
A Hybrid Reinforcement Learning Approach to
Autonomic Resource Allocation

Gerald Tesauro�, Nicholas K. Jong†, Rajarshi Das� and Mohamed N. Bennani‡�IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne,NY 10532 USA
Email: fgtesauro,rajarshig@us.ibm.com

†Dept. of Computer Sciences,Univ. of Texas, Austin, TX 78712USA
Email: nkj@cs.utexas.edu

‡Dept. of Computer Science, George Mason Univ., Fairfax, VA 22030 USA
Email: mbennani@gmu.edu

Abstract— Reinforcement Learning (RL) provides a promising
new approach to systems performance management that differs
radically from standard queuing-theoretic approaches making
use of explicit system performance models. In principle, RLcan
automatically learn high-quality management policies without an
explicit performance model or traffic model, and with little or
no built-in system specific knowledge. In our original work [1],
[2], [3] we showed the feasibility of using online RL to learn
resource valuation estimates (in lookup table form) which can
be used to make high-quality server allocation decisions ina
multi-application prototype Data Center scenario. The present
work shows how to combine the strengths of both RL and
queuing models in a hybrid approach, in which RL trains offline
on data collected while a queuing model policy controls the
system. By training offline we avoid suffering potentially poor
performance in live online training. We also now use RL to train
nonlinear function approximators (e.g. multi-layer perceptrons)
instead of lookup tables; this enables scaling to substantially
larger state spaces. Our results now show that, in both open-loop
and closed-loop traffic, hybrid RL training can achieve significant
performance improvements over a variety of initial model-based
policies. We also find that, as expected, RL can deal effectively
with both transients and switching delays, which lie outside the
scope of traditional steady-state queuing theory.

I. I NTRODUCTION

The primary goal of research in autonomic computing is to
reduce as much as possible the degree of human involvement
in the management of complex computing systems. Ideally
a human would only specify a broad high-level objective as
input to the system’s management algorithms. Then while
the system is running, the management algorithms would
continually sense the system state and execute management
actions that optimally achieve the high-level objective. There
has been a great deal of recent research focused on algorithms
that make use of explicit system performance models, such
as control-theoretic or queuing-theoretic models. These ap-
proaches have achieved noteworthy success in many specific
management applications. However, we note that the design
and implementation of accurate performance models of com-
plex computing systems can be highly knowledge-intensive
and labor-intensive, and moreover, may require original re-
search. For example, queuing network models of multi-tier
internet services have only recently been published in [4].
Given the central goal of autonomic computing, it is therefore

worth investigating whether the development of management
algorithms may itself be automated to a considerable extent.

In very recent work [1], [2], [3], [5] a radically different
approach based on Reinforcement Learning (RL) has been
proposed for automatically learning management policies.
(By “policy” we mean a mapping from system states to
management actions.) In its most basic form, RL provides a
knowledge-free trial-and-error methodology in which a learner
tries various actions in numerous system states, and learns
from the consequences of each action [6]. RL can poten-
tially learn decision-theoretic optimal policies in dynamic
environments where the effects of actions are Markovian (i.e.
stationary and history-independent). In addition to firm theo-
retical support in the MDP (Markov Decision Process) case,
there have also been many notable successful applications
of RL over the last decade in real-world problems ranging
from helicopter control to financial markets trading to world-
championship game playing [7], [8], [9].

From an autonomic computing perspective, the RL approach
offers two major advantages. First, RL does not require an
explicit model of either the computing system being managed
or of the external process that generates workload or traffic.
Second, by its grounding in MDPs, the theory underlying RL
is fundamentally a sequential decision theory that properly
treats dynamical phenomena in the environment, including
the possibility that a current decision may have delayed
consequences in both future rewards and future observed
states. This means that RL could potentially outperform other
methods that treat dynamical effects only approximately, or
ignore them altogether (e.g. traditional steady-state queuing
theory), or cast the decision making problem as a series of
unrelated instantaneous optimizations.

While RL thus offers tremendous potential benefits in
autonomic computing, there are two major challenges in using
it to obtain practical success in real-world applications.First,
RL can suffer from poor scalability in large state spaces,
particularly in its simplest and best understood form in which a
lookup table is used to store a separate value for every possible
state-action pair. Since the size of such a table increases
exponentially with the number of state variables, it can quickly
become prohibitively large in many real applications. Second,



the performance obtained during live online training may be
unacceptably poor, both initially and during an infeasibly
long training period. Two factors may contribute to the poor
performance: (i) in the absence of domain knowledge or good
heuristics, the initial RL state may correspond to an arbitrarily
bad initial policy; (ii) in general RL procedures also need to
include a certain amount of “exploration” of actions believed
to be suboptimal. Typical mechanisms for exploration involve
randomized action selection and may be exceedingly costly to
implement in a live system.

In this paper, we present a new hybrid method combining
the advantages of both explicit model-based methods andtab-
ula rasaRL in order to address the above practical limitations.
Instead of training an RL module online on the consequences
of its own decisions, we propose offline training on data
collected while an externally supplied initial policy (based
e.g. on an appropriate queuing model) makes management
decisions in the system. The theoretical basis for this approach
lies in the convergence proofs of TD (Temporal Difference)
learning and related methods [6], combined with Bellman’s
policy improvement theorem [10]. These works suggest that,
given enough training samples, RL can converge to the correct
value functionVπ associated with any fixed policyπ, and
that the new policy whose behavior greedily maximizesVπ is
guaranteed to improve upon the original policyπ. We assume
that the initial model-based policy is good enough to give an
acceptable level of performance, but that there is still room for
improvement. By utilizing such a policy and training offline,
we avoid poor system performance that could occur using live
online training. We also note that our method can be applied
for multiple iterations: after we train an improved policyπ0
based on data obtained whileπ is running, we then useπ0
in the system to collect a second data set, which can then be
used to train a further improved policyπ00, etc..

The other key ingredient in our methodology is using a
nonlinear function approximator in place of a lookup table to
represent the value function. We have chosen to use neural
networks (multi-layer perceptrons) as they have the most
successful track record in RL applications, but of course many
other function approximators (e.g. regression trees, CMACs,
SVMs, wavelets, regression splines, etc.) could also be used.
Function approximators provide a mechanism for generalizing
training experience across states, so that it is no longer
necessary to visit every state in the state space. Likewise they
also generalize across actions, so that the need for exploratory
off-policy actions is also greatly reduced. In fact we find
in our system that we can obtain improved policies without
any exploration, by training solely on the model-based policy
decisions.

We have implemented and tested our hybrid RL approach
within a realistic prototype Data Center, in which servers are
to be dynamically allocated among multiple web applications
so as to maximize the expected sum of SLA payments in
each application. Our prototype system has been described in
detail in our prior work [11], [1], [2] and we have substantial
experience in developing a variety of effective policies for

server allocation within this system. For the experiments
reported here, we use both open-loop and closed-loop traffic
scenarios. In each scenario, we first implement appropriate
queuing models using standard practices for model design
and parameter estimation. We then collect system performance
data using a variety of initial allocation policies, including
not only our best queuing model policy, but also several
inferior policies (e.g. using queuing models with suboptimal
parameter tunings). As a worst-case example we also use a
uniform random allocation policy. For each initial policy,the
collected data is used to train a corresponding neural network,
which is then implemented in the prototype and tested for
performance improvements. In each case we find that the
RL-trained neural nets give substantially better performance
compared with the corresponding initial policies. We have
also obtained a number of interesting insights as to how the
outperformance is obtained, particularly regarding how the RL
nets are better able to deal with dynamic consequences of
reallocation, such as transients and switching delays.

The rest of the paper is organized as follows. Section II
describes details of our prototype Data Center. Section III
describes our specific RL methodology, including an overview
of the specific learning algorithm that we use (Sarsa(0)), and
a summary of our prior research using tabular online RL.
Section IV presents the new hybrid RL approach. Section V
gives details on our initial queuing model policies regarding
model design and parameter estimation. Section VI gives
performance results as well as providing insight into how the
trained RL value function are able to outperform the original
queuing models. Conclusions and prospects for future work
are given in Section VII.

II. PROTOTYPEDATA CENTER OVERVIEW

Our prototype Data Center [11], illustrated in Figure 1,
models how a set of identical servers might be dynamically
allocated among multiple web applications hosted within the
Center. Each application has its own Application Manager,
which is responsible for performance optimization within
the application and communicating with a Resource Arbiter
regarding resource needs. In our model, the optimization goal
within each application is expressed by a local performance-
based objective function, which we call “expected business
value.” The Resource Arbiter’s goal is to allocate servers so
as to maximize the sum of expected business value over all
applications (this implies that all local value functions share
a common scale). Allocation decisions are made in fixed five-
second time intervals as follows:

Each Application Manageri computes and reports to the
Arbiter a utility curveVi(�) estimating expected business value
as a function of number of allocated servers. We assume that
Vi expresses net expected revenue (payments minus penal-
ties) as defined by a local performance-based Service Level
Agreement (SLA). (More generally, we would also expect
Vi to include other considerations such as operational cost,
availability, service consistency, etc..) Upon receipt ofthe
utility curves from each application, the Arbiter then solves



for the globally optimal allocation maximizing total expected
business value (i.e. total SLA revenue) summed over the
applications. (This is a polynomial time computation sincethe
servers are homogeneous.) The Arbiter then conveys a list of
assigned servers to each application, which are then used in
dedicated fashion until the next allocation decision.

Application
Manager 1

Application
Manager 2

SLA $$

Resource
Arbiter

SLA $$

Server1 Server2 Server3 Server4Server1 Server2 Server3 Server4

V1(n1) V2(n2)

ServerList 1 ServerList2

1 2

HTTP
requests

HTTP
requests

Fig. 1. Data center architecture.

Our prototype system runs on a cluster of identical IBM eS-
erver xSeries 335 machines running Redhat Enterprise Linux
Advanced Server. Our standard experimental scenario uses
three applications and eight servers. Two of the applications
(called T1 and T2 hereafter) are separate instantiations of
“Trade3” [12], a realistic simulation of an electronic trading
platform, designed to benchmark web servers. This transac-
tional workload runs on top of IBM WebSphere and DB2.
The SLA for each Trade3 application is a sigmoidal function
of mean response time over the allocation interval, ranging
from a maximum value of +50 to a minimum value of -150.

Demand in each Trade3 environment is driven by a separate
workload generator, which can be set to operate either in open-
loop or closed-loop mode. The open-loop mode generates
Poisson HTTP requests with an adjustable mean arrival rate
ranging from 10-400 requests/sec. In closed-loop mode, the
generator simulates an adjustable finite number of customers
(ranging from 5-90) behaving in closed-loop fashion, all of
which have exponentially distributed think times with a fixed
meanZ = 0:17 seconds. It is interesting to study both modes
as they have very different characteristics (e.g., relationship
between response time and throughput) and require rather
different modeling techniques.

To provide a realistic emulation of stochastic bursty time-
varying demand, we use a modified time series model of Web
traffic, originally developed by Squillante et al. [13] to reset
by a small increment every 1.0 seconds either the closed-loop
number of customers, or the open-loop mean arrival rate. The
routing policy within each Trade3 application is round-robin
among its assigned servers, leading to approximately equal
load balancing.

The third application in our standard scenario is a long-
running, parallelizable “Batch” workload that can be paused
and restarted on separate servers as they are added and

removed. This emulates a non-web-based, CPU intensive
computation such Monte Carlo portfolio simulations. Since
there is no notion of time-varying demand in this application,
we posit the Batch SLA is a simple increasing function of
number of assigned servers, ranging from a value of -70 for
zero servers to a maximum value of +68 for six servers1.

III. B ACKGROUND ON REINFORCEMENTLEARNING

Reinforcement Learning (RL) refers to a set of general
trial-and-error methods whereby an agent can learn to make
good decisions in an environment through a sequence of
interactions. The basic interaction consists of observingthe
environment’s current state, selecting an allowable action, and
then receiving an instantaneous “reward” (a scalar measure
of value for performing the selected action in the given state),
followed by an observed transition to a new state. An excellent
general overview of RL is given in [6].

The particular RL rule we use here is an algorithm known
as Sarsa(0), which learns a value functionQπ(s;a) estimating
the agent’s long-range expected value starting in states, taking
initial action a and then using policyπ to choose subsequent
actions [6]. (For simplicity we hereafter omit theπ subscript.)
Sarsa(0) has the following form:

∆Q(st ;at) = α(t)[rt + γQ(st+1;at+1)�Q(st ;at)℄ (1)

Here(st ;at) are the initial state and action at timet, rt is the
immediate reward at timet, (st+1;at+1) denotes the next state
and next action at time(t +1), the constantγ is a “discount
parameter” between 0 and 1 expressing the present value of
expected future reward, andα(t) is a “learning rate” parameter,
which decays to zero asymptotically to ensure convergence.

WhenQ(s;a) is represented using a lookup table, equation 1
is guaranteed to converge for MDP environments, provided
that the policy for action selection is either stationary, or
asymptotically “greedy,” i.e. it chooses the action with highest
Q-value in a given state. However, as detailed below, these
conditions do not strictly hold in our system in three respects:
(i) Our applications are not exactly Markovian, although
this may be a reasonable approximation. (ii) In our hybrid
approach, described in Section IV, we use function approxima-
tion instead of lookup tables. (iii) Our formulation of RL isnot
at the global decision maker level, but instead localized within
each application, and from the local perspective the globalpol-
icy need not be greedy or stationary. We chose this formulation
due to much better scalability to many applications, as well
as a basic design principle that the arbiter should not receive
detailed state descriptions from each application. The issue of
whether localized RL converges in such a “composite MDP”
scenario [14] is an interesting open research topic which is
discussed in more detail in [2].

A. Summary of Previous RL Approach

In our previous work [1], [2], [3] we implemented a
localized version of online RL within the Trade3 application

1We enforce a constraint that each Trade3 must have at least one server,
so that Batch can never be allocated more than six servers.



manager. The RL module observed the application’s local
state, the local number of servers allocated by the arbiter,
and the reward specified by the local SLA. A lookup table
was used to representQ(s;a). Due in part to the table’s poor
scalability, we made a severe approximation in representing
the application state solely by the (discretized) current mean
arrival rate λ of page requests, and ignoring several other
sensor readings (e.g. mean response times, queue lengths,
number of customers, etc.) that could also have been used.
Hence our value function was two-dimensional:Q= Q(λ;n),
and it was encouraging that RL could achieve comparable
performance to standard queuing models using such a simple
function.

Since our learning was online and influenced the arbiter’s
decision making through the reported value estimates, it was
important thatQ(λ;n) be initialized to values that would yield
an acceptable initial performance level of the arbiter’s policy
at the start of the run. For this purpose we chose a heuristic
initialization assuming a linear dependence ofQ on demand
per serverλ=n. Such initialization required a modicum of
elementary domain knowledge, but perhaps would be more
difficult with additional state variables or a more complex
application.

We also devised two methods for dealing with significant
sparsity of table cell visits observed during the learning run.
First, we used a so-called “ε-greedy” exploration rule, in which
the arbiter would choose a random allocation with probability
ε = 0:1 instead of the utility-maximizing allocation. This
turned out to incur minimal cost in the simple system described
in [1], [2], [3] but can be expected to become more costly as
the complexity of the allocation task increases. Second, we
imposed soft monotonicity constraints based on the assump-
tion that the table values should be monotone decreasing in
λ and monotone increasing inn. This requires further domain
knowledge to devise and implement. We presume and in fact
found in our work described below that the use of function
approximation can greatly reduce or eliminate the need for
such techniques.

IV. H YBRID RL APPROACH

In our hybrid RL approach, a nonlinear function approxi-
mator is trained in batch mode on a dataset recorded while
an externally supplied policy makes management decisions
within a given computing system. While we have chosen to
use neural networks here, due to their prior successes in RL
applications as well as their robust generalization in high-
dimensional spaces [15], our methodology may be generally
used with other types of function approximators.

The use of an external policy is motivated by a desire to
avoid poor performance that would be expected during online
learning. This necessitates either using a good external policy,
or initializing the RL value function in a way that implements
a good initial policy. However, we expect the latter option to
be quite difficult, as it most likely requires extensive domain
knowledge of the particular system, and may also require
deep knowledge of the function approximator methodology.

Moreover, a carefully chosen RL initialization may lead to
an inferior final result compared to, for example, random
initialization.

The use of batch training is motivated by two factors.
First, due to the sample complexity of RL, a large number
of observed samples may be required before RL is capable
of learning an effective policy. Second, RL is a “bootstrap-
ping” procedure with non-stationary targets, since the target
regression value for the observation at timet depends on the
function approximator’s estimated value for the observation at
time t+1. Hence, as regression moves a function approximator
toward a set of targets, this causes the targets themselves
to change. This suggests a batch training methodology com-
prising a large number of sweeps through the dataset, with
incremental learning in each sweep.

Our hybrid RL approach for learning a value function for
an application takes as input a recorded sequence of(T +1)
observationsf(st ;at ; rt );0� t � Tg produced by an arbitrary
management policy, where(st ;at ; rt) are the observed state,
action and immediate reward at timet. We use Algorithm 1 to
compute a neural network value function based on the recorded
observations.

Algorithm 1 ComputeQ
1: Initialize Q to a random neural network
2: repeat
3: SSE 0 fsum squared errorg
4: for all t such that 0� t < T do
5: target rt + γQ(st+1;at+1)
6: error target�Q(st ;at)
7: SSE SSE+error �error
8: Train Q(st ;at) towardstarget
9: end for

10: until CONVERGED(SSE)
This algorithm borrows proven methods from supervised

learning techniques, which repeatedly trains on a fixed set of
input-output pairs until attaining some convergence criterion.
For example, we observe faster learning when we randomize
the order of presentation in the loop on line 4. The train-
ing procedure on line 8 uses the standard back-propagation
algorithm, which adjusts each weight in the neural network
in proportion to its error gradient. However, this algorithm
is not an instance of supervised learning, due to the non-
stationarity of targets described above. Although this property
removes any theoretical convergence guarantees, we find that
the mean squared error roughly decreases monotonically to a
local minimum. Note that due to the stochastic gradient nature
of Sarsa/back-propagation there is noise in the error measure
SSE after each epoch. Hence the convergence criterion in
line 10 must maintain sufficient history of priorSSEvalues to
detect when the error reaches some asymptote.

Apart from the choice of function approximator, the most
important design issue is variable selection and representation
of the state-action pairs(st ;at) as inputs to the function ap-
proximator. In principle the statest should be fully observable



in the MDP sense, i.e. it should contain all current or prior
sensor readings, for both the traffic arrival process and the
system service process, relevant to optimal decision making.
This could be problematic in cases where there are great many
potentially relevant sensor readings, and the hybrid RL user
does not have sufficient systems expertise to discern which
ones are most relevant. However, given our reported prior
success representing system state solely by current demand
λ, we suggest this is reasonable to try at least as a baseline
experiment, and we use this choice once again for the more
complex experiments reported in Section VI.

The above discussion suggests a two-input representation(s;a) = (λ;n) as described previously in Section III-A. How-
ever, in the present work we are particularly interested in the
dynamic consequences of allocation decisions. For example,
there may be switching delays, in which a newly allocated
server is initially unavailable for a certain period of time. There
may also initially be transient suboptimal performance dueto
load rebalancing, or starting new processes or threads on the
newly allocated servers. To handle such effects, we employ a
“delay-aware” representation in which the previous allocation
decisionnt�1 is added to the state representation at timet.
As long as such delays or transients last no more than one
allocation interval, this should suffice to learn the impactof
such effects on expected value, while for longer delays one
would also need further historical informationnt�2, etc..

Using the three inputs(λt ;nt�1;nt), we then train a standard
multi-layer perceptron containing a single hidden layer with
12 sigmoidal hidden units, and a single linear output unit. We
set a back-propagation learning rate of 0.005 and typicallyrun
Algorithm 1 for�10-20K sweeps through the dataset. We set
the Sarsa discount parameterγ = 0:5.

V. I NITIAL QUEUING MODEL POLICIES

To bootstrap our hybrid RL approach with reasonable initial
policies we adopt some of the recently proposed model-based
approaches for online performance management and resource
allocation [16], [17], [18], [19]. Typically, these approaches
employ steady-state queuing theory models in a dynamic
environment where the model parameters are continuously up-
dated based on measurements of system behavior. Of course,
in addition to providing the initial policy, such models also
provide suitable performance benchmarks for our hybrid RL
approach.

To model the arrival and departure of requests in our two
different workload generator modes for the Trade3 application,
we construct two different types of queuing networks: open
network and closed network. An open queuing network has
external arrival and departure of requests from an infinite
population of customers, while a closed queuing network has
a finite population of customers, each alternating between the
think state and the submitted state.

The underlying principles of modeling the two types of
queuing network were guided by certain salient features of
our prototype Data Center. The probability distribution of
service times for Trade3 HTTP requests was empirically found

under moderate load-conditions to be well approximated by an
exponential distribution with a mean of 8:3�10�3 seconds.
About 0.2-0.3% of requests resulted in significantly longer
response times and we attribute such outliers to JVM garbage
collection process.

Following [16], [17], [18], [19], we reestimate the param-
eters of our models at the end of each allocation intervalt,
based on measurements of various state variables such as the
mean arrival rateλt , the mean response timeRt , the total
number of servers allocatednt , and the number of customers
Mt . Due to the previously mentioned small change per time
step generated by our time series model of workload intensity,
a reasonably accurate forecast is that intensity at timet +1
approximately equals current intensity2 at timet. Armed with
this forecast, the models can then be used to estimate the utility
curveVt+1(nt+1) for all possible values ofnt+1.

A. Open Queuing Network Model

Due to the round-robin assignment of the HTTP requests
among the available servers, we can model an application in
the open queuing network with an overall demandλ and n
servers as a system ofn independent and identical parallel
open networks each with one server and a demand level of
λ=n. We leverage this observation as well as the Poisson arrival
process and the exponential service times in our experimental
setup to apply the parallel M/M/1 queuing formulation to
model the mean response time characteristics of an application.
In the M/M/1 model, the mean response timeR of a service
center with a service rateµ and an arrival rateλ is given by
R= 1

µ�λ [20]. Therefore, given a resource levelnt+1 for the
next allocation period, a predicted mean arrival rateλt+1 = λt ,
and assuming that the workload is uniformly divided among
the nt+1 servers,

Rt+1 = 1

µ� λt
nt+1

: (2)

The unknown model parameterµ can be estimated by applying
the same formula to the current allocation period, and after
rearranging terms, we obtainµ = 1

Rt
+ λt

nt
. From empirical

evidence, we find that the above derivation ofµ is quite
sensitive to variations inRt that are caused by the finite
sampling and garbage collection processes in Java. To dampen
the effect of these variations, we use an exponential smoothing
for µ before solving forRt+1 for all possible values ofnt+1.
Experiments to validate our M/M/1 model with exponential
smoothing for estimates ofµ (with smoothing parameters in
the range 0.1-0.5) show that under steady workload conditions
the percentage difference in the means of the actual and
predicted response times is less than 20% for a wide range
of arrival rates and server allocations.

B. Closed-Loop Queuing Network Model

Since an application in the closed network also distributes
HTTP requests in a round-robin fashion, we can model an

2It is possible that some slight improvement in forecast accuracy could
be obtained using standard time series analysis and forecasting techniques
applied to historical workload intensity variations.



application with an overall number of customersM and n
servers as a system ofn independent parallel closed networks
each with one server andM=n customers. We leverage this
observation in employing the well known Mean Value Anal-
ysis (MVA) formulation [20] to model the mean response
time characteristics of an application. In order to obtain the
mean response time for a given level of server allocation there
are two unknown model parameters in the MVA method: the
average think timeZ and the average service time at the
server, 1=µ. Using the Interactive Response Time Law, and
assumingMt+1 = Mt , we can computeZ = Mt

Xt
�Rt , whereXt

is the measured mean overall throughput of the application.We
obtain an estimate of the mean service time 1=µ by using the
M/M/1 model as follows:µ= 1

Rt
+λt . We apply exponential

smoothing (smoothing parameter in the range 0.1-0.5) on
estimates ofZ andµ to account for finite sampling effects and
Java garbage collection. We find that under steady workload
conditions, the means of the actual and predicted response
times differ by less than 25% for a wide range of customer
population sizes and server allocations.

VI. RESULTS

A. Performance Results without Switching Delay

We first present results for open-loop and closed-loop
systems for scenarios with no switching delays, i.e., newly
assigned servers are immediately available for processing
workload. The performance measure is total SLA revenue per
allocation decision summed over all three applications. For a
variety of initial model-based policies, we compare the initial
policy performance with that of its corresponding hybrid RL
trained policy.

0

10

20

30

40

50

60

70

Random QModel-nosmooth QModel-smooth

T
ot

al
 S

LA
 r

ev
en

ue
 p

er
 a

llo
ca

tio
n 

de
ci

si
on

[+113%]

+30.6%
+10.0%

Initial Policy
RL Policy

Fig. 2. Performance of various strategies in open-loop zero-delay scenario.

The results from the open-loop and closed-loop systems are
shown respectively in Figures 2 and 3. The percentage figures
denote relative improvement of hybrid RL policies over their
corresponding initial queuing models. (For the random initial
policies, such percentages are shown in brackets as they have
dubious meaning in our opinion.) The error bars denote 95%
confidence intervals for the reported values; this calculation
does not reflect the nearly identical demand traces used in

each experiment. To address this factor we also performed
paired T-test when comparing the hybrid RL results with each
corresponding initial policy.

In the open-loop case we examine three initial policies: our
open-loop model with exponential smoothing of the estimates
of µ (with a smoothing parameter of 0.1), the open-loop model
without smoothing, and for a baseline comparison, a uniform
random allocation policy. We see substantial improvement of
each hybrid RL trained policy over its corresponding initial
policy in both relative and absolute terms. For each of the
three pairs of experiments, we can reject the null hypothesis
that there is no difference between the means of the two
performance measures using paired T-test at 1% significance
level with P-value� 10�6.

0

10

20

30

40

50

60

Random QModel1 QModel2 QModel3 QModel4

T
ot

al
 S

LA
 r

ev
en

ue
 p

er
 a

llo
ca

tio
n 

de
ci

si
on

[+279%]
+20.1% +12.7%

+17.0%
+11.9%

Initial Policy
RL Policy

Fig. 3. Performance of various strategies in closed-loop zero-delay scenario.
(The random policy performance lies off the scale at -23.0.)

In the closed-loop case we again examine a random initial
policy, whose average utility score of -23.0 lies off the scale,
plus four different queuing model polices. The best model,
QModel4, is our MVA approach with exponential smooth-
ing used to estimate customer think time, governed by a
smoothing parameter of 0.1. QModel1 is the MVA approach
with smoothing turned off. QModel2 uses the same model
as QModel4 but predicts cumulative future utility instead of
immediate utility. Since the model’s predicted utility is steady
in all future time steps, we accomplish this by rescaling its
utility estimates by 1=(1� γ) with γ = 0:5 identical to the
discount factor used by RL. By examining such a model we
address the issue of whether RL obtains an advantage over the
queuing models merely by estimating future reward instead of
immediate reward. QModel3 uses the parallel M/M/1 model
designed for the open-loop scenario, which ought to be wholly
inappropriate here, but nonetheless provides an interesting test
of training hybrid RL with a suboptimal initial model.

Once again we find substantial improvement of hybrid RL
over each initial policy. In particular, the improvement over the
random policy is enormous, while the improvement over the
queuing models is consistently at a double-digit percentage
level with high statistical significance (rejected each null
hypothesis using paired T-test at 1% significance level with



P-value� 4�10�3).
Our general observations regarding the experiments in Fig-

ures 2 and 3 are as follows. First, our hybrid RL approach to
policy improvement clearly works quite well in this domain.
Second, our results are generally in accordance with prior
studies of policy iteration, where one typically finds large
improvement starting from weak initial policies, and pro-
gressively smaller improvement starting from stronger initial
policies. Third, we have obtained several insights as to how
the queuing model estimates lead to suboptimal allocations,
and how the RL trained neural nets are able to do better:

One important factor is that the RL nets learn to directly
estimate expected utility (i.e. SLA revenue), whereas the
queuing models do so indirectly, by first estimating response
time, and then estimating revenue using the SLA payment
function. We find that both open-loop and closed-loop queuing
models tend to overestimate the impact of server additions or
subtractions on current response time. Since in most cases the
application’s current state corresponds to low response time
and high utility, the estimation error will be considerablyworse
for removing servers than for adding servers, due to much
flatter slope of the SLA function in the latter case. As a result
the Trade3 applications tend to be slightly overprovisioned
on average. However, the RL nets, by learning to estimate
utility directly, are able to achieve less biased estimation errors.
This leads to the Trade3 applications receiving slightly fewer
servers on average, with a slight loss of Trade3 revenue, but
the loss is more than made up by substantially greater Batch
revenue. In terms of application performance metrics, hybrid
RL policies typically obtain much better Batch throughput
with little degradation in Trade3 response time. For example,
after training on the best open-loop queuing model in Figure2,
hybrid RL obtains a 12.7% improvement in Batch throughput
while mean Trade3 response time only increases by 2.6%.

Another important factor is that our steady-state queuing
models are unable to take dynamical effects into account
(although more sophisticated models could do so). However,
the RL nets are able to take into account dynamic effects such
as transients and switching delays, and possibly even implicit
predictability of future demand in a current state, by learning
policies that exhibit hysteresis. We analyze this phenomenon
immediately below in Section VI-B.

B. Policy Hysteresis

We illustrate how our RL approach deals with dynamic
effects by examining a value function trained on data from
a system with no switching delay using our best open-loop
queuing model. Figure 4 illustrates a portion of the learned
joint value function, estimating total value summed over all
three applications as a function of the states and allocations
for each application. The plot shows how estimated total value
varies as a function of demand in one Trade3 application (T1)
while demand in the other Trade3 application is held fixed at
400 requests per second. Each curve segment corresponds to
a stable joint allocation, as indicated, for which the estimated
value would decrease changing from the indicated allocation

-80

-60

-40

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450

To
ta

l S
ys

te
m

 V
al

ue

T1 Demand (requests per second)

a
b

c

(1,5,2)

(2,5,1)

(3,5,0)

(4,4,0)

Fig. 4. Stable allocation policies(T1;T2;Batch) in an RL value function.

to any other allocation. The horizontal range of each segment
denotes the range ofT1 demand values over which the
allocation is stable, while they-axis values denote the expected
value for this allocation, given that the allocation is unchanged
from the previous decision. The history dependence results
from the delay-aware representation in the Trade3 neural nets,
in which the expected value depends on both the previous and
new allocation decision.

In the absence of history dependence, clearly there could be
only one stable allocation at any given level ofT1 demand.
However, with history dependence there can be multiple stable
allocations at a given demand level, and the actual allocation
choice would then depend on the previous allocation.

For example, suppose the current joint allocation is(3;5;0)
and the currentT1 demand is below 300 requests per second,
i.e., to the left of pointb in the figure. If T1 demand
then increases slightly past pointb, the allocation does not
immediately switch to(4;4;0) but instead remains at(3;5;0).
This is because the higher value shown for(4;4;0) would only
apply if the allocation is already(4;4;0). When considering
a switch from (3;5;0) to (4;4;0) there would be another
estimated value curve (not shown), lying below the stable(3;5;0) curve, incorporating an estimated cost of switching
the allocation. The(3;5;0) allocation would continue to be
selected untilT1 demand increases past pointc, where the
estimated value to switch to(4;4;0) exceeds the value of
remaining at(3;5;0). Likewise if current allocation is(4;4;0)
andT1 demand drops below pointb, the preferred allocation
would be to remain at(4;4;0) until point a is reached, where
the predicted value of switching to(3;5;0) would exceed the
value of remaining at(4;4;0).

The retardation of allocation switches with respect to in-
stantaneous system state is an example of “hysteresis” in
the allocation policy, borrowing a term describing physical
systems with lagged responses. We can identify at least four
mechanisms in our system which would make such hysteresis
beneficial. First, there is the obvious case of switching delays,
when there is a clear and direct cost of reassigning servers,



as they are unable to perform any useful work during the
delay interval. Second, there may also be a transient period
of suboptimal performance within an application after servers
are added or removed. We observe that when a newly assigned
server begins processing Trade3 requests, the performanceis
initially sluggish, presumably due to starting processes and
creating Java threads in WebSphere. There is also a finite
period of time need to rebalance the load among the new set
of servers. Third, the increased need for resource motivating
a potential switch may be temporary (e.g. due to a short-term
demand fluctuation), leading after switching to a future cost of
immediately switching back. Fourth, there is the phenomenon
of thrashing, in which removing a server from an application
causes it to increase its reported need for servers, so that the
server is immediately switched back.

We find evidence in our prototype system that all four of
the above phenomena can occur using steady-state queuing
models, and that the simple delay-aware input representation
used by the RL nets enables them to learn hysteretic policies
that effectively deal with these phenomena. Evidence pertain-
ing to switching delays and thrashing is presented below in
Section VI-C.

C. Performance Results with Switching Delay

30

35

40

45

50

55

60

65

70

Open: Delay0 Delay4.5 Closed: Delay0 Delay4.5

T
ot

al
 S

LA
 r

ev
en

ue
 p

er
 a

llo
ca

tio
n 

de
ci

si
on +10.0%

+16.4%

+11.9%

+27.9%

Initial Policy
RL policy

Fig. 5. Comparison of delay=4.5 sec with delay=0 results in open-loop and
closed-loop scenarios.

Figure 5 presents a comparison of our zero-delay results,
using our best open-loop and closed-loop queuing models,
with corresponding experiments that incorporate a switching
delay of 4.5 seconds upon reassigning a server to a different
application. The delay is asymmetric in that the server is
immediately unavailable to the old application, but does not
become available to the new application until 4.5 seconds have
elapsed. We chose the delay to be a huge fraction of the five
second allocation interval so that empirical effects due tothe
delay would be as clear as possible. We see in Figure 5 that
imposing this delay does in fact substantially harm the average
performance in all cases. However, the amount of policy
improvement of hybrid RL over its initial policy increases in
both absolute and relative terms. In the open-loop scenario

the improvement increases from 10.0% to 16.4%, while in the
closed-loop scenario the improvement jumps from 11.9% to
27.9%.

Experiment < nT > < δnT >
Open-loop Delay=0 QM 2.27 0.578
Open-loop Delay=0 RL 2.04 0.464
Open-loop Delay=4.5 QM 2.31 0.581
Open-loop Delay=4.5 RL 1.86 0.269
Closed-loop Delay=0 QM 2.38 0.654
Closed-loop Delay=0 RL 2.24 0.486
Closed-loop Delay=4.5 QM 2.36 0.736
Closed-loop Delay=4.5 RL 1.95 0.331

TABLE I

MEASUREMENTS OF MEAN NUMBER OF SERVERS<nT > ASSIGNED TO A

TRADE3 APPLICATION, AND MEAN CHANGE IN NUMBER OF ASSIGNED

SERVERS<δnT > PER TIME STEP, IN THE EIGHT EXPERIMENTS PLOTTED

IN FIGURE 5.

The enhanced policy improvement seen above provides one
line of evidence that the RL policies effectively deal with
switching delays. Other evidence of this can be seen in TableI,
which exhibits basic statistics averaged over the two Trade3
applicationsT1 and T2 from the eight experiments shown
in Figure 5. The quantity<nT>= (<nT1>+<nT2>)=2 is
the average number of assigned servers, while<δnT >=(<δnT1>+<δnT2>)=2 is the RMS change in number of
assigned servers from one time step to the next. As mentioned
previously, the mean number of servers assigned to a Trade3
application is slightly less for the RL nets than for the queuing
models, and there is a further slight reduction for the RL
nets for 4.5 second delay compared to zero delay. More
importantly, the<δnT> statistics reveal noticeably less server
swapping when using RL nets compared to queuing models,
with the effect becoming quite pronounced (>�50% reduc-
tion) in the 4.5 second delay case. We attribute the reduction
in <δnT> in the latter case partly to greater stickiness or
hysteresis in the RL trained value functions, and partly dueto
reduction or elimination of thrashing in overloaded situations.
In fact, massive thrashing under very high load appears to be
the main factor behind the poor performance of the closed-
loop queuing model with 4.5 second delay. In this run, we
found that when one of the Trade3 applications (T1, say)
estimates that it needs seven servers to obtain high utility, and
T2’s estimates fluctuate between needing one and two servers,
the arbiter’s allocation decision for (T1,T2,Batch) will thrash
between (7,1,0) and (1,2,5) leading to huge loss of utility given
the 4.5 second switching delay. However, the RL nets trained
on this data set prefer to keep a steady allocation of 5 servers
under a heavy demand spike, thereby eliminating completely
this particular thrashing mode.

VII. C ONCLUSIONS

One contribution of this paper is to devise and demonstrate
success of a new hybrid learning method for resource valuation
estimates, combining disparate strengths of both reinforcement
learning and model-based policies, within a dynamic server
allocation scenario applicable to Data Centers. Our hybrid



RL approach neatly takes advantage of RL’s ability to learn
in a knowledge-free manner, requiring neither an explicit
system model nor an explicit traffic model, and requiring
little or no domain knowledge built into either its state space
representation or its value function representation. Moreover,
through the use of a simple “delay-aware representation”
including the previous allocation decision, our approach also
naturally handles transients and switching delays, which are
dynamic consequences of reallocation lying outside the scope
of traditional steady-state queuing models. On the other hand,
our hybrid approach also exploits the ability of a model-based
policy to immediately achieve a high (or at least decent) level
of performance as soon as it is implemented within a system.
By running such a policy to obtain training data for RL,
we maintain acceptable performance in the live system at all
times, and avoid potentially poor performance that would be
expected using online RL. We may also exploit robustness of
model-based policies under various types of system changes,
e.g. hardware upgrades or changes in the SLA, which require
retraining of the RL value functions. When such changes
occur, we can fall back on the model-based policy to deliver
an acceptable performance level which accumulating a second
training set to be used for RL retraining.

We would also like to stress, however, that it would be
a mistake to view our work solely as a method for server
allocation in Data Centers. Due to the broad generality of
RL itself, we view hybrid RL as having potentially wide
applicability throughout many different areas of systems man-
agement. The types of management applications holding the
most promise for hybrid RL would have the characteristics of:
(a) a tractable state-space representation; (b) frequent online
decision making depending upon time-varying system state;
(c) frequent observation of numerical rewards in an immediate
or moderately delayed relation to management actions; (d) pre-
existing policies that obtain acceptable (albeit imperfect) per-
formance levels. Clearly there are a great many performance
management applications having such properties. Among them
are dynamic allocation of other types of resources, e.g.,
bandwidth, memory, CPU slices, threads, LPARs, etc.. We
would also include performance-based online tuning of system
control parameters, such as web server parameters, OS param-
eters, database parameters, etc.. Finally, we note that hybrid
RL could conceivably go beyond performance management
to encompass simultaneous management to multiple criteria
(e.g. performance and availability), as long as the rewards
pertaining to each criterion are on an equivalent numerical
scale.

In future work we plan further investigations of the scala-
bility of hybrid RL/function approximation as the application
state space increases in size and complexity. Specifically in
the Data Center scenario, we plan to add several other state
variables (e.g. mean response time, mean queue lengths, etc.)
to the RL input representation in order to investigate the
effect on training time and sample complexity, as well as
whether further performance improvements can be obtained.
We will also study whether progressively better performance

results can be obtained via multiple iterations of the policy
improvement method. It also will probably be necessary at
some point to tackle the issue of adding exploratory actions
to the initial policy for general usage of hybrid RL, even
though it was not necessary in our experiments. Finally we are
investigating with our IBM colleagues whether there may be
feasible commercial deployments of hybrid RL, for example,
in WebSphere XD [21] and Tivoli Intelligent Orchestrator [22].

ACKNOWLEDGMENT

The authors would like to thank Jeff Kephart for many
helpful discussions.

REFERENCES

[1] R. Das, G. Tesauro, and W. E. Walsh, “Model-based and model-free
approaches to autonomic resource allcation,” IBM Research, Tech. Rep.
RC23802, 2005.

[2] G. Tesauro, “Online resource allocation using decompositional reinforce-
ment learning,” inProc. of AAAI-05, 2005.

[3] G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart, “Utility-function-
driven resource allocation in autonomic systems,” inProc. of ICAC-05,
2005.

[4] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A.Tantawi, “An
analytical model for multi-tier internet services and its applications,” in
Proc. of SIGMETRICS-05, 2005.

[5] D. Vengerov and N. Iakovlev, “A reinforcement learning framework for
dynamic resource allocation: First results,” inProc. of ICAC-05, 2005.

[6] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[7] G. Tesauro, “Temporal difference learning and TD-Gammon,” Commun.
ACM, vol. 38, no. 3, pp. 58–68, 1995.

[8] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
IEEE Transactions on Neural Networks, vol. 12, no. 4, pp. 875–889,
2001.

[9] A. Y. Ng et al., “Inverted autonomous helicopter flight via reinforcement
learning,” in Intl. Symposium on Experimental Robotics, 2004.

[10] R. E. Bellman,Dynamic Programming. Princeton University Press,
1957.

[11] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions
in autonomic systems,” inProc. of ICAC-04, 2004, pp. 70–77.

[12] IBM, “Websphere benchmark sample,” http://www-306.ibm.com/
software/webservers/appserv/benchmark3.html, 2004.

[13] M. S. Squillante, D. D. Yao, and L. Zhang, “Internet traffic: Periodicity,
tail behavior and performance implications,” inSystem Performance
Evaluation: Methodologies and Applications, E. Gelenbe, Ed. CRC
Press, 1999.

[14] S. Singh and D. Cohn, “How to dynamically merge Markov Decision
Processes,” inAdvances in Neural Information Processing Systems, M. I.
Jordan, M. J. Kearns, and S. A. Solla, Eds., vol. 10. MIT Press, 1998.

[15] A. R. Barron, “Complexity regularization with application to artificial
neural networks,” inNonparametric Functional Estimation and Related
Topics, G. Roussas, Ed., 1991.

[16] P. Pradhan, R. Tewari, S. Sahu, C. Chandra, and P. Shenoy, “An
observation-based approach towards self-managing web servers,” in
Proc. of Intl. Workshop on Quality of Service, 2002.

[17] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource allocation for
shared data centers using online measurements,” inProc. of ACM/IEEE
Intl. Workshop on Quality of Service (IWQoS), 2003, pp. 381–400.

[18] M. N. Bennani and D. A. Menascé, “Assessing the robustness of self-
managing computer systems under variable workloads,” inProc. of
ICAC-04, 2004.

[19] ——, “Resource allocation for autonomic data centers using analytic
performance models,” inProc. of ICAC-05, 2005.

[20] D. A. Menascé, V. A. F. Almedia, and L. W. Dowdy,Performance by
design: Computer Capacity Planning by Example. Upper Saddle River,
NJ: Prentice Hall, 2004.

[21] IBM, “WebSphere Extended Deployment,” www.ibm.com/software/
webservers/appserv/extend/, 2006.

[22] TIO, “Tivoli Intelligent Orchestrator product overview,” http://www.ibm.
com/software/tivoli/products/intell-orch, 2005.


