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Abstract

Since the growth of prostate cancer is androgen-sensitive, metastatic disease has been treated by
hormonal therapy. Almost all prostate cancer patients initially respond to hormonal therapy, but the
majority gradually develop resistance. The mechanism of the change in tumors from being
androgen-responsive to androgen-unresponsive is generally explained by clonal selection,
adaptation, an alternative pathway of signal transduction and androgen receptor (AR) involvement.
Since androgen action is mediated by ARs, abnormalities in ARs are believed to play an important
role in the progression of prostate cancer. Hyperactivated AR gene mutations have been detected in
20–30% of hormone-refractory tumors and functional analyses have demonstrated a wide
responsiveness to estrogens, progesterone and anti-androgens as well as to androgens. The AR is
highly amplified in 30% of patients with hormone-refractory prostate cancer that has been treated by
castration without anti-androgens. Immunohistochemical studies of ARs in hormone-refractory
prostate cancer specimens have shown that AR protein is down-regulated. DNA hypermethylation of
the AR promoter region leading to AR down-regulation has been identified in 30% of
hormone-refractory prostate cancers. The AR N-terminal domain in the LNCaP cell line model is
activated by interleukin-6 via mitogen-activated protein kinase and single transducers and activators
of transcription 3. Epidemiological observations have shown that short CAG repeats are more
frequently associated with higher transactivational function in the African-American population, which
may explain racial differences in the incidence of prostate cancer. Among Japanese, a short CAG
repeat appears to predict a response to hormonal therapy, indicating a positive prognostic value and
good prognosis at the metastatic stage of prostate cancer. Several co-factors between ARs and the
transcriptional complex have been cloned and reports indicate that steroid receptor co-activator 1 is
correlated with the hormone-refractory progression of prostate cancer.

Thus, ARs plays an important role in the progression of prostate cancer. Based on the findings
described above, genetic diagnosis and/or molecular-targeted therapy via AR pathways can be
developed for hormone-refractory states.
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Introduction
Loss of hormone sensitivity in prostate
cancer

The enzyme 5α-reductase type 2 is responsible for con-
verting testosterone to the more potent 5α-dihydro-
testosterone in the prostate. The actions of both testosterone
and 5α-dihydrotestosterone are mediated by the intracellular
androgen receptor (AR) (Kokontis & Liao 1999). The AR
belongs to the superfamily of nuclear receptors that mediates
the actions of steroids, retinoids, vitamin D3 and thyroid
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hormones (Zilliacus et al. 1995). The AR is a ligand-
activated transcription factor that mediates the biological
responses of androgens. These receptors have similar struc-
tures that are composed of an N-terminal domain (NTD) that
is involved in transcriptional activation, a DNA-binding
domain, a hinge region and a ligand-binding domain. After
the ligand binds to the AR, the ligand–receptor complex
translocates to the nucleus and binds specific androgen-
response elements on the chromosome. The AR might regu-
late the expression of various genes (Fig. 1). For example,
prostate-specific antigen is up-regulated by androgens in the
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Figure 1 Mechanism of ligand-dependence of AR. ARE, androgen-response element; DHT, dihydrotestosterone; HSP, heat
shock protein; SBG, sex hormone-binding globulin; T, testosterone.

prostate. The AR is expressed in both androgen-dependent
and -independent prostate cancers. Therefore, ARs might
play an important role in the progression of androgen-
independence in prostate cancer. Most patients with
metastatic prostate cancer initially respond to androgen-
ablation therapy. However, the cancer often recurs as an
androgen-independent tumor that is difficult to treat. Thus,
the progression from androgen-dependence to androgen-
independence is a critical step in the development of prostate
cancer, yet the molecular mechanism is poorly understood.

Loss of androgen sensitivity is generally considered to
have four causes: selection of cancer clones; adaptation of
cells to an environment without androgen; an alternative
pathway of signal transduction; and involvement of ARs
(Grossmann et al. 2001, Gelmann 2002, Navarro et al. 2002).
The present article focuses on AR involvement in the pro-
gression of androgen-responsive prostate cancer to being
androgen-unresponsive.

Over-expression (amplification) of ARs in
prostate cancer

Visakorpi et al. (1995) found a high level of AR amplifica-
tion at the DNA and RNA levels in seven of 23 (30%)
hormone-refractory prostate cancer patients and in none of
the specimens obtained from the same patients before
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therapy. However, almost all of the patients whose tumors
overexpressed ARs underwent androgen-deprivation mono-
therapy without the administration of anti-androgens.
Another report by Palmberg et al. (2000) evaluated whether
AR gene amplification at the primary progression of prostate
cancer is associated with a response to a second-line maxi-
mum androgen blockade (MAB). Patients with AR gene
amplification also had a decrease in serum prostate-specific
antigen (PSA) more often after MAB than those with no
amplification (P = 0.079). Amplification of the AR gene
detected in tumors that progress during androgen-deprivation
monotherapy is associated with a favorable treatment
response to second-line MAB. This finding suggests that at
least some tumors with amplified ARs retain a high degree
of dependence on residual androgens remaining in the serum
after monotherapy. These findings indicate that the loss of
androgen sensitivity in these patients was caused by the
growth of cancer clones stimulated by remaining androgen
produced by the adrenal glands, thus suggesting the import-
ance of MAB therapy.

AR gene mutations in prostate cancer
tissue

The initial drive to deal with AR gene mutations in prostate
cancer originated from a study of the LNCaP cell line that is
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derived from ametastatic lesion of the lymph nodes of a patient
with prostate cancer (Veldscholte et al. 1990). The AR gene of
this cell line contains one mutation at codon 877 (Thr to Ala).
The growth of LNCaP cells is stimulated in vitro by androgens,
estrogens, progestogens and several anti-androgens, indicating
a widely responsive property of the LNCaP cell.

Mutations in the AR gene have been detected in about
10–20% of prostate cancer specimens. The frequency of
mutation generally appears higher in hormone-refractory,
metastatic tumors compared with untreated lower-grade pri-
mary tumors (Suzuki et al. 1993, 1996, Gaddipati et al. 1994,
Taplin et al. 1995, 1999, Marcelli et al. 2000). Since the
growth of early-stage prostate cancer appears to be mediated
by wild-type ARs, receptor mutation appears to function in
conferring a growth advantage on cells during progression.
Functional analyses of several AR mutations detected in hor-
mone-refractory cancers have revealed the same response
variety as those of LNCaP cells (Table 1).

AR gene mutations have been identified in five of 16
patients treated by MAB with flutamide, which powerfully
stimulates these mutant ARs (Taplin et al. 1999). In contrast,
AR mutants detected in 17 patients treated by androgen-
ablation monotherapy were not stimulated by flutamide.
These findings, together with the clinical history of the
patients, indicated that the AR mutations arose in response
to strong selective pressure exerted by flutamide. Thus, AR
gene mutation might be one molecular mechanism through
which prostate cancer loses androgen-dependence.

Given that certain mutations can alter AR ligand speci-
ficity, AR mutation might play a key role in ‘anti-androgen
withdrawal syndrome’ (Kelly & Scher 1993, Suzuki et al.
1996). This phenomenon occurs in a subset of patients who
experience a relapse of tumor growth, and it is characterized
by an increasing serum PSA concentration after long-term
anti-androgen treatment. The cessation of anti-androgen
medication improves symptoms and serum PSA levels
decrease, suggesting that the anti-androgen acts agonistically
in the tumor cells to promote growth. Our previous study
found that in two of four patients who experienced improve-
ment after anti-androgen withdrawal (out of 22 total prostate
cancer patients), AR mutations occurred during anti-
androgen treatment (Suzuki et al. 1996). These mutations

Table 1 Hyperactivated AR mutations in hormone-refractory prostate cancers

DHT Estradiol Progesterone Niltamide/flutamide

Wild-type + + + − − + +
V715M* + − + + + +
A721T + − − +
H874Y* + + + + + + +
T877A# + + + + + + +
T877S* + + + + + + +
Q902R ± − − −

*These mutated ARs were found in the patients who had been treated with flutamide.
#This mutation is identical to that found in LNCaP cell line.
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were identical to that in LNCaP cells (T877A), and were
undetected in untreated tumors. This finding together with
the reports of others (Taplin et al. 1999, Balk 2002), indi-
cates that ‘anti-androgen withdrawal syndrome’ is caused by
AR ‘hyperactivated’ mutation.

Down-regulation of ARs in endocrine
therapy-resistant prostate cancers –
hypermethylation of AR promoter region

Immunohistochemical studies of ARs in prostate cancer have
revealed heterogeneous expression of the AR, as it is a
feature of the normal prostate, benign prostatic hypertrophy
and of prostate cancers including those that are resistant to
endocrine therapy (Masai et al. 1990, Takeda et al. 1996).
The ratio of AR-positive cells was negatively related to histo-
logical grade (Gleason score) in prostate cancer specimens.
In addition, comparisons of AR status before and after endo-
crine therapy within the same patient showed that the AR
was down-regulated during the loss of androgen responsive-
ness. The exact mechanism for this process remains obscure,
but the following pathway could be one explanation.

Many types of malignancies are associated with the DNA
hypermethylation of some tumor suppressor genes (i.e. VHL,
RB, p16/MTS1/CDK4I etc.) (Baylin et al. 1998, Nakayama
et al. 2001). The main target of regional hypermethylation is
normally unmethylated CpG islands located in gene promoter
regions. This hypermethylation correlates with transcrip-
tional repression that can serve as an alternative to coding-
region mutations to inactivate the genes. Hypermethylated
CpG islands are located at the estrogen receptor promoter in
breast cancer tissues. Our recent study (Nakayama et al.
2000) showed that in vitro DNA methylation of the AR pro-
moter in CpG islands is associated with a loss of AR expres-
sion in human prostate cancer cells and tissues (Fig. 2). The
AR was more frequently hypermethylated in hormone-
refractory prostate cancer tissues (29%) compared with
untreated primary tissues (10%). These results showed that
hypermethylation of the AR promoter region down-regulates
AR expression, suggesting one mechanism for the loss of
androgen-responsiveness. In this context, our previous study
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Figure 2 Hypermethylation analysis of AR promoter. Upper panel: AR promoter was divided into three regions and methylation
was analyzed. Lower panel: AR promoter is highly methylated in the DU145 prostate cancer cell line. No CpG islands are
methylated in control cells. DU145 and PC3 are AR-negative prostate cancer cell lines. LNCaP cell line is AR-positive. CREB,
cAMP-response element-binding protein; Sp1, specificity protein-1.

demonstrated that resumption of androgen-dependent pro-
cesses (i.e. introduction of AR into AR-negative cells)
reduces the growth rate, accompanied by changes in pheno-
type, suggesting that AR activity is a tumor suppressor
(Suzuki et al. 1994).

Androgen-independent activation of AR
activation by interleukin-6 (IL-6)

Recent studies have postulated that androgen-independent
activation of the ARmediates the androgen-independent pro-
gression of prostate cancer in the absence of androgen.
Ligand-independent activation of the AR was first demon-
strated in DU145 prostate cancer cells treated with growth
factors such as epidermal growth factor (EGF), keratinocyte
growth factor and insulin-like growth factor-I (Culig et al.
1994). Sadar (1999) has shown that the activator of the pro-
tein kinase A pathway, forskolin, up-regulates the transcrip-
tional activity of the AR in a ligand-independent manner.
The EGF receptor-related protein HER-2/neu also activates
the AR in the absence of ligand (Craft et al. 1999). More-
over, some groups have shown that butyrate, luteinizing-
hormone releasing hormone, caveolin, thyroid hormone and
IL-6 ligand-independently activate AR.
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Several clinical investigations have shown that serum
levels of IL-6 are significantly elevated in patients with hor-
mone-refractory disease (Drachenberg et al. 1999, Nakash-
ima et al. 2000). These findings indicate that IL-6 is involved
in the androgen-independent progression of prostate cancer.
IL-6 receptor is also expressed in both prostate cancer tissues
and prostate cancer cell lines. IL-6 is a multifunctional cyto-
kine that plays an important role in the regulation of hemato-
poiesis, the immune response, inflammation, bone metabo-
lism and neural development and it can increase the
proliferation of some types of cancer cells, including prostate
cancer. Therefore, IL-6 is considered to be an autocrine or a
paracrine growth factor (Okamoto et al. 1997). IL-6 binding
to its receptor activates signal transducers and activators of
transcription (STAT3), as well as mitogen-activated protein
kinase (MAPK) in LNCaP cells. These two components
mediate signaling cross-talk between steroid nuclear recep-
tors and other signaling pathways. MAPK is involved in
estrogen-independent activation by EGF. STAT3 can co-
activate glucocorticoid-bound glucocorticoid receptor and
lead to its synergistic activation in combinationwith IL-6 and
glucocorticoid. Ueda et al. (2002) have reported that IL-6
increasesMAPK phosphorylation and activates the AR NTD.
Direct interaction between amino acids 234–558 of the AR
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NTD and STAT3 in IL-6 treated LNCaP cells has been
shown. Figure 3 shows that IL-6 activates human AR NTD
through a mechanism that is dependent upon MAPK and
STAT3 signal transduction pathways in LNCaP prostate
cancer cells. These results suggest that IL-6 is involved in the
androgen-independent progression of prostate cancer.

Involvement of co-regulators (co-factors)

Several co-regulators of AR and transcriptional complex
have been cloned. Yeh & Chang (1996) have cloned ARA70
as a specific co-regulator for AR and demonstrated that
ARA70 functions as a transcriptional activator in DU145,
which is an AR-negative prostate cancer cell line, in the pres-
ence of androgen. Figure 4 shows AR-interacting proteins,
some of which are involved in the progression of prostate
cancers. For example, transcriptional intermediary factor 2
and steroid receptor co-activator 1 (SRC-1) are up-regulated
in hormone-refractory prostate cancers.

SRC-1 was the first member of the co-activator family to
be identified (Onate et al. 1995). SRC-1 protein enhances
transcriptional activity through intrinsic histone acetyl-
transferase activity. SRC-1 up-regulates the transcriptional
activity of the AR in a ligand-dependent manner and this
process is regulated through phosphorylation by MAPK.
However, the role of SRC-1 in androgen-independent pros-
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Figure 3 Hypothetical model of signal transduction pathways leading to ligand-independent activation of AR by IL-6 in LNCaP
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tate cancer is not clear. One mechanism of ligand-
independent AR activation might include the increased
expression of AR co-activators such as SRC-1. Recent
studies have shown that SRC-1 expression is increased in
many recurrent prostate cancer tissues (Gregory et al. 2001).
Some groups have shown that SRC-1 interacts with the
nuclear receptors in a ligand-independent manner. SRC-1
enhances the activation function-1 activity of the ER (in the
presence of both estradiol and tamoxifen (Webb et al. 1998)).
SRC-1 co-activates ligand-independent activation of the
chicken progesterone receptor (cPR). The extracellular
signal-regulated kinase kinase inhibitor, U0126, inhibits the
8-bromo-cAMP-dependent and progesterone-dependent acti-
vation of cPR (Rowan et al. 2000). SRC-1 interacts directly
with the AR NTD via a conserved glutamine-rich region
between residues 1053 and 1123 and enhances IL-6-induced
ligand-independent activation of the AR NTD via a MAPK-
dependent pathway in LNCaP human prostate cancer cells.
Inhibition of the phosphorylation of either SRC-1 or the AR
NTD does not prevent protein–protein interactions, but rather
transactivation. This implies that protein–protein interaction
between SRC-1 and the AR NTD is independent of MAPK
activity. A mechanism additional to MAPK phosphorylation
of SRC-1 may be required for ligand-independent activation
of the AR (Ueda et al. 2002). These results suggested that
interactions between the AR and co-activators represent
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another therapeutic target of treatment for androgen-
independent prostate cancer.

Short CAG repeats in the NTD of AR

The incidence of prostate cancer is highly variable among
races. The incidence is highest among people of African
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origin and lowest among Asians. Several reports have shown
that shorter polyglutamine and polyglycine repeats correlate
with a higher transactivational function or expression level
of ARs, which is associated with an increased risk of prostate
cancer (Montgomery et al. 2001). Hardy et al. (1996) found
a significant correlation between reduced CAG repeat length
and age at onset of prostate cancer, suggesting that CAG
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repeat length impinges on mechanisms involved in tumor
initiation but not in the progression of localized to advanced
cancer. We recently found that shorter CAG repeats can pre-
dict the marker response of Japanese patients with metastatic
prostate cancers (Suzuki et al. 2002). Thus, polymorphisms
of endocrine-related genes may have the potential to predict
responses to hormonal treatment and patient prognosis.

Conclusions

Androgen-ablation therapy has been an important modality
in the treatment of disseminating prostate cancer for nearly
60 years. However, loss of androgen-dependence in prostate
cancer remains a key dilemma in treating this malignancy.
Since prostate cancer is highly heterogeneous (Suzuki et al.
1998), several mechanisms may simultaneously contribute to
the loss of androgen-dependence within the same patient.
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