” (Kelly 2003). Nonetheless, the 
company was losing money.

This paper assesses the Alaska 2010 strategic transformation using strategic variance analysis 
(SVA). SVA is used to analyze a company’s profitability by breaking it down into strategic 
components, namely, cost leadership, product differentiation, and growth (Horngren et al. 2000, 
2006, 2012). Sopariwala (2003) extended the analysis to include a fourth component, capacity 
underutilization. SVA has been used by Mudde and Sopariwala (2008) and Bailey et al. (2009) to 
analyze a given airline’s profitability, and by Caster and Scheraga (2011) to analyze the performance 
of all U.S. network carriers.

THE ALASKA AIR GROUP LONG-TERM STRATEGIC PLAN

In discussing “Alaska 2010,” the Alaska Air Group long-term strategic plan, Ayer noted that the 
company’s goal for the future was “a combination of ideas that generate savings or increase revenue 
while enhancing our standing with customers” (Ayer 2004). Ayer stated that cost management was 
a significant challenge. He went on to explain why the plan was called “Alaska 2010.” He said that 
“if we make the right moves now, 2010 will be the year we look back with great pride at how we 
transformed ourselves - - how we took control and willed ourselves to be one of the preeminent 
airlines in the United States” (Ayer 2004).

Additional details of the strategic plan emerged in the annual report to shareholders for calendar 
year 2004. In the letter to shareholders dated April 11, 2005, Ayer (2005) explained that permanent 
reductions in annual costs of $185 million had been achieved. This reduction was accomplished 
in part through a fuel hedging program, in addition to savings achieved through a “top-to-bottom 
review of our supply chain.” Cost savings were also achieved by streamlining the fare structure, 
by improving the website for the purchase of fares online, and by improving turn times of aircraft 
between flights. Ayer acknowledged that competitors were improving their cost structures at an even 
faster pace than Alaska Air Group, and to that end, it was necessary to reduce the workforce, in part 
by outsourcing some of its maintenance operations. Ayer (2005) also reported that “a big part of 
our Alaska 2010 plan focuses on achieving competitive labor costs for all major work groups.” The 
company estimated that wages and benefits were approximately $125 million above market, with 
most of that amount due to pilots.

Although some details of the strategic plan are disclosed in the annual reports, the information 
does not provide a complete picture. In fact, only those details that management chooses to 
disclose are available. Strategic variance analysis provides a better means for analysis of Alaska’s 
performance. It provides an independent lens through which to view and analyze that performance. 
In addition, it allows for benchmarking with peer companies, in this case, the other network carriers. 
The following two sections provide a description of strategic variance analysis and the details on 
calculation and interpretation of the variances.

STRATEGIC VARIANCE ANALYSIS

SVA was introduced by Shank and Govindarajan (1993) as a management tool that combined the 
then rising field of business strategy to traditional profit variance analysis in cost accounting. SVA, 
as modified by Sopariwala (2003), takes a company’s profit (or loss) and breaks it down into four 
components: growth, price-recovery, productivity, and capacity underutilization. Each component 
is discussed in greater detail in the following section of the paper. Variances are defined as the 
differences between actual results and expected results, and they are calculated for each component.
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Sopariwala (2003) based his version of SVA on Horngren et al. (2000). Horngren et al. (2012, 
478-485) illustrate how SVA can be used to analyze profitability “from one period to any future 
period.” Their illustration shows how to calculate and interpret the growth component, the price-
recovery component, and the productivity component. As discussed in Horngren et al. (2012), the 
price-recovery component is related to product differentiation and the productivity component is 
related to cost leadership.

Product differentiation and cost leadership are two of the three generic strategies developed 
by Porter (1980, 35) for “outperforming competitors in the industry.” His third strategy is “focus,” 
which involves specializing in a niche area of the market. Cost leadership means that a company is 
recognized throughout the industry as the low cost provider of goods or services. Porter states that it 
requires “a great deal of managerial attention to cost control.” (Porter 1980, 35).  According to Porter 
(1980, 37), product differentiation involves “creating something that is perceived industrywide as 
being unique. Having a unique product or service leads to brand loyalty, which allows a company 
to charge a higher price, thereby outperforming others in the industry without having low costs as 
a primary objective. Horngren et al. (2012) refer to this as price-recovery, because the company is 
able to recover its higher costs through higher revenues, thus earning a decent return.

Porter’s third strategy is similar to the other two, in that a company chooses to follow a low 
cost strategy or a product differentiation strategy, but it does so in a narrow niche of the market. 
Therefore, the focus strategy is not an industry-wide strategy.

Porter then goes on to describe companies that are “stuck in the middle.”  It is possible that 
Alaska Air Group perceived itself in 2003 as a company that could be “stuck in the middle.” A 
company that is stuck in the middle “lacks the market share, capital investment, and resolve to 
play the low-cost game, the industry-wide differentiation necessary to obviate the need for a low-
cost position, or the focus to create differentiation or a low-cost position in a more limited sphere” 
(Porter 1980, 41).

SVA is an ideal technique for assessing the success or failure of a long-term strategic plan, such 
as Alaska 2010. Management of Alaska Airlines measures its success by looking at profitability, 
goals for reducing its cost structure, and customer satisfaction. But the acid test is how Alaska 
Airlines has performed relative to its peers. SVA provides easy comparisons between Alaska Airlines 
and the rest of the U.S. network carriers.

DEVELOPMENT OF VARIANCES

The variances used for SVA are calculated based on Sopariwala (2003), using the four components 
of a company’s performance as described in Mudde and Sopariwala (2008). Each component, and 
the variances associated with that component, is explained as follows:

Growth Component

The growth component measures the change in operating income due to a change in revenue 
passenger miles (RPMs). Four separate variances are calculated related to changes in RPMs. The 
revenue effect of growth captures the change in revenues due to a change in RPMs, holding air fares 
(revenue per RPM) constant. As explained in Mudde and Sopariwala (2008, 25), it would show 
“higher expected revenue due to higher RPMs.”

The other three variances relate to costs and expenses, namely, fuel costs, flight-related costs, 
and passenger-related costs.  Mudde and Sopariwala (2008) base the cost drivers on Banker and 
Johnston (2003), who suggested volume-based and non-volume-based cost drivers appropriate for 
the airline industry. The fuel cost effect of growth is calculated using available seat miles (ASMs) 
as the cost driver, while holding the price of fuel constant. The variance is calculated based on 
budgeted ASMs compared with actual ASMs. Thus, an airline would experience higher fuel costs 
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and a corresponding decline in operating profit if it experienced growth in the market that exceeded 
expectations, while holding the price per gallon of jet fuel constant to isolate the impact of growth. 
In a similar manner, expectations and variances are developed for the growth effect of flight-related 
and passenger-related costs, while holding all else equal.

Price-Recovery Component

The price-recovery component measures the change in operating income due to changes in the 
prices of inputs and outputs, holding all else equal. Four separate variances are calculated related to 
changing prices. The revenue effect of price-recovery captures the change in airfares, holding RPMs 
constant. The other three variances relate to the cost of inputs, namely, fuel costs, flight-related 
costs other than fuel, and passenger-related costs. For example, if the cost of jet fuel increases in 
the current period, operating profit would decline, holding gallons of fuel used and budgeted ASMs 
constant.

Productivity Component

The productivity component measures the change in operating income due to changes in the use 
of inputs, holding all else equal. Productivity is measured in terms of fuel usage efficiencies and 
passenger cost related efficiencies, as calculated by Mudde and Sopariwala (2008). Three variances 
are calculated, two of which are related to fuel usage. The first fuel usage efficiency variance 
measures fuel usage per gallon, holding the cost per gallon and budgeted ASMs constant. Gallons 
used per ASM in the previous period are the expectation for the current period, and the variance is 
then based on actual gallons used per ASM in the current period. The passenger load factor also has 
an impact on fuel usage, so a second fuel usage variance is calculated by holding the price per gallon 
constant and the gallons used per ASM constant, while comparing budgeted ASMs to actual ASMs 
in the current period. The third variance is calculated based on the difference between budgeted 
revenue passengers and actual revenue passengers served, while holding the cost per passenger 
constant. The variance is favorable, and thus operating profit would increase if an airline achieves 
the same RPMs while carrying fewer passengers, and hence the cost associated with that would 
decrease.

Capacity Underutilization Component

The capacity underutilization component measures the change in operating income due to changes 
in capacity, holding all else equal. Three variances are calculated, each of which involves the impact 
on flight-related costs (excluding fuel costs). The first variance is the cost of acquiring additional 
capacity that goes unused in the current period. The variance is calculated by subtracting actual 
RPMs in the current period from actual ASMs in the current period. The second variance is the cost 
of underutilization of available capacity. The variance is simply the change in actual ASMs over the 
period under study, holding the cost per ASM constant. The third variance measures the impact of a 
change in capacity actually used. The variance is simply the change in RPMs over the period under 
study, holding the cost per ASM constant.

THE DATA SET			

Data were obtained from two sources: The International Civil Aviation Organization, Financial 
Data: Commercial Air Carriers, Series F and Traffic: Commercial Air Carriers, Series T, and from 
the U.S. Department of Transportation, Bureau of Transportation Statistics, Transtats Aviation 
Database. We chose three, three-year time periods for the analysis, 2001 to 2003, 2004 to 2006, 
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and 2007 to 2009. We also examine the one-year period from 2009 to 2010 to include the last year 
of Alaska’s strategic plan. The three-year time frame is consistent with the work of Caster and 
Scheraga (2011).

Alaska Airlines is a U.S. network air carrier, as classified by the Department of Transportation, 
therefore, we collected data on the other network air carriers for benchmarking purposes. In the 
first two three-year time periods, we construct a composite based on the seven network carriers: 
Alaska, American, Continental, Delta, Northwest, United, and US Airways. In the last three-year 
time period, US Airways was dropped from the analysis due to its merger with America West, which 
would make the data non-comparable to the earlier periods.

RESULTS OF THE STRATEGIC VARIANCE ANALYSIS

Table 1 provides the financial data for Alaska Airlines. It is interesting to note, just from the raw 
data, that operating profit changed dramatically during the period. For the year ended December 
31, 2000, Alaska Airlines reported a net operating loss of $12,375,000. The annual operating loss 
grew to $103,629,000 for the year ended December 31, 2006. But three years later, they reported an 
annual net operating profit of $208,421,000.

Table 1: Alaska Airlines – Financial Data ($)
2000 2003 2006 2009

Operating revenues 1,759,867,000 2,027,376,000 2,692,507,000 3,005,999,000

Operating expenses 1,772,242,000 2,037,996,000 2,796,136,000 2,797,578,000

Flying operations 662,612,000 737,423,000 1,141,147,000 1,014,188,000

Maintenance 204,115,000 244,001,000 269,370,000 293,567,000
Depreciation and 
amortization 83,860,000 119,467,000 137,811,000 178,488,000

User charges 35,185,000 57,771,000 51,976,000 54,161,000

Station expenses 266,623,000 346,011,000 393,344,000 369,387,000

Aircraft and traffic servicing 301,808,000 403,782,000 445,320,000 423,548,000

Passenger services 155,622,000 200,381,000 207,062,000 211,298,000

Promotion and sales 248,499,000 218,672,000 209,078,000 176,864,000

General & Administrative 104,851,000 103,267,000 364,515,000 216,133,000

Transport related expenses 10,875,000 11,003,000 21,833,000 283,492,000

Operating profit -12,375,000 -10,620,000 -103,629,000 208,421,000

Data Source: International Civil Aviation Organization, Financial Data: Commercial Air Carriers, Series F, 
Montreal, Quebec, Canada, 2000, 2003, 2006, and 2009 

Table 2 provides the operating data and Table 3 provides the fuel data for Alaska Airlines 
needed to perform the strategic variance analysis. Table 4 reclassifies the operating data to show fuel 
costs, flight-related costs less fuel costs, and passenger-related costs, the three cost drivers used in 
prior studies (e.g., Caster and Scheraga 2011, Mudde and Sopariwala 2008). Table 5 uses the data 
from Tables 2, 3, and 4 to calculate the data needed for strategic variance analysis of Alaska Airlines.
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Table 2: Alaska Airlines – Operational Data
2000 2003 2006 2009

Revenue passengers 13,512,111 15,046,919 17,148,313 15,523,498
Revenue passenger miles 11,976,022,528 14,553,539,641 17,810,371,493 18,315,689,560
Available seat miles 17,291,684,686 20,803,557,288 23,257,684,435 23,070,335,242

Data Source: International Civil Aviation Organization, Traffic: Commercial Air Carriers, Series T, Montreal, 
Quebec, Canada, 2000, 2003, 2006, and 2009

Table 3: Alaska Airlines – Fuel Data
2000 2003 2006 2009

Total gallons used 302,437,826 336,686,178 353,844,599 303,896,417
Total fuel costs 286,073,111 296,732,291 716,950,639 529,385,990
Average fuel cost per gallon ($) 0.95 0.88 2.03 1.74

Data Source: U. S. Department of Transportation, Research and Innovative Administration, Bureau of 
Transportation Statistics, TranStats Database, Washington, D.C., 2000, 2003, 2006, and 2009

Table 4: Alaska Airlines – Reclassified Financial Data ($)
2000 2003 2006 2009

Total operating revenues 1,759,867,000 2,027,376,000 2,692,507,000 3,005,999,000
Less: Total operating expenses 1,772,242,000 2,037,996,000 2,796,136,000 2,797,578,000
Fuel costs 286,073,111 296,732,291 716,950,639 529,385,990
Flight-related costs 935,861,889 1,118,809,709 1,424,787,361 1,667,780,010
Passenger-related costs 550,307,000 622,454,000 654,398,000 600,412,000
Operating income/(loss) -12,375,000 -10,620,000 -103,629,000 208,421,000

2000 2003 2006 2009
Flying operations 662,612,000 737,423,000 1,141,147,000 1,014,188,000
Less: Fuel Cost 286,073,111 296,732,291 716,950,639 529,385,990
Flying operations 
(excluding fuel cost) 376,538,889 440,690,709 424,196,361 484,802,010

Maintenance 204,115,000 244,001,000 269,370,000 293,567,000
Passenger service 155,622,000 200,381,000 207,062,000 211,298,000
General and administrative 104,851,000 103,267,000 364,515,000 216,133,000
Depreciation and amortization 83,860,000 119,467,000 137,811,000 178,488,000
Transport related 10,875,000 11,003,000 21,833,000 283,492,000
Total flight-related costs 935,861,889 1,118,809,709 1,424,787,361 1,667,780,010

2000 2003 2006 2009
Aircraft and traffic servicing 301,808,000 403,782,000 445,320,000 423,548,000
Promotion and sales 248,499,000 218,672,000 209,078,000 176,864,000
Total passenger-related costs 550,307,000 622,454,000 654,398,000 600,412,000

Data Sources: 1) Data Source: International Civil Aviation Organization, Financial Data: Commercial Air 
Carriers, Series F, Montreal, Quebec, Canada, 2003, 2006, and 2009 and 2) U. S. Department of Transportation, 
Research and Innovative Administration, Bureau of Transportation Statistics, TranStats Database, Washington, 
D. C., 2003, 2006, and 2009
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Table 5: Alaska Airlines – Data Used in Strategic Variance Analysis1

2000 2003 2006 2009

Total operating revenues ($) 1,759,867,000 2,027,376,000 2,692,507,000 3,005,999,000

Revenue passenger miles (RPMs) 11,986,220,472 14,553,539,641 17,822,404,781 18,361,670,904

Average revenue per RPM 0.147 0.139 0.151 0.164

Revenue passenger miles (RPMs) 11,986,220,472 14,553,539,641 17,822,404,781 18,361,670,904

Available seat miles (ASMs) 17,314,311,918 20,803,557,288 23,275,770,873 23,144,012,157

Passenger load factor (%) 69.23% 69.96% 76.57% 79.34%

Hence, budgeted available seat miles 21,022,850,818 25,476,236,573 23,980,043,662

Revenue passenger miles (RPMs) 11,986,220,472 14,553,539,641 17,822,404,781 18,361,670,904

Revenue passenger enplanements 13,524,685 15,046,919 17,164,501 15,561,087

Average revenue passenger miles per 
passenger ($) 886.25 967.21 1038.33 1179.97

Hence, budgeted revenue passenger 
enplanements 16,421,527 18,426,602 17,683,860

Number of gallons used 302,437,826 336,686,178 353,844,599 303,896,417

Available seat miles (ASMs) 17,314,311,918 20,803,557,288 23,275,770,873 23,144,012,157

Average number of gallons per ASM 0.0174675 0.0161841 0.0152023 0.0131307

Total flight-related costs ($) 935,861,889 1,118,809,709 1,424,787,361 1,667,780,010

Available seat miles (ASMs) 17,314,311,918 20,803,557,288 23,275,770,873 23,144,012,157

Average flight-related cost per ASM ($) 0.054 0.054 0.061 0.072

Total passenger-related costs ($) 550,307,000 622,454,000 654,398,000 600,412,000

Revenue passenger enplanements 13,524,685 15,046,919 17,164,501 15,561,087

Average cost per revenue passenger ($) 40.69 41.37 38.13 38.58

Revenue passenger (RPMs) 11,986,220,472 14,553,539,641 17,822,404,781 18,361,670,904

Available seat miles (ASMs) 17,314,311,918 20,803,557,288 23,275,770,873 23,144,012,157

Idle or unused capacity (ASMs) 5,328,091,446 6,250,017,647 5,453,366,092 4,782,341,252

Hence, budgeted idle capacity (ASMs) 6,469,311,177 7,653,831,792 5,618,372,758

Data Sources: 1) International Civil Aviation Organization, Financial Data: Commercial Air Carriers, Series F, Montreal, 
Quebec, Canada, 2000, 2003, 2006, and 2009, 2) International Civil Aviation Organization, Traffic: Commercial Air Carriers, 
Series T, Montreal, Quebec, Canada, 2000, 2003, 2006, and 2009, and 3) U. S. Department of Transportation, Research and 
Innovative Administration, Bureau of Transportation Statistics, TranStats Database, Washington, D. C., 2000, 2003, 2006, 
and 2009

1Budgeted Available Seat Miles from year x to year y = Revenue Passenger Miles (year y) / Passenger Load Factor (year x), 
Budgeted Revenue Passengers Enplanements from year x to year y = Revenue Passenger Miles (year y) / Average Revenue 
Passenger Miles per Passenger (year x), and Budgeted Idle Capacity in year y = Budgeted Available Seat Miles (year y) – 
Revenue Passenger Miles (year y). [See Mudde and Sopariwala (2008).]
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Table 6a provides the strategic variance analysis for Alaska Airlines and six other network 
carriers for the three-year time frame ending December 31, 2003. The first column shows the results 
for Alaska Airlines, and the last column is a composite of all of network carriers in the sample. 
The annual net operating loss in 2003 was $10.6 million, an improvement of approximately $1.8 
million compared with 2000 (Table 1). Strategic variance analysis provides a breakdown of the 
change in annual operating profitability. Alaska Airlines achieved productivity gains of nearly 
$84 million. More than half of the gain is from passenger-related costs, i.e., lower costs due to 
flying more miles per passenger. The growth component contributed approximately $59 million 
to increased profitability. All of that increase is due to the revenue effect of growth, meaning that 
Alaska Airlines had higher RPMs in 2003 than in 2000. In contrast, the price-recovery component 
showed a large decrease of approximately $93 million. Nearly all of that decrease is due to the 
revenue effects, meaning that Alaska Airlines charged lower airfares in 2003 than in 2000. The 
capacity underutilization component shows a decrease of more than $48 million. A large increase 
in ASMs led to a $190 million decrease in operating profits due to underutilization of available 
capacity. However, by increasing its RPMs in the period, Alaska enjoyed a $139.5 million increase 
in operating profits due to the capacity it actually used.

Table 6b provides the strategic variance analysis for Alaska Airlines and six other network 
carriers for the three-year time frame ending December 31, 2006. The net operating loss increased 
by approximately $93 million compared with December 31, 2003 (Table 1). The strategic variance 
analysis reveals results very similar to the prior period. Alaska Airlines’ operating profits improved 
by almost $73 million due to the growth component, with all of that improvement attributable to 
the revenue effect of growth. Productivity gains were achieved from all three measures, amounting 
to an improvement of $166.2 million in annual operating profits. Capacity underutilization was 
not material in this period, although the pattern was similar to the prior period in terms of unused 
ASMs and RPMs actually flown. However, the decrease in profitability due to the price-recovery 
component of more than $334 million in the period overwhelmed the increases in the other three 
components. Although Alaska Airlines raised its fares in this time period, the revenue effect of fare 
increases was not sufficient to recover increased costs of fuel, primarily, and also other flight-related 
costs.

Table 6c provides the strategic variance analysis for Alaska Airlines and five other network 
carriers for the three-year time frame ending December 31, 2009. Alaska Airlines experienced 
dramatic improvement in its annual operating profits, going from a loss of $103.6 million to a 
profit of $208.4 million (Table 1). The first three components of the strategic variance analysis 
show positive impacts on annual operating profits. The growth component was much less of a 
factor than in the previous two periods, contributing just $6.5 million to increased profitability. 
Productivity gains were quite significant, contributing $186.2 million to increased profitability. 
Alaska Airlines was able to significantly reduce the amount of jet fuel used, resulting in a savings 
of approximately $85 million. It also had a savings of $81.7 million in passenger-related costs by 
flying more miles per passenger than in the earlier period. Perhaps most interesting is the $129.4 
million increase in annual operating profits due to the price-recovery component. The revenue 
effect of price-recovery shows that Alaska Airlines was able to charge higher fares, which helped 
to recover higher flight-related costs. They also achieved some cost savings in fuel costs during the 
period. Capacity underutilization was relatively insignificant during the period, with a decrease in 
operating profitability of approximately $10 million. The fact that management was able to increase 
profitability through higher airfares and through further gains in productivity shows that a blended 
strategy, as discussed in Caster and Scheraga (2011) was in use during this three-year period.
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Table 9 provides the strategic variance analysis for Alaska Airlines for the last year of the 
long-term strategic plan. Other network carriers are not included because the group changed yet 
again with the merger of Northwest Airlines into Delta. The analysis shows that Alaska experienced 
continued and significant growth in profitability due to growth in the market. In 2007, Alaska began 
adding service to Hawaii, and by 2010, that market represented 15% of its total network (Ayer 
2011).

The price-recovery component for 2010 shows a contribution to net operating profits of $49.5 
million, achieved primarily through higher airfares. Productivity gains contributed $68 million, 
primarily due to fuel cost savings and passenger-related savings. In addition, Alaska Airlines made 
much better use of capacity, achieving a gain in profitability of $69.3 million. According to Ayer 
(2010), Alaska reduced its capacity on routes with low demand while increasing capacity on routes 
with higher demand, particularly the routes to Hawaii.

On the surface, it would appear as if the Alaska 2010 strategic plan was a huge success. However, 
it is not sufficient to look at the performance of Alaska Airlines in a vacuum. Benchmarking against 
the other network air carriers is necessary to determine just how successful the plan has been. 
Tables 7a, 7b, and 7c provide rankings for the network carriers, after normalizing the data for size 
differences by dividing by RPMs. Alaska Airlines ranked first in the growth component in the 
earliest period, second in the middle period, and third in the last three-year period. This analysis 
shows that for most of the time, Alaska Airlines was among the leaders in increased market share as 
air travel recovered and grew after the tragedy of 9/11.

The price-recovery component directly corresponds to Porter’s (1980) product differentiation 
strategy. It is interesting to note that Alaska Airlines ranked first during the three years ending 
December 31, 2003, and December 31, 2009. But for the three years ending December 31, 2006, 
it ranked last. The productivity component directly corresponds to Porter’s (1980) cost leadership 
strategy. Alaska ranked second in the first two, three-year periods, and improved to a first place 
ranking in the third, three-year period. Its consistently high ranking on this component suggests 
that Alaska 2010 was focused primarily on cutting costs and becoming the low-cost leader in the 
industry. However, it is also evident that management is using a blended strategy, since it ranked 
first in price-recovery for two of the three periods.

Alaska Airlines ranked fifth and sixth over the nine years in terms of capacity underutilization. 
This suggests that managing capacity was not a major focus of the Alaska 2010 strategic plan, 
or, if it was, then the competition continues to do a better job than Alaska at managing capacity. 
Going forward, this also suggests that management may be able to increase future profitability by 
improving its use of capacity.

As shown in Tables 6a, 6b, and 6c, Alaska Airlines experienced increases in annual operating 
profits due to growth in the market. The growth component, however, is impacted by exogenous 
factors as well as endogenous factors. Horngren et al. (2012) provide an adjustment to the growth 
component to estimate how much of the growth component is due to management’s strategic 
decisions (endogenous factors). The estimate is based on the overall growth in the market, in this 
case, the composite figures for the network carriers. For example, if the market grew by 50%, then 
50% growth is assumed for Alaska Airlines. Any growth above and beyond 50% is assumed to be 
endogenous.

Table 8a shows that nearly 150% of Alaska’s growth is attributable to endogenous factors. 
Overall, the market actually decreased by more than 10% for the period, yet Alaska grew its market 
share by 21.42%. Similarly, management’s initiatives contributed 39.3% to Alaska’s growth in 
2006, as shown in Table 8b, and 352% in 2009, as shown in Table 8c. In 2009, the overall market 
decreased by 7.64%, yet Alaska grew its market by 3%. Thus, in all three periods, management’s 
strategic decisions had a positive impact on growth in the market. This result is consistent with 
Alaska’s high ranking on productivity, as companies that follow a low cost strategy tend to exhibit 
growth in market share.
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Table 8a:	Impact of Endogenous Strategies - Growth Component  
	 2001 (12/31/00) – 2003 (12/31/03)

RPMs 2001 RPMs 2003 %Δ2001-2003 ENDOGENOUS

Alaska 11,986,220,472.44 14,553,539,641.00 21.42 149.86%

American 116,546,866,300.80 120,299,948,301.92 3.22 431.68%

Continental 62,344,035,830.75 57,577,384,884.77 -7.65 39.61%

Delta 107,817,843,792.25 89,412,207,706.99 -17.07 -37.43%

Northwest 79,204,321,760.92 68,746,644,595.56 -13.20 -19.09%

United 126,906,366,817.78 104,371,719,160.11 -17.76 -39.86%

US Airways 46,870,108,565.97 37,774,319,225.72 -19.41 -44.98%

Composite 551,675,763,540.92 492,735,763,516.07 -10.68

Endogenous Effect = [%ΔRPMs(2001-2003)Airline i - %ΔRPMs(2001-2003)Market] / |%ΔRPMs(2001-2003)Airline i|

Table 8b:	Impact of Endogenous Strategies - Growth Component
	 2004 (12/31/03) – 2006 (12/31/06)

RPMs 2004 RPMs 2006 %Δ2004-2006 ENDOGENOUS

Alaska 14,553,539,641 17,822,404,781 22.46 39.31%

American 120,299,948,302 139,420,782,629 15.89 14.22%

Continental 57,577,384,885 76,302,518,293 32.52 58.09%

Delta 89,412,207,707 98,887,497,017 10.60 -28.58%

Northwest 68,746,644,596 72,674,331,902 5.71 -138.70%

United 104,371,719,160 117,445,990,416 12.53 -8.78%

US Airways 37,774,319,226 37,357,913,286 -1.10 -1339.09%

Composite 492,735,763,516 559,911,438,325 13.63

Endogenous Effect = [%ΔRPMs(2004-2006)Airline i - %ΔRPMs(2004-2006)Market] / |%ΔRPMs(2004-2006)Airline i|

Table 8c:	Impact of Endogenous Strategies - Growth Component
	 2006 (12/31/06) – 2009 (12/31/09)

RPMs 2006 RPMs 2009 %Δ2006-2009 ENDOGENOUS

Alaska 17,822,404,781 18,361,670,904 3.03 352.15%

American 139,420,782,629 122,391,483,735 -12.21 -37.43%

Continental 76,302,518,293 77,768,332,936 1.92 497.92%

Delta 98,887,497,017 100,711,842,838 1.84 515.22%

Northwest 72,674,331,902 62,941,173,546 -13.39 -42.94%

United 117,445,990,416 100,453,973,793 -14.47 -47.23%

Composite 522,553,525,039 482,628,477,752 -7.64

Endogenous Effect = [%ΔRPMs(2006-2009)Airline i - %ΔRPMs(2006-2009)Market] / |%ΔRPMs(2006-2009)Airline i|
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Table 9: Strategic Variance Analysis Alaska Airlines 2009-2010

    Alaska Normalized
Alaska

GROWTH COMPONENT 2009-2010

 Revenue effect 326,586,654 16,083,578
 Fuel cost effect -57,515,122 -2,832,476

 Flight-related cost effect -143,852,606 -7,084,382
 Passenger-related effect -65,231,740 -3,212,500

TOTAL 59,987,186 2,954,219

PRICE-RECOVERY COMPONENT 2009-2010 

 Revenue effect 94,039,346 4,631,203
 Fuel cost effect -163,054,470 -8,030,026

 Flight-related cost effect 96,567,740 4,755,720
 Passenger-related effect 21,979,726 1,082,447

TOTAL 49,532,341 2,439,344

 PRODUCTIVITY COMPONENT 2009-2010 

 Fuel cost effect 5,392,354 265,560
 Fuel (ASM) cost effect 35,155,480 1,731,320

 Passenger-related effect 27,478,015 1,353,224
TOTAL 68,025,849 3,350,103

CAPACITY UNDERUTILIZATION COMPONENT 2009-2010 

 Unused capacities 19,325,217 951,719
 Available capacities -93,894,199 -4,624,055

 Used capacities 143,852,606 7,084,382
TOTAL 69,283,624 3,412,046
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THE INTERACTION BETWEEM ALASKA AND HORIZON AIR INDUSTRIES AND 
THE IMPACT ON SVA RESULTS

Although the focus of this research is Alaska Airlines, the Alaska 2010 initiative impacted both 
airlines in the group, Alaska Airlines and Horizon Air Industries. During the period of this study, 
it is possible that Alaska Airlines shifted routes, frequencies of flights, and aircraft to its regional 
affiliate, Horizon Air Industries. If this occurred to a significant degree, then there might be an 
important impact in terms of the underlying drivers of the results of the strategic variance analysis.

ASMs and RPMs by aircraft type for both carriers were examined to try and detect route 
interactions between the two airlines. Conceptually, if such an interaction were of significant 
magnitude, then one would see a larger share of ASMs and RPMs being flown by the aircraft types 
of the regional affiliate airline. Table 10 shows virtually no change in ASMs and RPMs by aircraft 
types flown by Alaska Airlines versus those flown by Horizon Air Industries for the years ending 
in 2003, 2006, and 2009 (the end points of each of the periods used in the SVA analysis). Instead, 
Alaska Airlines phased out its usage of McDonnell Douglas aircraft in favor of more efficient ones 
from the single Boeing 737 family. Horizon Air Industries phased out its Fokker and De Havilland 
DHC8-200Q Dash-8 airplanes in favor of the more efficient De Havilland DHC8-400 Dash-8 
aircraft.

In addition, the annual reports of the Alaska Air Group were examined for each year in the 
study. Typically, in the letter to shareholders, the CEO discusses progress made in the strategic plan 
for the preceding year. In only one year, 2007, was there any mention of a shift in service between 
the two airlines. In that year, Alaska Airlines contracted with Horizon Air Industries for the use of 
some 70-seat Canadair RJ-700 aircraft for certain routes for which Alaska’s Boeing 737 jets were 
too large to be profitable. Thus, it appears that for the entire period of the study, any interaction 
effects were minimal.

SUMMARY AND CONCLUSIONS

In 2003, Alaska Air Group embarked on a long-term strategic plan to transform the company. 
Management referred to the plan in annual reports to stockholders in 2003 and in subsequent years, 
marking their successes and further needs for improvement. In fact, the plan appeared to be highly 
successful based on the 2010 annual report to stockholders. Strategic variance analysis provides a 
means to assess the plan and to categorize management’s efforts in terms of Porter’s (1980) long-
term strategies for business success. This paper examines Alaska Airlines’ performance in three-year 
time windows from 2001 to 2003, 2004 to 2006, and 2007 to 2009. In addition, we examine 2010, 
the last year of the strategic plan.

Strategic variance analysis shows that Alaska Airlines focused primarily on growing its share 
of the market and on productivity gains by cutting costs. In later years, they also followed a product 
differentiation strategy, raising air fares sufficiently to cover increased costs for such a strategy. 
Finally, they made changes in their routes to achieve greater profitability through better use of 
capacity.

The success of the plan may also be measured by comparison with the other network carriers. 
That analysis revealed that by 2009, Alaska ranked first in both productivity and price-recovery, as 
well as third in growth in market share. In sum, it appears that management delivered on its forecast 
in the 2003 annual report that 2010 would be a year where they could “look back with great pride at 
how we transformed ourselves” (Ayer 2004).
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APPENDIX
Calculation of Strategic Variances from Year i to Year j

The Growth Component
1. Airline Revenues

[Revenue effect of the Growth Component (i.e., lower expected revenue due to lower RPM)]
Variance = {Year i revenue/RPM} * {Year j RPMs – Year i RPMs}

2. Fuel Costs
[Fuel cost effect of the Growth Component (i.e., lower expected fuel costs due to lower RPMs)]

Variance = {Year i fuel cost/gallon} * {Year i gallons used per ASM} * {Year i actual ASMs – 
Year j budgeted ASMs}
3. Flight-related Costs

[Flight-related cost effect of the Growth Component (i.e., lower expected flight-related costs due 
to lower RPMs)]

Variance = {Year i cost/ASM} * {Year i passenger load factor} * {Year i actual ASMs – Year j 
budgeted ASMs}

4. Passenger-related Costs
[Passenger-related cost effect of the Growth Component (i.e., lower expected passenger-related 

costs due to lower RPMs)]
Variance = {Year i cost/passenger} * {Year i revenue passengers – Year j budgeted revenue 

passengers} 

The Price-Recovery Component

1. Airline Revenues
[Revenue effect of the Price-Recovery Component (i.e., higher revenue due to higher airfares)]

Variance = {Year j RPMs} * {Year j revenue/RPM – Year i revenue/RPM}
2. Fuel Costs

[Fuel cost effect of the Price-Recovery Component (i.e., higher costs due to higher fuel prices)]
Variance = {Year j budgeted ASMs} * {Year i gallons used/ASM} * {Year i fuel cost/gallon – 

Year j fuel cost/gallon}

3. Flight-related Costs
[Flight-related cost effect of the Price-Recovery Component (i.e., higher costs due to higher 

flight-related costs per ASM)]
Variance = {Year j passenger load factor} * {Year j actual ASMs} * {Year i cost/ASM – Year j 

cost/ASM}
4. Passenger-related Costs

[Passenger-related cost effect of the Price-Recovery Component (i.e., higher costs due to higher 
costs per passenger)]

Variance = {Year j budgeted revenue passengers} * {Year i cost/passenger – Year j cost/passenger}

 The Productivity Component

1. Fuel Costs (a)
[Fuel cost effect of the Productivity Component (i.e., lower costs due to lower fuel usage per 

gallon)]
Variance = {Year j fuel cost/gallon} * {Year j budgeted ASMs} * {Year i gallons used /ASM – 

Year j gallons used/ASM}
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2. Fuel Costs (b)
[Fuel (ASM) cost effect of the Productivity Component (i.e., lower costs due to higher passenger 

load factor)]
Variance = {Year j fuel cost/gallon} * {Year j gallons used/ASM} * {Year j budgeted ASMs – 

Year j actual ASMs}
3. Passenger-related costs

[Passenger-related cost effect of the Productivity Component (i.e., lower costs due to higher 
miles per passenger)]

Variance = {Year j cost/passenger} * {Year j budgeted revenue passengers – Year j revenue 
passengers}

 The Capacity Underutilization Component
1. Flight-related costs (a)

[Changes in flight-related costs relating to unused capacities (i.e., higher unit costs to acquire 
capacity that is unused)]

Variance = {Year j actual ASMs – Year j RPMs} * {Year i cost/ASM – Year j cost/ASM}

2. Flight-related costs (b)
[Changes in flight-related costs of available capacities (i.e., lower underutilization due to 

decrease in available capacity)]
Variance = {Year i cost/ASM} * {Year i actual ASMs – Year j actual ASMs}

3. Flight-related costs (c)
[Changes in flight-related costs of used capacities (i.e., higher underutilization due to decrease 

in capacity used)]
Variance = {Year i cost/ASM} * {Year j RPMs – Year i RPMs}
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by Zhuo (Frank) Lin, YapYin Choo, and Tae Hoon Oum

Using three common methodologies for measuring airport efficiency, namely the productivity 
index method, Data Envelopment Analysis (DEA) method, and stochastic frontier analysis (SFA) 
method, this study examines the efficiency performances of 62 Canadian and U.S. airports. Unlike 
most previous studies, this study includes aeronautical and non-aeronautical outputs of airports 
as they are inexplicably tied to each other in airport production. The empirical results reveal that 
the efficiency scores and rankings measured by these alternative methods are quite similar to each 
other in the top 15 and bottom 15 ranked airports, whereas considerable differences exist among 
the airports in the middle range. We also found that the percentage of non-aeronautical revenue, 
passenger volume, average aircraft size, percentages of international and connecting traffic 
significantly affect our airport efficiency estimates in all of the three alternative approaches used.

INTRODUCTION

Airports have substantial market power over the majority of local traffic and airlines.  In many 
North American cities, airlines,1 passengers, and other airport users have limited choices when 
selecting airports.  Regulatory, geographical, economic, social, and political constraints all tend to 
hinder competition between airports. Therefore, unlike airline markets, competitive pressure cannot 
be relied on to exert enough pressures for airport managers to pay serious attention to improve 
productivity and efficiency.  However, by exposing inefficient airports to their stakeholders, the 
public and their regulatory authorities,2 airport benchmarking helps spur competitive forces and 
shake up conventional thinking on airport efficiency performance. 

The evolution of airport ownerships toward privatization and commercialization naturally 
leads airport managers to seek ways to gain insights into their operations and improve performance 
by benchmarking themselves against other airports. As benchmarking identifies the best practice 
standards for operations and services, it provides guidelines for airport managers to improve 
performance and deal with delays and congestion. This is a major reason why recently the ACI-
North America has started to do benchmarking performance of its member airports, although its 
benchmarking results are not public and are used for internal purposes.

During the past two decades, there has been a plethora of research on airport benchmarking. 
Liebert and Niemeier (2010) reviewed and summarized literature on airport benchmarking, and 
found that there are many inconclusive or conflicting findings, including the effects of ownership, 
privatization, and size on airport performance.3 The discrepancies in the results of airport 
benchmarking may due to the differences, including methodology and underlying assumptions, 
sample data and years, variables used for inputs, outputs and heterogeneities among the airports, 
such as ownership, regulatory framework, and other factors beyond management control. 

Most studies in airport benchmarking utilize a single method to measure airport efficiency. So 
far, only a few studies have measured efficiencies by using different methodologies. Cullinane et 
al. (2006) applied data envelopment analysis (DEA) and stochastic frontier analysis (SFA) in the 
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container port industry and found that there is a high degree of correlation between the results of 
the two approaches. 

Coelli and Perelman (1999) compared three alternative methodologies: (1) parametric frontier 
using linear programming approach; (2) parametric frontier using corrected OLS method (including 
SFA); and (3) non-parametric piece-wise linear frontier using DEA. When applying them to a 
pool of data of 17 European railways from 1988 to 1993, the technical efficiencies emerging from 
the three methods displayed no substantial differences, with positive and significant correlations 
between each other. The authors claimed that a researcher could safely select one of these methods 
without too much concern for their choice having a large influence upon results. 

For the aviation industry, Windle and Dresner (1995) compared seven methods of productivity 
measurement using 1983 U.S. airline data, and concluded that: “carrier rankings from the cost 
function decomposition bear no relationship to the rankings for the gross measure of productivity.” 
This finding thus supports the need for second stage (regression) analysis to control for differences 
in output characteristics, especially when non-parametric methods such as TFP and DEA are used. 
Pels et al. (2001) compared the efficiency results of European airports measured from DEA and 
SFA. Unfortunately, this paper applies these two measurement methods separately to each of airside 
operations and terminal side operations as if they are two independent businesses and do not include 
non-aeronautical revenue outputs.  Based on the dataset of European airports, the results emerging 
from the two methods were reasonably consistent despite the fact that SFA produced less dispersed 
efficiency scores. 

As stated in Oum et al. (1992), productivity studies in the transportation industry using different 
measures of outputs and inputs cannot be compared directly with each other. To the best of our 
knowledge, no research has been directed toward the comparison between different methodologies 
and their empirical results in airport benchmarking. This study aims to offer the first step toward 
filling this gap. More importantly perhaps, to the knowledge of the authors, no airport performance 
benchmarking paper published so far treated both aeronautical operations and non-aeronautical 
operations within a single airport firm context.  The omission of non-aeronautical revenue outputs 
invites bias against the airports that have tried to generate more revenue from commercial and 
business activities so that they could pass on the benefits to airlines, passengers, shippers, and 
other airport users by lowering airside charges.  The size of the bias would be enormous if it is 
considered that major airports generate anywhere between 30% and 70% of their total revenues 
from non-aeronautical services while in general airports’ inputs are inseparable between those used 
to generate aeronautical revenues and others for generating non-aeronautical services from airports’  
available accounting data.

The main objective of this study is to review and empirically compare the results of the three 
key methodologies employed in measuring airport efficiency, namely, productivity index method, 
DEA method, and SFA method using comprehensive output data, which include both aeronautical 
services outputs and non-aeronautical services outputs. The dataset consists of a cross-section 
of 55 U.S. airports and seven Canadian airports in 2006. There are several reasons for choosing 
North American airports. First, North America is currently the largest air transport market in the 
world. Second, the ownership and regulatory framework of North American airports are relatively 
consistent: airports are owned and/or operated either by government agencies or by airport 
authorities. Third, there are extensive and reliable data for airports in North America, which make it 
possible to conduct a valid study using relatively consistent data.

The rest of the study is organized as follows: the next section reviews the three methodologies 
of efficiency measurement (Index Number Method, DEA, and SFA), followed by the description of 
the data used in this study. This is followed by the estimation results and comparisons between the 
efficiencies scores and rankings stemming from the three methods, and the conclusion.
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METHODOLOGIES ON PRODUCTIVITY AND EFFICIENCY MEASUREMENT

Productivity of a firm is the ratio of the output(s) produced to the input(s) used to produce the 
output(s) (Coelli et al. 2005). Hensher and Walters (1993) asserted that there are three quantitative 
methods to examine the productivity and efficiency among government enterprises, namely: 
(1) Non-parametric Index Number Method, (2) DEA, and (3) SFA. Liebert and Niemeier (2010), 
Forsyth (2000) and Oum et al. (2008) have provided an overview of the quantitative methods used 
for airport productivity and efficiency measurement. Since details of each of these methods are 
available in the papers just cited and many other sources, this section will only briefly describe and 
compare the major properties of the three methods. 

Index Number Method

As a non-parametric approach, Index Number Method directly defines productivity as output index 
over input index. The method is easy to conduct for single output and input firms. However, airports 
utilize multiple inputs such as labor, capital, and other resources to produce various services for both 
airlines and passengers. Similar to Oum et al. (2006) in the airport industry and Obeng et al. (1992) 
in public transit systems, this paper uses the multilateral index number method proposed by Caves, 
Christensen, and Diewert (1982) to aggregate inputs and outputs. The total factor productivity of a 
firm is calculated as the ratio of aggregate output index over aggregate input index.

Unlike other inputs, capital cost is usually quasi-fixed and cannot be easily adjusted in the short-
to-medium term.  It is a major challenge to measure capital inputs and costs accurately, as well as to 
collect consistent and comparable data on capital expenditures. This is because 1) expenditures on 
capital equipment, buildings, and other infrastructural costs such as runways and terminals are often 
invested over many years and may be “hidden” in the explicit (or published) costs; 2) facilities at 
airports may be built and operated by airlines or other enterprises; and 3) the sources of financing 
and accounting systems vary among airports. Other reasons are 1) some direct and indirect subsidies 
are not in financial statements, 2) book value data do not resemble replacement value of the capital 
inputs, and 3) taxation and interest rates vary across states and cities.  In the early stage of the ATRS 
(2001-2011) airport benchmarking, the task force examined the book values of capital accounts of 
U.S. and Canadian airports, and concluded that those capital accounting data are not comparable at 
all across airports, and cannot be relied on for any valid study.  Consequently, the task force decided 
to focus on measuring and comparing just the operating efficiency and variable input costs of the 
airports, excluding capital inputs from their analysis.4

Following the well-known procedure devised by Caves, Christensen and Diewert (1982), the 
variable factor productivity (VFP) model used in this study is computed as follows:

(1)    

where 

FPk is the productivity of kth firm; Yik and Xik represent the ith output and input of the kth firm 
respectively; Rik and Wik are the weights for the ith output and input of the kth firm, respectively; A 
bar over weights represents sample arithmetic mean, while a tilde demonstrates geometric mean. 
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As implied from equation (1), the VFP index is formed by a series of binary comparisons 
between each observation and the sample mean. Ideally, revenue and cost elasticities should be 
used for output and input, respectively. However, as those numbers are usually not obtainable 
for most industries, including airports, Diewert (1992) suggests using revenue and cost shares as 
approximations. This adjustment comes with further assumptions on constant returns to scale (CRS) 
across all outputs.5 

Data Envelopment Analysis (DEA) 

DEA is a non-parametric frontier method and originated from a study in operations research, and 
was first proposed by Charnes et al. (1978). DEA uses linear programming to construct a piecewise 
linear “efficient frontier” that envelops Decision-Making Units (DMUs) or firms based on outputs 
and input quantities. Efficiency indices are then calculated relative to this frontier. 

The model is presented with n units with s outputs denoted by Y, and m inputs denoted by X. 
For technical efficiency,6 the following linear programming problem is solved under the assumption 
of constant returns to scale, i.e., the CCR model developed by Charnes et al. (1978):

(2)  Minθ,λ θ, subject to θx i – Xλ   0, Yλ – yi  0, λ  0

Where, θ is a scalar that indicates the radial contraction of all inputs, hence the technical efficiency 
(TE) score. λ is the weight of the efficient peers in the reference unit. The xi’s are the individual 
inputs and yi the outputs for the ith firm. X and Y represent all input and output matrices.

The BCC model as introduced by Banker et al. (1984) can handle variable returns to scale 
(RTS) by adding the following constraint to the original CCR model.7

(3)	 e’λ=1											         
				         
Where, e is a vector of one. The paper uses the CCR model with constant returns to scale in the first 
stage because the resulting (gross) DEA efficiency measures are more directly comparable with the 
(gross) VFP, which is computed assuming constant returns to scale as discussed previously. The 
second stage analysis controls for variable returns to scale by including an output scale variable in 
the regression.  

The DEA method distinguishes between input-oriented and output-oriented models. This study 
uses the input-oriented model because most previous studies, including Abbott and Wu (2002) and 
Pels et al. (2001, 2003), use it, and it is a plausible assumption that airports have more control over 
their inputs than outputs. Since air travel demand is derived demand depending directly on economic 
activities, airports have less control in generating aeronautical outputs (ATMs, air passenger, and air 
cargo volumes) than adjusting for variable inputs.8    

Stochastic Frontier Analysis (SFA)

Different from the productivity index number and DEA, SFA specifies the form of a production or 
cost function and identifies the inefficiency as a stochastic disturbance. Originally introduced by 
Aigner et al. (1976), the general form of stochastic frontier production function can be specified as 
follows:9

(4)  Yi  = f (xi;β) exp(Vi  – Ui )

Where, Yi represents the output of the ith firm; f(x i;β) is the deterministic core function of an 
input vector xi, and an unknown parametric vector β; Vi is a normally distributed random variable 
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that represents the effects of unobservable explanatory variables and random shocks. Ui is a non-
negative random variable representing inefficiency, and it is assumed to follow either half-normal, 
exponential, or gamma distribution.

As implied from equation (4), SFA explains output by a vector of inputs and a stochastic 
disturbance, which consists of two parts: a stochastic inefficiency, Ui and a traditional ‘noise’ term, 
Vi. While Vi could be either positive or negative, Ui is always positive. 

 For the deterministic part of efficiency, this study uses a translog specification, and as such, our 
SFA-production function can be written as follows:

(5)												          

				    			 
Where, Yi is aggregate output index for airport i; Xj is the jth input; Vi is assumed to follow the 
distribution N (0, σ2V); Ui is assumed to follow N (μ, σ2U) where μ≥0. The technical efficiency of 
airport i is then calculated as the ratio of its mean output to the input if it uses inputs most efficiently.

(6)												          
							     

The SFA production function is estimated by using the input quantity indices (labor input and 
soft cost input) and the output quantity index (aggregated using the multilateral index procedure 
discussed in the Index Number Method section). 

Comparison of Methodologies

Table 1 summarizes and compares key features of the three alternative methods. The index number 
method assumes that firms are allocatively efficient and under constant returns to scale.10  In contrast, 
DEA and SFA assume the continuity and convexity of the production set. SFA further assumes a 
particular form of inefficiency distribution: usually one of half-normal, exponential, and gamma 
distribution. As for data requirement, the productivity index number method demands the highest 
level of data in general.

All three methods have difficulty in precisely measuring capital costs, the DEA method allows 
for using physical measures of capital inputs such as terminal size, number and/or length of runway 
as approximation of capital inputs. The DEA method is thus easy to use with less demanding data. 
However, DEA efficiency index lacks “transitivity,” as DEA airport efficiency rankings can change 
substantially as one adds or drops one or more airports from the sample.11 In comparison, index 
number methods preserve the relative index values and rankings, even when one adds or drops one 
or more airports from the sample.

As the only parametric method, SFA involves a specification of frontier function, which enables 
it to conduct hypotheses tests and distinguish the sources of efficiency growth. Furthermore, as SFA 
does not assume that all firms are efficient, it allows the existence of systemic inefficiency in the 
error terms, and does not restrict the combined error term (which includes inefficiency distribution) 
to be assumed independently and identically distributed (i.i.d.). However, because use of SFA 
requires rigorous theoretical concept and complex computation, it is difficult to communicate the 
method to industry executives and practitioners. 
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Table 1: Comparison of Index Number Method, DEA and SFA

  Index Number Method DEA SFA

Assumption
•	 CRS
•	 Allocative efficiency

•	 Continuous and convex 
production set

•	 Inefficiency distribution
•	 Continuous and convex 

production set

Minimum 
Data 

Requirement

•	 Quantity of outputs and 
inputs

•	 Revenue/cost shares (or 
prices of outputs and 
inputs)

•	 Quantity of outputs and 
inputs

•	 Quantity of outputs and 
inputs

•	 Revenue shares of outputs 
(when using production 
function)

Strength

•	 Specification of 
functional form is not 
required 

•	 Easy to communicate

•	 Low data requirement 
(only output and inputs 
quantities are required)

•	 Specification of 
functional form is not 
required 

•	 Can use physical 
measures of capital as 
proxy for capital input 

•	 Accounts for statistical noise
•	 Able to conduct hypotheses 

test
•	 Firms on the frontier are 

not assumed to be 100% 
efficient. 

Weakness

•	 High data requirement
•	 Do not account for 

statistical noise

•	 Results are sensitive to 
outliers and to the set of 
DMUs included in the 
study

•	 Does not account for 
statistical noise

•	 Inability to distinguish 
among 100% efficiency 
DMUs

•	 High computational 
requirements

•	 requires the specification of 
functional form

DATA CONSTRUCTION 

Airports typically charge separately for handling aircrafts and passengers.  Therefore, the numbers 
of aircraft movements (ATMs) and passenger volume are two major aeronautical outputs of an 
airport.  Some argue that ATMs and passenger volume may be correlated and thus ATMs are not 
independent.  In practice, airlines could change the number of flights by adjusting load factors, 
seating arrangements, and the sizes of aircraft, making ATMs unnecessarily endogenous. As 
another airport output, air cargo services are handled directly by airlines or third-party logistics 
companies. In addition, airports only receive small amounts of usage fees for leasing space and 
terminals, cargo revenue covers only a small percentage of the total airport revenue, and it is thus not 
reported separately by most airports.  As such, air cargo is not included as an individual output when 
measuring the gross efficiency index, but it is included as an explanatory variable in the second 
stage regression analysis. 

Airports further rely on a number of non-aeronautical activities to generate additional revenues, 
such as duty-free shops, beverages, car parking and concessions. Such leasing and outsourcing 
activities offer flexibility to airport managers by allowing them to respond efficiently to market 
forces. Although non-aeronautical activities are different from traditional aeronautical services, 
their revenues have become increasingly important and account for somewhere between 30% and 
70% of total revenues of most of our sampled airports in 2006. As discussed in Oum et al. (2006) 
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and Zhang et al. (2010), aeronautical and non-aeronautical activities are not separable, and their 
demands are closely related to each other. Any efficiency measure computed without including non-
aeronautical service output would lead to serious bias against the airports that focus on increasing 
non-aeronautical revenue in order to reduce airport charges to airlines and passengers.  Therefore, 
this study includes non-aeronautical revenue as the third airport output.12

Regarding airports, certain resources are used to provide the services stated above. First, labor 
is one of the most important inputs. In 2006, personnel expenses accounted for somewhere between 
15% and 70% of total operating cost of the sampled airports. As most airports contract out part of 
their services, some employees are hired by outsourcing companies rather than airport operators. 
To avoid double counting, this study defines labor input as the full-time equivalent number of 
employees directly paid for by airport operators. Due to lack of consistent separate data on the 
outsourced services for the goods, services, and materials purchased directly by an airport, this study 
defines “soft cost input” to be other variable inputs other than labor input. The concept of soft cost 
input has been used in previous airport benchmarking studies including ATRS (2001-2011).  

In reality, there may be hundreds (if not thousands) of items included in our soft cost inputs 
that an airport uses during a year. Unless quantities and cost shares of all of these items for all of the 
airports in the sample are available to the analysts, it is impossible to create an aggregate quantity 
index for soft cost inputs. Therefore, the method of deflating aggregate soft cost input dollar values 
by purchasing power parity (PPP) of the year is used. Further, this is divided by the cost of living 
index of the city in which the airport is located. This is the next best feasible method for creating an 
approximate quantity index of the soft cost input for the airports in the sample.

Due to various geographic locations, airports in northern regions may incur additional snow 
removal costs. These airports have extra expenses in hiring additional staff and purchasing snow-
removal equipment and supplies. For some airports, snow removal costs could be significant, e.g., 
in 2006 snow removal cost was estimated to be $9.8 million for the New York JFK airport and over 
$10 million for the Denver airport. In order to create a fairer comparison, this study deducts snow 
removal costs from airport expenses.13 

To address the price differences between the U.S. and Canada, this study uses PPP14 to 
deflate non-aeronautical revenues. In order to deal with the price differentials of non-aeronautical 
revenue items across different cities within a country, the paper further applies the city-based Cost 
of Living Index (COLI)15 to deflate non-aeronautical revenue to compute the quantity index of 
non-aeronautical revenue output.16  Table 2 provides descriptive statistics for the airport inputs and 
outputs used in this study.

Table 2: Summary Statistics for Output and Input Variables
  Mean Median Maximum Minimum Std. Dev

No. Of Passenger 21,462,585 15,730,771 84,846,639 2,899,460 2,328,169

ATM (Air Transport Movements) 293,672 236,723 965,496 60,518 25,236

Non-Aeronautical Revenue Output1 88,944,551 63,268,716 288,188,161 13,237,866 8,131,930

No. of Employee 554 407 3,000 123 62

Soft-Cost Input2 71,637,907 50,521,745 249,734,305 9,708,149 8,061,183
1 Deflated by cost of living index.
2 Snow removal cost is deducted and deflated by cost of living index.

ESTIMATION RESULTS 

Based on an identical airport sample, efficiency scores and airport rankings are estimated and 
compared across the three methods. In addition, as gross efficiency measurement is affected by 
a number of airport characteristics and may not reflect airports’ managerial efficiencies, the paper 
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estimates and compares airport residual efficiencies after removing factors beyond managerial 
controls.

Comparison of “Gross” Efficiency Results Across the Alternative Methods

Since it is not meaningful to compare actual values of the gross efficiency scores generated by each 
of the three methods, the efficiency scores generated by each method are normalized around the 
most efficient airport by setting the value for the most efficient airport at one. After that, airport 
rankings obtained from these three methods are compared based on their gross efficiency scores.  
Table 3 reports these efficiency rankings obtained from the gross efficiency scores calculated by 
each method, together with the mean ranking, mean efficiency, and standard deviations. Some 
airports have consistent gross rankings regardless of methodologies used, for example, ATL, CLT, 
RDU, STL, MIA, and MSY. It is found that the rankings in the top and bottom ranges of the gross 
efficiency scores are quite robust with respect to methodology.  Meanwhile, the rankings of some 
other airports, especially the mid-ranked ones, are more sensitive to the methodology used.  For 
instance, SAT and RNO are ranked between 20 and 30 places in gross VFP and SFA, while these 
airports are estimated to have 100% gross efficiency by the DEA method. These considerable 
differences might be explained by the impossibility of the DEA method to distinguish among a large 
number of 100% efficient firms. 

Table 4 reports the Spearman’s rank order correlation coefficients of gross efficiency estimates 
by the three methods. In general, the three sets of efficiency scores are highly correlated with each 
other. The correlation between VFP and SFA is the highest, implying that both methods yield rather 
similar (gross) efficiency rankings.  Further, the sample is divided into three groups based on average 
efficiency scores: the top 15 airports (25% of the top-ranked airports), mid-ranked airports, and the 
bottom 15 airports (25% of the bottom-ranked airports), and their correlations compared again. The 
results reveal that the correlations for the mid-ranked airports are the lowest, especially between the 
DEA and SFA models, where it is 0.29 and not statistically significant.

Impact of Airport Specific Characteristics on Gross Efficiency Result

The gross efficiency scores derived in the previous section are affected by a number of airport 
characteristics, for example, airport output size, capacity constraint, level of commercial services, 
etc. As some of these factors are beyond an airport manager’s control, the gross measure of efficiency 
scores are not necessarily good estimators for airports’ managerial performances. Therefore, this 
section applies regression analysis to decompose gross efficiency scores estimating the impacts of 
airport characteristics on measured efficiency. 

A log-linear OLS (Ordinal Least Squares) model is used to decompose gross VFPs.  However, 
as gross DEA and SFA efficiency scores have an upper bound of 1.0, there might be a truncation bias 
if the OLS model is used. Thus, as has been done in many previous studies, a Tobit regression model 
(Tobin 1958) on DEA scores is used. 

Based on previous airport efficiency studies, including the ATRS Global Airport Performance 
benchmarking report, the following variables are incorporated in the regression function as these 
may affect the gross efficiency scores.
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Table 3:  Comparative Gross Efficiency Rankings by the Alternative Methods

Airport 
Code Airport Name VFP DEA SFA

Mean 
Ranking

Std. Dev. 
(Ranking)

Mean 
Efficiency 

Score
Std. Dev. 
(Score)

ATL Hartsfield-Jackson Atlanta International Airport 1 1 1 1 0 0.978 0.039

CLT Charlotte Douglas International Airport 2 1 3 2 1 0.974 0.041

MSP Minneapolis/St. Paul International Airport 3 1 2 2 1 0.953 0.041

RDU Raleigh-Durham International Airport 4 1 4 3 1.7 0.945 0.047

YVR Vancouver International Airport 5 1 5 3.7 2.3 0.926 0.07

YYC Calgary International Airport 6 1 6 4.3 2.9 0.904 0.096

RIC Richmond International Airport 7 1 9 5.7 4.2 0.897 0.102

ABQ Albuquerque International Sunport 9 1 13 7.7 6.1 0.863 0.149

LGA LaGuardia International Airport 15 1 11 9 7.2 0.845 0.182

TPA Tampa International Airport 10 18 8 12 5.3 0.807 0.106

SDF Louisville International-Standiford Field 8 14 17 13 4.6 0.848 0.106

MCO Orlando International Airport 20 13 10 14.3 5.1 0.818 0.182

RNO Reno/Tahoe International Airport 23 1 24 16 13 0.823 0.206

LAS Las Vegas McCarran International Airport 16 26 7 16.3 9.5 0.759 0.133

MEM Memphis International Airport 12 22 21 18.3 5.5 0.77 0.11

MKE General Mitchell International Airport 11 19 25 18.3 7 0.781 0.104

SLC Salt Lake City International Airport 17 23 16 18.7 3.8 0.764 0.126

BNA Nashville International Airport 14 21 22 19 4.4 0.767 0.113

SAT San Antonio International Airport 31 1 26 19.3 16.1 0.804 0.236

EWR Newark Liberty International Airport 39 1 19 19.7 19 0.796 0.257

CVG Cincinnati/Northern Kentucky International Airport 13 29 18 20 8.2 0.752 0.117

SNA John Wayne Orange County Airport 21 15 28 21.3 6.5 0.798 0.172

YWG Winnipeg International Airport 19 16 35 23.3 10.2 0.794 0.149

DEN Denver International Airport 29 27 15 23.7 7.6 0.729 0.156

PHX Phoenix Sky Harbor International Airport 27 31 14 24 8.9 0.728 0.152

PDX Portland International Airport 18 32 23 24.3 7.1 0.738 0.125

IAH Houston-Bush Intercontinental Airport 22 40 12 24.7 14.2 0.698 0.163

IND Indianapolis International Airport 26 28 27 27 1 0.728 0.139

SEA Seattle-Tacoma International Airport 24 38 20 27.3 9.5 0.698 0.158

JAX Jacksonville International Airport 25 25 34 28 5.2 0.733 0.132

FLL Fort Lauderdale Hollywood International Airport 34 24 31 29.7 5.1 0.717 0.17

IAD Washington Dulles International Airport 32 33 32 32.3 0.6 0.704 0.163

YUL Montréal-Pierre Elliott Trudeau International Airport 33 34 33 33.3 0.6 0.696 0.16

PBI Palm Beach International Airport 37 20 44 33.7 12.3 0.717 0.171

YEG Edmonton International Airport 30 30 43 34.3 7.5 0.704 0.134

DTW Detroit Metropolitan Wayne County Airport 35 42 30 35.7 6 0.665 0.177

YOW Ottawa International Airport 28 41 45 38 8.9 0.673 0.135

BOS Boston Logan International Airport 42 36 38 38.7 3.1 0.653 0.186

DCA Ronald Reagan Washington National Airport 36 45 36 39 5.2 0.639 0.184

SAN San Diego International Airport 40 37 40 39 1.7 0.655 0.171

JFK New York-John F. Kennedy International Airport 56 17 49 40.7 20.8 0.675 0.269

ORD Chicago O’Hare International Airport 43 52 29 41.3 11.6 0.615 0.217

HNL Honolulu International Airport 38 48 39 41.7 5.5 0.628 0.186

DFW Dallas Fort Worth International Airport 49 44 37 43.3 6 0.622 0.208

OAK Oakland International Airport 46 35 50 43.7 7.8 0.639 0.187

MDW Chicago Midway Airport 48 39 48 45 5.2 0.628 0.188

CLE Cleveland-Hopkins International Airport 41 49 47 45.7 4.2 0.612 0.186

SFO San Francisco International Airport 51 47 41 46.3 5 0.599 0.211

MCI Kansas City International Airport 47 43 51 47 4 0.614 0.183

YHZ Halifax International Airport 44 46 56 48.7 6.4 0.592 0.163

LAX Los Angeles International Airport 55 50 42 49 6.6 0.579 0.23

AUS Austin Bergstrom Airport 45 51 52 49.3 3.8 0.589 0.185

(continued)
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Variables Beyond Airports’ Managerial Control

Congestion Delay. Many of the sampled airports suffer from runway and terminal congestion. 
Pathomsiri et al. (2008) found that the performance ranking of airports would be distorted in favor 
of congested airports because they have higher utilization of all inputs, while delayed flights are 
costly to airlines and passengers. In order to control the former effect, the study incorporates the 
percentage of non-weather delays as an indicator for congestion delay. 

Airport Output Scale. Airports handling more outputs are expected to achieve higher operating 
efficiency, because the continuous flow of outputs helps airports to better utilize their employees 
and other inputs.

Average Aircraft Size. Large aircrafts carry more passengers and cargo at one time, which requires 
a larger number of operators and other facilities to provide land services. Thus, airports have to 
provide sufficient landside capacity for “peak” hours; however, this leads to a lower utilization and 
productivity in “off-peak” hours. On the other hand, airports that mostly handle large aircraft tend 
to have higher utilization of airside facilities.

Percentage of International Traffic. International traffic requires more airport services than 
domestic traffic. On the other hand, airports collect more revenues from international passengers. 
As a result, the impact of international traffic on airport efficiency depends on the counter-balancing 
effects of these two factors.

Percentage of Air Cargo. Providing cargo service may have a mixed impact on airport efficiency. 
While costs are lower to serve cargo traffic, airports may also lose a portion of non-aeronautical 
revenues that come with passenger traffic. Since the output index used to calculate gross productivity 

Table 4:  Spearman’s Rank Order Correlation Coefficients Among Airport Gross 
	  Efficiency Estimates
  All Sample Top 15 airports Mid-ranked airports Bottom 15 airports
  VFP DEA VFP DEA VFP DEA VFP DEA
DEA 0.8338** 1 0.5145** 1 0.4154** 1 0.725** 1
SFA 0.9116** 0.8113** 0.8107** 0.3615 0.6727** 0.2913 0.7071** 0.6**

**correlation is statistically significantly different from zero at the 5% level, two-sided.
*correlation is statistically significantly different from zero at the 10% level, two-sided.

Table 3 continued

Airport 
Code Airport Name VFP DEA SFA

Mean 
Ranking

Std. Dev. 
(Ranking)

Mean 
Efficiency 

Score
Std. Dev. 
(Score)

PHL Philadelphia International Airport 50 60 46 52 7.2 0.561 0.231

PIT Pittsburgh International Airport 53 54 54 53.7 0.6 0.545 0.204

STL St. Louis-Lambert International Airport 52 56 53 53.7 2.1 0.541 0.217

SMF Sacramento International Airport 54 53 55 54 1 0.548 0.203

ONT Ontario International Airport 57 58 58 57.7 0.6 0.509 0.209

ALB Albany International Airport 58 55 61 58 3 0.506 0.188

SJC Norman Y. Mineta San José International Airport 59 57 59 58.3 1.2 0.508 0.208

BWI Baltimore Washington International Airport 60 59 57 58.7 1.5 0.51 0.223

MIA Miami International Aiport 62 61 60 61 1 0.446 0.244

MSY Louis Armstrong New Orleans International Airport 61 62 62 61.7 0.6 0.427 0.208
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does not include cargo as a separate output, the study incorporates the percentage of cargo as a 
variable in the regression models in order to control for the effect of cargo on airport efficiency.

Percentage of Connecting Passengers. Hub airports usually have a significant number of 
connecting passengers. Connecting passengers require less service than do passengers on direct 
flights. Therefore, airports with a high proportion of connecting passengers are expected to have 
high productivity.

Hub Carrier Market Share. The dominance of a hub carrier at an airport may allow better 
coordination and cooperation between the carrier and the airport. Therefore, airports that are 
dominated by a hub carrier are expected to have higher efficiencies than airports with a large number 
of competing airlines.

Variable Within Airport’s Managerial Control

Percentage of Non-Aeronautical Revenue. This indicator is used to present the business strategy 
of an airport. Commercial activities expand airport revenue; however, they also require additional 
resources. Therefore, it is necessary to examine the impact of non-aeronautical activities on airport 
efficiency. 

Table 5 reports the second stage regression results for the three models.17 All three results show 
consistently that airport congestion delay, percentage of cargo services, or hub carrier’s market share 
does not have statistically significant impacts on an airport’s operating efficiency. 

Table 5:  Regression Results on the Gross Efficiency Scores
VFP OLS (log-log)          DEA Tobit (log-log) SFA Tobit (log-log)

  Coefficient t-Stat Coefficient t-Stat Coefficient t-Stat

Congestion Delay 0.012 0.07 0.128 0.5 -0.005 -0.14
Output Size 0.231** 3.46 0.207** 2.26 0.086** 5.94
Ave. Aircraft Size -0.39** -3.23 -0.197 -1.18 -0.080** -3.08
% International -0.021* -1.71 -0.037** -2.08 -0.006** -2.22
% Cargo -0.037 -1.19 -0.01 -0.23 -0.006 -0.93
% Non-Aeronautical 
Revenue 0.572** 4.22 0.615** 3.23 0.114** 3.91

% Connecting Passenger 0.027** 2.01 0.033* 1.72 0.005* 1.68
% Hub Carrier 0.003 0.05 -0.026 -0.29 -0.009 -0.65
Intercept 1.283 2.07 0.972 1.12 0.189 1.41
R2 0.55 - -
Log-likelihood value -     -19.15     87.12  

*The coefficient is significant at the 90% level.
**The coefficient is significant at the 95% level. 

The output size variable has significant positive coefficients in all of the three regressions (VFA, 
DEA, and SFA).  This means that the larger the output size, the higher the operating efficiency the 
airport is expected to achieve. This evidence does not translate into scale economies because the 
dependent variable in these regressions is only operating efficiency, not total efficiency.  Given the 
quasi-fixed nature of airport capacity in the short run, this evidence may be interpreted as economies 
of utilization of the given capacity.
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Average aircraft size has a statistically significant negative coefficient in the VFP and SFA 
regressions while not being significant in the DEA regression. This negative coefficient is surprising, 
and could be the result of more inputs required to service large aircraft.18 

The statistically significant negative coefficient for the percentage of international (passenger) 
variables in all of the three models indicates that international traffic requires more resources to deal 
with customs, immigrations, and more stringent security. 

The significant positive coefficient for the percentage of connecting passengers indicates that 
airports with high proportions of connecting passengers (hub airports) are expected to have high 
operating efficiency. This is probably because a connecting passenger at an airport is counted twice 
(deplanement and enplanement), and thus, requires fewer airport resources (not requiring check-in 
facilities, baggage areas, etc.).

As described above, the percentage of non-aeronautical revenue in total airport revenue is the 
only variable that can be largely chosen (controllable) by airport managers among the variables 
included in the second stage regression analysis. Consistent with many previous studies, including 
Oum et al. (2006, 2008) and Tovar and Martin-Cejas (2009), the percentage of non-aeronautical 
revenue has significant positive effects on operating efficiency of airports in all three regressions. 
Thus, an airport that derives a high percentage of its total revenue from non-aeronautical activities is 
expected to fare well in all three measures of operating efficiency.19 This result implies that making 
more effort to increase non-aeronautical revenue beyond the current level of average efforts being 
expended by the North American airports would increase an airport’s operating efficiency, and thus, 
should be encouraged. 

Managerial Efficiency Results Based on the Alternative Methods

After removing the effects of airport characteristics beyond managerial control, residual (managerial) 
efficiencies20 are estimated and airports are ranked by their managerial efficiencies.  Similar to the 
gross efficiency estimates, the sample is divided into three groups: the top 15 airports, the bottom 
15 airports, and the mid-ranked airports. The comparative residual efficiency rankings between the 
three alternative methodologies are reported in Table 6. To provide a clear picture of the residual 
efficiency rankings, Figures 1, 2, and 3 plot the results of the three alternative methods for the top 
15, the bottom 15, and the mid-ranked airports.  For the top 15 airports, except for BNA (Nashville), 
airport rankings are largely consistent across the three alternative methods. Most airports in this 
group have similar efficiency rankings regardless of the method of measurement used.  The rankings 
for the bottom 15 airports are also similar across the three methods except for BOS (Boston) and 
PHL (Philadelphia).  In contrast, significant variations exist in the rankings of mid-ranked airports, 
notably SEA (Seattle), EWR (Newark), and JFK (New York).  Based on the average residual 
efficiency scores, Atlanta (ATL), Raleigh-Durham (RDU), Charlotte (CLT), Minneapolis-St. Paul 
(MSP), and Reno (RNO) are the top five most efficient airports in the sample of U.S. airports 
studied.

In general, the three sets of airport managerial/operational efficiencies are highly correlated 
with each other as indicated in the Spearman’s rank order correlation coefficient reported in Table 
7. Similar to the results in gross efficiency estimates, the ranking results between VFP and SFA are 
more consistent with each other.  Because of many corner solutions in DEA measurement and the 
consequent existence of a large number of efficient DMUs (airports in this case), the managerial 
efficiency rankings based on DEA method are considerably different from those of the other two 
methods.  The correlation between VFP and DEA for the mid-ranked airports is not even statistically 
significant. 
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Airport VFP DEA SFA
Mean 

Ranking
St. Dev. 

(Ranking)

Mean 
Efficiency  

Score
Std Dev 
(Score)

Top  15 Ranked Airports

ATL 3 1 3 2.3 1.2 1.146 0.109
RDU 2 5 4 3.7 1.5 1.101 0.122
RNO 9 2 1 4.0 4.4 1.030 0.134
CLT 1 7 6 4.7 3.2 1.081 0.819
PBI 7 3 5 5.0 2.0 1.029 0.109
BNA 5 12 2 6.3 5.1 1.013 0.102
MSP 4 9 7 6.7 2.5 1.035 0.853
JAX 6 13 8 9.0 3.6 0.966 2.082
LGA 11 4 13 9.3 4.7 0.973 0.106
SAT 12 10 9 10.3 1.5 0.928 0.111
TPA 8 14 10 10.7 3.1 0.945 0.111
SNA 10 16 11 12.3 3.2 0.905 1.701
MCO 13 8 18 13.0 5.0 0.927 0.117
MKE 15 17 12 14.7 2.5 0.871 0.118
FLL 16 15 15 15.3 0.6 0.880 2.531

Middle Ranked Airports

PDX 14 21 14 16.3 4.0 0.853 0.124
SAN 19 24 16 19.7 4.0 0.819 0.131
SLC 22 20 20 20.7 1.2 0.814 0.130
OAK 25 19 19 21.0 3.5 0.820 0.137
RIC 18 25 21 21.3 3.5 0.821 0.142
ABQ 23 18 23 21.3 2.9 0.828 3.377
SEA 17 35 17 23.0 10.4 0.802 2.565
HNL 20 27 22 23.0 3.6 0.811 0.151
EWR 38 6 28 24.0 16.4 0.868 0.150
IAD 27 22 26 25.0 2.6 0.794 0.152
LAS 21 30 25 25.3 4.5 0.791 0.152

MEM 30 23 29 27.3 3.8 0.781 0.154
MDW 32 28 27 29.0 2.6 0.765 0.157
DCA 26 38 24 29.3 7.6 0.751 0.161
IAH 24 37 30 30.3 6.5 0.760 0.162
JFK 45 11 36 30.7 17.6 0.794 0.164
IND 33 29 31 31.0 2.0 0.756 0.165
PHX 29 33 33 31.7 2.3 0.753 0.166
SMF 31 26 38 31.7 6.0 0.765 0.167
AUS 28 40 32 33.3 6.1 0.735 0.171

Table 6:  Comparative Airport Rankings by Residual (Managerial) Efficiency Scores 

(continued)
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Table 6 continued

Airport VFP DEA SFA
Mean 

Ranking
St. Dev. 

(Ranking)

Mean 
Efficiency  

Score
Std Dev 
(Score)

Middle Ranked Airports (continued)

SDF 34 31 37 34.0 3.0 0.743 5.457
DEN 37 34 39 36.7 2.5 0.729 0.173
DTW 36 41 35 37.3 3.2 0.712 0.178
SFO 40 39 34 37.7 3.2 0.709 0.178
MCI 39 36 41 38.7 2.5 0.715 7.506

Bottom 15 Ranked Airports

BOS 41 32 43 38.7 5.9 0.721 0.181
CVG 35 43 40 39.3 4.0 0.702 0.187
CLE 43 44 42 43.0 1.0 0.678 0.188
SJC 42 45 45 44.0 1.7 0.671 0.183
ALB 44 42 50 45.3 4.2 0.669 0.185
PHL 46 54 44 48.0 5.3 0.618 3.856
DFW 53 46 47 48.7 3.8 0.630 0.196
STL 49 52 46 49.0 3.0 0.614 0.200
ONT 48 48 51 49.0 1.7 0.623 0.200
LAX 54 47 48 49.7 3.8 0.617 0.203
ORD 50 51 49 50.0 1.0 0.612 0.206
BWI 51 49 53 51.0 2.0 0.616 0.209
PIT 52 50 52 51.3 1.2 0.609 5.103

MSY 47 53 54 51.3 3. 0.594 3.070
MIA 55 55 55 55.0 0.0 0.506 0.625
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Figure 1: Residual Ranking Comparison of Top 15 Airports
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Figure 2: Residual Ranking Comparison of Bottom 15 Airports
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Table 7:  Spearman’s Rank Order Correlation Coefficients Among Residual Efficiency 		
	  Estimates
  All sample Top 15 airports Mid-ranked airports Bottom 15 airports

  VFP DEA VFP DEA VFP DEA VFP DEA

DEA 0.8468** 1 0.4643* 1 0.18 1 0.5821** 1

SFA 0.969** 0.8899** 0.7393** 0.55** 0.8577** 0.4154** 0.675** 0.5571**

*correlation is statistically significantly different from zero at the 10% level, two-sided.
**correlation is statistically significantly different from zero at the 5% level, two-sided.

CONCLUSION AND FURTHER RESEARCH NEED

This study reviews and compares airport operating efficiency indices measured by VFP (Variable 
Factor Productivity), DEA (Data Envelopment Analysis), and SFA (Stochastic (Production Frontier 
Analysis) methods, which have been used widely in past studies.  Based on a sample of 62 major 
Canadian and US airports, this paper has compared the “gross” and managerial (“residual”) operating 
efficiency scores and airport rankings estimated by each of these three alternative methods. 

Both the gross efficiency and residual efficiency estimates by these three alternative methods 
are highly correlated. The airport efficiency rankings for both the top 15 and the bottom 15 airports 
are largely consistent across these three alternative methods, while significant differences exist in 
the mid-ranked airports.  However, because of many corner solutions in DEA measurement and the 
consequent existence of a large number of efficient airports, the efficiency rankings based on the 
DEA method are considerably more different from those of the other two methods. 

Given that the DEA application to the data has identified 12 efficient airports, each with gross 
DEA score of one (Table 3), it begs an important question whether or not there are truly significant 
differences in operating efficiencies among the top 10-15 airports, and if there are, how deep are 
the differences.  This begs for further research of the top 10-15 airports (especially those 12 airports 
with gross DEA value of 1.0) based on micro-data. 

Based on the average residual efficiency scores, Atlanta (ATL), Raleigh-Durham (RDU), 
Charlotte (CLT), Minneapolis-St. Paul (MSP), and Reno (RNO) show up as the top five most 
efficient airports in the U.S.
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Figure 3: Residual Ranking Comparison of Mid-Ranked Airports
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Endnotes

1.	 In the short run, airlines wishing to serve certain markets do not have much choice of airports, 
but in the end, airlines will consider efficient versus inefficient airports when they restructure 
their route networks.

2.	 The direct and/or indirect regulators such as aviation departments of cities and the FAA have 
various means to exert pressure on inefficient airports. Therefore, benchmarking of efficiency 
among peer airports provides at least indirect pressure on airport management to pay attention 
on efficiency.  

3.	 To save space, this paper will not review the literature on airport productivity and efficiency in 
detail, please refer to Liebert and Niemeier (2010).

4.	 One should note that by excluding capital inputs and costs in the short-to-medium term 
efficiency analysis, this study aims to compare operating efficiencies that could be affected by 
airport managers in the short to medium term.

5.	 Since the CRS assumption may be violated for the airport industry, this problem is dealt 
with by including an output scale variable in the second stage regression analysis, which is 
discussed later.

6.	 Battese and Coelli (1992) define the concept of technical efficiency of a given firm as the ratio 
of its mean production to the corresponding production if the firm utilized its levels of inputs 
most efficiently.

7.	 This additional constraint represents a convexity constraint that ensures that an inefficient firm 
is only benchmarked against firms of a similar size.

8.	 On the other hand, one could argue that airport managers have more control over non-
aeronautical activity volumes such as parking revenues, revenues from shops and restaurants, 
rental spaces, hotels, etc. This may be true only in the long run when capital investments on 
buildings and spaces can be adjusted, not necessarily so in the short to medium term for which 
the operating efficiency measures are based. Related to non-aeronautical revenue output, 
recent studies including Zhang et al. (2010), have discovered the increasing importance of 
external effects of increased aeronautical outputs airlines bring to an airport on the amount 
of non-aeronautical revenues the airport can generate. This implies that the aviation activity 
volumes are an increasing cause of the non-aeronautical revenue outputs.

9.	 The primary reason for using the SFA-production function instead of a cost function is the 
seemingly direct comparability of the three methodologies. Variable Factor Productivity 
(VFP) index is based on essentially the ratio of the output index and input index, and the DEA 
index directly relates outputs to inputs. Therefore, using a production function, which relates 
the output index directly to input quantities, serves the purpose of the study better. This also 
reduces our computational work. 

10.	 The constant RTS allows cost shares to be used as aggregating weights for the inputs. 
Although the use of revenue shares of outputs as aggregating weights for outputs needs further 
assumptions, since the paper uses a single aggregate output index in all of the three methods, 
they are even on this dimension.
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11.	 As pointed out by a referee, it is possible to detect outliers using methodologies such as 
Mahalanobis D2. There are two issues to confront.  First of all, within the two-stage framework 
of analysis, without seeing results of the second stage analysis, it probably is hard to know what 
observations will be the outliers even if such methodologies as Mahalanobis D2 are employed.  
Another issue is that it is expensive to researchers to lose several outlier airports’ data points 
even if we are able to identify true outliers since it is expensive and time consuming to collect 
even one airport’s data.

12.	 As a referee pointed out to us, airport revenue can be influenced by monopoly power. For 
example, an airport charging higher rates for parking may be influenced by the unavailability 
of close off-site parking options. Therefore, the airports with monopoly power may appear to 
be more productive than in reality.

13.	 The main reason why snow removal costs are removed from the total soft cost rather than 
including it in the second stage regression analysis is that for many airports, snow removal 
costs are zero. As such, this poses a problem in logarithmic transformation of the data unless 
some sort of transformation function such as Box-Cox form is used, which tends to complicate 
the analysis unnecessarily.

14.	 The Purchasing Power Parity (PPP) uses the long-term equilibrium exchange rate of two 
currencies to equalize their purchasing power. PPP equalizes the purchasing power of different 
currencies in their home countries for a given basket of goods.

15.	 The Cost of Living Index (COLI) is a composition index to measure the relative price level 
for consumer goods and services in areas for a mid-management standard of living. The 
overall index (100%) is composed of grocery items (13%), housing (29%), utilities (10%), 
transportation (10%), health care (4%), and miscellaneous goods and services (35%).

16.	 In the absence of COLI, city-based CPI is used to adjust Canadian airports. The COLI and CPI 
indices are linked with the US-Canada PPP exchange rate in 2006: 1US$=1.245CA$.

17.	 A variance inflation factor (VIF) diagnostic test was conducted after the OLS regression in 
order to see if there are significant multicollinearity problems among our explanatory variables. 
The test reveals there is no concern of multicollinearity problem. Output size and percentage 
of International Traffic have the highest VIF value of 2.18 and 2.04, respectively. As a rule of 
thumb, VIF values of considerably less than 10 do not raise concern in multicollinearity.

18.	 This negative coefficient for “aircraft size” in the second stage regression on the Canada/US 
airport data has been a bother for the last 10 years of the ATRS benchmarking work, especially 
because similar second stage regressions on European and Asian airport data show positive 
signs. However, this has been a consistent result over the last 10 years or so (even if each 
year’s cross sectional data or a panel data of cross-section and time-series data are used). Some 
senior airport managers argue that the coefficient could be positive or negative. The authors 
would welcome further comments and/or research results on this issue.

19.	 A referee posed an interesting question on non-aeronautical revenue in the context of this 
paper’s model, which excludes capital input (due to measurement problems) and focuses on 
operating efficiency measurement. The referee’s point is that airport (a) with a lot of parking 
would be favored in our study as compared with airport (b) without any parking lots. While 
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this is a good counter example, the results on non-aeronautical revenue show that airport (a) 
should, in fact, be rated higher than airport (b). Airport (b) is not making a reasonable effort to 
increase non-aeronautical revenue, a part of which is parking revenue.

20.	 Since non-aeronautical revenue is controlled by airport managers, its effect is not deducted 
from “gross” scores when the residual efficiency scores are computed using the second stage 
regression results.
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by Enock Mtoi, Ren Moses, and Thobias Sando

This research explores the association between fatigue-induced crash risk, transit operator hours 
of service and fatigue management policies in the state of Florida. Data used in this study include 
incident data archived by transit agencies and bus driver schedules.  The results show a decreasing 
trend of collision risks when drivers start their schedules late morning or afternoon compared with 
early morning. The effect of time on task shows increasing collision risk as drivers drive long hours 
without enough off duty periods.

INTRODUCTION

Driver fatigue has been identified as a high-priority commercial vehicle safety issue by the Federal 
Motor Carrier Safety Administration (FMCSA), the commercial motor vehicle industry, highway 
safety advocates, researchers, and the public (Barr et al. 2005). Different sources reported that driver 
fatigue and fatigue-related accidents are affected by a variety of variables, such as time of day 
effect due to circadian rhythm, sleep debt, monotonous driving environments, length of driving, 
weather conditions, use of alcohol and drugs, heat, vibration, and noise (Wyle et al. 1996). Agencies 
such as the Florida Department of Transportation (FDOT) that deal with regulating transit systems 
have established rules that limit operator duty periods to reduce fatigue. Although there are many 
reasons why managing service hours is a challenging task, the most perplexing is the inconsistency 
in research findings concerning the effect of driving schedules on driver performance and safety 
(Park et al. 2005). Operating rules are created to promote safe, efficient, timely, and customer-
oriented transit operations. Most states have adopted intrastate regulations that are identical or very 
similar to the federal hours-of-service regulations. Table 1 shows differences between federal and 
Florida hours of service regulations. It indicates that Florida has a higher daily driving limit (12 
hours compared with 10 and 11 hours for interstate carriers carrying passengers and commercial 
motor vehicles). The 16-hour on-duty limit in Florida is higher than the 15-hour limit for interstate 
passenger-carrying commercial motor vehicles’ drivers.

FDOT’s Bus Transit Draft Rule 14-90.006 states that a driver shall not be permitted or required 
to drive more than 12 hours in any one 24-hour period or drive after having been on duty for 16 
hours in any one 24-hour period (Florida Administrative Register and Administrative Code  2008).  
The rule allows the 12 hours of driving time to be spread out provided they do not exceed 16 hours 
of on-duty time in any one 24-hour period. For example, in the worst case scenario, a driver might 
be on duty driving for eight hours and then take four hours break and return to on duty status 
for an additional eight hours (i.e., four hours driving and four hours non-driving). This would be 
considered as a maximum driving time of 12 hours and 16 hours on duty time in a 24-hour period, 
although the driver may not have had any rest for 20 hours. Rule 14-90.006 further states that a 
driver shall not be permitted to drive until the requirement of a minimum eight consecutive hours 
of off-duty time has been fulfilled (Florida Administrative Register and Administrative Code 2008). 

Modeling Fatigue-Induced Collision Relative 
Risk: Implications of Service Hours and Fatigue 
Management Policies on Transit Bus Operators 
in Florida
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Table 1:  Hours of Service Rules 
Federal regulation for 
property-carrying CMV 
drivers

Federal regulation for 
interstate passenger-carrying 
CMV drivers

Florida Regulation  for bus 
transit (Rule 14-90)

11-Hour Driving Limit 
May drive a maximum of 11 
hours after 10 consecutive 
hours off duty.

10-Hour Driving Limit 
May drive a maximum of 
10 hours after 8 consecutive 
hours off duty.

12-hour driving limit
a driver shall not be permitted 
or required to drive more than 
12-hours in any one 24-hour 
period

14-Hour On-Duty Limit 
May not drive beyond the 
14th consecutive hour after 
coming on duty, following 10 
consecutive hours off duty. 
Off-duty time does not extend 
the 14-hour period.

15-Hour On-Duty Limit 
May not drive after having 
been on duty for 15 hours, 
following 8 consecutive hours 
off duty. Off-duty time is 
not included in the 15-hour 
period.

16-Hour On-Duty Limit 
May not drive after having 
been on duty for 16 hours, in 
any one 24-hour period. Off-
duty time is not included in 
the 15-hour period.

60/70-Hour On-Duty Limit 
May not drive after 60/70 
hours on duty in 7/8 
consecutive days. A driver 
may restart a 7/8 consecutive 
day period after taking 34 or 
more consecutive hours off 
duty. 

60/70-Hour On-Duty Limit 
May not drive after 60/70 
hours on duty in 7/8 
consecutive days. 

72-Hour On-Duty Limit 
A driver who has reached 
the maximum 72 hours of on 
duty time during the seven 
consecutive days shall be 
required to have a minimum 
of 24 consecutive hours off 
duty prior to returning to on 
duty status.

Source: Federal Motor Carrier Safety Administration (2010)

Notably, the minimum eight consecutive hours of off-duty time stipulated in Rule 14-90.006 is 
not the net resting time. Part of the eight hours off-duty time may be used by drivers for activities 
such as traveling back and forth from work to home and running personal errands before and/or 
sleeping. Regarding the split schedule, it is presumed that operators would use the break time for 
resting to rejuvenate their bodies before assuming a subsequent shift. However, operators have been 
observed to use the break time for activities such as running personal errands instead of resting.

The preponderance of scientific literature strongly shows that long hours of work lead to fatigue 
that can degrade performance, alertness, and concentration, which increase safety risk. Several studies 
on the influence of operator schedule on accident occurrence have been conducted for the aviation, 
rail, and trucking industries (McCart et al. 2000, Williamson et al. 1995, Coplen and Sussman 2000). 
The search of literature did not reveal similar research efforts for bus operators despite a concern 
that bus operators’ spread-hour schedules can lead to fatigue and hence increase the chance of crash 
occurrence. A thorough understanding of the correlation between transit accident occurrence and 
long duty hours caused by split schedules, together with the minimum eight consecutive hours of 
off-duty time, is crucial in setting transit operating rules.

The objective of this study is to analyze operator hours-of-duty policies in Florida and determine 
if there are safety impacts that may prompt changes to these policies. The study uses incident reports 
and operator schedule data archived by transit agencies to determine the relationship between crash 
involvement and operator schedules. Factors of interest in this study, as found in the existing hours 
of service policies, are the influence of shift pattern (start and end time), schedule pattern (split or 
straight time schedule), time spent on driving, and time off duty on fatigue and safety.
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LITERATURE REVIEW

The concepts of “fatigue,” “sleepiness,” and “drowsiness” are sometimes used interchangeably. 
Sleepiness can be defined as the neurobiological need to sleep resulting from physiological wake and 
sleep drives (Johns 2000). Fatigue has, from the beginning, been associated with physical labor, or, 
in modern terms, task performance. Although the causes of fatigue and sleepiness may be different, 
their effects are very much the same, namely a decrease in mental and physical performance capacity. 

It is comprehensible from everyday experience that fatigue has different causes; the most 
common is intensity and duration of physical work. To maintain health and efficiency, the 
recuperative processes must cancel out accumulated fatigue. Recuperation takes place not only 
during night-time sleep, but free periods during the day, and all kinds of pauses during work, also 
make their contributions. 

Various studies have been conducted to develop relationships between fatigue and performance 
decreases in different industries. Particular significance is attached to studies of fatigue in traffic, 
because it is reasonable to suppose that fatigue plays an important part in mistakes and crashes. For 
the driver, the main effect of fatigue is progressive withdrawal of attention from road and traffic 
conditions leading to impaired performance behind the wheel. Fatigue influences driving behavior in 
various ways such as slower reaction time, reduced vigilance, unsafe car following behavior, speed 
choice, and reduced information processing. Several authors have shown indisputably that about 
four hours of continuous driving is enough to bring on a distinct reduction in the level of alertness, 
and thereby increase the risk of accidents (Feyer and Williamson 1995; Williamson et al. 1995; 
Knipling and Wang 1994). Fatigue and sleep are causal factors in thousands of crashes, injuries 
and fatalities annually (Knipling and Wang 1994).  At the 1995 National Truck and Bus Safety 
Summit, driver fatigue was identified as the leading safety issue in the industry (U. S. Department 
of Transportation 1998) and the National Transportation Safety Board (NTSB) estimated 31% of 
all truck-driver fatalities and 58% of all single-truck crashes were fatigue related (Schultz 1998). 

In an effort to identify factors affecting long-haul truck drivers’ performance, McCart et al. 
(2000) performed face-to-face interviews with 593 long-distance truck drivers at rest areas and 
inspection points. They found six factors influence drivers falling asleep at the wheel. They are 
greater daytime sleepiness; more arduous schedules with more hours of work and fewer hours off-
duty; older, more experienced drivers; short, poorer sleep on road; symptoms of sleep disorder; and 
greater tendency toward nighttime drowsy driving. The study further suggested that limiting drivers’ 
work hours would enable them to get adequate sleep to reduce sleep-related crashes.

Using a different technique, Williamson et al. (1995) carried out a controlled experiment 
whereby they examined 27 professional truck drivers who completed a 12-hour, 900 kilometer trip 
under three different settings – a relay trip, a working-hour regulated one-way single trip, and a one-
way (flexible) trip with no work-hour constraints. The results of the study indicated no difference 
in fatigue for the three different experimental settings. However, the study suggested that fatigue 
patterns were more related to pre-trip fatigue levels.

The review of literature thus far indicates that most studies’ focus is more on other modes 
of transportation than on bus transit. Very few studies have examined the influence of fatigue 
specifically on city bus drivers. Santos et al. (2004) evaluated daytime and nighttime sleep, as well 
as daytime and nighttime drowsiness of professional shift-working bus drivers in Brazil. The study 
revealed that the sleep time of shift-working bus drivers was shorter and more fragmented when 
it occurred during the day than at night. Howarth (2002) investigated differences in self-reported 
sleep length and aspects of fatigue for a sample of bus transit operators in the northeastern United 
States who were working split- and straight-shift schedules. The study used questionnaires, which 
were distributed to 149 bus operators in Hartford, Connecticut. The results demonstrated expected 
relationships between sleep length and before/after-work measures of fatigue, whereby fatigue 
levels increased with decreasing sleep length. 
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It is important to recognize that the operational characteristics of city buses differ from those 
of other modes of mass transportation and trucking. Feyer and Williamson (1995) pointed out that 
although fatigue is a problem for coach drivers, it is not of the same importance for truck drivers. 
They argue that operationally, bus drivers are not as free as truck drivers to take rest on a need basis. 
Unlike trucks for example, bus routes are scheduled during peak hours because that is the time when 
buses get more riders. Also, unlike truck drivers, bus drivers have less flexibility in choosing their 
schedules based on what time of the day they feel more energetic to perform a task. City buses use 
mostly city streets while trucks use mostly highways. Buses stop more frequently than trucks. In 
addition to driving, bus operators in most agencies perform other tasks such as collecting fares and 
validating identity cards.

In order to reduce fatigue and fatigue-related accidents, management of driver hours-of-service 
for bus transit operators has been a continual safety challenge.  One study found that the principal 
factor associated with decline in driver performance was time of day (Wyle et al. 1996).  Furthermore, 
the study found that the number of driving hours and the cumulative number of days driving were 
not strong or consistent predictors of decline in driver performance. This study therefore examines 
operator hours-of-duty policies in Florida and determines if there are safety impacts that may prompt 
changes to these policies.

RESEARCH APPROACH

Data Collection

Data from four Florida transit agencies were acquired. Until 2009, there were 35 fixed-route 
transit systems operating in Florida. Data collected for this study were from 2007 to 2009. Due to 
difficulties in acquiring the data, and the requirements to deliver results on time, the research team 
categorized the agencies into two. Agencies operating a fleet of less than 200 buses were grouped as 
small size agencies and those operating a fleet of more than 200 buses were categorized as large size 
agencies.  Appendix A shows that two large and two small agencies were selected for the study.  The 
selection was based on agency willingness to provide the data. Jacksonville Transit Authority (JTA) 
and Lynx (the transit agency in Orlando) are the large size agencies while StarMetro and Regional 
Transit System (RTS) in Tallahassee and Gainesville, respectively, are the small size agencies. 
These agencies require bus operators to report all incidents including collisions with other vehicles 
and fixed objects.  

From the incidents’ databases of these agencies, data on bus crashes and operator schedules 
were extracted. The crash reports were then reviewed to identify bus crashes with other vehicles, 
bicycles, pedestrians, or fixed objects. Further examination was done to eliminate any preventable 
accident that was perceived as having been caused by factors other than fatigue. Pertinent collision 
attributes such as operator information, time of crash, date of crash, and type of crash were collected 
to enable additional analysis.

Model Formulation and Variable Design 

A regression model is formulated to relate crashes to fatigue and other variables. In this model, the 
response variable takes two distinct values: Y = 1 if a crash occurred and Y = 0 if a crash did not 
occur. Because the responses are binary, the most common techniques to analyze them are logistic 
and probit regressions and they have been used in many crash studies (Hours et al. 2010, Robertson 
and Vanlaar 2008, Schiff et al. 2008). Because both models give similar results, the choice between 
which to use depends upon assumptions regarding the distribution of the responses. In this paper it 
is assumed that the responses follow logistic distribution leading to the choice of logistic regression 
with crashes as the dependent variable. The data collected from the agencies showed that there are 
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two types of schedules; split- and straight-runs. A split-run schedule is where a person’s normal 
work day is split into two or more segments while in a straight-run schedule, each operator has its 
own set of continuous work hours that do not change. The data also showed that there are three 
different work-starting times for drivers: early morning, late morning, and afternoon.  Therefore, 
the variables were categorized by schedule types and work starting times.  The predictors of relative 
collision risk are schedule types (split = SPL or straight = CON), time on task (TOT), off duty hours 
(OFF), and start time (ST). Appendix B shows descriptions of these predictors. The model does not 
include driver and vehicle characteristics. Although important, for privacy and personnel policy 
reasons, the agencies could not provide them. 

Unlike ordinary linear regression, which can be solved explicitly, logistic regression equations 
are solved iteratively until a solution is reached (Hosmer 2000). The logistic regression model is: 
 
(1)

Where, Y is a response variable representing crash occurrence (Y = 1) or nonoccurrence (Y = 0) for 
an individual driver i. Xi  is a multivariate attribute vector for schedule characteristics of  this driver,    
some arbitrary function of Xi , β a parameter vector, and  π (x) the probability that a crash occurs. 
Taking the logarithm of Eq. (1) and solving gives,
 
(2)

From this equation, the coefficients represent changes in the log odds of the responses per unit 
changes in the predictors. Therefore, to predict the relative collision risk of each driver, exponentials 
are applied to each log odd. That is, if the log odd is m, the corresponding relative collision risk 
would be em.

Descriptive Statistics of Operator Schedules

A total of 222 collisions were examined and descriptive statistics calculated.  These statistics are in 
Table 2, and show a combined mean driving time of 49.8 hours for driving periods containing no split 
runs, with a 95% confidence interval of 48.7 hours to 50.9 hours. For operator weekly driving times 
containing split-run intervals, the combined mean driving time is 53.7 hours with a 95% confidence 
interval of 52.3 hours to 55.0 hours was calculated. The 95% confidence interval for the combined 
mean daily driving time for operators involved in collisions was also calculated. The statistics show 
a combined mean driving time is 9.8 hours for straight runs with a 95% confidence interval of 8.8 
hours to 11.5 hours. For operator daily driving times containing split runs, the combined mean 
driving time is 11 hours with a 95% confidence interval of 10.2 hours to 11.9 hours.

The distribution of collisions by time of day is depicted in Figure 1. The smallest proportion 
of collisions occurred between midnight and 4:00 a.m., a reflection of both reduced routes and 
exposure late at night. It was also observed that collisions happened more often between 1:00 p.m. 
and 7:00 p.m. (56%) when traffic volumes are high with the largest proportion occurring between 
1:00 p.m. and 3:00 p.m. (26%).
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Table 2:  Average Driving Hours of Operators Involved in Collisions and All Operators 
Weekly average driving hours without split runs

Location Average Std. Deviation Minimum Maximum

Involved All 
Drivers Involved All 

Drivers Involved All 
Drivers Involved All 

Drivers
Gainesville 49.22 40.24 7.36 2.70 35.75 32.10 68.55 60.50
Jacksonville 49.94 46.39 7.58 6.99 36.77 32.60 70.00 64.22
Orlando 50.02 43.90 7.54 9.09 31.25 6.25 68.68 65.02
Tallahassee 49.71 41.26 10.71 3.71 16.90 27.00 70.00 56.00
Combined 49.81 43.52 8.64 7.50 16.90 6.25 70.00 65.02

Weekly average driving hours with split runs
Gainesville 50.43 42.26 7.54 3.71 35.75 32.10 69.88 60.50
Jacksonville 54.34 51.79 8.46 10.90 39.95 32.60 71.56 85.67
Orlando 54.62 47.89 9.66 12.62 31.25 6.25 83.45 80.22
Tallahassee 53.35 46.73 11.82 9.41 30.50 27.00 81.35 70.50
Combined 53.67 47.65 9.85 11.06 30.50 6.25 81.35 85.67

Daily average driving hours without split runs
Gainesville 9.85 8.34 1.55 0.82 7.10 6.67 14.10 10.21
Jacksonville 9.13 8.70 1.03 0.96 5.18 7.50 12.10 12.84
Orlando 10.84 8.70 1.50 1.54 8.00 2.87 14.40 11.75
Tallahassee 9.94 8.26 2.14 0.88 3.38 6.40 16.27 10.00
Combined 9.83 8.58 1.72 1.23 3.38 2.87 16.27 12.84

Daily average driving hours with split runs
Gainesville 10.46 9.37 1.77 1.69 7.10 7.84 14.10 14.91
Jacksonville 10.89 9.73 3.08 1.87 7.88 7.50 21.65 14.55
Orlando 12.01 10.09 2.04 3.12 8.00 2.87 17.28 22.90
Tallahassee 10.67 9.36 2.37 1.95 6.10 6.40 18.94 15.30
Combined 11.01 9.77 2.58 2.49 6.10 2.87 21.65 22.90

Figure 1:  Bus Collisions by Time of Day
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Table 3:  Test Statistics –Daily and Weekly Driving Hours
Test Results - Collisions for driving periods without split runs

Location
Sample size Mean Hours

T-Value P-Value
Involved All drivers Involved All drivers

Gainesville 23 132 49.22 40.24 -5.78 0.00
Jacksonville 80 172 49.94 46.39 -3.55 0.00
Orlando 47 296 50.02 43.90 -5.02 0.00
Tallahassee 72 77 49.70 41.26 -6.34 0.00
Combined 222 677 49.81 43.52 -9.71 0.00

Test Results - Collisions for driving periods with split runs

Location
N Sample size Mean Hours

T-Value P-Value
Involved All drivers Involved All drivers

Gainesville 23 132 50.43 42.26 -5.09 0.00
Jacksonville 80 172 54.34 51.80 -2.02 0.022
Orlando 47 296 54.62 47.90 -4.24 0.00
Tallahassee 72 77 53.30 46.73 -3.76 0.00
Combined 222 677 53.67 47.70 -7.66 0.00

Test Results – Collisions for daily driving periods without split runs
Gainesville 23 132 9.85 8.34 -4.59 0.00
Jacksonville 80 172 9.13 8.70 -3.13 0.001
Orlando 47 296 10.84 8.70 -9.02 0.00
Tallahassee 72 77 9.94 8.26 -6.17 0.00
Combined 222 677 9.83 8.58 -9.99 0.00

Test Results – Collisions for daily driving periods with split runs
Gainesville 23 132 10.46 9.37 -2.73 0.011
Jacksonville 80 172 10.89 9.73 -3.10 0.003
Orlando 47 296 12.01 10.09 -5.53 0.00
Tallahassee 72 77 10.67 9.36 -3.68 0.00
Combined 222 677 11.01 9.77 -6.24 0.00

Inferential Statistics to Compare Driving Hours

A one-tailed, two-sample t-test was used to determine whether the population of operators involved 
in collisions predominantly work longer hours or if driving schedules with split runs played a role 
in collision occurrences compared with the overall population sampled with similar schedules.  The 
t-test statistics for weekly driving hours without splits and with splits are summarized in Table 
3. The statistics show that, on average, drivers who were involved in collisions drove more than 
six hours more per week than that of the general population of drivers. The results of the one-
tailed, two-sample t-test revealed that a significant difference exists for all four agencies and for 
the combined data. It is therefore statistically evident that operators who are involved in collisions 
drive more hours compared with the population of all drivers. Additionally, the one-tailed, two-
sample t-test was performed to examine if the population of operators involved in collisions worked 
longer hours or if daily scheduled split runs influenced the likelihood of collisions compared with 
the general population of operators. The one-tailed, two-sample t-test statistics for daily driving 
hours are in Table 3. The results show a statistically significant difference between the operators 
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driving longer hours per day, or with split runs during the day, were more likely to be involved in a 
preventable collision.

Selection of Variables for the Model

Four variables were selected for inclusion in the model (i.e., start time, hours on a task, off-duty 
hours, and schedule type) because the study focuses on hours of service policies for transit bus 
operators in the state of Florida. Impacts of schedule type, off-duty hours, and hours spent on driving 
were presumed to be significant contributors to fatigue.  

Table 4 summarizes likelihood ratio test for the variable. The Chi-square value of the start time 
is 33.766 with two degrees of freedom. The start time probability value of 0.000 indicates high 
significance as do the values for hours on task and off-duty hours.  However, the probability value 
of 0.72 for schedule type indicates that this variable is not significant at the 0.05 probability level.  
Using a forward elimination method, schedule type was omitted and the model re-estimated.  The 
remaining variables were all statistically significant after the second attempt.

Table 4: Likelihood Ratio Test for Each Variable

Variable 

First attempt Second attempt
Chi-

square DF p-value
Chi-

square DF P-value
Start Time (ST) 33.766 2 0.000 33.766 2 0.000
Hours on Task(TOT) 49.670 3 0.000 49.670 3 0.000
Off Duty Hours(OFF) 43.444 3 0.000 48.524 3 0.000
Schedule Type(CON, SPL) 5.234 1 0.72 Omitted Omitted Omitted
Overall Variables 132.117 9 0.000 131.960 8 0.000

Note: CON means continuous run; SPL refers to split run

Discussion of the Model

The accident risk of each variable was checked first by using its odd ratio. In keeping with the views 
in other safety studies (Hauer 2004), the discussion of each parameter is conducted using a null 
hypothesis test of significance; probability level of 0.05 is used to screen variables and identify those 
of particular interest. Table 5 shows the coefficient for each variable. The last column quantifies the 
size of the effects on collision odds relative to other variables.  The results show that drivers starting 
work in the morning between 3:00 a.m. and 7:00 a.m. had higher collision odds (2.017) compared 
with drivers starting between 7:00 a.m. and 11:00 a.m. (1.262), and those starting between 11:00 
a.m. and 3:00 p.m. (0.943). This might be due to the fact that work start times between 3:00 a.m. 
and 7:00 a.m. interfere with circadian low points which occur from 2:00 a.m. to 6:00 a.m. (Howarth 
2002). Comparatively, based on the collision odds, the collision risk for drivers driving more than 
16 hours within a 24-hour period (6.462) is higher than that of drivers driving less than eight hours 
(1.400), or driving between eight and 12 hours (1.406), and 13-16 hours (1.565).  This is expected 
because fatigue and weariness increase with increases in exposure on the job. The importance of 
having enough off-duty time to sleep and release accumulated fatigue is shown by the collision odds 
for different off-duty hours. Drivers with less than eight hours off duty have higher collision odds 
(4.323), compared with those who are off duty eight to 16 (2.226) and more than 16 hours (1.822).  
These results suggest that there is a need for transit managers to design schedules with optimal 
balance between time on task and off-duty periods for safer operations.
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Table 5: Parameter Estimates for Variables and Interaction Terms in the Model Equation
Variables Coefficient S.E P-value Collision Odds

Start Time ST1 0.702 0.190 0.000 2.017
ST2 0.232 0.203 0.252 1.262
ST3 0.058 0.204 0.774 0.943

Hours on Task TOT1 0.337 0.484 0.486 1.400
TOT2 0.341 0.420 0.417 1.406
TOT3 0.448 1.055 0.671 1.565
TOT4 1.866 0.597 0.002 6.462

Off-duty Hours OFF1 1.464 0.374 0.000 4.323
OFF2 0.800 0.367 0.020 2.226
OFF3 0.146 0.515 0.776 1.158
OFF4 0.600 0.458 0.019 1.822

Constant -3.562 0.277 0.000 0.028
Interaction Terms Coefficient S.E. P-value Collision Odds

ST1 by CON
ST1 by SPL
ST# by SPL
ST4 by SPL

0.721
0.862
0.725
0.768

0.469
0.336
0.294
0.319

0.124
0.010
0.014
0.016

2.056
2.367
2.064
2.156

TOT2 by ST4
TOT4 by STe

1.682
3.222

0.639
1.002

0.008
0.001

5.376
25.087

OFF1 by ST1
OFF1 by ST4
OFF2 by ST1
OFF2 by ST4
OFF4 by ST1

2.306
1.276
1.756
0.971
1.518

0.839
1.071
0.643
0.745
0.771

0.006
0.233
0.006
0.193
0.049

10.035
3.584
5.789
2.641
4.561

Note: ST1 = 3:00 a.m to 7:00 a.m; ST2 = 7:00 a.m to11:00 a.m; ST3 = 11:00 a.m to 3:00 p.m; ST4 = later than 3.00 p.m; 
TOT1 = Less than 8 hours; TOT2 = 8 to 12 hours; TOT3 = 13 to 16 hours; TOT4 = More than 16 hours;
OFF1 = Less than 8 hours; OFF2 = 8 to 12 hours; OFF3 = 13 to 16 hours; OFF4 = More than 16 hours;

Model Interaction Terms

The interactions among the variables were also examined to identify the effects of schedules with 
multiple characteristics. The analysis of variable interactions enables the identification of desirable 
balances between schedule characteristics. Two-, three-, and four-way interactions were performed 
and it was noted that three- and four-way interactions were statistically insignificant; therefore only 
two-way interactions were retained in the model. The results of this test are summarized in Table 5.

The interpretation of the interaction terms can be well understood by comparing the odd ratios 
(OR). For instance, among the drivers starting their schedules at 3:00 a.m. to 7:00 a.m. (ST1), a 
relative collision risk of drivers who work split runs (SPL) versus those who work straight runs 
(CON) is. This gives an estimated odds ratio of 2.367, i.e., (e0.862). Therefore, among the drivers 
with work start time of 3:00 a.m. to 7:00 a.m., those who work split runs have higher collision odds 
(2.367) than (1) those working split-runs but starting work between 11:00 a.m. to 3:00 p.m. (2.064), 
and (2) others working split runs and starting later than 3:00 p.m. (2.156). Drivers starting work 
between 1:00 a.m. to 3:00 p.m. and working more than 16 hours a day, have much higher collision 
odds (25.087) compared with those who start work later than 3:00 p.m. and work  eight to 12 hours 
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a day (5.376). The effects of the interaction between off-duty hours and work start times indicate 
higher collision odds (10.035) for drivers who have been off duty less than eight hours compared 
with those who have been off duty more than eight hours off and starting work between 3:00 a.m. to 
7:00 a.m. For transit managers and fatigue management policy makers, these results suggest that, if 
in a particular day, drivers finish their shifts late at night, the next shift should start late afternoon to 
allow enough time to release fatigue. Likewise, the number of working hours between shifts should 
be balanced to avoid long working hours, which is one of the main causes of fatigue. Shift rotations 
among drivers could be one of the best practices while maintaining efficient transit operations.

CONCLUSIONS AND RECOMMENDATIONS

This research explored the association between relative crash risk and existing transit operator 
hours of service policies in the state of Florida. Descriptive and logistic regression was used in the 
analysis. The logistic regression revealed a decreasing trend of collision risks when drivers start 
their schedules late morning or in the afternoon compared with early morning. This was expected 
because early starting schedules, such as from 3:00 a.m. to 6:59 a.m., interferes with circadian low 
points that occur from 2:00 a.m. to 6:00 a.m.  This is consistent with the findings that drivers may 
not be fully refreshed and awake when they begin their workdays (Barr et al. 2005). The effects of 
time on the job showed increasing collision risk for driving longer hours without enough off-duty 
time. In addition, the results showed that drivers who work split runs have higher relative crash risks 
than the drivers who work straight runs. The group of operators working split runs has long driving 
hours and early start and late ending times. These are the characteristics of work schedules that lead 
to fatigue. It is obvious that split runs cannot be avoided. This study recommends that schedules 
be optimized with an objective of minimizing the length of split runs. Based on the results of this 
study, FDOT may further investigate reductions of the maximum driving hours of transit operators. 
The current Florida limits are higher compared with federal limits that govern trucks and interstate 
buses. Further research is needed to study the influence of the factors that were not included in this 
study, such as route length, vehicle characteristics, and driver characteristics, among other factors.

APPENDIX A: Transit Agencies Used in the Study

Agency Name Location Fleet size
Number of 

drivers
Jacksonville Transit Authority (JTA) Jacksonville 129 268
Lynx Orlando 274 396
Regional Transit System (RTS) Gainesville 80 148
StarMetro Tallahassee 105 160
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APPENDIX B:  Description of Variables
Variable Dummy variable Abbreviation Range Description

Schedule 
Start Time 
(ST)

Start Time Category 1 ST 1 3:00 a.m-7:00 a.m 1 if ST 1
Start Time Category 2 ST2 7:00 a.m-11:00 a.m 2 if ST 2
Start Time Category 3 ST 3 11:00 a.m-3.00 p.m 3 if ST 3
Start Time Category 4 ST4 Later than 3.00 p.m 4 if ST 4

Total Off 
Duty Hours 
(OFF)

Off Duty Category 1 OFF 1 Less than 8 hours 1 if OFF 1
Off Duty Category 2 OFF 2 8 – 12 hours 2 if OFF 2
Off Duty Category 3 OFF 3 13 – 16 hours 3 if OFF 3
Off Duty Category 4 OFF 4 More than 16 hours 4 if OFF 4

Total  Hours 
on Task 
(TOT)

Total Time on Task Category 1 TOT 1 Less than 8 hours 1 if TOT 1
Total Time on Task Category 2 TOT 2 8 – 12 hours 2 if TOT 2
Total Time on Task Category 3 TOT 3 13 – 16 hours 3 if TOT 3
Total Time on Task Category 4 TOT 4 More than 16 hours 4 if TOT 4

Schedule 
Type

Continuous Schedule CON Varies 0 if CON
Split Schedule SPL Varies 1 if SPL
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by Dan P.K. Seedah, Joshua C. Muckelston, and Robert Harrison

Metropolitan toll roads are a popular source of non-traditional funded highway investment, 
targeting automobile users. Toll rates have been traditionally derived from traffic and revenue 
(T&R) studies, which appear unable to accurately estimate truck demand even when a toll road 
offers an alternative route segment to interstate trucking. This paper examines the current failure 
of Texas toll road SH-130 to attract truckers from IH-35 in Austin, one of the most congested Texas 
corridors. CT-VCOST, a comprehensive vehicle operating cost toolkit, was used to calculate truck 
operating costs on both highways to investigate why few truckers are using the toll facility and 
whether the decision is based on toll rates or other factors.

INTRODUCTION 

Transportation is characterized by substantial capital investment needs, variability in both demand 
and energy costs, and modest profitability. Those providing transportation services over a specific 
transportation network—such as running trucks on highways—have to carefully control costs to 
provide competitive services. Where the operator builds, maintains, and controls the use of the 
infrastructure (such as railroads), management has full control of when to undertake optimal 
maintenance and replacement by balancing revenue needs and timing. 

When one entity provides the infrastructure and others use it, as with highways, the picture is 
more complicated. Typically, in providing public highways, costs are allocated among the various 
classes of users to reflect a degree of equity although such allocation can lead to alleged cross-
subsidization biases, which favor trucks (Kapoor et al. 2005, Bilal et al. 2010, Parry et al. 2012). The 
pricing of trucks, whether on public or toll roads, is relatively primitive and bears little relationship 
to the metrics used by highway engineers when designing the pavements and bridges over which 
trucks operate. For example, pavement engineers use forecasts of equivalent standard axle loads 
over the lifecycle of a highway section to determine subgrade, materials, and layer thickness. The 
pricing of truck use on public roads is limited to average vehicle miles of travel (VMT) per truck 
category and fuel taxes, even though fuel consumption is weakly correlated with overweight axles. 
The toll road featured in this paper, SH-130, actually uses fixed prices on axle numbers, not axle or 
gross weight, a method that spans over 100 years.    

The funding of public highways is predicted to worsen through (a) reductions in both auto and 
freight VMT, (b) adoption of hybrid technologies reducing fuel consumption, and (c) improved 
truck aerodynamics and the use of lower rolling resistance tires. Consequently, a number of states 
are evaluating the use of tolled facilities managed and operated either by the states or private-
public partnerships. The evidence from traffic and revenue (T&R) studies suggests that many tolled 
highways are priced to stimulate auto use and not truck use. This may be appropriate for metropolitan 
tolls. But in those cases where trucks comprise part of the target users, T&R studies are unable to 
estimate either costs or benefits facing truckers contemplating toll road use. Clearly, benefits such 
as on-time delivery and customer satisfaction must exceed the per-mile cost of using tolled routes 
since most tractor-trailer drivers are paid by the mile. 

Truck toll road use comprises several factors, which are dynamic and need to be incorporated 
into toll pricing. Where the benefits are clear for all trips, truckers will use the facility. They will also 
use it if an alternative highway is blocked or experiencing heavy delays and they have time-sensitive 
cargo. This paper argues that toll road authorities may fail in adequately estimating truck operating 
costs and inadvertently set prices that act as disincentives to truck use. The literature, however, 
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shows that there are a relatively small number of cost models that can be used by toll authorities 
to set truck rates. The objective of this study is to introduce a methodology that can be used to 
determine truck operating cost over any user-defined route profile. A case study is also presented 
that illustrates how planners and toll entities can determine which routes trucking companies will 
choose based on factors such as distance, travel time, congestion levels, travel speeds, toll charges, 
and pavement conditions.  

BACKGROUND

In 2003, a Minnesota Department of Transportation (MnDOT) commissioned report was released 
on the per-mile cost of truck and automobile operation (Barnes and Langworthy 2004). This cost 
estimate focused on variable rather than fixed costs as MnDOT sought to use it as a tool to compare 
costs in traffic planning—for example, a congested corridor versus a longer but less congested 
route. The study investigated the costs of both personal vehicles and commercial trucks. The cost 
estimate consisted of five main factors: fuel, routine maintenance, tires, unanticipated repairs, and 
depreciation. Because vehicle operating cost (VCOST) estimates are mileage-based costs, Barnes 
and Langworthy (2004) based depreciation cost solely on mileage, which is lower than a vehicle’s 
overall depreciation, which is also based on the age of the car. The MnDOT VCOST analysis differs 
from many others in that it takes into account the lifecycle costs of cars. For example, Consumer 
Reports (2011), Intellichoice (2011), and Edmunds (2011) only take into account the first four-
five years of vehicle life. The study also considered highway, urban, and congested-urban traffic 
conditions, as well as pavement roughness, via the use of multiplicative adjustment factors. The 
MnDOT report provided VCOST estimation flexibility as a spreadsheet calculation tool that can be 
adapted to future conditions rather than a static estimate that is prone to obsolescence. 

Based on the literature (Levinson et al. 2005, Berwick 1997, American Transportation Research 
Institute (ATRI) 2011) it can be inferred that a key missing component of VCOST pertinent to 
transportation planning is the ability to determine operating costs over different route profiles. 
While emphasis has been laid on pavement conditions (Zaabar and Chatti 2010, Texas Research 
and Development Foundation (TRDF) 1982, Walls and Smith 1998), only the work by Barnes and 
Langworthy (2004) addresses route-based VCOST. However, the MnDOT approach involves many 
approximations, and did not analyze truck operating costs with as much detail and depth as the 
analysis for personal vehicles (Welter et al. 2011).

The wide variety of vehicle technologies adopted over the past 15 years rendered the last 
VCOST model developed in Texas (TRDF 1982) obsolete, and in 2006 the Texas Department of 
Transportation (TxDOT) conducted a study to update VCOST estimates (Matthews et al. 2012). The 
model, termed CT-VCOST, is a comprehensive vehicle operating cost toolkit capable of producing 
an array of results that allows planners to better estimate the economic consequences of various 
highway investment strategies. It has a software that is user-friendly and provides operating cost 
estimates for specific representative vehicles or vehicle fleets. It utilizes a unique vehicle identifier 
algorithm for data storage, cost calculations, and user interactions via its graphical user interface. 
This unique identification property also enables vehicles to retain their unique data values when 
dealing with multiple vehicles, vehicle classes, and vehicle fleets. 

The toolkit’s default data are based on verified secondary vehicle cost data and certified 
vehicle databases such as the EPA’s Fuel Economy database and Annual Certification Test Results 
databases. The toolkit also allows users to change the parameters so that cost calculations are 
specific to any particular situation, and can be updated as the economic or technological landscape 
changes. Cost categories in the CT-VCOST toolkit include those associated with depreciation, 
financing, insurance, maintenance, fuel, driver, road use fees (e.g., tolls), and other capital costs 
such as annual vehicle registration and inspection fees. Analysis types that can be performed with 
CT-VCOST include single vehicle analysis, multi-vehicle comparisons, fleet vehicle analysis, 
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growth rate and market penetration simulation, and route cost analysis. It also comes packaged 
with sophisticated fuel economy prediction models for heavy duty, light duty, and hybrid vehicles. 
The fuel prediction models, developed using both experimental and survey data, have the ability to 
measure fuel consumption for default or custom drive cycles specified by users. Outputs from the 
fuel prediction models can be used within the toolkit to perform route cost analyses, an example 
of which is presented as a case study in this paper. In summary, CT-VCOST was designed to be 
intuitive and flexible enough for simulating different scenarios and situations that planners may 
envision. CT-VCOST is updatable and can be calibrated for any state or region.

This paper shows that CT-VCOST can be used to determine truck operating cost over any user-
defined route profile. A case study is also presented that illustrates how planners and toll entities can 
use CT-VCOST to determine which routes trucking companies will choose based on factors such as 
distance, travel time, congestion levels, travel speeds, toll charges, and pavement conditions.  

CASE STUDY

As illustrated in Figure 1, Texas State Highway 130 (SH-130) connects with Interstate Highway 
35 (IH-35) near Georgetown in the north and Buda in the south.  SH-130 is being extended to 
reach Intestate Highway 10 (IH-10) near San Antonio in 2013. Currently, it is linked to IH-35 
south by a toll road, State Highway 45 (SH-45). Critical for truckers, the SH-45/SH-130 route 
is approximately 12 miles longer than the alternate route on IH-35, even though travel times are 
shorter on it over much of a 24-hour period. The highway is a state-owned toll road and its extension 
is being developed in partnership with the toll road authority, the SH-130 Concession Company 
(TxDOT 2011a,b). Rapid growth in the city of Austin has led to an increase in congestion on IH-35, 
thus impacting transportation services to regions north and south of the city. 

TxDOT representatives state that SH-130 
has recorded both successes and failures in its 
effort to relieve congestion in Austin (Woodall 
2011). SH-130 is servicing an acceptable amount 
of automobiles but TxDOT has not seen the same 
result for freight vehicles. A survey of trucking 
companies revealed that lowering toll rates on 
the highway could draw more freight vehicles but 
the elasticity of the toll rates was not determined 
(TheTrucker.com 2011). However, not all truckers 
are convinced that using this alternative tolled 
route has tangible benefits (Woodall 2011, New 
2012). For example, even though IH-35 is shorter, 
some drivers have asserted that even if the toll were 
free, they will still not use it (Woodall 2011). In 
addition, it currently costs a six-axle truck with one 
truck and one trailer nearly $20 more to travel from 
SH-130’s intersection with IH-35 south (via SH-
45) to the SH-130 intersection with IH-35 north 
(TxTag 2011) (see Figure 1). Despite the inability 
of the toll facility to attract through truck traffic, a 
growing number of truckers use it when going east 
toward Houston via U.S. Highway 290 or to IH-10 
via State Highway (SH-71) (see Figure 1). 

Using CT-VCOST, it is possible to determine the actual cost and benefit of a route compared 
with another to evaluate the claims made by truckers. The following five existing routes were 

Figure 1: Case Study Routes
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investigated and each was evaluated for both free flow and congested traffic conditions: 
1.	 Through truck traffic through Austin using IH-35 versus SH-130 
2.	 Northbound truck traffic using IH-35 or SH-130 to State Highway 71 East (SH-71E) 
3.	 Southbound truck traffic using IH-35 or SH-130 to SH-71E
4.	 Northbound truck traffic using IH-35 or SH-130 to US Highway 290 East (US 290E) 
5.	 Southbound truck traffic using IH-35 or SH-130 to US 290E

Comparing the costs to travel on these routes offers an understanding of why truckers prefer one 
route over another and also provides toll authorities with more accurate and equitable prices to 
stimulate truck demand, benefiting both the toll road and traffic flow on IH-35.

Toolkit Principles and Case Study Input

The CT-VCOST toolkit utilizes an object-oriented programming structure where “modules” are 
developed to perform particular tasks. For this case study, the following modules were used: the 
Scenario module, the Vehicle Utilization module, the Vehicle Maintenance module, and the Route 
Cost module. Pavement roughness for each roadway section can also be defined in the Route Cost 
module. The following sections of this paper discuss the modules and data used for this case study. 

Vehicle Selection. The CT-VCOST database enables users to select from data reported on more 
than 5,000 default vehicles in the United States. Vehicles can be selected either by vehicle class, 
model, or year. If a vehicle cannot be found in the database, a custom vehicle can be built by the user 
and included in the database. For this case study, a custom Class 8 truck made up of a single wide-
base tire tractor-trailer is used. Single wide-base tires are known to improve the fuel efficiency and 
stability of heavy-duty tractor-trailer trucks (Oak Ridge National Laboratory 2006). This particular 
vehicle was chosen because data for its fuel consumption measured in miles per gallon (mpg) as 
function of speed were readily available (Capps et al. 2008). Fuel cost calculation, discussed later in 
this paper, utilizes these kind of data. 

Defining a Scenario. Once a vehicle is selected, a scenario must be defined using the Scenario 
module. This module enables users to input general parameters that influence VCOST such as the 
analysis period and fuel price. The analysis period defines the life span of the vehicle involved in 
the analysis. The specified number of years is used in determining the cut-off points for calculations 
such as vehicle depreciation, vehicles miles traveled, and scheduled maintenance. For this case 
study, an analysis period of 10 years is used. A diesel fuel price of $3.94 is also specified for this 
case study. 

Vehicle Age and Utilization. As vehicles age, they tend to be driven less than newer vehicles (U.S. 
Department of Energy 2011) so the Vehicle Utilization module was developed to capture this change 
in vehicle use (annual mileage) over time. Users are able to input a vehicle’s annual mileage for each 
year of its life span. Default data correlating vehicle utilization with age for passenger vehicles are 
available from the Transportation Energy Data Book (U.S. Department of Energy 2011) but data for 
trucking companies are much more difficult to find. Due to this limitation, truck utilization over the 
10-year period of this case study is kept constant at 100,000 miles each year. 

Maintenance and Repairs. The Vehicle Maintenance module seeks to simulate the actual 
maintenance activities of a vehicle. CT-VCOST enables maintenance activities to be set to either 
exact or range, depending on whether the maintenance activity occurs at a fixed mileage or within a 
certain mile range. For example, an oil change usually is performed at 10,000 miles for trucks; tire 
replacement varies between 50,000 to 100,000 miles per tire.
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The difference between the two calculations is that with the exact interval option, repair cost is 
included in the cost calculation at the exact time the vehicle reaches the specified mileage. However, 
with the range interval, repair cost is distributed among the years between which the vehicle’s 
mileage falls. For example, if tires need to be replaced somewhere between 60,000 and 100,000 
miles, tire replacement costs are distributed equally between the years. 

In addition, a repair may be set to be recurrent, which means that at the specified scheduled 
interval, the repair item will occur again. Using the tire replacement repair as an example, tire repair 
costs will be calculated again when the vehicle mileage reaches between the 120,000 to 200,000 
mile range (see Figure 2). Using industry estimates for annual maintenance cost (ATRI 2011), this 
case utilizes the following maintenance schemes and cost:

•	 Oil change – every 10,000 miles at $600
•	 Tire replacement – every 100,000 miles at $2,600
•	 Scheduled service – every 100,000 miles at $6,000

Fuel Consumption. CT-VCOST 
is packaged with two different 
algorithms to calculate fuel 
consumption as a function of 
vehicle speed: 1) the slope-based 
approach and 2) the lookup table 
approach.

Slope-Based Approach. Fuel 
consumption, f(v) is calculated as a 
function of speed v (i.e. f(v)), using 
at least two points: city miles per 
gallon (mpgcity) and highway miles 
per gallon (mpghwy). This approach 
assumes that mpgcity and mpghwy 
are achieved at average speeds of 
21.2 mph (ῡcity) and 48.3 mph (ῡhwy) 

respectively according to EPA test results (EPA 2011). The user then specifies an optimum fuel 
consumption speed (vo) and using Equations 1 and 2, the possible fuel consumption estimates are 
calculated. Equation 1 determines fuel economy at any speed (v) by using a linear function, which 
is dependent on whether v is: (a) lesser than or equal to optimum speed (vo), or (b) v is greater than 
optimum speed (vo). If v ≤ vo, fuel consumption f(v) will be between the vehicle’s EPA specified 
city miles per gallon (mpgcity) and highway miles per gallon (mpghwy), where mpghwy is assumed to be 
equal to the optimum fuel economy f(vo). The slope (m) is determined by the corresponding highway 
and city fuel consumptions mpghwy , mpgcity) and speeds (ῡhwy, ῡcity). To ensure that f(vo) remains the 
optimum (or maximum) fuel consumption, fuel consumption f(v) is calculated using a negative 
slope when v > vo. As illustrated in Figure 3, the slope-based approach, though simple and replicable 
for most vehicles, is not entirely accurate as optimum fuel consumption varies between 25 to 55 
miles per hour when using actual fuel economy data.

(1)

(2)	

f (v) = 
f (vo) – m (v – vo)  

if v ≤ vo  
if v > vo  

(v ∗ m) + mpgcity



Figure 2:	 Recurrent Tire Replacement Between 		
			   40,000 and 60,000 Miles and 
			   Corresponding Annual Maintenance Cost
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Lookup Table Approach. The lookup table approach provides a much better estimate of fuel 
consumption as function of speed (see Table 1). This approach, though more accurate, is dependent 
on the availability of data. For each speed (v) on the specified route profile, CT-VCOST iterates 
through each row of the column matching the vehicle model and returns the vehicle’s fuel 
consumption, f(v) using linear interpolation. When the vehicle speed (v) falls within the range of 
two successive speeds [(vi) and (f(vi+1)], the fuel consumption for those speeds f(vi) and (f(vi+1) 
are used in determining the vehicles’ fuel consumption f(v) as illustrated in the linear interpolation 
shown in Equation 3. 

(3)

Figure 3:	 Comparison of Slope-Based Approach With Actual Fuel
			   Economy Data

(Source: Matthew et al. 2011)

Driver Costs. CT-VCOST provides users with two alternatives for capturing driver cost: Hourly 
driver cost and per-mile driver cost. Hourly driver cost captures the cost of delay during congested 
conditions. This is useful for time sensitive deliveries such as perishables and high value commodities. 
This case study however uses only the per-mile driver cost as it represents the majority of truckers 
using IH-35 (Woodall 2011). An industry average value in 2010 of $0.40 a mile is used (ATRI 2011).

Depreciation, Financing, Insurance, Registration, and Permit Fees. Typical vehicle depreciation 
for light-duty vehicles was found to be at around 20% for the first year and 15% or less for the 
subsequent years (Sandler 2003, Edmunds.com 2011). This assumption was used for this case study 
due to lack of credible data for heavy-duty vehicles. Financing was also based on a 1.5% down 
payment and a 60-month loan at an interest rate of 4.55%. The insurance cost was based on industry 
estimates, which ranged from $4,000 to $7,500 annually. A value of $5,500 is used for this case 
study. Registration and permit fees were calculated using industry estimates  (ATRI 2011), and an 
annual value of $2,300 was assigned.
 
Specifying Route Conditions. The route cost module enables users to simulate the cost of moving 
a vehicle or a fleet of vehicles via certain routes. Multiple routes and their characteristics such as 
distance, speed, congestion level, pavement roughness (Zaabar and Chatti 2010), and travel time are 
defined by the user. VCOST via each route is then calculated and presented for comparison. 
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Table 2 presents all the case study routes and their respective characteristics while Table 3 
summarizes the input data. Traffic conditions from Google Maps for both routes at 7:30 a.m. were 
used for the congested scenarios in this case study.

Case Study Findings

In this case study, it was determined that total route cost was dependent on distance, speed, fuel 
consumption, and per-mile driver cost. Based on average 2008 fuel prices of $3.814 a gallon (U.S. 
Energy Information Administration [EIA] 2011), the American Transportation Research Institute 
(2011) reported average truck fuel and oil cost to be $0.63 per mile. In comparison, per-mile fuel cost 
from CT-VCOST for this case study ranged between $0.56 to $0.77 per mile. Additional dependent 
variables that CT-VCOST could have captured but were not considered in this case study include 
pavement roughness and hourly driver cost. 

Annual cost variables found to be independent of route cost were depreciation, finance, 
insurance, maintenance (including tires), and other costs (vehicle registration and permits). Per-
mile cost for each of these variables were $0.09, $0.13, $0.05, $0.14, and $0.02, respectively ($0.43 
total). Similar per-mile cost reported by the American Transportation Research Institute (2011) for 
those same variables in the first quarter of 2010 were $0.21 (finance), $0.05 (insurance), $0.15 
(maintenance and tires) and $0.02 (vehicle registration and permits).

IH-35 versus SH-130 Through Traffic. In this scenario, through truck traffic using 55 miles of SH-
130 compared with 43.4 miles of IH-35 were analyzed. Under free flow conditions, per-mile cost 
(excluding toll charges) for both routes was found to be $1.40 (including $0.56 fuel, $0.40 driver 
cost). However, total route costs and travel time were found to be $77.06 and 55.20 minutes for 
SH-130, compared with $60.67 and 43.20 minutes for IH-35. The vehicle consumed 7.87 gallons 

Table 1: Sample Fuel Economy Lookup Table in MPGs

Speed 
(mph)

1994 
Chevrolet 

Pickup

1994 Jeep 
Grand 

Cherokee

1997 
Toyota 
Celica

Dual Tire 
Tractor - 
Dual Tire 

Trailer

Dual Tire 
Tractor - 

Single Wide 
Tire Trailer

Single 
Wide Tire 
Tractor - 
Dual Tire 

Trailer

Single Wide 
Tire Tractor - 
Single Wide 
Tire Trailer

5 7.9 8.2 19.1 2.8 2.9 3.0 3.0
10 16.0 11.2 34.1 3.4 3.6 3.3 3.4
15 16.3 17.5 41.7 3.8 4.0 3.9 4.0
20 19.9 24.7 46.0 3.7 4.0 4.0 4.0
25 22.7 21.8 52.6 4.1 4.3 4.6 4.6
30 26.3 21.6 50.8 4.4 4.6 5.0 4.9
35 24.3 25.0 47.6 4.4 4.9 5.2 5.0
40 26.7 25.5 36.2 4.8 5.2 5.3 5.1
45 27.3 25.4 44.1 5.1 5.4 5.6 5.3
50 26.3 24.8 44.8 5.4 5.8 6.2 6.0
55 25.1 24.0 42.5 5.8 6.1 6.2 6.2
60 22.6 23.2 48.4 6.3 6.8 6.9 7.0
65 21.8 21.3 43.5 6.6 7.2 7.1 7.3
70 20.1 20.0 39.2 7.0 7.7 7.0 7.0
75 18.1 19.1 36.8 7.5 7.9 7.9 8.1
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Table 2: Route Data Input for IH-35 / SH-130 Case Study

Route Name Section Distance 
(miles) Condition Speed 

(mph)
Travel Time 

(minutes) Toll

IH-35 vs. SH-130 (through Austin)
SH-130 (Free flow) 55.0 Free Flow 60 55.2 $19.20
IH-35 (Free flow) 43.4 Free Flow 60 43.2 ‒
SH-130 (2011 Cong.) 55.0 Free Flow 60 55.2 $19.20
IH-35 (2011 Cong.) Section 1 4.0 Free Flow 60 4.2 ‒

Section 2 7.9 Congested 24 19.8 ‒
Section 3 31.5 Moderate 36 52.8 ‒

North Bound to SH 71 E
SH-130 (Free flow) 25.0 Free Flow 60 25.2 $7.05
IH-35 (Free flow) 25.0 Free Flow 60 25.2 ‒
IH-35 (Congested) 5.0 Free Flow 60 4.8 ‒

Section 1 5.0 Moderate 40 7.8 ‒
Section 2 15.0 Free Flow 60 15.0 ‒

South Bound to SH 71 E
SH-130 (Free flow) 47.0 Free Flow 60 46.8 $12.15
IH-35 (Free flow) 52.0 Free Flow 60 52.2 ‒
IH-35 (Congested) Section 1 37.0 Free Flow 60 37.2 ‒

Section 2 15.0 Moderate 45 19.8 ‒
North Bound to US 290 E
SH-130 (Free flow) 32.0 Free Flow 60 31.8 $11.10
IH-35 (Free flow) 28.0 Free Flow 60 28.2 ‒
IH-35 (Congested) Section 1  7.0 Free Flow 60 7.2 ‒

Section 2  8.0 Moderate 40 12.0 ‒
Section 3  5.0 Congested 20 15.0 ‒
Section 4  8.0 Moderate 40 12.0 ‒

South Bound to US 290 E
SH-130 (Free flow) Section 1 28.0 Free Flow 60 28.2 $  8.10

Section 2  3.0 Free Flow 60 3.0 ‒
IH-35 (Free flow) Section 1 30.0 Free Flow 60 30.0 ‒

Section 2 10.0 Free Flow 50 12.0 ‒
IH-35 (Congested) Section 1 20.0 Free Flow 60 19.8 ‒

Section 2  5.0 Moderate 40 7.8 ‒
Section 3  5.0 Free Flow 60 4.8 ‒

  Section 4 10.0 Free Flow 50 12.0 ‒
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of fuel on SH-130 compared with 6.21 gallons on IH-35. Under current 2011 congested conditions, 
per-mile costs were found to be $1.40 for SH-130 and $1.58 for IH-35. Fuel cost, gallons of fuel, 
driver cost, and travel time remained unchanged for SH-130, as it does not currently experience 
any congestion. However, total route cost and travel time on IH-35 increased by $7.75 and 33.60 
minutes, respectively. Gallons of fuel consumed, per-mile fuel cost and driver costs increased by 
1.98 gallons, $0.18, and $4.69, respectively, on IH-35. Based on the above analysis, it can be inferred 
that IH-35 is the most favorable route for free flow conditions and non-time sensitive commodity 
flows. Despite the congested conditions on IH-35, it still costs drivers $8.64 more (excluding tolls) 
to use SH-130 because of the additional 11.6 miles they have to drive on SH-130. If the $19.20 toll 
is accounted for, drivers will have to pay an additional $27.84 to use SH-130 instead of IH-35.

Northbound and Southbound Traffic to SH-71E via IH-35 and SH-130. This scenario sought to 
determine if truckers may prefer to use SH-130 instead of IH-35 when heading east to Bastrop via 
SH-71. During free flow conditions for northbound traffic, total route cost and travel time for both 
IH-35 and SH-130 to SH-71E were both the same ($35.03 and 25.20 minutes respectively) because 
both routes have similar distances. However, if the toll charged on SH-130 is included in the total 
route cost, SH-130 was $7.05 more costly than IH-35. Per-mile cost (excluding toll charges) was 
$1.40, fuel consumed was 3.58 gallons, and per-mile fuel cost was $0.56. For congested conditions, 
per mile fuel cost increased to $0.63 for IH-35, thus increasing total route cost by $1.73. Travel time 
on IH-35 also increased by 2.40 minutes.

For southbound traffic, route distance to SH-71E via SH-130 was 47 miles and that of IH-35 was 
52 miles. Per-mile cost (excluding toll charges) was $1.40 for both routes, and total fuel consumed 
was 6.72 and 7.44 gallons for SH-130 and IH-35, respectively. During free flow conditions, total 
route cost on IH-35 was determined to be $72.82 ($7.00 more than SH-130). However, if the $12.15 

Variable Input Data
Diesel price $3.92
Utilization curve Kept constant. Annual mileage was therefore 100,000 miles 

each year for 10 years

Maintenance cost
(tire & oil change only)

Average Annual: $14,600
Average Per Mile: $0.15 per mile

Fuel economy calculation Slope based approach
Driver wage $0.40 per mile
Depreciation: 20% first year, 15 % subsequent years
Financing 1.5% down payment and a 60-month loan at an interest rate of 

4.55%
Insurance $5,500 a year
Registration and Permit Fees: $2,300 a year
Toll charges Based on 2011 values from Austin Toll Calculator (TxTag, 

2011)
Vehicle Body Shape: Tractor plus One Trailer
Vehicle Axle Count: 5 axle
Payment Type: TxTag Electronic Toll Tag

Table 3: Summary of Input Data
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toll charged on SH-130 is included, then using SH-130 will cost $5.15 more than using IH-35. For 
congested conditions, total route cost on IH-35 increased by $4.62, thus costing $11.62 more to use 
IH-35 instead of SH-130.

Northbound and Southbound Traffic to US-290E via IH-35 and SH-130. Similar to the SH-71E 
analysis, the US-290E scenario sought to determine if truckers may prefer to use SH-130 instead of 
IH-35 when heading east to Houston. For northbound free flow conditions, it was determined that it 
costs drivers $5.61 more (excluding tolls) to use SH-130 instead of IH-35 because of the additional 
four miles that need to be driven. Including tolls, drivers have to pay $16.71 more to use SH-130 
instead of IH-35. In congested conditions, the difference in total route cost between SH-130 and IH-
35 decreases to $3.66 (excluding tolls) or $14.76 when including tolls. Per-mile fuel cost for IH-35 
increased by $0.21 and total driver cost increased by $1.62.

For southbound traffic, route distance to US-290E via SH-130 was 31 miles and that of IH-35 
was 40 miles. It was determined that for both free flow and congested conditions, SH-130 was the 
more favorable route despite the additional $8.10 toll. IH-35 cost drivers an additional $5.00 even 
when SH-130 is tolled or $13.00 when SH-130 is not tolled. 

CONCLUSION

CT-VCOST was developed so planners at the Texas Department of Transportation could better 
estimate the economic consequences of various engineering strategies and assist in policy making. 
CT-VCOST can be used, with minor calibration, in any state or region where a transportation 
planning entity needs to examine policies relating to setting toll charges, projecting future fuel 
consumption and fuel tax revenue, and examining the effects of pavement condition on vehicle 
operating costs. 

CT-VCOST was used in validating claims by truck drivers concerning the use of the SH-130 
toll facility, which runs parallel to IH-35. Despite congested conditions on IH-35, drivers pay an 
additional $27.84 when using the tolled SH-130 facility when traveling through Austin. Should the 
current toll of $19.20 not exist, drivers will still pay an additional $8.64 when using SH-130 because 
of the extra 11.6 miles they must drive. 

Northbound traffic to SH-71E via SH-130 was competitive to IH-35 both in terms of cost and 
travel time. However, the additional $5.15 toll on SH-130 could be a disincentive to truck drivers 
if travel time is not a factor. For southbound traffic to SH-71E, IH-35 was less costly than the 
tolled facility on SH-130 but drivers experienced greater travel time delays especially in congested 
conditions.

Northbound traffic to US-290 E favored IH-35 more than SH-130 during both congested and 
free flow conditions from a cost-only perspective (IH-35 cost $16.90 less). However, travel time on 
IH-35 was 14.4 minutes more than SH-130 during congested periods. Southbound traffic, on the 
other hand, favored SH-130 as it remained less expensive ($4.50) and faster (13.2 minutes) than 
IH-35 even in congested conditions.

In summary, it can be inferred from CT-VCOST and the case study that not all new tolled 
facilities are setting prices favorable to truckers from a cost saving perspective. This is not simply a 
case of overestimating truck toll fees – which is generally the case with current traffic and revenue 
analysis – but may occur even when the toll is set at zero. However, for deliveries where travel time 
is a major consideration, using tolled facilities seems beneficial if the cost associated with using 
the facility does not offset the time savings. In addition, most truck drivers are paid by the mile, 
and longer tolled routes are a disincentive in comparison with the shorter and free alternative route 
because of additional mileage and toll fees. Truckers are rational and toll authorities should be using 
updated—even dynamic—vehicle operating cost information to induce truck demand. Truck toll 
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road pricing should be substantially more equitable and based on fuel consumption and congestion 
impacts. 
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by Jun Tu, W. Scott Wayne, and Mario G. Perhinschi

Correlation analysis was performed to investigate the effects of drive cycle characteristics on 
distance-specific emissions (g/mile) and fuel economy (mpg) and consequently determine the most 
influential cycle metrics for modeling. A detailed analysis of linear and non-linear correlations 
was performed among cycle metrics to avoid collinearity and reduce the number of variables. The 
order of importance of the selected cycle metrics was determined. Results show that average speed 
with idle, number of stops per mile, percentage idle, and kinetic intensity were the most important 
cycle metrics affecting emissions and fuel economy. Preliminary regression analysis reinforced their 
importance for emissions modeling purposes. 

INTRODUCTION

West Virginia University (WVU) has been engaged in developing an Integrated Bus Information 
System (IBIS) (Wayne et al. 2011) for the Federal Transit Administration (FTA). The intent of 
IBIS is to provide information on emissions and fuel economy for available bus technologies for 
bus procurement activities. IBIS includes a database of emissions test results of transit buses, a 
bus fleet emissions model, and a life cycle cost model. Compared with existing major emission 
models, such as the Mobile Source Emission Factor Model (MOBILE6) (U.S EPA 2003), the Motor 
Vehicle Emission Simulator (MOVES) developed by the U.S. Environmental Protection Agency 
(U.S. EPA 2010), IBIS provides transit agencies a simple tool to satisfactorily estimate emissions for 
evaluating the impact of new vehicle procurement on the overall fleet emissions profile. Similarly, 
IBIS is simpler compared with the EMission FACtors (EMFAC) model developed by the California 
Air Resources Board (CARB 2006) 

The purpose of this study is to investigate the drive effects of cycle characteristics, which are 
metrics based on second-by-second vehicle speed data and distance-specific emissions in order to 
identify the most important parameters that should be included in a predictive emissions model. 
These emissions are carbon monoxide (CO), carbon dioxide (CO2), oxides of nitrogen (NOx), 
hydrocarbons (HC), and particulate matter (PM). This study is unique because WVU collected 
emissions data from 12 predefined vehicle speeds on the same vehicle using a chassis dynamometer. 
These speeds are the chassis dynamometer test cycles used in this study and are different from test 
or duty cycles in which a driver operates a bus on a chassis dynamometer to perform emissions 
testing. Data interpolation enabled the authors to investigate the statistical relationships between 
cycle metrics and their impacts on emissions and fuel economy (FE). In previous studies, data from 
only a limited number of test cycles on the same vehicle (typically five or less) were available, and 
this limited the effectiveness of their statistical analyses. This study identifies the most influential 
cycle metrics for inclusion in the IBIS emissions model as well as other emissions and fuel economy 
modeling efforts. 

Driving characteristics are among the main factors affecting emissions and fuel economy of 
transit buses. Other important factors include vehicle parameters, fuel types, engine parameters, 
road conditions, and ambient conditions (Clark et al. 2002). To mimic actual driving conditions of 
on-road vehicles, chassis dynamometer cycles have been developed (Gautam et al. 2002, Nine et 

Correlation Analysis of Duty Cycle Effects on 
Exhaust Emissions and Fuel Economy
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al. 1999). Previous studies, using emissions data from multiple test cycles, showed that distance-
specific emissions depended strongly upon the characteristics of duty cycles and found that average 
speed was one of the most important cycle metrics (Graboski et al. 1998, Nine et al. 2000, Clark et 
al. 1997, Vora et al. 2004). The MOBILE6 and EMFAC models estimate emissions as a function of 
average speed. Specifically, these macroscopic models calculate emissions based on average speed 
and vehicle miles traveled. At different average speeds, the study used speed correction factors 
to estimate emissions. These speed correction factors are determined by fitting emissions values 
with average speed. Previous studies showed the insufficiency of using average speed to evaluate 
emissions since average speed alone could not comprehensively reflect cycle characteristics (Ahn et 
al. 2002, Rakha and Ding 2003). Other metrics besides average speed, such as percentage idle and 
average acceleration, have been investigated (Andre and Pronello 1997, Wayne et al. 2007, Clark 
et al. 2007, Khan et al. 2007, Rakha and Ding 2003). However, these studies did not discuss all 
important duty cycle metrics.

Thirteen cycle metrics were considered in this study. They are average speed with idle (or 
average speed) and without idle, number of stops per mile (stops/mile), percentage idle, standard 
deviation of speed with and without idle, average and maximum acceleration, average and maximum 
deceleration, aerodynamic speed, which is the difference between average cubed speed and average 
speed, kinetic intensity, and characteristic acceleration (O’Keefe et al. 2007). The latter, characteristic 
acceleration, is specific kinetic energy per unit mass and distance required accelerating a vehicle 
over a duty cycle after ignoring road grade effects. This acceleration is equal to the actual vehicle 
acceleration if the vehicle increases its speed at a constant rate. The square of aerodynamic speed 
directly reflects the effects of aerodynamics on fuel economy and it is equal to the actual vehicle 
speed from driving at a constant speed. Kinetic intensity relates to fuel savings of hybrid vehicles 
over their conventional counterparts tested on the same cycles, and it gives an indication of whether 
hybridization will result in fuel savings for a particular duty cycle. Kinetic intensity is the ratio of 
characteristic acceleration to the square of aerodynamic speed. A cycle with a larger characteristic 
acceleration and a smaller aerodynamic speed that results in higher kinetic intensity is better for 
hybridization (O’Keefe et al. 2007). 

These 13 cycle metrics were analyzed by correlation to reduce the number of cycle metrics and 
remove those that are collinear. In selecting the metrics to use in the IBIS emissions model, the study 
considered the abilities of transit agencies to calculate their values using data available to them. In 
some cases, some metrics were retained or eliminated based on this additional criterion. To account 
for non-linear relationships, this study uses a non-parametric correlation analysis to determine the 
order of importance of the chosen metrics in predicting emissions and fuel economy. Preliminary 
regression analysis was performed to demonstrate and reinforce the significant effect of the selected 
cycle metrics for modeling. The JMP® statistical software (SAS Institute 2009, Freund et al. 2003) 
and MATLAB® were used for the data analysis, as well as correlation and regression analysis in 
this study.

TEST VEHICLE INFORMATION

A model year (MY) 2000 Orion diesel transit bus was tested at the Washington Metropolitan Area 
Transit Authority (WMATA) facility to compare the effects of different drive cycles on emissions. 
The bus had a gross vehicle weight rating (GVWR) of 42,540 pounds and a curb weight (the weight 
of a bus without passengers but with all of standard equipment) of 28,800 lbs. The weight as tested 
was 33,300 pounds, representing half-seated passenger load. The test bus was powered by a 2000 
MY, 8.5-liter, 4-cylinder, and 275 horsepower Detroit Diesel S50 engine with a diesel oxidation 
catalyst (DOC). The fuel used by the bus was type one ultra-low sulfur diesel (ULSD1). The vehicle 
was equipped with a four-speed Voith D863 automatic transmission. The vehicle configuration 
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remained the same for all test cycles. The bus was tested over 12 test cycles, which are described in 
the following section.

TEST CYCLES

Multiple chassis dynamometer test cycles (Clark et al. 2002, DieselNet 2007, SAE International 
1982, SAE International 2002, Schiavone et al. 2002, Thompson et al. 1990, Wayne et al. 2002) 
were used since emissions and fuel economy are related to duty cycles. Since it is not practical 
to develop test cycles for all types of vehicles and driving behaviors, it is necessary to develop 
a limited but representative number of test cycles to mimic driving activities of realistic transit 
bus operation. Specific test cycles were generated to represent real-world operation in specific 
applications or localities. For example, the New York Bus cycle (NYBus) (Clark et al. 2002) was 
developed to represent the driving conditions of heavy-duty vehicles in New York City. The test 
vehicle was operated through 12 chassis dynamometer cycles for this study, and multiple repeat runs 
were performed on certain test cycles. In total, 13 cycle metrics were considered in this study. The 
test cycles and their characteristics are summarized in Table 1 and cycle abbreviations are defined 
in Appendix A at the end of this paper.

EXTENDED DATABASE

Since only 12 cycles were available for analysis, an expanded database was desired. Figure 1 shows 
carbon monoxide emissions as a function of cycle average speed ranging from the lowest speed of 
3.57 miles per hour (mph) (NYBus cycle) to the highest speed of 43.72 mph (COMM cycle) (SAE 
International 1982). No test cycles existed between an average speed from 28.63 mph (ETC cycle) 
(DieseltNet 2007) and 43.72 mph (COMM cycle). Interpolation was used to extend the database 
to fill the gaps as mentioned above with the assumption that no extreme cycle characteristics exist 
between adjacent cycle points. Initially, 18 cycle points were interpolated using an equal interval 
of two mph for the average speed. A piecewise cubic hermite interpolating polynomial (pchip) 
(Kahaner et al. 1988) was applied in this study using MATLAB®. The pchip polynomial is one type 
of piecewise cubic polynomials and it can be determined using both values from end-points and 
their derivatives. A comparison with other interpolation methods is provided in Figure 1. Compared 
with linear interpolation, pchip interpolation is smoother and less likely to overshoot. Although 
spline interpolation had smoother results than pchip, it was not considered because it caused more 
oscillation in data interpolation. The same analysis and method were applied to the four other cycle 
metrics. The magnitudes of the intervals were 10% for percentage idle, four stops per mile (stops/
mile), three mph for standard deviation of speed, and one reciprocal of unit mile (mile-1) for kinetic 
intensity. In this way, 44 cycle points were generated to extend the database to 56 cycle points. When 
extended emissions and fuel economy data were plotted against duty cycle metrics, no significant 
deviation from the reference dataset was observed and the interpolated cycle points followed the 
same trend as the reference points.

ROAD LOAD DERIVED CYCLE METRICS

Unlike conventional cycle metrics derived directly from speed-time trace (second-by-second vehicle 
speed data), aerodynamic speed, characteristic acceleration, and kinetic intensity were derived from 
a road load equation (Gillespie 1992, Miller 2004) to relate them to fuel consumption (O’Keefe et 
al. 2007). The general form of the road load equation is:

(1) 
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Where Ftraction is the total traction required for vehicle motion, M is vehicle mass, dv/dt is vehicle 
acceleration, Faero is aerodynamic resistance, Frolling is rolling resistance, and Fgrade is grade resistance 
due to a slope. A detailed derivation and background information are provided in O’Keefe et al. 
(2007) and Simpson (2005). 
	 Originally, these three cycle metrics were to be used with fuel consumption to differentiate duty 
cycles as well as fuel savings for hybrid vehicles on a given duty cycle (O’Keefe et al. 2007). Since 
they are derived from a road load equation and are related to energy usage, these cycle metrics are 
hypothesized to have some relationships with emissions and fuel economy. 
	 Table 2 presents correlations of the metrics with distance-specific emissions and fuel economy, 
and it shows all three metrics have significant correlations. The negative correlations between 
aerodynamic speed and emissions indicate that emissions increase with decreasing aerodynamic 
speed, while the positive correlation with fuel economy shows that fuel economy increases along 
with increasing aerodynamic speed. However, characteristic acceleration as shown in Table 2 has an 
inverse relationship with the emissions and fuel economy compared with aerodynamic speed, which 
makes sense because larger characteristic acceleration requires more kinetic energy to accelerate, 
indicating higher fuel consumption and increased emissions. Kinetic intensity shows the same but 
stronger correlation trend as characteristic acceleration (except with fuel economy) compared with 
the other two metrics.

Table 1: Statistics of 12 Target Dynamometer Test Cycles

Cycle
Duration 
(seconds)

Distance 
Traveled 
(miles)

Average 
Speed 

with Idle    
(mph)

Average 
Speed 

without 
Idle 

(mph)
Percentage 

Idle

Number 
of Stops 
per Mile

Standard 
Deviation of 
Speed with 
Idle (mph)

Standard 
Deviation 
of Speed 

without Idle 
(mph)

ART 291.6 2.00 24.71 29.55 16.39% 2.00 15.64 12.19
BEELINE 1724 6.79 14.17 19.29 26.54% 3.54 14.74 14.04
BRAUN 1750 6.73 13.85 18.48 25.04% 4.31 11.35 9.30

CBD 586 2.01 12.36 15.71 21.35% 6.96 8.46 6.19
COMM 329.6 4.00 43.72 49.71 12.04% 0.25 19.46 11.46
ETC_12 1200 9.54 28.63 29.93 4.32% 0.42 15.84 14.95

MAN 1098.7 2.07 6.77 10.66 36.52% 9.68 7.33 6.56
NYBUS 620 0.61 3.57 10.69 66.60% 17.89 6.41 6.86

NY-COMP 1029 2.51 8.77 12.85 31.76% 7.58 9.44 8.84
OCTA 1950 6.54 12.08 15.52 22.17% 4.74 10.33 9.14
UDDS 1060 5.54 18.83 28.04 32.84% 2.89 19.82 18.07

WMATA 1839 4.25 8.32 13.47 38.27% 6.12 10.31 10.14

Cycle

Average 
Acceleration 

(ft/sec2)

Maximum 
Acceleration 

(ft/sec2)

Average 
Deceleration 

(ft/sec2)

Maximum 
Deceleration 

(ft/sec2)
Aerodynamic 
Speed (mph)

Characteristic 
Acceleration 

(ft/sec2)

Kinetic 
Intensity 
(mile-1)

ART 2.02 3.67 6.45 7.33 35.58 0.65 1.26
BEELINE 2.06 7.33 2.58 10.27 32.03 0.88 2.10
BRAUN 2.08 8.07 2.80 11.73 24.17 0.72 3.02

CBD 2.87 3.67 6.38 7.33 18.55 0.57 4.04
COMM 1.37 3.67 6.67 18.33 52.84 0.15 0.14
ETC_12 1.14 13.20 1.26 8.07 39.16 0.31 0.50

MAN 2.04 7.33 2.59 8.80 15.78 0.94 9.24
NYBUS 4.09 9.53 2.39 7.33 16.64 1.25 11.07

NY-COMP 1.72 13.93 1.94 13.20 20.69 0.77 4.42
OCTA 1.88 5.87 2.61 8.07 22.10 0.72 3.60
UDDS 1.78 8.80 1.99 8.07 42.49 0.50 0.68

WMATA 1.74 4.40 2.10 6.60 23.22 0.77 3.51
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Figure 1:	 Reference Cycles and Comparison of Interpolation Curves Based 
		  on Average Speed

Table 2:	 Correlations of Road Load Derived Cycle Metrics With Emissions and Fuel 
		  Economy 

CO2 CO HC NOx PM FuelEco

AeroV -0.77 -0.70 -0.80 -0.66 -0.72 0.85
CharAcc 0.89 0.78 0.79 0.82 0.81 -0.94
KInt 0.94 0.89 0.93 0.87 0.90 -0.84

Note:	All correlations are significant at the 0.0001 level (p<0.0001).
	 AeroV: Aerodynamic speed		  CO: Carbon monoxide		  NOx: Oxides of nitrogen
	 CharAcc: Characteristic acceleration	 CO2: Carbon dioxide		  PM: Particulate matter
	 KInt: Kinetic intensity		  HC: Hydrocarbon		  FuelEco: Fuel economy
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SELECTION OF THE IMPORTANT CYCLE METRICS

A detailed correlation analysis was performed to identify the duty cycle metrics having the most 
significant correlations with emissions and fuel economy and to detect highly correlated redundant 
metrics.

Correlation Analysis Among Cycle Metrics

A Pearson correlation matrix was applied to detect bivariate collinearity among the cycle metrics. 
The analysis shows that several variables highly correlate with each other. Although the existence of 
collinearity is not a violation of the assumptions of regression analysis, it shows that several cycle 
metrics have similar impacts on emissions and fuel economy and they should be removed from the 
analysis. Collinearity also makes it difficult to interpret the partial regression coefficients, which 
measure the effect of the corresponding cycle metrics while holding constant all other metrics. 
When collinearity exists, the affected coefficients estimate some effects for the response but not 
really from the corresponding metrics. Table 3 shows full correlation coefficients for the 13 duty 
cycle metrics. Statistically significant and strong correlations were found among some variables 
including the following:

a.	 Average speed with idle versus average speed without idle, aerodynamic speed, and 
characteristic acceleration;

b.	 Average speed without idle versus standard deviation of vehicle speed with idle, and 
aerodynamic speed;

c.	 Stops per mile versus percentage idle and kinetic intensity;
d.	 The standard deviations of vehicle speed with idle versus aerodynamic speed and standard 

deviation of vehicle speed without idle. 
	 In total, nine pairs of metrics have correlations larger than 0.90 in absolute terms, which are 
statistically significant at probability levels of less than 0.0001. These pairs are highlighted with 
bold typeface letters in the lower triangular matrix in Table 3. Consistent with previous studies by 
Clark et al. (2002), Clark and Gajendran (2003), and Boriboonsomsin and Uddin (2006) that have 
concluded that average speed (with idle) is an important factor due to its relationship with other 
cycle properties, it is found that average speed with idle correlates with most cycle metrics. As a 
result, average speed without idle, aerodynamic speed, and characteristic acceleration were removed 
from the analysis. Average speed with idle was retained rather than average speed without idle 
because the former is easier for a transit agency to calculate. Similarly, the standard deviation of 
vehicle speed with idle has strong relationships with the standard deviation of vehicle speed without 
idle and aerodynamic speed, and it was retained, while the standard deviation of vehicle speed 
without idle was removed.
	 Aerodynamic speed correlates with both average speed and the standard deviation of vehicle 
speed, indicating that it may reflect the statistical features of vehicle speed such as the mean and 
dispersion. However, aerodynamic speed was removed, because average speed and standard 
deviation of vehicle speed were retained. Additionally, O’Keefe et al. (2007) showed that kinetic 
intensity is related to both aerodynamic speed and characteristic acceleration. Thus, it is better to 
retain kinetic intensity than aerodynamic speed or characteristic acceleration. 
	 Since it reflects the transient nature of driving cycles and it is easily obtained, stops per mile 
were retained, as was the percentage idle because of its effects on emissions (Wayne et al. 2007), 
although both metrics strongly correlate with each other. However, this strong positive correlation 
cannot be well explained. For example, more stops in a trip do not necessarily mean a higher 
percentage of idling. If a short idle duration occurs at each stop, total idle time of that trip can be 
less than that of a trip with a longer idle duration at each stop and fewer total stops during the trip. 
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The strong correlation between kinetic intensity and stops per mile indicates that both metrics reflect 
some features of transient driving behavior. 

Table 3: Correlations of All Cycle Metrics
A
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AspedWID 1.00
AspedWoID 0.98+ 1.00
PercID -0.83+ -0.76+ 1.00
Stops/Mi -0.83+ -0.82+ 0.90+ 1.00
VstdWID 0.85+ 0.90+ -0.69+ -0.87+ 1.00
VstdWoID 0.63+ 0.67+ -0.54+ -0.76+ 0.91+ 1.00
AveAcc -0.66+ -0.60+ 0.79+ 0.82+ -0.63+ -0.57+ 1.00
MaxAcc -0.08 -0.18 -0.08 0.08 -0.12 0.09 -0.25 1.00
AveDec 0.43+ 0.49+ -0.30* -0.29* 0.31* -0.03 0.05 -0.74+   1.00
MaxDec 0.51+ 0.49+ -0.41** -0.33* 0.28* 0.00 -0.45+  0.16 0.22 1.00
AeroV 0.94+ 0.97+ -0.73+ -0.85+ 0.97+ 0.83+ -0.65+ -0.08 0.34* 0.40** 1.00
CharAcc -0.93+ -0.89+ 0.88+ 0.89+ -0.81+ -0.63+ 0.79+ -0.04 -0.28* -0.47+ -0.87+ 1.00
KInt -0.80+ -0.80+ 0.82+ 0.97+ -0.89+ -0.81+ 0.73+ 0.07 -0.29* -0.30* -0.85+ 0.86+ 1.00

Note:

* Correlation is significant at the 0.05 level
** Correlation is significant at the 0.01 level
+ Correlation is significant at the 0.001 level
AspedWID: Average vehicle speed with idle	 VstdWoID: Standard deviation of vehicle speed without idle	 AveDec: Average deceleration
AspedWoID: Average vehicle speed without idle	 VstdWID: Standard deviation of vehicle speed with idle	 MaxDec: Maximum deceleration
PercID: Percentage idle    	 KInt: Kinetic intensity	 AeroV: Aerodynamic speed
Stops/Mi: Stops per mile	 MaxAcc: Maximum acceleration	 CharAcc: Characteristic acceleration		
			   AveAcc: Average acceleration

	
	 Certain redundant metrics were retained because they could be easily calculated from basic 
route information available to transit agencies. The retention of these cycle metrics results in 
collinearity. However, a potential predictive model does not necessarily have to include all selected 
cycle metrics as explanatory variables. After some collinearity was removed, the total number of 
metrics decreased from 13 to nine.

Further Dimensionality Reduction

It is evident from Table 3 that the four-cycle metrics, including average acceleration (AveAcc), 
maximum acceleration (MaxAcc), average deceleration (AveDec), and maximum deceleration 
(MaxDec), have weak correlations with the other metrics. To be useful for emissions modeling, 
they must correlate with emissions and fuel economy. Table 4 shows the correlations of these four 
metrics with emissions and fuel economy. Average acceleration shows moderate and significant 
correlations while maximum acceleration, average deceleration, and maximum deceleration do not 
correlate well with the emissions and fuel economy.
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Table 4: Correlations of Four Cycle Metrics vs. Emissions and Fuel Economy
CO2 CO HC NOx PM FuelEco

AveAcc 0.84+ 0.81+ 0.79+ 0.84+ 0.77+ -0.76+

MaxAcc 0.02 0.18 0.05 -0.09 0.24 0.14
AveDec -0.25 -0.33* -0.31* -0.18 -0.33* 0.15
MaxDec -0.32* -0.27* -0.30* -0.34* -0.22 0.30*

Note:
* Correlation is significant at the 0.05 level
+ Correlation is significant at the 0.001 level

CO: Carbon monoxide	 PM: Particulate matter	 AveDec: Average deceleration
CO2: Carbon dioxide	 FuelEco: Fuel economy	 MaxDec: Maximum deceleration
HC: Hydrocarbon	 AveAcc: Average acceleration
NOx: Oxides of nitrogen	 MaxAcc: Maximum acceleration

The effects of average deceleration on the metrics are less than the corresponding effects of 
average acceleration because the correlations are low. The main reason is that during deceleration 
an engine is often at idle, so deceleration activities do not increase or decrease emissions and 
fuel consumption. However, when a vehicle accelerates, more fuel is consumed, producing more 
emissions (Wang et al. 2000). In addition, maximum acceleration and deceleration do not correlate 
with emissions and fuel economy, possibly because both metrics correspond to single points in a 
cycle. Based on the above analysis, average deceleration, maximum acceleration, and maximum 
deceleration were removed from further consideration. 

Thus, through the initial correlation analysis of 13 cycle metrics, six metrics were determined 
to be useful for emissions and fuel economy modeling, and seven were removed because they 
were either redundant or appeared to have little correlation with emissions and fuel economy. The 
selected six-cycle metrics retained are average speed with idle, percentage idle, stops per mile, 
standard deviation of vehicle speed with idle, kinetic intensity, and average acceleration.

DETERMINATION OF ORDER OF IMPORTANCE 
OF THE SELECTED CYCLE METRICS

The following section focuses on the effects of the six chosen metrics and their order of importance 
in emission and fuel economy. Non-parametric correlation and stepwise regression analysis were 
performed to evaluate their effects. 

Non-parametric Correlation Between Selected Cycle Metrics and Emissions and Fuel Economy

As previously mentioned, if a nonlinear relationship actually exists between paired variables, 
Pearson’s correlation will underestimate it. For example, in this study, the Pearson’s correlation 
between carbon dioxide and average speed is -0.78 with a coefficient of determination of 0.60. 
The two variables have a power decay relationship, and this relationship exhibits a much better fit 
(R-square of 0.91) than the linear fitting (R-square of 0.60). Considering this, the non-parametric 
statistical correlation, Spearman’s correlation, was used to evaluate the relationship accurately. The 
Spearman’s correlation (ρ) is a rank correlation of the data and it does not require variables to be 
normally distributed nor linear. The meaning and range of ρ are essentially the same as that of 
Pearson’s correlation with a zero value representing no correlation, one or minus one indicating 
a perfect positive or negative fit, respectively. A ρ between a zero and one means increasing X 
corresponds to increasing Y and vice versa, and ρ between a zero and minus one means increasing 
X corresponds to decreasing Y and vice versa. 
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	 The Spearman’s correlations between the six selected cycle metrics with emissions and fuel 
economy are in Table 5 together with their statistically significant levels. Average acceleration has 
the smallest correlation, making it the least important among the six selected metrics. Below is a 
detailed analysis for the importance of the other five metrics.

Table 5: Non-parametric Spearman’s Correlation
CO2 CO HC NOx PM FuelEco

AspedWID -0.9546 -0.965 -0.9208 -0.908 -0.9131 0.9558
PercID 0.9144 0.8674 0.8321 0.9172 0.8552 -0.9055
Stops/Mi 0.954 0.9665 0.9134 0.9033 0.9339 -0.9528
VstdWID -0.8676 -0.8917 -0.8634 -0.8015 -0.8014 0.8729
AveAcc 0.6309 0.5441 0.5466 0.5833 0.5871 -0.6252
KInt 0.9537 0.9423 0.877 0.9032 0.9183 -0.9534

Note: All correlations are significant at the 0.0001 level (p<0.0001)

CO: Carbon monoxide	 AspedWID: Average vehicle speed with idle	 CharAcc:Characteristic acceleration	
CO2: Carbon dioxide	 PercID: Percentage idle	 AveAcc: Average acceleration
HC: Hydrocarbon	 Stops/Mi: Stops per mile
NOx: Oxides of nitrogen	 VstdWID: Standard deviation of vehicle speed with idle
PM: Particulate matter	 KInt: Kinetic intensity
FuelEco: Fuel economy	 AeroV: Aerodynamic speed

Carbon Dioxide (CO2) Emissions: The carbon dioxide emissions have the second strongest 
correlation with average speed with a coefficient of -0.9546, indicating that higher vehicle average 
speed results in lower carbon dioxide emissions. Actually, in addition to carbon dioxide, all other 
emissions have negative correlations with average speed. This shows that higher average speed 
produces lower emissions, which is consistent with previous findings (Wayne et al. 2007). Higher 
vehicle average speed involves fewer accelerations and decelerations, resulting in lower emissions. 
Stops per mile have the second largest correlation of 0.9540 followed by kinetic intensity with 
a correlation of 0.9537. Positive correlations imply that more stops per mile and higher kinetic 
intensity produce higher carbon dioxide emissions. Since the values of these three correlations 
are very close to each other, it is hard to tell which metric is most important for carbon dioxide 
emissions. Percentage idle and the standard deviation of vehicle speed have correlations of 0.9144 
and -0.8676 with carbon dioxide emissions, respectively. The negative correlation shows that 
carbon dioxide emission decreases with increased standard deviation of vehicle speed. However, at 
the same average speed, increased standard deviation usually implies more transient cycle features, 
which produce higher carbon dioxide. 

Carbon Monoxide (CO) Emissions: For carbon monoxide emissions, the variable stops per mile 
has the strongest positive correlation of 0.9665 with it, which is reasonable since carbon monoxide 
emissions in grams per mile are sensitive to the transient features of driving activities (Clark et 
al. 2002). The more stop-and-go features, the more deviations there are from a steady state, and 
the higher carbon monoxide emissions that are produced. Average speed has the second strongest 
correlation of -0.965 and kinetic intensity has a correlation of 0.942.

Hydrocarbon (HC) Emissions: Hydrocarbon emissions have the strongest correlation of 0.92 with 
average speed, followed by stops per mile of 0.91. The other correlations are below 0.9, indicating 
that stops per mile and average speed are the two most important metrics for hydrocarbon emissions.
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Oxides of Nitrogen (NOx) Emissions: Oxides of nitrogen emissions show the strongest correlation 
with percentage idle, which is consistent with the fact that excessive idle could produce more of it 
(Clark et al. 2002). It is also noticed that average speed, stops per mile, and kinetic intensity have 
strong correlations of 0.9 and above with oxides of nitrogen, indicating their significance in this type 
of emissions.

Particulate Matter (PM) Emissions: Particulate matter shows the strongest correlation of 0.93 
with stops per mile. Particulate matter is also highly correlated with carbon monoxide (0.9246), 
reinforcing that both are sensitive to the transient features of driving activities. In addition, particulate 
matter has strong correlations above 0.9 with average speed and kinetic intensity.

Fuel Economy: Fuel economy strongly correlates with average speed with a correlation coefficient 
of 0.9558, indicating the higher the average speed the lower the amount of fuel consumed. It does 
not mean this trend would be consistent at much higher average speed levels. Previous studies 
showed that fuel economy reaches a maximum at a specific vehicle speed and decreases at higher 
average speeds as aerodynamic drag begins to dominate. The result is a parabolic curve (Wayne et 
al. 2007, Rakha and Ding 2003).

The order of significance of the six-cycle metrics’ impacts on emissions and fuel economy 
are in Table 6. Strong, moderate, and weak correlations are defined as coefficients higher than 0.9, 
between 0.8 and 0.9, and below 0.8, respectively. Stops per mile and average speed have strong 
correlations with all emissions and fuel economy. This result is consistent with the common 
interpretation that average speed reflects cruise features of driving activities while stops per mile are 
linked to transient features. Emissions and fuel economy might reflect the effects of both cruise and 
the transient features of driving cycles. However, it is difficult to tell which metric is most important, 
because those in the strong correlation category have very similar correlation coefficients.

Table 6: Summary of Order of Importance for the Selected Six Cycle Metrics
Dependent 
Variable Strong Correlation Moderate Correlation Weak Correlation

CO Stops/Mi, AspedWID, KInt VstdWID, PercID AveAcc

CO2 Stops/Mi, AspedWID, PercID, KInt VstdWID AveAcc

HC Stops/Mi, AspedWID VstdWID, KInt, PercID AveAcc

NOx Stops/Mi, AspedWID, PercID, KInt VstdWID AveAcc

PM Stops/Mi, AspedWID, KInt VstdWID, PercID AveAcc

FuelEco PercID, AspedWID, Stops/Mi, KInt VstdWID AveAcc

Note: Strong Correlation: >=0.9; Moderate Correlation: >=0.8 & <0.9; Weak Correlation: <0.8

CO: Carbon monoxide	 FuelEco: Fuel economy	 KInt: Kinetic intensity
CO2: Carbon dioxide	 AspedWID: Average vehicle speed with idle	 AeroV: Aerodynamic speed
HC: Hydrocarbon	 PercID: Percentage idle    	 CharAcc: Characteristic acceleration
NOx: Oxides of nitrogen	 Stops/Mi: Stops per mile	 AveAcc: Average acceleration
PM: Particulate matter	 VstdWID: Standard deviation of vehicle 
		  speed with idle



107

JTRF Volume 52 No. 1, Spring 2013

Regression Analysis

To validate the significant effects of the selected cycle metrics on emissions and fuel economy, 
regression analyses were performed with selected metrics as independent variables. The regression 
models are expressed as in Equation (2) and their coefficients are in Table 7. 

(2) 

where a is an intercept, bi, and ci are regression coefficients, ε is the residual term, and y is the 
dependent variables corresponding to emissions or fuel economy while xi is the set of independent 
variables corresponding to the five selected cycle metrics in Table 6. Average acceleration was not 
considered due to its weak influence on the dependent variables. Squared terms for each of the 
selected cycle metrics were added to account for possible nonlinear relationships, and stepwise 
regression was employed to select the statistically significant variables to be used in the models.

Table 7: Regression Models Based on Selected Metrics

Term CO2 CO HC NOx FuelEco PM

Intercept 507.715 -0.017 0.193*+ 3.236 6.730*+ -0.207*

AspedWID 15.492** - - 0.276*+ -0.046+ -

PercID 3268.232*+ - 0.138*+ 46.742*+ -9.523*+ -

(PercID-0.268)*(PercID-0.268) -6125.302*+ - 0.426*+ - 31.291*+ -

Stops/Mi 111.860** 0.673*+ - 0.286 -0.116 0.068*+

(Stops/Mi-5.20683)*(Stops/Mi-5.20683) 12.603*+ 0.068*+ - 0.069*+ -0.017** 0.001**

VstdWID 17.135 - -0.008*+ -0.132 0.060 0.014*

(VstdWID-12.8037)*(VstdWID-12.8037) -11.253*+ - 0.001*+ -0.070** 0.021*+ -

KInt 73.522+ 0.052 - 0.508* - -

(KInt-3.58075)*(KInt-3.58075) - -0.060+ - - - -

Adjusted R2 0.99 0.98 0.96 0.98 0.98 0.94

RMSE 86.15 0.52 0.01 1.07 0.22 0.07

Note: 
* Significant at the 0.05 level
** Significant at the 0.01 level
+ Significant at the 0.001 level
*+ Significant at the 0.0001 level

RMSE: Root mean square error	 FuelEco: Fuel economy	 AeroV: Aerodynamic speed
CO: Carbon monoxide	 AspedWID: Average vehicle speed with idle	 CharAcc: Characteristic acceleration
CO2: Carbon dioxide	 PercID: Percentage idle
HC: Hydrocarbon	 Stops/Mi: Stops per mile
NOx: Oxides of nitrogen	 VstdWID: Standard deviation of vehicle speed with idle
PM: Particulate matter	 KInt: Kinetic intensity

The results were compared with regressions based on average speed as shown in Table 8. For 
each response variable, average speed-based power regressions give larger R-squared values and 
smaller root mean square errors (RMSE) compared to linear, polynomial, power, exponential, and 
logarithmic regressions. All R-squared values are greater than 0.85, except for 0.79 for oxides of 
nitrogen emissions, and the coefficients are statistically significant at the 0.0001 probability level 
(p<0.0001). Compared with the average speed-based regressions in Table 8, the regression results 
based on multiple metrics in Table 7 show adjusted R-squared values above 0.95, except the 0.94 
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for particulate matter, which is good considering the transient dependency of particulate matter 
emissions. Most of RMSE values are substantially reduced (over half), except that of particulate 
matter.

Table 8: Average Speed Based Regressions
Response Regression R2 RMSE
CO2 y = 10021x-0.5343 0.91 306.74
CO y = 64.976x-1.147 0.94 1.18
HC y = 0.5402x-0.5258 0.86 0.02
NOx y = 66.8501x-0.4366 0.79 3.93
FuelEco y = x0.5298 0.91 0.60
PM y = 4.1171x-1.0262 0.90 0.10

Note: 

RMSE: Root mean square error	 HC: Hydrocarbon	 FuelEco: Fuel economy
CO: Carbon monoxide	 NOx: Oxides of nitrogen
CO2: Carbon dioxide	 PM: Particulate matter

Figure 2 compares the estimated and experimental values of emissions and fuel economy for 
the NYBus cycle based on the old models (regressions based on average speed) and the new models 
(based on selected multiple cycle metrics). For the NYBus cycle, the new models show over 75% 
less percentage errors for all responses. Figure 3 compares the mean percentage errors (MPE) using 
both models after considering all cycle points. It shows that on average the new models have more 
than 40% reduction in MPE for carbon dioxide, hydrocarbons, and fuel economy. It also shows that 
carbon monoxide and particulate matter have MPE above 15% for both models, further indicating 
it is difficult to predict them due to their high sensitivity to transient features of vehicle operation. If 
interaction terms of the selected cycle metrics or the appropriate transformations (such as the Box-
Cox method) of response variables were considered in the analysis, the multiple parameter models 
might show further improvement.

The regression models developed herein were used to determine the impact of cycle metrics 
on emissions and fuel economy. The intent of this analysis was to select cycle metrics for the 
development of a transit fleet emission model for use by transit agencies during vehicle procurement 
and strategic planning. Therefore, comparison and validation against existing average speed-based 
models are not presented here. An overview of the completed transit fleet emissions model and 
comparison of model results with the speed factor based EPA Mobile6 and MOVES models are 
presented in Wayne et al. (2011).
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CONCLUSION

A detailed correlation analysis was performed to investigate the relationships between duty cycle 
metrics and emissions and fuel economy and to identify the most important parameters for modeling. 
From an initial full correlation analysis of 13 cycle metrics, the number of metrics considered most 
useful for modeling was reduced to six. They are average speed with idle, percentage idle, stops 
per mile, standard deviation of vehicle speed, kinetic intensity, and average acceleration. Further 
analysis using non-parametric Spearman’s correlations between the six selected cycle metrics with 
emission and fuel economy shows that average acceleration has the weakest correlation, implying 
that its ability to predict emissions and fuel economy is less significant. Results from the regression 
analysis show how adding selected cycle metrics to average speed (with idle) improves the regression 
models. The results of this study could assist in determining appropriate strategies for later IBIS 
development and implementation of a transit fleet model. 
	 This study shows that duty cycles have significant impacts on emissions and the fuel economy 
of transit buses, and it provides a useful framework for the selection of the most influential cycle 
metrics for modeling. Beside average speed, other cycle metrics such as stops per mile, percentage 
idle, standard deviation of vehicle speed, and kinetic intensity were found to be important and 
could be used to predict emissions and fuel economy better. From a green environment and energy 
efficiency viewpoint, this study suggests that if drivers could operate their vehicles less aggressively, 
spend more time in cruise mode, have less stop-and-go patterns, or less idling behavior while 
parking, exhaust emissions and fuel consumption from the transportation sector could be reduced, 
and air quality and energy efficiency could be improved.
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APPENDIX A

AeroV Aerodynamic Speed
ART Arterial Cycle
AspedWID Average Vehicle Speed with Idle
AspedWoID Average Vehicle Speed Without Idle
AveAcc Average Acceleration
AveDec Average Deceleration
Average Speed Average Vehicle Speed with Idle
BEELINE Westchester County NY Beeline Cycle
BRAUN Braunschweig Cycle
CARB California Air Resources Board
CBD Central Business District Cycle
CFR Code of Federal Regulations
CharAcc Characteristic Acceleration
CNG Compressed Natural Gas
CO Carbon Monoxide
CO2 Carbon Dioxide
COMM Commuter Cycle 
EMFAC EMission FACtors Model
EPA Environmental Protection Agency
ETC European Transient Cycle
ETC_12 European Transient Cycle – Urban and Rural Segments
FTA Federal Transit Administration
FuelEco Fuel Economy
GVW Gross Vehicle Weight
HC Hydrocarbon
IBIS Integrated Bus Information System
KInt Kinetic Intensity
MAN Manhattan Bus Cycle
MaxAcc Maximum Acceleration
MaxDec Maximum Deceleration
MOBILE6 Mobile Source Emission Factor Model
MOVES Mobile Vehicle Emission Simulator
mph Miles per Hour
MY Model Year
NOx Oxides of Nitrogen
NYBUS New York Bus Cycle
NY-COMP New York Composite Cycle
OCTA Orange County Transit Authority Cycle
PercID Percentage Idle  
PM Particulate Matter
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Stops/Mi Number of Stops per Mile
Stops/mile Number of Stops per Mile
TransLab Transportable Heavy-Duty Vehicle Emission Laboratory
UDDS Urban Dynamometer Driving Schedule
VMY Vehicle Model Year
VstdWID Standard Deviation of Vehicle Speed with Idle 
VstdWoID Standard Deviation of Vehicle Speed without Idle
WMATA Washington Metropolitan Area Transit Authority
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by Aemal Khattak

Gate violations during train crossing events by truck drivers at highway-rail grade crossings in two 
cities were investigated. About 22% of the collected observations involved gate violations by truck 
drivers. Analysis showed that the frequencies of gate violations increased with higher truck traffic 
during crossing events and drivers of single-unit trucks displayed a greater propensity for gate 
violations compared with drivers of trucks with trailers. Violations were more frequent with longer 
times between the onset of flashing lights and train arrivals at the crossings. Options for reducing 
truck drivers’ gate violations at gated crossings are provided.

INTRODUCTION

The objective of this research was to investigate gate violations by truck drivers at dual-quadrant 
gated highway-rail grade crossings (HRGCs) in two cities. Dual-quadrant gated HRGCs have gates 
in only two of the four quadrants, i.e., gates on both sides of the road only extend out to the middle 
of the road. As such, motorists can illegally pass around fully-deployed gates. HRGCs serve as 
junctions for multiple transport modes on the surface transportation network and they are conflict 
points between rail and highway traffic. For 2010, the Federal Railroad Administration (FRA) 
reported 2,107 incidents at HRGCs and a rate of 2.85 HRGC incidents per million train miles 
(USDOT 2012). These incidents involved 256 fatalities and 854 non-fatal injuries. Trucks and trucks 
with trailers were involved in 386 incidents, resulting in 24 fatalities and 233 non-fatal injuries. At 
HRGCs, train consists (units) transporting hazardous materials were involved in 47 crashes while 14 
involved trucks carrying hazardous materials that required the evacuation of 471 people. Hazardous 
materials are frequently transported by both rail and trucks, and the implications of truck-train 
crashes at HRGCs are potentially more ominous compared with other highway crashes.

The issue of collisions between trucks and trains is important because of the relatively high 
severity of such crashes and environmental concerns arising from possible spillage of hazardous 
materials. Given that rail and truck traffic in the US is expected to grow, it is prudent to investigate 
truck-train safety at HRGCs; the ultimate goal being improvement of public safety.

This research was carried out in Nebraska where the law prohibits drivers from driving through, 
around or under any rail crossing gate or barrier while the gate or barrier is closed or is being opened 
or closed (Neb. Rev. Stat. 60-6,170, 2009). Many other states across the U.S., e.g., Missouri, New 
Hampshire, North Dakota, and Rhode Island have similar laws. The penalty for a first violation in 
Nebraska disqualifies a commercial motor vehicle driver for a period not less than 60 days. A second 
violation disqualifies a driver for not less than 120 days during any three-year period for separate 
incidents while a third violation during any three-year period for separate incidents disqualifies a 
commercial motor vehicle driver for a period not less than one year.

The research methodology consisted of collecting data at two dual-quadrant gated Nebraska 
HRGCs where truck drivers were observed during train crossing events along with other pertinent 
factors. The collected data were then statistically analyzed to assess the prevalence of gate violations 
by truck drivers. The organization of the remaining paper is as follows. A review of relevant literature 
follows this introduction, which is ensued by a description of data collection. The next section 
presents data analysis including a Poisson model of truck drivers’ gate violations at the two HRGCs. 

Gate Violations by Truck Drivers at Highway-Rail 
Grade Crossings in Two Cities
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The paper ends with research conclusions and a discussion of possible options for both practitioners 
and researchers to improve truck drivers’ safety at HRGCs.

LITERATURE REVIEW

Although not all violations by truck drivers at HRGCs result in crashes, the prevalence of such 
maneuvers at crossings is an indication of its safety. According to Council et al. (1980) gate 
violations were an appropriate surrogate measure of crashes. Similarly, a study by Abraham et al. 
(1998) indicated promise for the use of violation data in determining the relative hazardousness of 
rail-highway crossings in combination with crash histories. Overall, the use of violations to study 
HRGC safety is well-established; examples include Carlson and Fitzpatrick (1999), Hellman et 
al. (2007), Khattak (2007), Khattak and McKnight (2008), Khattak (2009), and Khattak and Luo 
(2011).

Davey et al. (2007) interviewed truck drivers as well as train drivers regarding their experiences 
and perceptions of dangers at HRGCs in Australia. The configuration of at-grade crossings was 
found to affect heavy vehicle drivers’ visibility and effective vehicle clearance. With regard to 
behavior, willful violation of crossing protocols, often as a time-saving measure, as well as truck 
drivers’ complacency due to high levels of familiarity were cited.

Heathington et al. (1990) investigated warning time needs at HRGCs and reported warning 
times in excess of 30-40 seconds caused many more drivers to engage in risky crossing behaviors. 
Most drivers expected trains to arrive within 20 seconds from the moment when the traffic control 
devices were activated. Drivers lost confidence in traffic control systems if warning times exceeded 
40 seconds at crossings with flashing light signals and 60 seconds at gated crossings. Abraham et 
al. (1998) reported that the timely arrival of trains after the warning devices were triggered was an 
essential element that motorists assessed when taking risks. 

Rys et al. (2009) evaluated the use of stop signs at passive grade crossings. Their results 
showed that a majority (79%) of drivers did not stop at installed stop signs and that drivers of heavy 
trucks had a lower level of compliance than other types of vehicles. Finally, Yeh and Multer (2008) 
provided a comprehensive review of research on motor vehicle drivers’ behavior at HRGCs; this 
document was an update to an earlier report by Lerner et al. (1990).

In summary, the study of violations at HRGCs provides useful information on the safety of 
HRGCs. Research on truck drivers’ behavior at HRGCs, while sparse, indicated that violations were 
for saving travel times and due to complacency resulting from high levels of crossing familiarity. 
Excessively long warning times at HRGCs encouraged risky behavior by motor vehicle drivers. 
The reviewed literature did not reveal publications specifically dealing with the frequency and 
characteristics of gate violations by truck drivers at HRGCs. The next section describes the data 
collection effort.

DATA COLLECTION

Data collection consisted of focusing on different types of gate violations (according to Nebraska 
law) by truck drivers at two dual-quadrant gated HRGCs. Drivers of both single unit (SU) trucks and 
trucks with trailers were included in this research. The following three gate violations were taken 
into account.
1.	 Trucks passing under descending HRGC gates (V1),
2.	 Trucks passing around fully lowered HRGC gates (V2), and
3.	 Trucks passing under ascending HRGC gates (V3). 

An observation consisted of an event with flashing gate lights and trucks at the HRGCs with 
opportunities for gate violations (e.g., observations with trucks not at the front of the waiting queue 
were ignored). Video footage was continuously recorded at the North 141st Street grade crossing in 
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Waverly and at the M Street crossing in Fremont, both located in Nebraska. The Waverly HRGC 
(USDOT crossing no. 074940T) comprised four sets of rail tracks crossing two lanes of roadway and 
protected by dual-quadrant gates. The estimated average annual daily traffic (AADT) at this HRGC 
was 2,630 vehicles with 2% trucks. The Fremont crossing (USDOT crossing 074662E) consisted 
of two sets of tracks crossing two lanes of a roadway and protected by dual-quadrant gates. The 
estimated AADT at the Fremont HRGC was 1,315 vehicles with 4% trucks. Both crossings afforded 
clear sight distances in all directions and were equipped with flashing lights, crossbuck signs, and 
audible bells. Figures 1 and 2 show the study sites. Day- and night-vision cameras and digital 
video recorders (DVR) were used to record train crossing events. Instances with trucks present 
with opportunities for gate violations at the crossings were extracted from the video footage and 
subsequently used for pertinent data extraction to a spreadsheet. 

Figure 2: HRGC at the M Street Crossing in Fremont, Nebraska

(source: Google, Inc.)

Figure 1: HRGC at the North 141st Street in Waverly, Nebraska

(source: Google, Inc.)
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Sixteen variables representing different types of gate violations by truck drivers, counts of SU 
trucks and trucks with trailers, train traffic, temporal features, and environmental and pavement 
surface characteristics at the time of train crossings were recorded for each observation. Table 1 
presents a list of those variables along with relevant coding information. A total of 476 observations 
were collected as part of the dataset.

Table 1: Collected Variables
Variable Description Coding/Units

Su_V1 Number of SU trucks passing under descending 
gates during an observation

0, 1, 2, …

Su_V2 Number of SU trucks passing around fully 
lowered gates during an observation

0, 1, 2, …

Su_V3 Number of SU trucks passing under ascending 
gates during an observation

0, 1, 2, …

Ttrlr_V1 Number of trailer trucks passing under 
descending gates during an observation

0, 1, 2, …

Ttrlr_V2 Number of trailer trucks passing around fully 
lowered gates during an observation

0, 1, 2, …

Ttrlr_V3 Number of trailer trucks passing under ascending 
gates during an observation

0, 1, 2, …

N_Sutrks Count of SU trucks during an observation 1, 2, …

N_Trktrlr Count of trailer trucks during an observation 1, 2, …

N_Trains Number of passing trains during an observation 1, 2, …

T_Stop Indicator variable for train stoppage on the 
HRGC

1 if stopped, 0 otherwise

G_Down Elapsed time from start to end of flashing lights Seconds

T_Arrival Elapsed time between onset of flashing lights 
and train arrival at the crossing

Seconds

Day Day of week of the observation 1 if Mon, 2 if Tue, ....., 7 if Sun

Daytime Light condition 0 if nighttime, 1 if daytime, 2 if dawn or 
dusk

Weather Weather condition 0 if clear, 1 if rain, 2 if snowing, 3 if 
foggy, 4 if other

Pavement Pavement surface condition 0 if dry, 1 if wet, 2 if snow on pavement

DATA ANALYSIS

Zero gate violations by truck drivers were observed in 78.2% of the 476 observations, a single 
gate violation was observed in 21.6% of those observations, while 0.2% observations constituted 
two gate violations by different truck drivers. Figure 3 shows the frequency of different types of 
gate violations observed; the most frequent violation type was passing under ascending gates after 
passage of the train. On average, truck drivers were involved in 0.22 gate violations per crossing 
event with a standard deviation of 0.42 violations (variance = 0.17 violations2).
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During data collection, 337 SU trucks and 147 trucks with trailers were observed at the two 
HRGCs. The number of trains observed during data collection was 544, of which 92 (16.9%) 
stopped on the HRGCs. The average gate closure time of a crossing event was 363.5 seconds (about 
six minutes) while the average time between the onset of flashing lights and train arrival at the 
crossing was 46.1 seconds. Provision of 20 seconds as a minimum interval between the onset of 
warning devices and train arrival at the crossing is mandated. 

Figure 4 shows the distribution of observations on different days of the week. Fewer observations 
were collected on Saturday and Sunday compared with week days. Figure 5 presents the distribution 

Figure 3: Frequency of Different Types of HRGC Gate Violations by Truck Drivers

100

90

80

70

60

50

40

30

20

10

0

8 (1.7%)
3 (0.6%)

94 (19.7%)

V1 V2 V3

120

100

80

60

40

20

0
Mon

106 (22.3%)

80 (16.8%)

68 (14.3%) 69 (14.5%)

40 (8.4%) 42 (8.8%)

71 (14.9%)

Tue Wed Thu Fri Sat Sun

Figure 4: Collection of Observations on Different Days of the Week
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of observations across different times of the day. The majority (81.7%) of the observations were 
collected during daytime while somewhat equal observations were collected under dawn or dusk 
and nighttime conditions. 

Figure 6 presents the distribution of observations in different weather conditions; the majority 
of observations were collected in clear weather. Figure 7 presents pavement surface conditions 
observed during crossing events. About 8% of the observations each were on wet and snow on 
pavement conditions. Moisture and snow on the pavement can stay for relatively long periods 
and therefore the number of collected observations under these two pavement surface conditions 
was larger than those collected when it was raining or snowing (Figure 6). An account of Poisson 
modeling of gate violations by truck drivers at HRGCs follows.

The Poisson Model

Aggregate counts of gate violations by truck drivers at HRGCs during crossing events were modeled 
using the Poisson distribution. This variable was obtained by aggregating the three different types 
of gate violations for both drivers of trucks with trailers and drivers of SU trucks (Su_V1 + Su_V2 
+ Su_V3 + Ttrlr_V1 + Ttrlr_V2 + Ttrlr_V3). The aggregation was necessitated as several violation 
categories in the collected data were sparse and did not provide meaningful results when analyzed 
separately. 

The benchmark model for count data is the Poisson distribution (Cameron and Trivedi 1998). 
The Poisson model is appropriate for analysis of count data consisting of nonnegative integer values 
and when the mean and variance of the count variable are not significantly different from each 
other (as was the case with the dataset under analysis). According to Washington et al. (2011), the 
probability of a crossing event i having yi gate violations (where yi ≥ 0), is given by: 

(1) 

Figure 5: Time of Day Distribution of Observations 
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Figure 6: Observations in Different Weather Conditions
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Where P(yi) is the probability of crossing event i having yi gate violations, e is the base of the natural 
logarithm, and λi is the Poisson parameter for crossing event i, which is equal to crossing event i’s 
expected number of gate violations, E[yi].  yi! represents the factorial of yi .

Poisson models are estimated by specifying the Poisson parameter λi as a function of independent 
variables. The most common relationship between independent variables and the Poisson parameter 
is the log-linear model:

(2)	  

Where Xi is a vector of independent variables for crossing event i and β is a vector of estimable 
parameters. This model is estimable by standard maximum likelihood methods with the logarithm 
of the likelihood function given as: 

(3)	  

Marginal effects (evaluated at mean values) are used to determine the effects of the independent 
variables on the dependent variable; they provide an estimate of the impact of a unit change in the 
variable on the expected frequency of the count variable. Alternatively, elasticity can be computed 
to assess the effect of a 1% change in the independent variable on the expected frequency of λi . 

The likelihood ratio test is used to assess competing models, usually a full or complete model 
over another competing model that is restricted by having a reduced number of model parameters. 
The likelihood ratio test statistic is:

 (4) 	    

Where LL(βR) is the log-likelihood at convergence of the restricted model, considered to have all 
parameters in β equal to 0 or just to include the constant term, and LL(βU) is the log-likelihood at 
convergence of the unrestricted model. The X2 statistic is chi-squared distributed with the degrees of 
freedom equal to the difference in the number of parameters in the restricted and unrestricted model. 
A measure of overall model fit is the ρ2 statistics given as: 

(5) 		     

Where LL(β) is the log likelihood at convergence with parameter vector β and LL(0) is the initial log 
likelihood with all parameters set to zero. The value of  ρ2  varies between 0 and 1 and values closer 
to 1 indicate a better fitting model compared to values closer to 0. The estimated Poisson model for 
frequency of truck drivers’ gate violations is presented next.

Modeling Truck Drivers’ Gate Violations 

Table 2 shows the estimated Poisson model for counts of truck drivers’ gate violations with relevant 
summary statistics; the model equation is:

(6) λ = e0.699*N_Sutrks+0.563*N_Trktrlr+0.003*T_Arrival+0.506*Night–1.253*Rain–0.789*Snow_Pvt–2.366   

A positive estimated coefficient shows that the frequency of gate violations by truck drivers 
increases with increasing values of the variable while a negative estimated coefficient indicates 
that gate violations decrease with increasing values of the variable. Estimated coefficients in the 
model were statistically tested using a student’s t-test to assess if they were different than zero 
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at 95% or 90% confidence levels. Absolute t-statistic values of 1.96 or greater or 1.64 or greater 
indicate statistical significance at the 95% or 90% confidence levels, respectively. Alternatively, 
Table 2 provides p-values for the estimated coefficients; a p-value is the probability of obtaining a 
test statistic at least as extreme as the one that was observed/estimated. Values of 0.05 and 0.01 are 
thresholds for statistical significance at 95% and 90% confidence, respectively.

Table 2: Estimated Model for Counts of Gate Violations by Truck Drivers at HRGCs

Variable Description
Estimated 
Coefficient

t-
Statistic

P-
Value

Marginal 
Value Mean

N_Sutrks Count of SU trucks during an 
observation

0.699 3.296 0.001 0.155 0.706

N_Trktrlr Count of trailer trucks during an 
observation

0.563 2.221 0.026 0.125 0.308

T_Arrival Elapsed time between onset of 
flashing lights and train arrival 
(sec)

0.003 1.968 0.049 0.001 46.105

Night Indicator variable for nighttime 0.506 1.850 0.064 0.112 0.101

Rain Indicator variable for rain -1.253 -1.315 0.188 -0.278 0.031

Snow_Pvt Indicator variable for snow on 
pavement

-0.789 -1.543 0.122 -0.175 0.080

Constant Constant in the model -2.366 -8.547 0.000 -0.525 -

Model summary statistics

Number of observations 473

Log likelihood -254.292

Restricted Log likelihood -263.732

Ρ2 0.036

Χ2 (with 6 degrees of freedom) 18.879

P-value 0.004

Two variables indicating counts of SU trucks (N_Sutrks) and trucks with trailers (N_Trktrlr) 
were included in the model specification. When added, they represent truck traffic with opportunities 
for gate violations; in other words, truck drivers’ exposure to gate violations where exposure was the 
state of being exposed to involvement in gate violations. Both variables were statistically significant 
at the 95% confidence level, indicating that gate violations increased with greater numbers of SU 
trucks and trucks with trailers arriving at HRGCs. The marginal value for SU trucks showed that for 
each additional SU truck (beyond its mean value and with other independent variables held constant 
at their respective mean values), gate violations increased by 0.155 violations per crossing event. 
Also, the larger marginal value of SU trucks (0.155) compared with the marginal value for trucks 
with trailers (0.125) indicated that SU truck drivers had a comparatively higher propensity for gate 
violations. This may be explained by the relatively smaller dimensions and shorter acceleration 
times associated with SU trucks compared with trucks with trailers.
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The variable T_Arrival represented the elapsed time between the onset of flashing lights and 
train arrivals at the crossings. The estimated coefficient for this variable was positive and statistically 
significant at the 95% confidence level showing that greater values of T_Arrival were associated 
with more frequent gate violations by truck drivers. The model specification included an indicator 
variable for nighttime (Night =1 if nighttime). The estimated coefficient for this variable was 
positive and statistically significant at the 90% confidence level (t-statistic >1.64). Thus, nighttime 
was associated with higher frequency of gate violations compared with other times; its marginal 
value showed that an additional 0.112 gate violations per crossing event occurred during nighttime.

Finally, two indicator variables for rain (Rain=1 if raining) and snow on pavement (Snow_
Pvt=1 if snow on the pavement) were included in the model to explore the effects of adverse weather 
and pavement surface condition on gate violations by truck drivers. The estimated coefficients in 
both cases were negative (indicating a reduction in gate violations) but statistically not significant at 
the 90% confidence level. Therefore, the collected data did not provide enough evidence regarding 
statistically significant relationships between frequencies of truck drivers’ HRGC gate violations 
and rain and truck drivers’ HRGC gate violations and presence of snow on pavement. The two 
variables, however, were retained in the model for demonstration.

Other variables available in the database were tried in the model specification but found 
statistically not significant. These included: elapsed time from start to end of flashing lights, the 
number of passing trains, train stoppage on the HRGC, an indicator variable for weekends, and an 
indicator variable for crossing location (Waverly or Fremont). These variables were excluded from 
the model specification for parsimony. Additionally, the estimated Poisson model was statistically 
tested for overdispersion (i.e., when the variance of the dependent variable is significantly larger 
than its mean) and no such evidence was detected. Conclusions and a discussion of options for 
reducing truck drivers’ gate violations at gated crossings, including the research limitations, are 
presented next. 

CONCLUSIONS AND DISCUSSION

This research explored gate violations by truck drivers at dual-quadrant gated HRGCs that were 
located in two different cities. Three different types of violations were observed during data 
collection: trucks passing under descending HRGC gates, trucks passing around fully lowered 
HRGC gates, and trucks passing under ascending HRGC gates. These three types of violations were 
aggregated and about 22% of the total observations involved gate violations by truck drivers. Based 
on the Poisson model results, the following conclusions were reached.

•	 At dual-quadrant HRGCs located in cities, the frequencies of gate violations by truck driv-
ers increased with higher exposure of truck drivers.

•	 The propensity of SU truck drivers for gate violations at dual-quadrant HRGCs located in 
cities was higher compared with drivers of trucks with trailers. 

•	 Longer times between the onset of flashing lights and train arrivals at dual-quadrant HRGCs 
located in cities contributed to higher frequencies of gate violations by truck drivers.

•	 Nighttime was associated with greater frequencies of gate violations by truck drivers at 
dual-quadrant HRGCs located in cities.

The conclusions are relevant to isolated dual-quadrant HRGCs located in cities and do not 
pertain to four-quadrant gated HRGCs or those located in corridors/rural areas. An aspect of these 
conclusions, pertinent to practitioners and practice-ready, is reducing truck traffic at HRGCs to limit 
drivers’ exposure to gate violations. In a city environment, this may be feasible by restricting or 
prohibiting truck traffic at HRGCs where proximate grade-separated crossings are available. Another 
practical aspect is that of differentiated truck drivers’ education. While all truck drivers should be 
the focus of education on the dangers of HRGC gate violations, the HRGC safety issue should be 
especially emphasized to drivers of SU trucks due to their higher propensity for involvement in 
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gate violations. Such emphasis may be achieved via revisions to existing publications such as the 
Operation Lifesaver’s Highway-Rail Grade Crossing Training for Professional Truck Drivers.

Longer elapsed times between the onset of warning devices and arrival of trains at crossings 
located in cities encourages drivers’ disregard for traffic signs and signals. This issue was highlighted 
by Heathington et al. (1990) and by Abraham et al. (1998), though not specifically in the context of 
truck drivers. In the case of truck drivers, the issue of HRGC gate violations may be exacerbated 
by the need to deliver just-in-time deliverables and truck drivers’ mileage-based remuneration. The 
research reported herein underscores the need to check excessively large warning times at dual-
quadrant HRGCs located in cities beyond the minimum required time of 20 seconds. This aspect can 
be addressed by researchers and practitioners together. Research on reliable train detection, its speed 
and acceleration/deceleration estimation, and development of new algorithms for gate timing and 
highway traffic signal preemption (if involved) is needed. Practitioners would need to implement 
the outcomes of such research at city-based HRGCs to reduce elapsed times between the onset 
of warning devices and arrival of trains at crossings. However, in rural rail corridors with higher 
train speed limits, lengthening of warning times may be desirable under certain circumstances. 
Appropriate warning times at HRGCs depend on crossing and train characteristics and caution must 
be exercised in changing warning times at HRGCs.

Ways to reduce gate violations at nighttime by truck drivers are needed. Besides education, 
a possible practical option to reduce nighttime gate violations is stronger enforcement of motor 
vehicle laws at HRGCs at nighttime. Penalties for gate violations in Nebraska and some other states 
appear sufficiently stringent to quickly deter truck drivers from engaging in risky maneuvers at 
HRGCs.

Research Limitations

Limitations of the research presented herein include collection of data at only dual-quadrant HRGCs 
located in two cities, narrow geographic coverage, and lack of data on truck drivers’ characteristics 
(age, driving experience, etc.). Therefore, the generalization of the findings is limited and studies 
involving multiple HRGCs with wider geographic coverage, including rural HRGCs in corridors 
and studies that collect data on drivers besides HRGC gate violations, are recommended. While this 
research did not uncover significant evidence regarding weather and pavement surface condition 
effects on HRGC safety, these two factors warrant further investigation by researchers. Finally, 
reduction of violations depends on strict enforcement, driver education, and recurrent training of 
truck drivers and consolidated efforts are needed to improve safety at HRGCs. 
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Book Reviews

Spiegelman, Clifford H., Park, Eun Sug, and Rilettt, Laurence R. Transportation Statistics and 
Microsimulation. Boca Raton, London, New York: CRC Press, 2010. ISBN 9781439800232.

Transportation Statistics and Microsimulation
by Sunanda Dissanayake

While transportation engineers and especially graduate students in transportation engineering use 
statistics for various purposes, their general level of understanding seems to be lacking in many 
situations. Even though a majority of engineering graduates have taken some type of a statistics 
course during their undergraduate course of study, such courses are typically taught by faculty 
members in statistics or mathematics and lack the practical applications that are common in 
transportation engineering. On the other hand, graduate level statistics courses offered by statistics 
or mathematics departments are too theoretical and do not offer much assistance to graduate students 
in transportation engineering. With this background, there has been a need for textbooks covering 
practical statistical applications in transportation-related topics for a long time, and this book seems 
to be addressing that need.  

The first several chapters of the book (2-5), which consists of 15 chapters, cover the background 
details, such as standard probability and statistical techniques, that are needed to follow the more 
advanced sections in the rest of the book. They cover such topics as basics of graphical methods, 
numerical summary methods, random variables, probability mass functions, and common probability 
distributions and provide easy-to-follow examples from various applications of transportation 
such as speed measurements, traffic volume data, pedestrian arrivals, and driving under influence 
situations. 

The next several chapters (6-9) cover statistical inferences or what is commonly known as 
hypothesis testing for single and multiple variables as well as continuous and categorical data. A 
commonly used statistical modeling technique, regression, is discussed in the next chapters (10-11), 
where the authors discuss simple linear regression, multiple linear regression, and generalized linear 
models. Simple and multiple linear regressions are typically used in transportation applications to 
predict a certain continuous variable as a function of a number of independent variables, whether 
they are continuous or discrete. However, when it comes to predicting dependent variables of a 
discrete nature, alternative approaches need to be sought, and the authors provide the details of 
Poisson and negative binomial regression models to serve that purpose. Both these methodologies 
have common applications in safety analysis, especially in modeling crash frequency among many 
other transportation-related areas.

More advanced concepts such as experimental design, uncertainty estimation, and Bayesian 
estimation are discussed in Chapters 12-14, where the authors do a commendable task of transforming 
these more advanced topics into a simple, easy to understand format. Finally, in the last chapter, 
transportation microsimulation models that are becoming more common for modeling large-scale 
traffic and planning studies are described, which could be used by more advanced and creative 
students. 

A number of transportation statistics related examples are provided throughout the book so 
that more hands-on experience could be gained by actually working on the example problems. The 
data for some examples are, however, available at a website for downloading. While this may not 
create any critical challenges in most situations, it would be more helpful if the data could be made 
available in the book itself either in print format, in an appendix, or in a CD/DVD that comes with 
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the book, so that everything could be self-contained. Even though many concepts in statistics are 
learned by manual methods, in practice many users prefer to use statistical packages, which reduce 
the time consuming nature of the calculations. Accordingly, it makes perfect sense for the authors to 
have adopted a software package (JMP by SAS) to do the problem solving. While the authors justify 
the selection of this specific package on the basis of its strong graphics capabilities, this selection 
could be turning away some of the students or courses that follow other popular software packages. 
Nonetheless, while it is much easier to use the authors’ choice of software package if one is using 
their textbook, one can still apply alternative packages to the concepts presented in the book. 

All in all, this textbook fulfills a need in the area of transportation statistics by providing basic 
concepts via an easy to follow format and practical examples.  

Sunanda Dissanayake is an associate professor at the department of civil engineering at Kansas 
State University. She received her B.Sc. (Eng), M.Eng., and Ph.D. degrees from the University of 
Moratuwa in Sri Lanka, Asian Institute of Technology in Thailand, and University of South Florida, 
respectively. Dissanayake has more than two decades of experience in the area of transportation 
engineering, focusing on both teaching and research in the area of traffic engineering and highway 
safety. She is a registered professional engineer and actively participates in activities related to 
professional societies such as Institute of Transportation Engineers, Transportation Research 
Board, and American Society of Civil Engineers.
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Button, Kenneth. Transport Economics, 3rd ed. Cheltenhaum, UK and Northampton, MA: Edward 
Elgar, 2010. ISBN 978 1 84064 191 2 (paperback)..

Transport Economics
by Wesley W. Wilson

Economic well-being is driven by trade, and transportation drives trade. Despite this linkage, 
interest in transportation has waned. Relatively few university economics departments offer courses 
in transportation as part of their curriculum; there are relatively few books in the area; and relatively 
little work is published in general economics journals. Transport Economics, by Kenneth Button 
is the most current and up to date book in the field.  It is in its third edition, with the first edition 
published in 1982, and the second in 1996.  It has 14 chapters and 498 pages that cover the venerable 
history of transport economics, identifies the contributions of major ”thinkers” in the field, along 
with the foundation that is in most books on the subject (demand, costs, congestion, investment). 
In addition, however, there are specialized chapters that explicitly deal with environmental issues, 
logistics, planning, and forecasting. The inclusion of these chapters hit on emerging issues and 
connections to other fields. A thorough read of the text will give readers a strong sense of the history 
of the field, central figures, but also important developments and linkages to other fields that reflect 
the multidisciplinary nature of the field of transportation. 

The first three chapters give an excellent overview of the field, its history, its magnitude and 
emerging trends and issues. The first chapter points out some of the challenges of transport as a 
profession. I very much appreciate the discussion of the importance of transportation to economics 
which is then followed by the fact that there are very few specialists in the field.  This is, indeed, 
a fact that has plagued the field for the last several decades.  He notes that there are a number of 
people that dabble in the field, and this dabbling has led to major innovations in economics.  These 
include the role of common and joint costs that came from the famous Pigou-Taussig debates in the 
early 1900s, the random utility model from Dan McFadden in the 1970s, congestion and peak load 
pricing, and a wide array of studies that examine the level and structure of costs, efficiency, demand, 
the pricing of public goods, the impetus and effects of government involvement in business, etc. 
There are many references to hallowed names in economics and their contributions to transportation. 
Button appropriately notes that “…many of the seminal papers on the subject [transportation] that 
have appeared in the general economics literature have often been produced by individuals with a 
broad interest in economics rather than transport specialists.” (p. 6).

Chapter 2 is a broad overview that is filled with facts and figures. Many books have such 
information, and I do believe it is an important feature; it gives students a sense of the sheer 
magnitude that transportation plays in their own lives as well as the local, national, and world 
economies. Chapter 3 begins with a discourse on the desire for transportation, and points quite 
rightly, that transportation is not consumed for pleasure but for what transportation allows you 
to consume. I very much appreciated the sections that cover industrial location decisions and the 
market area of firms that produce products transported. Each of these sections introduces models 
and connects theory to issues. The chapter closes with sections that provide intuitively developed 
models that explain the relationship between transportation and land values and wages. In each case, 
Button develops the relationships consistent with the classic papers in the literature. This is a superb 
strength of the book, wherein he both develops the history, the great thinkers, and the concepts in 
conjunction with one another.

Demand and costs are covered in chapters 4 and 5. Demand is not derived from principles, but 
rather is discussed in terms of very general neoclassical consumer demand function, with discussions 
of the usual comparative static shifts, elasticities, length of run, etc. He delves into the value of time 
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and the role of quality in demand decisions and summarizes the differences in value of time across 
countries and studies. It was peculiar to read the section on car ownership (not often part of a 
transport economics book). I was captivated by the presentation and by the introduction of product 
life cycle theory and forecasting. Button notes shortcomings of the approach, and then points to 
choice model methods as a solution. This latter is extremely brief, and, in my opinion, warrants a 
section or chapter of its own. The cost chapter covers quite well the concepts of fixed and variable 
costs along with short- and long-run issues. In addition, he discusses a wide variety of cost concepts 
that are specific to transportation such as economies in vehicles, infrastructure, fleet, scale, scope, 
density and experience. As an instructor, I very much welcome this discussion, as many others try 
to fit transport concepts into the standard micro models, whereas Button develops the models in 
the context of the transport concept. Another strong feature of this chapter is the discussion of cost 
allocation issues. While cost allocations are present in many industries, they are of direct policy 
relevance in transportation, and the problems of cost allocation tend to be somewhat unique to 
transportation circles. I was a little surprised that the notion of a generalized cost of transportation 
was introduced in the cost chapter (it may be better suited for the demand chapter). Toward the end 
of the chapter, there is an array of topics that seem out of place, e.g., service bunching. Some of the 
discussion requires an equilibrium mode, and I note that following demand and costs, I did not see 
a chapter on firm strategy, equilibrium, and performance. That is, there is excellent material in these 
sections, but I might have placed them elsewhere. The final section points to statistical measurement 
of costs and economic efficiency. In this section, a relatively more rigorous presentation of the 
theoretical tenets of a cost function is presented, followed by a discussion of translog and also DEA 
analysis. While they are complete, they might form a larger role in the chapter.

“External Costs of Transport” is a lengthy chapter, at nearly 50 pages. It teaches students of 
externalities (pecuniary and technological), and then describes pollution and congestion externalities. 
This is followed by a very cursory description of transportation and the environment and then moves 
to the valuation of externalities with hedonic, travel costs, and stated preference. Unfortunately, with 
a more complete discussion of discrete demand decisions, the valuation of attributes would have 
been an excellent addition. The remainder of the chapter describes the magnitudes of environmental 
externalities, energy use, and congestion. These are, as with the rest of the book, complete pieces 
with a sense of policy, literature, and facts interpreted with the use of economic principles.

The chapter on pricing points to the complexity of pricing with regard to objective, purpose, 
and even market structure. Models are presented to represent shipping conferences, marginal cost 
pricing, short- and long-run pricing, the problem of second best, product differentiation, price 
discrimination, and “yield management.” The comprehensive nature of this chapter sets it apart 
from other texts, which often focus on presentation of equilibrium models and outcomes without 
the institutional detail that is so important to pricing decisions. Further, at the end of the chapter, 
there is discussion of real world issues and concerns often ignored in other texts, e.g., the problem 
of a manager that must price under uncertainty from stochastic demand, peak load pricing, the lack 
of a core, etc.

The remainder of the book applies principles to policy, logistics, investment, planning, 
and forecasting. The first of these, on environmental policy, includes excellent discussions of 
tradable permits, pollution taxes and subsidies, adoption of environmentally better options, etc.  
It also describes modal energy use, policy options, and the successes of policy. I am surprised 
that there is not a lengthier discussion on safety issues, speed limits, and the like. The chapter on 
congestion is similarly handled. There is a discussion of externalities and then policy with respect 
to transportation, e.g., road pricing. Again, as is present throughout the book, the chapter points 
to the primary developers of an area—in this case, Ronald Coase, William Vickery, and Sir Allan 
Walters—and also presents a variety of statistics and examples which bring out some of the issues 
in implementation. This is extremely well done and executed.
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The presentation of investment, planning and forecasting, and development (Chapter 11, 12, 13) 
broaden the appeal of the book and the multidisciplinary nature of transportation. These chapters, 
together with the logistics chapter (Chapter 10), connect business, planners, economics, and the role 
of investment. This sequence begins (Chapter 11) with the role of infrastructure and then covers 
basic principles of investments, cost benefit analysis, and the complications of transportation. The 
discussions include short-run and long-run presented in simple demand and cost models and the 
effects of capacity choices. Button compares commercial and social approaches to investment 
and alternative forms of financing. Students are introduced to net present value in the context of 
evaluating investments. The discussion leads naturally to cost/benefit analysis in the public setting. 
Through this discussion there is considerable discussion of Pareto optimality and the Hicks-Kaldor 
compensation principles, which are central to decision-making. It closes with social benefits, the 
practice of cost/benefit analysis, a comparison of techniques, effects on national income, and 
institutional considerations. The investment chapter is followed by a chapter on planning. It starts 
with the development of planning, the theory of planning, the use of models and forecasts, and 
commonly used techniques that apply to trip generation, gravity models, and disaggregate choice 
models. Another strong feature is that it points to major models that have been used. This provides 
a linkage of students into planner lingo, which is often lacking. Planners often rest investments in 
terms of economic development. Chapter 13 provides a historical account, introduces the Solow 
models, and notes its shortcomings. It then moves to new economic growth theory models and then 
to the relationship between transport infrastructure and economic productivity and multipliers. The 
chapter concludes with less developed countries, transport policies in the UK, and regional and 
urban. Throughout the chapter, there is considerable history, contributions of notable authors and 
ideas, and descriptions of factual evidence.

The final chapter of the book is on economic regulation of transport. It provides an overview 
of the breadth of regulations that impact transport and the theories of regulation. Button enumerates 
and describes a number of “rationales” for economic regulation that fall broadly into the market 
failure (regulation for the public interest category). He then describes instruments of regulation 
(a long bullet list), and at the end of the section there is a very brief discussion of the demand for 
regulation and captive theories of regulation. The chapter then delves modestly into the regulation 
of market power, with reference to the ever famous Averch-Johnson model. In addition, there 
are discussions on price cap regulation, contestable markets, auction models, etc.   The chapter 
concludes with a discussion of phases of regulation and deregulation, and point to the speed of 
reform along with an assessment of regulatory reform.   The only real complaint that I have on this 
chapter is that I wanted more, and I would have liked more discussion of not only regulation but 
deregulation. However, regulation and deregulation is quite idiosyncratic, wherein each mode has 
its own history, institutions, regulation, and deregulation. Hence, this recommended addition may 
be a book unto itself.

Overall, I strongly recommend researchers and students new to transportation, or even those 
that have been in the field a long time, read this book. The book can be used in the classroom, but is 
also a valuable research reference and an interesting read. It is easily accessible to most readers, and 
effectively transmits major issues, researchers, and research themes in transportation economics.
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He is the managing editor of Economic Inquiry, a former president of the Transportation and Public 
Utilities Group of the American Economic Association, on the Inland Waterway and Agricultural 
Transportation Committees of the Transportation Research Board, a former president of the 
Agricultural Chapter of the Transportation Research Forum, and is an affiliated faculty with the 
Upper Great Plains Transportation Institute and Christensen Associates. He is an associate editor 
for the Journal of the Transportation Research Forum and for Maritime Policy and Management, 
a member of the board of editors for the Review of Industrial Organization and Transportation 
Policy, and a former member of the Editorial Board of Agribusiness: An International Journal. From 
2003-09, Wilson was a technical advisor and visiting scholar to the Navigation and Economics 
Technologies program of the Institute for Water Resources, Army Corps of Engineers. Since 2009, he 
has been an expert economist working with the Surface Transportation Board to identify alternative 
strategies for estimating costs and markups in a multiproduct industry. He has also received a wide 
variety of grants, most notably from the National Science Foundation (with Bruce Blonigen) to 
examine the effects of trade policy in steel markets. 
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Wilner, Frank N. Amtrak: Past, Present, and Future.  Omaha: NE: Simmons Boardman Books, Inc., 
2012. ISBN 9780911 382600.

Amtrak: Past, Present, and Future
by Melvyn A. Sacks

Frank Wilner’s new book tells the story of Amtrak well.  It is a sweeping and instructive story 
indeed.

Prior to World War II, railroads served 40 million passengers,  Marquee trains like the 20th 
Century Limited linking New York to Chicago featured fresh cut flowers, a barber and beauty 
shop, elegant club cars, splendid bedrooms, and steak dinners. Railroad stations featured granite 
and sandstone, soaring clock towers, and arches. Meals were prepared from scratch served by 
impeccably dressed stewards, and after viewing the scenery in the dome car, passengers could sleep 
in comfortable Pullman bedrooms.

By the late 1960s with the interstate highway system largely completed and airlines becoming 
more attractive, private railroads were losing money on passenger service.  In the 1950s, one out of 
every six workers in America was engaged in the automobile industry.  Railroads tried to persuade 
the Interstate Commerce Commission to discontinue underused passenger trains.  According to Peter 
Lyon in his book, To Hell in a Day Coach: An Exasperated Look at American Railroads, to make 
sure that passenger trains were underused, various devices were employed to discourage passengers, 
including engineering long delays, filthy restrooms, cabooses for passengers, and running secret 
trains missing from timetables. Adding to the revenue decline was the shifting of first class mail 
from trains to airplanes. 

Railroad bankruptcies were increasing, with passenger losses a major contributor.  Poor freight 
rail tracks hindered Amtrak with speeds as low as 15 mph on 47,000 miles of track.  But public 
opinion was against ending national passenger service.  Congress, pressed by Senator Pell (D-R.I.) 
and others, proposed the Rail Passenger Service Act of 1970, or Railpax, to form a government 
corporation and run trains under the Amtrak label, which would take over rail passenger service 
from the railroads. After considerable prompting President Nixon signed the legislation.

The first Amtrak president, Roger Lewis, was a poor leader and had no real interest in passenger 
rail, viewing this as just an ordinary paying job. But he made sure that magazines in his office were 
neatly in place.  After Amtrak was formed, credit cards were no longer accepted, and a modern 
computerized reservation system would take two years to complete.

Amtrak owns no tracks, terminal yards, or repair facilities outside the Northeast corridor. In 
the early years of Amtrak, there were steam generators for passenger trains, incompatible electrical 
systems with AC and DC, and steam air conditioning on some trains. Mechanics did not know how 
to repair the private railroad’s legacy cars. In 1972, half of the fleet was out of service, and toilets 
were notorious for problems.  Amtrak was hindered by the private railroad’s relatively poor tracks 
and giving priority to freight trains in violation of the Rail Passenger Service Act. Long distance 
trains averaged 42% on-time performance. In one week, Amtrak paid out more than $28,000 in 
taxis, meals, etc. for missed connections.  

The average age of Amtrak cars is 25 years old, and Amfleet cars on the Northeast corridor date 
from 1975.  There is a shortage of dining and sleeping cars.  Many Amtrak locomotives are 34 years 
old.  The Amtrak reservation system is 30 years old and hampered with outdated technology.  Bus 
systems have discontinued servicing many smaller cities and Amtrak is often the only transportation 
system available.

A more hands-on approach began when Paul Reistrup became Amtrak president in 1974.  
Reistrup began writing Amtrak’s own specifications for lightweight high horsepower locomotives.  In 
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2011, Amtrak reported 260,000 passengers riding auto-trains annually, with more than 40 passenger 
coaches.  Amtrak also operated contracted commuter services.  In 1991, New York City passenger 
operations were consolidated so passengers would need to use only one station for Amtrak trains.

Still, budget cutting by Congress forced Amtrak to cut off fresh food and install pre-plated 
airline type food.  Interest on its debt cost Amtrak $250 million in February 2002.  Amtrak also had 
an express shipping business, moving perishable goods and priority mail on “roadrailers,” which 
has now been discontinued.

The first higher speed train in the U.S. was the Metroliner, first run by Penn-Central in January 
1969 at speeds up to 125 mph. Through the Swift Rail Development Act of 1994 it was superseded 
by the Acela, which entered revenue service on December 11, 2000.  Acela’s top speed of 150 mph 
is only on a small stretch of track, and the speed averages 83 mph but can be as slow as 30 mph. 
Acela combines electric propulsion systems with an advanced gyroscope controlled hydraulic tilt 
mechanism to permit higher speeds on sharp curves in the Northeast corridor. There have been 
problems with stability, wheel wear, and aging catenary lines.  Passenger cars were found to be four 
inches too wide for the tilting mechanism to operate fully.  There also have been disc brake hairline 
fractures.  Acela has averaged an on-time performance of 88%.  

A break from poor management that had dogged Amtrak came when David Gunn took over as 
Amtrak president in 2002. He complained of poor managerial controls, with financial forecasts in 
disarray and poor organizational structures. Gunn made considerable improvements with Amtrak, 
which now provides a much more reliable service. Amtrak captures 69% of the air-rail market 
between Washington and New York, up from 37% in 2000. Between New York and Boston, Amtrak 
has 52% of the air-rail market, up from 37% in 2000. Amtrak carries more passengers in the 
Northeast corridor than all airlines combined. The Northeast corridor carries one million intercity 
and commuter passengers daily with more than 2,000 trains.

In the four decades of Amtrak’s existence, labor unions cooperated with Amtrak to lower costs, 
sustained no strikes, and otherwise ensured Amtrak’s existence.

Amtrak today has 20,000 employees, runs 300 intercity and commuter trains, and has 21,000 
miles of track servicing 46 states, D.C., and three Canadian provinces. It transports more than 30 
million passengers annually - 10 million along the 456 mile Northeast corridor.  Since 2000, Amtrak 
ridership has grown by 44%, and ticket revenue increased by 85%, with long distance revenue 
increasing by 25%. In fiscal year 2012, Amtrak served a record 31.2 million passengers. Amtrak 
receives 76% of operating costs from ticket sales. Amtrak operates commuter trains under contract 
with the states.

There is no dedicated source of Amtrak funding, however, and compared with highways and 
airports, the subsidy is small: For the expansion of Chicago’s O’Hare airport, the federal government 
financed it for $6.5 billion, and for Boston’s big dig, the federal government poured in $8.5 billion, 
but for Amtrak the yearly funding was often under $1 billion. 

By comparison, high-speed rail is common in Western Europe, China, Japan, and South Korea, 
with speeds up to 220 mph.  European and Japanese trains travel on dedicated tracks at more than 
twice the speed of Acela’s trains.

President Obama proposed the American Recovery and Reinvestment Act of 2009, which 
would fund high-speed and higher speed rail in the U.S. for $37.6 billion and $15.0 billion for 
improving Amtrak’s infrastructure and the Northeast corridor. However, Wisconsin, Ohio, and 
Florida cancelled the high-speed investment even though it would in many cases create thousands 
of high paying jobs and greatly expand commercial development. These Republican controlled 
states were against federal government expenditures in high-speed rail considering it not a proper 
role for the federal government.

High-speed rail is being considered in the U.S. 40 years after the first bullet train ran in Japan.  
On February 8, 2011, Vice President Biden and Transportation secretary Ray LaHood proposed a $53 
billion investment plan as part of an ambitious $600 billion funding plan of high-speed and higher-
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speed rail.  This sum depended on Congress, and many conservatives are against any spending on 
passenger rail, especially high-speed rail.  Congress eliminated high-speed rail funding for FY 2012.

But the need is there. Aging infrastructure on the Northeast corridor hampers speed. Part of 
the Northeast corridor was constructed prior to the civil war, and the electrified infrastructure dates 
from the 1930s. There are 1,400 older bridges that will cost hundreds of millions of dollars to repair.  
By 2030 some 3,300 trains a day will be carrying passengers through the Northeast corridor, 40% 
more than in 2011. But it takes enormous public investment in track, signals, and equipment for 
a reliable system, which cannot be recovered from fares alone. Unless funding can be found for 
these essential capital projects, passenger rail will be severely hampered, with congestion and costs 
mounting. Large amounts of public dollars built airports and highways, and funds should also be 
found for Amtrak.

The lack of consistent and predictable subsidies is one of Amtrak’s greatest challenges, made 
more difficult by federal and state budget deficits. Continued reliance on short-term Congressional 
appropriations hinders rational planning and investment in capital infrastructure projects. Amtrak 
needs a $52 billion investment in the northeast corridor to handle a projected 60% increase in 
intercity and commuter rail traffic. Dedicated high-speed rail would require an additional $117 
billion in construction investment.

America’s dependence on cars is reinforced by a shortage of other forms of transportation.  
Europe and Japan spends far more than the U.S. on rail transportation, and the U.S. underdeveloped 
passenger rail network leads to overcrowding on American highways and airports, and unlike 
passenger trains, road and air travel receive large subsidies. In Europe high-speed rail is replacing 
air travel between many cities. In Spain, between Madrid and Seville, the share of high-speed rail 
in the rail-air market shifted from 33% to 84%, and similar shifts to rail occurred in other parts of 
Europe. The result is less congestion, and a more pleasant travel experience. Also trains, especially 
high-speed trains, are much more environmentally friendly compared with autos, buses, and airlines. 
Less energy is used and with lower emissions, including CO2, which is linked to global warming.  

But in Congress, privatization became the rage.  In June 2011, the House Infrastructure and 
Transportation Committee, dominated by Republicans, considered a proposal to dismantle Amtrak 
and sell the Northeast corridor to private interests, undoubtedly for subsidy reductions and to remove 
the federal government from passenger rail.  Amtrak president Joseph Boardman, pushing back, said 
that privatization in Britain removed economies of scale, introduced complexities and coordination 
problems into the system, reduced efficiencies, and required much greater subsidies than before 
privatization.  Periodic privatization proposals are a feature in Congress.

Congress cancelled the remaining high-speed rail funding, and no money was appropriated 
for high-speed passenger rail in either the FY 2011 or FY 2012 budgets, considering high-speed 
rail investments as wasteful and even socialistic. This funding was eliminated even as China spent 
over $100 billion on 2,000 miles of high-speed rail, and large sums were spent on high-speed rail in 
Europe. Automobile taxes are much steeper in Europe than the U.S., according to sources, the price 
of gasoline averaging $8.63 a gallon in France, of which most of the cost are taxes. The amount 
of taxes available for transportation infrastructure is consequently much higher in Europe than in 
the U.S., and this largely accounts for the fact that the U.S. spent just $42 billion on all forms of 
transportation.

In conclusion, Amtrak is often the step-child of transportation, with no consistent funding, while 
other modes of transportation are heavily subsidized. Taxpayers have spent $40 billion on highways, 
more than is spent on Amtrak in its 40-year history. Amtrak has delivered a credible transportation 
product under trying conditions, and would deliver excellent results if only properly funded. A 
viable passenger rail system should be an alternative to crowded skies and highways, and if the 
success of European, Chinese, and Japanese high-speed trains doesn’t present an embarrassment to 
the once mighty transportation infrastructure of the U.S., one wonders what will.
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One criticism I have of the book is that perhaps more space could have been devoted to the 
actions of the railroads in dropping their passenger service prior to Amtrak.  Their determination to 
rid themselves of passenger service by making it distinctly uninviting led to severe image problems 
when Amtrak took over, compounded by passenger equipment in disrepair, which markedly 
hampered Amtrak in its formative years.

Similarly, the author would have done well to expand on other nations’ high-speed rail service, 
how it improved transportation mobility, reduced congestion, and its positive impact on reducing 
global warming.  

Melvyn A. Sacks is the Maryland representative on the Council of the National Association of 
Railroad Passengers, and is on the Council of the Transportation Research Forum-Washington 
Chapter. He did an in-depth study of world railroad locomotives at the Export-Import Bank of 
the United States. Sacks personally experienced travel on European and Asian passenger trains 
ranging from Vietnam to Spain and Russia. He also traveled extensively on U.S. passenger trains 
prior to Amtrak.
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Transportation Research Forum

Statement of Purpose

The Transportation Research Forum is an independent organization of transportation professionals. 
Its purpose is to provide an impartial meeting ground for carriers, shippers, government officials, 
consultants, university researchers, suppliers, and others seeking an exchange of information and 
ideas related to both passenger and freight transportation. The Forum provides pertinent and timely 
information to those who conduct research and those who use and benefit from research.
 The exchange of information and ideas is accomplished through international, national, and 
local TRF meetings and by publication of professional papers related to numerous transportation 
topics.
 The TRF encompasses all modes of transport and the entire range of disciplines relevant to 
transportation, including:
 	 Economics 				    Urban Transportation and Planning
 	 Marketing and Pricing			   Government Policy
 	 Financial Controls and Analysis 		  Equipment Supply
 	 Labor and Employee Relations 		  Regulation
 	 Carrier Management 			   Safety
 	 Organization and Planning 		  Environment and Energy
 	 Technology and Engineering 		  Intermodal Transportation
 	 Transportation and Supply Chain Management	

History and Organization

A small group of transportation researchers in New York started the Transportation Research Forum 
in March 1958. Monthly luncheon meetings were established at that time and still continue. The 
first organizing meeting of the American Transportation Research Forum was held in St. Louis, 
Missouri, in December 1960. The New York Transportation Research Forum sponsored the meeting 
and became the founding chapter of the ATRF. The Lake Erie, Washington D.C., and Chicago 
chapters were organized soon after and were later joined by chapters in other cities around the 
United States. TRF currently has about 300 members.
 With the expansion of the organization in Canada, the name was shortened to Transportation 
Research Forum. The Canadian Transportation Forum now has approximately 300 members.
 TRF organizations have also been established in Australia and Israel. In addition, an International 
Chapter was organized for TRF members interested particularly in international transportation and 
transportation in countries other than the United States and Canada.
 Interest in specific transportation-related areas has recently encouraged some members of TRF 
to form other special interest chapters, which do not have geographical boundaries – Agricultural 
and Rural Transportation, High-Speed Ground Transportation, and Aviation. TRF members may 
belong to as many geographical and special interest chapters as they wish.
 A student membership category is provided for undergraduate and graduate students who are 
interested in the field of transportation. Student members receive the same publications and services 
as other TRF members.
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Annual Meetings

In addition to monthly meetings of the local chapters, national meetings have been held every year 
since TRF’s first meeting in 1960. Annual meetings generally last three days with 25 to 35 sessions. 
They are held in various locations in the United States and Canada, usually in the spring. The 
Canadian TRF also holds an annual meeting, usually in the spring.
 Each year at its annual meeting the TRF presents an award for the best graduate student paper. 
Recognition is also given by TRF annually to an individual for Distinguished Transportation 
Research and to the best paper in agriculture and rural transportation.
 Annual TRF meetings generally include the following features:
 •	 Members are addressed by prominent speakers from government, industry, and 
 	 academia.
 •	 Speakers typically summarize (not read) their papers, then discuss the principal 
 	 points with the members.
 •	 Members are encouraged to participate actively in any session; sufficient time is 
 	 allotted for discussion of each paper.
 •	 Some sessions are organized as debates or panel discussions.
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