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Abstract

Access control is one of the most fundamental and widely

used security mechanisms. Access control mechanisms con-

trol which principals such as users or processes have ac-

cess to which resources in a system. To facilitate manag-

ing and maintaining access control, access control policies

are increasingly written in specification languages such as

XACML. The specification of access control policies itself

is often a challenging problem. Furthermore, XACML is in-

tentionally designed to be generic: it provides the freedom

in describing access control policies, which are well-known

or invented ones. But the flexibility and expressiveness pro-

vided by XACML come at the cost of complexity, verbosity,

and lack of desirable-property enforcement. Often common

properties for specific access control policies may not be

satisfied when these policies are specified in XACML, caus-

ing the discrepancy between what the policy authors intend

to specify and what the actually specified XACML policies

reflect. In this position paper, we propose an approach for

conducting conformance checking of access control policies

specified in XACML based on existing verification and test-

ing tools for XACML policies.

1. Introduction

Access control is one of the most fundamental and

widely used security mechanisms. It controls which prin-

cipals such as users or processes have access to which re-

sources in a system. To facilitate managing and maintain-

ing access control, access control policies are increasingly

written in specification languages such as XACML [2] and

Ponder [10]. Whenever a principal requests access to a

resource, that request is passed to a software component

called a Policy Decision Point (PDP). A PDP evaluates the

request against the specified access control policies, and

permits or denies the request accordingly.

Assuring the correctness of policy specifications is be-

coming an important and yet challenging task, especially

as access control policies become more complex and are

used to manage a large amount of sensitive information or-

ganized into sophisticated structures. Identifying discrepan-

cies between policy specifications and their intended func-

tion is crucial because correct implementation and enforce-

ment of policies by applications are based on the premise

that the policy specifications are correct. As a result, policy

specifications must undergo rigorous verification and vali-

dation to ensure that the policy specifications truly encap-

sulate the desires of the policy authors.

For its independency of platform systems and flexibility

in expression, XACML [2] is one of the popular mecha-

nisms for specifying access control policies. XACML is

designed with the basic enforcement mechanisms of access

control in mind, but not constructed toward any particu-

lar policy or model; it provides the freedom in describing

access control policies, which are well-known or invented

ones. The flexibility and expressiveness of XACML comes

at the cost of complexity and verbosity; furthermore, there

is no efficient feature in XACML that allows policy authors

to check the conformance and integrity of the specified pol-

icy (or its model) with respect to the semantic consistency

of an access control policy [15]. To address the issue, we

propose an approach for conducting conformance checking

of access control policies specified in XACML, based on

previous XACML policy verification and testing tools.

The rest of the paper is organized as follows. Section 2

presents background information of XACML. Section 3

presents an XACML policy verification tool developed by

other researchers and XACML policy testing tools devel-

oped in our previous work. Section 4 describes the proposed

approach of conformance checking based on previous veri-

fication and testing tools. Section 5 describes related work,

and Section 6 concludes.

2. XACML

The OASIS (Organization for the Advancement of Struc-

tured Information Standards) standards XACML (eXtensi-

ble Access Control Markup Language) [2] and SAML (Se-



curity Assertion Markup Language) [3] are two of the im-

portant authorization-related standards [26]. XACML is

an XML-based general-purpose language used to describe

policies, requests, and responses for access control policies.

It provides a flexible and mechanism-independent represen-

tation of access rules that vary in granularities, allowing

the combination of different authoritative domains’ policies

into one policy set for making access control decisions in a

widely distributed system environment.

The five basic elements of XACML policies are

PolicySet, Policy, Rule, Target, and Condition. A

policy set is simply a container that holds other policies or

policy sets. A policy is expressed through a set of rules.

With multiple policy sets, policies, and rules, XACML must

have a way to reconcile conflicting rules. A collection of

combining algorithms serves this function [2]. Each algo-

rithm defines a different way to combine multiple decisions

into a single decision. Both policy combining algorithms

and rule combining algorithms are provided. Seven stan-

dard combining algorithms are provided but user-defined

combining algorithms are also allowed [4].

To aid in matching requests with appropriate policies or

rules, XACML provides a target [2], which is basically a set

of simplified conditions for the subject, resource, and action

that must be met for a policy set, policy, or rule to apply to a

given request. Once a policy or policy set is found to apply

to a given request, its rules are evaluated to determine the

response.

XACML also provides attributes, attribute values, and

functions. Attributes are named values of known types

that describe the subject, resource, and action of a

given access request [2]. A request is formed with

attribute values that will be compared to attribute val-

ues in a policy to make the access decisions. At-

tribute values from a request are resolved through

two mechanisms: the AttributeDesignator and the

AttributeSelector [2]. The former lets the policy spec-

ify an attribute with a given name and type, whereas the

latter allows a policy to look for attribute values through an

XPath query.

Figure 1 shows an example XACML policy, which is re-

vised and simplified from a sample Fedora1 policy. This

policy has one policy element, which in turn contains two

rules. The rule combining algorithm is “first-applicable”,

meaning that the decision of the first applicable rule encoun-

tered during evaluation is returned as the decision. Lines

2 − 13 define the target of the policy, which indicates that

this policy applies only to those access requests of an object

“demo:5”. The target of Rule 1 (Lines 15− 25) further nar-

rows the scope of applicable requests to those asking to per-

form “Dissemination” action on object “demo:5”. Its condi-

tion (Lines 26− 35) indicates that if the subject’s “loginId”

1http://www.fedora.info

1<Policy Id="demo" RuleCombAlgId="first-applicable">

2 <Target>

3 <Subjects> <AnySubjects/> </Subjects>

4 <Resources>

5 <Resource>

6 <ResourceMatch MatchId="equal">

7 <AttrValue>demo:5</AttrValue>

8 <ResourceAttrDesignator AttrId="objectid"/>

9 </ResourceMatch>

10 </Resource>

11 </Resources>

12 <Actions> <AnyAction/></Actions>

13 </Target>

14 <Rule RuleId="1" Effect="Deny">

15 <Target> <Subjects><AnySubject/></Subjects>

16 <Resources> <AnyResource/> </Resources>

17 <Actions>

18 <Action>

19 <ActionMatch MatchId="equal">

20 <AttrValue>Dissemination</AttrValue>

21 <ActionAttrDesignator AttrId="actionid"/>

22 </ActionMatch>

23 </Action>

24 </Actions>

25 </Target>

26 <Condition FunctionId="not">

27 <Apply FunctionId="at-least-one-member-of">

28 <SubjectAttrDesignator AttrId="loginid"/>

29 <Apply FunctionId="string-bag">

30 <AttrValue>testuser1</AttrValue>

31 <AttrValue>testuser2</AttrValue>

32 <AttrValue>fedoraAdmin</AttrValue>

33 </Apply>

34 </Apply>

35 </Condition>

36 </Rule>

37 <Rule RuleId="2" Effect="Permit"/>

38</Policy>

Figure 1. An example XACML policy

is “testuser1”, “testuser2”, or “fedoraAdmin”, then the re-

quest should be denied. Otherwise, according to Rule 2
(Line 37) and the rule combining algorithm of the policy

(Line 1), a request applicable to the policy should be per-

mitted.

3. Policy Verification and Testing

Policy verification and testing are important techniques

for high assurance of correct specification of access control

policies. Our proposed conformance checking approach is

based on an existing XACML policy verification tool (de-

veloped by Fisler et al. [14]) and policy testing tools (de-

veloped in our previous work [22–25]). Because the policy

verification tool can handle only a subset of XACML fea-

tures and may not handle well complex policies or proper-

ties, our proposed approach also additionally exploits our

policy testing tools to conduct conformance checking.

3.1. Policy Verification

Margrave [14] is a software tool suite written in PLT

Scheme [13] for verifying properties against access control

policies written in XACML. Margrave is implemented on



top of the CUDD package [27]. CUDD provides an effi-

cient implementation of multi-terminal binary decision di-

agrams (MTBDDs). Margrave represents XACML policies

as MTBDDs, which are a decision diagram that maps bit

vectors over a set of variables to a finite set of results. Mar-

grave allows the user to specify various forms of constraints

as properties in the Scheme programming language. Mar-

grave’s API can verify these properties and if there exist any

counterexamples (being specific requests) that violate the

specified properties, these counterexamples are produced.

3.2. Policy Testing

Our previous work has developed a set of testing tools for

XACML policies, including a fault model and its supporting

mutation testing tool [24], a structural coverage measure-

ment tool [25], and several test generation tools [22, 23].

In policy testing, test inputs are access requests and test

outputs are access responses. The execution of a test in-

put occurs as a request is evaluated by the PDP against

the access control policy under test. Policy authors can in-

spect request-response pairs to check whether they are as

expected. As with software verification, formal policy veri-

fication and testing techniques are complementary means to

achieve the same goal.

3.2.1 A Fault Model and Mutation Testing

A fault model is an engineering model of something that

could go wrong in the construction or operation of a piece

of equipment, structure, or software. In our case, we model

things that could go wrong when constructing an access

control policy. With this fault model, we can guide the de-

velopment of testing techniques and investigate these tech-

niques’ effectiveness against the fault model. Any fault re-

sults in a semantic change in the policy but we broadly cat-

egorize faults as being semantic or syntactic as follows.

Semantic Faults. Semantic faults are more elusive be-

cause they involve incorrect use of the logical constructs

of the policy specification language. For XACML policies,

these logical constructs include policy or rule combining al-

gorithms, policy evaluation order, rule evaluation order, and

various functions found in conditions. Because these are

logical errors in the construction of the policy, it is unlikely

that static analysis can find such errors. We define and im-

plement several mutation operators that emulate semantic

faults [24].

Syntactic Faults. Syntactic faults are easier to make and

consist of simple typos that result in a syntactically correct

policy but a semantically faulty one. Indeed syntactic faults

may result in syntactically incorrect policies but we assume

that basic static analysis tools exist to check for such in-

consistencies. For example, in XACML, an XML schema

definition (XSD) can be used to check for obvious syntactic

flaws. Syntactic faults that do not violate the XSD can occur

due to typos in attribute values. We define and implement

three mutation operators that emulate syntactic faults [24].

Mutation testing [11] has historically been applied to

general-purpose programming languages in measuring the

quality of tests or selecting tests. Based on the proposed

fault model for access control policies, we have developed

a mutation testing tool [24] that automatically seeds a policy

under test with faults by applying these mutation operators,

thereby producing numerous faulty policies.

3.2.2 Structural Coverage Criteria

Our previous work [25] proposes structural coverage crite-

ria for XACML policies based on observing whether each

individual policy element is involved when a request is eval-

uated. If no requests are evaluated against a rule during test-

ing, then potential errors in that rule cannot be discovered.

Thus, it is important to generate requests so that all or large

portions of rules are involved in the evaluation of at least

one of the requests. In XACML, we can see there are three

major entities: policies, rules for each policy, and a condi-

tion for each rule. We define three policy coverage metrics

for each of these entities [25]:

• Policy coverage. A policy is covered by a request if

the policy is applicable to the request and the policy

contributes to the decision; in other words, all the con-

ditions in the policy’s target are satisfied by the request

and the PDP has yet to fully resolve the decision for the

given request. Policy coverage is the number of cov-

ered policies divided by the number of total policies.

• Rule coverage. A rule for a policy is covered by a re-

quest if the rule is also applicable to the request and

the policy contributes to the decision; in other words,

the policy is applicable to the request and all the condi-

tions in the rule’s target are satisfied by the request and

the PDP has yet to fully resolve the decision for the

given request. Rule coverage is the number of covered

rules divided by the number of total rules.

• Condition coverage. The evaluation of the condition

for a rule has two outcomes: true and false, which are

called as the true condition and false condition, respec-

tively. A true condition for a rule is covered by a re-

quest if the rule is covered by the request and the con-

dition is evaluated to be true. A false condition for a

rule is covered by a request if the rule is covered by

the request and the condition is evaluated to be false.

Condition coverage is the number of covered true con-

ditions and covered false conditions divided by twice

of the number of total conditions.



To automate the measurement of structural coverage, we

developed a measurement tool [25] implemented by instru-

menting Sun’s open source XACML implementation [4].

3.2.3 Test Generation

Our previous work [22, 23] developed two test generation

techniques, which have different levels of analysis cost and

quality of generated tests.

Test Generation based on Solving Single-Rule Con-

straints. To generate tests for achieving high coverage

based on structural coverage criteria, we developed a tech-

nique that considers each rule in isolation and attempts

to satisfy the constraints required for that rule to be ap-

plied [22]. A request set is generated that satisfies all pos-

sible combinations of truth values for each independent

clause. Therefore, a predicate with n independent clauses

has 2n possible assignments and so at most 2n requests are

generated for each rule.

Test Generation based on Change-Impact Analysis.

We developed a test generation tool [23] that generates tests

by iteratively manipulating inputs to Margrave [14], which

can also conduct change-impact analysis. Based on the

policies under test, we automatically synthesize two policy

versions whose differences are the coverage targets for test

generation. Then these two versions are fed to Margrave,

which generates counterexamples to witness the behavioral

differences of the two versions, thus covering the coverage

targets.

4. Policy Conformance Checking

We propose to conduct conformance checking on

XACML policies against binding of policies rules (Sec-

tion 4.1) and some generic features of any access control

mechanism (Section 4.2). We also propose an implementa-

tion of conformance checking based on previous XACML

policy verification and testing tools (Section 4.3).

4.1. Rule Binding

Rule-binding properties assure that the XACML imple-

mentation of an access control policy does not authorize

users’ access requests that are not permitted by the rules

of the access control policy being implemented. We focus

on conformance checking for rule bindings in multilevel ac-

cess control [6], role-based access control [12], and Chinese

wall [8]. We focus on these three types of access control

policies not only because they are popular but also because

they can be formally modeled; so we can verify our results

(of inconsistency faults) formally against the model. In fu-

ture work, we plan to include more types of policies that

may be hard to described by a formal model, such as Dis-

cretionary Access Control (DAC) [1] and other composed

policies. But the following three major types shall be sig-

nificant and useful enough for most XACML access control

implementations.

Multilevel Access Control. We check whether a policy

specified in XACML enforces the Bell LaPadula confiden-

tiality model and the Biba integration models [6]. There are

two types of checking. First, we check binding of Bell La-

Padula confidentiality model to make sure that the XACML

policy is confined to the following properties of the Bell La-

Padula model:

• Check if security classes C(s) or C(o) for every sub-

ject s and object o are checked for every access re-

quest;

• Check if the Simple Security Property is enforced: a

subject s may have read access to an object o only if

C(o) ≤ C(s);

• Check if the * (star) Property is enforced: a subject

s who has read access to an object o may have write

access to an object p only if C(o) ≤ C(p).

Second, we check binding of Biba integration model to

make sure that the XACML policy is confined to the follow-

ing properties of the Biba model:

• Check if integrity classification scheme, i.e., I(s) and

I(o) for every subject s and object o are checked for

every request;

• Check if the Simple Integrity Property is enforced:

subject s can modify (have write access to) object o

only if I(s) ≥ I(o);

• Check if Integrity *-Property is enforced: if subject s

has read access to object o with integrity level I(o), s

can have write access to object p only if I(o) ≥ I(p).

Role-Based Access Control (RBAC) [12]. The check-

ing should check whether the following two core RBAC

properties are enforced in an XACML policy for RBAC [5].

The first core property is role authorization property: a sub-

ject can never have an active role that is not authorized for

its user. The second property is object access authorization

property: a subject s can perform an operation op on object

o only if there exists a role r that is included in the subject’s

active role set and there exists a permission that is assigned

to r such that the permission authorizes the performance of

op on o.

Chinese Wall [8]. We check if the XACML policy en-

forces the Conflict-of-Interest separation models of Chi-

nese Wall policy [8]: if subject s has accessed object

o in group x, subject s will not be granted access to



group y if objects in group x and group y are conflict-of-

interest (COI). Thus, the checking should detect whether

the XACML policy rules allow a subject to access objects

in the COI groups.

4.2. Access Control Features

While rule-binding properties are specific to an access

control policy itself, access control features are common to

most of all access control policies including formal ones

(being described by a model) or improvised ones (rule-

based with no formal model). We focus on conformance

checking for two generic checkable features of any access

control mechanism.

Safety. Based on the constraints of access control rules

(for example, user x is not allowed to perform y on object

z), the checking should be able to check whether there is

any leaking of privilege that the access (x performs y on z)

is granted through the XACML specification. The checking

is to detect whether any specified combinations of XACML

rules grant an access (subject x performs operation y on

object z) that is not allowed by the access control policy.

Separation of Duties (SOD). An SOD policy makes

sure that any subject s in user group A will not be granted

to access objects in group X if s is also a member of user

group B. This checking checks whether there is a subject

assignment in XACML that allows a subject s being a mem-

ber of groups A and B to access object in group X , if the

constraint is defined.

4.3. Proposed Implementation

To implement conformance checking for XACML, we

propose to build tools upon Margrave [14], an XACML pol-

icy verification tool, and our previous testing tools [22–25].

We propose to develop a tool for generating concrete

checkable properties for a given XACML policy based on

both information in the policy and generic properties (the

rule bindings or features), because these generic properties

may not be directly checkable statically or dynamically and

need to be instantiated to concrete properties with elements

in the given XACML policy.

To conduct conformance checking statically, we propose

to synthesize generated concrete properties in Scheme [13]

(in the format that can be recognized by Margrave [14]) and

then invoke Margrave with the policy and these properties.

Margrave will report property violations if any.

Because sometimes the XACML policy under checking

may not be able to be handled by Margrave, we propose

to conduct conformance checking dynamically through pol-

icy testing. Given a property for conformance checking, we

statically scan through the policy to identify likely locations

that may be related to the property and consider these loca-

tions as coverage targets. Given these coverage targets, our

policy test generation tools [22, 23] can be used to generate

requests to cover these locations. Then the request-response

pairs can be checked against the property.

We propose to empirically investigate the relation-

ship between conformance checking and structural cover-

age [25]. In particular, we plan to investigate whether a

full-structural-coverage test suite can help detect all or most

faults that are caused by property violations in our confor-

mance checking. We also propose to empirically investigate

the relationship between conformance checking and fault

models [24]. In particular, we plan to investigate whether

some specific types of faults (implemented in mutation op-

erators) would be more likely to cause the violation of the

properties for conformance checking.

5. Related Work

Much work has been done in verification of access

control policies. One important aspect of policy verifi-

cation is to formally check general properties of access

control policies, such as inconsistency and incomplete-

ness [7, 18, 20, 21]. In the former case, an access request

can be both accepted and denied according to the policy,

while in the latter case the request is neither accepted nor

denied. Although efficient algorithms have been proposed

to perform such verification for specific systems [17, 19],

this problem can be intractable or even undecidable when

dealing with policies that involve complex constraints.

Besides the verification of general properties, several

tools have been developed to verify properties for XACML

policies [2]. Hughes and Bultan translated XACML poli-

cies to the Alloy language [16] and checked their properties

using the Alloy Analyzer. Fisler et al. [14] developed a tool

called Margrave that uses multi-terminal binary decision

diagrams [9] to verify user-specified properties and per-

form change-impact analysis. Zhang et al [29] developed a

model-checking algorithm and tool support to evaluate ac-

cess control policies written in RW languages, which can be

converted to XACML [28]. Given an XACML policy and

generic properties, our proposed approach conducts con-

formance checking statically by automatically synthesizing

concrete properties for static policy verification (based on

Margrave [14]). In addition, our proposed approach also

exploits testing tools to conduct conformance checking dy-

namically.

6. Conclusion

Access control has been one of the most fundamental

and widely used security mechanisms. To facilitate manag-

ing and maintaining access control, access control policies



are increasingly written in specification languages such as

XACML. XACML is intentionally designed to be generic:

it provides much freedom and flexibility in describing ac-

cess control policies. XACML does not provide specific

features to allow the policy authors to check the confor-

mance and integrity of the specified policy (or its model)

with respect to the semantic consistency of an access con-

trol policy. To address the issue, we have proposed an

approach for conducting conformance checking of access

control policies specified in XACML, based on previous

XACML policy verification and testing tools. In particu-

lar, we propose to synthesize concrete properties from the

policy under checking and desirable generic properties, and

then feed the synthesized concrete properties to a policy ver-

ification tool or policy testing tools.
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