A Hybrid Reinforcement Learning Approach to
Autonomic Resource Allocation

Gerald Tesaurg Nicholas K. Jon§ Rajarshi Das and Mohamed N. Bennahi
*IBM TJ Watson Research Center, 19 Skyline Drive, Hawthohi¢,10532 USA
Email: {gtesauro,rajarshi@us.ibm.com
TDept. of Computer Sciences,Univ. of Texas, Austin, TX 78TIRA
Email: nkj@cs.utexas.edu
*Dept. of Computer Science, George Mason Univ., Fairfax, 230 USA
Email: mbennani@gmu.edu

Abstract— Reinforcement Learning (RL) provides a promising worth investigating whether the development of management

new approach to systems performance management that diffsr algorithms may itself be automated to a considerable extent
radically from standard queuing-theoretic approaches maling In very recent work [1], [2], [3], [5] a radically different

use of explicit system performance models. In principle, RLcan . .
automatically learn high-quality management policies wihout an approach based on Reinforcement Learning (RL) has been

explicit performance model or traffic model, and with litle or Proposed for automatically learning management policies.
no built-in system specific knowledge. In our original work [1], (By “policy” we mean a mapping from system states to
[2], [3] we showed the feasibility of using online RL to learn management actions.) In its most basic form, RL provides a
resource valuation estimates (in lookup table form) which an knowledge-free trial-and-error methodology in which afes

be used to make high-quality server allocation decisions ira tri ; fi . t tat dl
multi-application prototype Data Center scenario. The present /€S Various actions in numerous sysiém states, and learns

work shows how to combine the strengths of both RL and from the consequences of each action [6]. RL can poten-
queuing models in a hybrid approach, in which RL trains offline tially learn decision-theoretic optimal policies in dynam

on data collected while a queuing model policy controls the environments where the effects of actions are Markovian (i.
system. By training offline we avoid suffering potentially por giatignary and history-independent). In addition to firrach

performance in live online training. We also now use RL to tran . . .
nonlinear function approximators (e.g. multi-layer perceptrons) retical support in the MDP (Markov Decision Process) case,

instead of lookup tables; this enables scaling to substamly —there have also been many notable successful applications
larger state spaces. Our results now show that, in both opeloop of RL over the last decade in real-world problems ranging
and closed-loop traffic, hybrid RL training can achieve sigrificant from helicopter control to financial markets trading to vaerl
performance improvements over a variety of initial model-kased championship game playing [7], [8], [9].

policies. We also find that, as expected, RL can deal effecély = t . fi fi the RL h
with both transients and switching delays, which lie outsie the rom an autonomic compuiing perspective, the kL approac

scope of traditional steady-state queuing theory. offers two major advantages. First, RL does not require an
explicit model of either the computing system being managed
l. INTRODUCTION or of the external process that generates workload or traffic

The primary goal of research in autonomic computing is t8econd, by its grounding in MDPs, the theory underlying RL
reduce as much as possible the degree of human involvemientundamentally a sequential decision theory that prgperl
in the management of complex computing systems. ldeathgats dynamical phenomena in the environment, including
a human would only specify a broad high-level objective ahe possibility that a current decision may have delayed
input to the system’s management algorithms. Then whib®nsequences in both future rewards and future observed
the system is running, the management algorithms woudthtes. This means that RL could potentially outperforneoth
continually sense the system state and execute managemeethods that treat dynamical effects only approximatety, o
actions that optimally achieve the high-level objectivhefie ignore them altogether (e.g. traditional steady-stateuimge
has been a great deal of recent research focused on algsrittimeory), or cast the decision making problem as a series of
that make use of explicit system performance models, sughrelated instantaneous optimizations.
as control-theoretic or queuing-theoretic models. Thgse a While RL thus offers tremendous potential benefits in
proaches have achieved noteworthy success in many spedcifitonomic computing, there are two major challenges ingusin
management applications. However, we note that the desigto obtain practical success in real-world applicatiofisst,
and implementation of accurate performance models of coREL can suffer from poor scalability in large state spaces,
plex computing systems can be highly knowledge-intensiparticularly in its simplest and best understood form inchia
and labor-intensive, and moreover, may require original rlwokup table is used to store a separate value for everylgessi
search. For example, queuing network models of multi-tistate-action pair. Since the size of such a table increases
internet services have only recently been published in [4xponentially with the number of state variables, it carcklyi
Given the central goal of autonomic computing, it is therefo become prohibitively large in many real applications. $eco

the performance obtained during live online training may tkeerver allocation within this system. For the experiments
unacceptably poor, both initially and during an infeasiblyeported here, we use both open-loop and closed-loop traffic
long training period. Two factors may contribute to the pomcenarios. In each scenario, we first implement appropriate
performance: (i) in the absence of domain knowledge or gogdeuing models using standard practices for model design
heuristics, the initial RL state may correspond to an aakilir and parameter estimation. We then collect system perfazenan
bad initial policy; (ii) in general RL procedures also need tdata using a variety of initial allocation policies, incind
include a certain amount of “exploration” of actions betidv not only our best queuing model policy, but also several
to be suboptimal. Typical mechanisms for exploration imeol inferior policies (e.g. using queuing models with suboiim
randomized action selection and may be exceedingly castlygarameter tunings). As a worst-case example we also use a
implement in a live system. uniform random allocation policy. For each initial polidie

In this paper, we present a new hybrid method combinirapllected data is used to train a corresponding neural mkfwo
the advantages of both explicit model-based methodgamd which is then implemented in the prototype and tested for
ula rasaRL in order to address the above practical limitationgperformance improvements. In each case we find that the
Instead of training an RL module online on the consequend®k-trained neural nets give substantially better perforoea
of its own decisions, we propose offline training on dateompared with the corresponding initial policies. We have
collected while an externally supplied initial policy (legs also obtained a number of interesting insights as to how the
e.g. on an appropriate queuing model) makes managemeumtperformance is obtained, particularly regarding hosvih
decisions in the system. The theoretical basis for this@ggr nets are better able to deal with dynamic consequences of
lies in the convergence proofs of TD (Temporal Difference}allocation, such as transients and switching delays.
learning and related methods [6], combined with Bellman’s The rest of the paper is organized as follows. Section Il
policy improvement theorem [10]. These works suggest thatescribes details of our prototype Data Center. Section Il
given enough training samples, RL can converge to the dorréescribes our specific RL methodology, including an ovevvie
value functionV™ associated with any fixed policy, and of the specific learning algorithm that we use (Sarsa(0)), an
that the new policy whose behavior greedily maximigésis a summary of our prior research using tabular online RL.
guaranteed to improve upon the original polityWe assume Section IV presents the new hybrid RL approach. Section V
that the initial model-based policy is good enough to give agives details on our initial queuing model policies regagdi
acceptable level of performance, but that there is stilhmdor model design and parameter estimation. Section VI gives
improvement. By utilizing such a policy and training offlineperformance results as well as providing insight into hows th
we avoid poor system performance that could occur using litained RL value function are able to outperform the origina
online training. We also note that our method can be appligdeuing models. Conclusions and prospects for future work
for multiple iterations: after we train an improved policy are given in Section VII.
based on data obtained whifeis running, we then user
in the system to collect a second data set, which can then be
used to train a further improved poliay’, etc.. Our prototype Data Center [11], illustrated in Figure 1,

The other key ingredient in our methodology is using models how a set of identical servers might be dynamically
nonlinear function approximator in place of a lookup talde tallocated among multiple web applications hosted withia th
represent the value function. We have chosen to use new€ahter. Each application has its own Application Manager,
networks (multi-layer perceptrons) as they have the mashich is responsible for performance optimization within
successful track record in RL applications, but of coursaynathe application and communicating with a Resource Arbiter
other function approximators (e.g. regression trees, CBJAGQegarding resource needs. In our model, the optimizatia go
SVMs, wavelets, regression splines, etc.) could also bd.uswithin each application is expressed by a local performance
Function approximators provide a mechanism for generglizibased objective function, which we call “expected business
training experience across states, so that it is no longedue.” The Resource Arbiter's goal is to allocate servers s
necessary to visit every state in the state space. Likelwme tas to maximize the sum of expected business value over all
also generalize across actions, so that the need for expigraapplications (this implies that all local value functiorsase
off-policy actions is also greatly reduced. In fact we finh common scale). Allocation decisions are made in fixed five-
in our system that we can obtain improved policies withosecond time intervals as follows:
any exploration, by training solely on the model-basedgyoli Each Application Manager computes and reports to the
decisions. Arbiter a utility curveV;(-) estimating expected business value

We have implemented and tested our hybrid RL approaak a function of number of allocated servers. We assume that
within a realistic prototype Data Center, in which servems aV; expresses net expected revenue (payments minus penal-
to be dynamically allocated among multiple web applicaiorties) as defined by a local performance-based Service Level
so as to maximize the expected sum of SLA payments Agreement (SLA). (More generally, we would also expect
each application. Our prototype system has been described/i to include other considerations such as operational cost,
detail in our prior work [11], [1], [2] and we have substahtiaavailability, service consistency, etc..) Upon receipttbé
experience in developing a variety of effective policies foutility curves from each application, the Arbiter then sdv

II. PROTOTYPEDATA CENTER OVERVIEW

for the globally optimal allocation maximizing total expged removed. This emulates a non-web-based, CPU intensive
business value (i.e. total SLA revenue) summed over themputation such Monte Carlo portfolio simulations. Since
applications. (This is a polynomial time computation sitlee there is no notion of time-varying demand in this applicatio
servers are homogeneous.) The Arbiter then conveys a listwed posit the Batch SLA is a simple increasing function of
assigned servers to each application, which are then usedchimber of assigned servers, ranging from a value of -70 for
dedicated fashion until the next allocation decision. zero servers to a maximum value of +68 for six serkers

I1l. BACKGROUND ONREINFORCEMENTLEARNING

ServerList, Resource ServerList, Reinforcement Learning (RL) refers to a set of general

Arbiter trial-and-error methods whereby an agent can learn to make
good decisions in an environment through a sequence of
V() IW‘ interactions. The basic interaction_ consists of obser\ﬂr&g

2 environment’s current state, selecting an allowable actmd

then receiving an instantaneous “reward” (a scalar measure
p— of value for performing the selected action in the givenegtat
requests followed by an observed transition to a new state. An exoelle

[sia, ss |

Application
Manager 1

Application
Manager 2

HTTP

requests
general overview of RL is given in [6].
The particular RL rule we use here is an algorithm known
(servert) (sever2) ((server3) (servera) as Sarsa(0), which learns a value funct@g(s,a) estimating
the agent’s long-range expected value starting in statking
Fig. 1. Data center architecture. initial action a and then using policyt to choose subsequent

actions [6]. (For simplicity we hereafter omit thesubscript.)

Our prototype system runs on a cluster of identical IBM es3arsa(0) has the following form:
erver xSeries 335 machines running Redhat Enterprise Linux _ _
Advanced Server. Our standard experimental scenario uses AQ(s:a) = Ab)lre +¥QAS+1,841) ~ Qs &) @
three applications and eight servers. Two of the applioatioHere (s;,a;) are the initial state and action at tirher; is the
(called T1 and T2 hereafter) are separate instantiations dfimediate reward at timg (s.1,a1) denotes the next state
“Trade3” [12], a realistic simulation of an electronic thag and next action at timét + 1), the constany is a “discount
platform, designed to benchmark web servers. This transgerameter” between 0 and 1 expressing the present value of
tional workload runs on top of IBM WebSphere and DB2expected future reward, andt) is a “learning rate” parameter,
The SLA for each Trade3 application is a sigmoidal functiowhich decays to zero asymptotically to ensure convergence.
of mean response time over the allocation interval, rangingWhenQ(s,a) is represented using a lookup table, equation 1
from a maximum value of +50 to a minimum value of -150is guaranteed to converge for MDP environments, provided
Demand in each Trade3 environment is driven by a separ¢hat the policy for action selection is either stationary, o
workload generator, which can be set to operate either in-op@symptotically “greedy,” i.e. it chooses the action witlgltest
loop or closed-loop mode. The open-loop mode generaf@walue in a given state. However, as detailed below, these
Poisson HTTP requests with an adjustable mean arrival r&a@nditions do not strictly hold in our system in three resgec
ranging from 10-400 requests/sec. In closed-loop mode, tfie Our applications are not exactly Markovian, although
generator simulates an adjustable finite number of cusmtris may be a reasonable approximation. (ii) In our hybrid
(ranging from 5-90) behaving in closed-loop fashion, all aipproach, described in Section IV, we use function apprexim
which have exponentially distributed think times with a fixe tion instead of lookup tables. (iii) Our formulation of RLn®t
meanZ = 0.17 seconds. It is interesting to study both modeat the global decision maker level, but instead localizetthiwi
as they have very different characteristics (e.g., retatiqp each application, and from the local perspective the glpbkl
between response time and throughput) and require ratf@rneed not be greedy or stationary. We chose this fornanati
different modeling techniques. due to much better scalability to many applications, as well
To provide a realistic emulation of stochastic bursty timeas a basic design principle that the arbiter should not vecei
varying demand, we use a modified time series model of Weptailed state descriptions from each application. Theeisd
traffic, originally developed by Squillante et al. [13] tose¢ whether localized RL converges in such a “composite MDP”
by a small increment every 1.0 seconds either the closea-lggcenario [14] is an interesting open research topic which is
number of customers, or the open-loop mean arrival rate. Téiscussed in more detail in [2].
routing pohcy W|th|n each Trade3 gppllcanon is .round-lrob A.. Summary of Previous RL Approach
among its assigned servers, leading to approximately equal
load balancing. In our previous work [1], [2], [3] we implemented a
The third application in our standard scenario is a |Onéocalized version of online RL within the Trade3 applicatio
running, parallelizable “Batch” workload that can be palise 1we enforce a constraint that each Trade3 must have at leassamer,
and restarted on separate servers as they are added sanght Batch can never be allocated more than six servers.

manager. The RL module observed the application’s lodsloreover, a carefully chosen RL initialization may lead to
state, the local number of servers allocated by the arbitan inferior final result compared to, for example, random
and the reward specified by the local SLA. A lookup tablmitialization.

was used to represef(s,a). Due in part to the table’s poor The use of batch training is motivated by two factors.
scalability, we made a severe approximation in represgntikirst, due to the sample complexity of RL, a large number
the application state solely by the (discretized) curreeam of observed samples may be required before RL is capable
arrival rate A of page requests, and ignoring several othef learning an effective policy. Second, RL is a “bootstrap-
sensor readings (e.g. mean response times, queue lengihgy” procedure with non-stationary targets, since thgear
number of customers, etc.) that could also have been usegfjression value for the observation at timeepends on the
Hence our value function was two-dimension@l= Q(A,n), function approximator’s estimated value for the obseoratit

and it was encouraging that RL could achieve comparalilmet+1. Hence, as regression moves a function approximator
performance to standard queuing models using such a simleard a set of targets, this causes the targets themselves
function. to change. This suggests a batch training methodology com-

Since our learning was online and influenced the arbitepsising a large number of sweeps through the dataset, with
decision making through the reported value estimates, & wiacremental learning in each sweep.
important thatQ(A, n) be initialized to values that would yield Our hybrid RL approach for learning a value function for
an acceptable initial performance level of the arbitertigyo an application takes as input a recorded sequendd af1)
at the start of the run. For this purpose we chose a heurigoigservations{ (s, &;,r),0 <t < T} produced by an arbitrary
initialization assuming a linear dependence@fpn demand management policy, wheres,a;,r;) are the observed state,
per serverA/n. Such initialization required a modicum ofaction and immediate reward at tirheWe use Algorithm 1 to
elementary domain knowledge, but perhaps would be marempute a neural network value function based on the redorde
difficult with additional state variables or a more complegbservations.
application.

We also devised two methods for dealing with significa
sparsity of table cell visits observed during the learning.r
First, we used a so-called-greedy” exploration rule, in which
the arbiter would choose a random allocation with probgbili 3~ SSE¢ 0 {sum squared errér
€ = 0.1 instead of the utility-maximizing allocation. This 4. forall tsuchthat 6<t <T do
turned out to incur minimal cost in the simple system descfib > target < re+yQ(S+1,a-+1)
in [1], [2], [3] but can be expected to become more costly ag error « target— Q(s; &)
the complexity of the allocation task increases. Second, wé SSE« SSEt-error-error
imposed soft monotonicity constraints based on the assumﬁi Train Q(s;, &) towardstarget
tion that the table values should be monotone decreasing i e_nd for
A and monotone increasing m This requires further domain 10: Until CONVERGED(SSH
knowledge to devise and implement. We presume and in fact
found in our work described below that the use of function This algorithm borrows proven methods from supervised
approximation can greatly reduce or eliminate the need fl@arning techniques, which repeatedly trains on a fixed &et o
such techniques. input-output pairs until attaining some convergence tdte
For example, we observe faster learning when we randomize
the order of presentation in the loop on line 4. The train-

In our hybrid RL approach, a nonlinear function approxing procedure on line 8 uses the standard back-propagation
mator is trained in batch mode on a dataset recorded whdkgorithm, which adjusts each weight in the neural network
an externally supplied policy makes management decisiansproportion to its error gradient. However, this algomith
within a given computing system. While we have chosen t® not an instance of supervised learning, due to the non-
use neural networks here, due to their prior successes in Rationarity of targets described above. Although thigpprty
applications as well as their robust generalization in higlhemoves any theoretical convergence guarantees, we fihd tha
dimensional spaces [15], our methodology may be generalhe mean squared error roughly decreases monotonically to a
used with other types of function approximators. local minimum. Note that due to the stochastic gradientneatu

The use of an external policy is motivated by a desire @f Sarsa/back-propagation there is noise in the error measu
avoid poor performance that would be expected during onli8SE after each epoch. Hence the convergence criterion in
learning. This necessitates either using a good exterrigypo line 10 must maintain sufficient history of pri&SEvalues to
or initializing the RL value function in a way that implemsent detect when the error reaches some asymptote.

a good initial policy. However, we expect the latter option t Apart from the choice of function approximator, the most
be quite difficult, as it most likely requires extensive dama important design issue is variable selection and reprasent
knowledge of the particular system, and may also requio the state-action pair&s,a;) as inputs to the function ap-
deep knowledge of the function approximator methodologgroximator. In principle the statg should be fully observable

Algorithm 1 ComputeQ
1: Initialize Q to a random neural network
2: repeat

IV. HYBRID RL APPROACH

in the MDP sense, i.e. it should contain all current or priacxnder moderate load-conditions to be well approximatedby a
sensor readings, for both the traffic arrival process and tBeponential distribution with a mean of.3x 103 seconds.
system service process, relevant to optimal decision ngaki\bout 0.2-0.3% of requests resulted in significantly longer
This could be problematic in cases where there are great maagponse times and we attribute such outliers to JVM garbage
potentially relevant sensor readings, and the hybrid RLr usellection process.
does not have sufficient systems expertise to discern whichH-ollowing [16], [17], [18], [19], we reestimate the param-
ones are most relevant. However, given our reported prieters of our models at the end of each allocation intetyal
success representing system state solely by current dembhased on measurements of various state variables such as the
A, we suggest this is reasonable to try at least as a baselimean arrival rate\;, the mean response tin&, the total
experiment, and we use this choice once again for the manember of servers allocated, and the number of customers
complex experiments reported in Section VI. M;. Due to the previously mentioned small change per time
The above discussion suggests a two-input representatid@p generated by our time series model of workload intgnsit
(s,a) = (A,n) as described previously in Section IlI-A. How-a reasonably accurate forecast is that intensity at timd
ever, in the present work we are particularly interestechin tapproximately equals current intengitgt timet. Armed with
dynamic consequences of allocation decisions. For examglas forecast, the models can then be used to estimate tig uti
there may be switching delays, in which a newly allocateclirveVi1(n1) for all possible values off1.
server is initially unavailable for a certain period of timridnere
may also initially be transient suboptimal performance tue)]
load rebalancing, or starting new processes or threadseon thPu€ to the round-robin assignment of the HTTP requests
newly allocated servers. To handle such effects, we emplo@&0ng the available servers, we can model an application in
“delay-aware” representation in which the previous aftara € Open queuing network with an overall demanaéndn
decisionn_1 is added to the state representation at time SE€TVers as a system qflndependent and identical parallel
As long as such delays or transients last no more than dffeen networks each with one server and a demand level of
allocation interval, this should suffice to learn the impatt A/n. We leverage this obse_rvatlon_as Well as_the P0|sson_ arrival
such effects on expected value, while for longer delays oREPCesS and the exponential service times in our experahent
would also need further historical information_», etc.. setup to apply the parallel M/M/1 queuing formulation to
Using the three inputé\;, n,_1, 1), we then train a standard model the mean response time characterist?cs of an app.hcat
multi-layer perceptron containing a single hidden layethwi /" the M/M/1 model, the mean response tiReof a service
12 sigmoidal hidden units, and a single linear output uni. V\(penteg with a service rate and an arrival rate is given by
set a back-propagation learning rate of 0.005 and typicatly R= i=x [20]. Therefore, given a resource lewel, for the
Algorithm 1 for ~10-20K sweeps through the dataset. We s8€Xt allocation period, a predicted mean arrival vatey = A,

A. Open Queuing Network Model

the Sarsa discount parametes 0.5. and assuming that the workload is uniformly divided among
the ni;1 servers,
V. INITIAL QUEUING MODEL POLICIES Rup = 1 @)
To bootstrap our hybrid RL approach with reasonable initial H— nl)_-:—l

policies we adopt some of the recently proposed model-basgeh, ,nknown model parametecan be estimated by applying
approaches for online performance management and resOYee same formula to the current allocation period, and after
allocation [16], [17], [18], [19]. Typically, these appri@®s |oarranging terms, we obtaip = A+ % From empirical
employ steady-state queuing theory models in a dynamiGigence, we find that the above derivation jofis quite
environment where the model parameters are con_tlnuously YRnsitive to variations irR, that are caused by the finite
dated based on measurements of system behavior. Of COULSEhjing and garbage collection processes in Java. To dampe
in addition to providing the initial policy, such models @ls ¢ effect of these variations, we use an exponential srirgth
provide suitable performance benchmarks for our hybrid Rbr L before solving forR.1 for all possible values of 1.

approach. Experiments to validate our M/M/1 model with exponential

_To model the arrival and departure of requests in our tWanqqthing for estimates qf (with smoothing parameters in
different workload generator modes for the Trade3 appboat (he range 0.1-0.5) show that under steady workload comditio
we construct two different types of queuing networks: Op&fe percentage difference in the means of the actual and

network and closed network. An open queuing network Nasejicted response times is less than 20% for a wide range
external arrival and departure of requests from an infinitg 5.rival rates and server allocations.

population of customers, while a closed queuing network has
a finite population of customers, each alternating betwhen 8. Closed-Loop Queuing Network Model
think state and the submitted state. Since an application in the closed network also distributes
The underlying principles of modeling the two types oHTTP requests in a round-robin fashion, we can model an
queuing network were guided by certain salient features of, _ o .
It is possible that some slight improvement in forecast ey could

our _prOt_pre Data Center. The probability dis_tr_ibUtion e obtained using standard time series analysis and foirggaschniques
service times for Trade3 HTTP requests was empirically fbunpplied to historical workload intensity variations.

application with an overall number of customdyk and n each experiment. To address this factor we also performed
servers as a system ofindependent parallel closed networkpaired T-test when comparing the hybrid RL results with each
each with one server andll/n customers. We leverage thiscorresponding initial policy.

observation in employing the well known Mean Value Anal- In the open-loop case we examine three initial policies: our
ysis (MVA) formulation [20] to model the mean responsepen-loop model with exponential smoothing of the estimate
time characteristics of an application. In order to obtdia t of u (with a smoothing parameter of 0.1), the open-loop model
mean response time for a given level of server allocatiorethavithout smoothing, and for a baseline comparison, a uniform
are two unknown model parameters in the MVA method: thendom allocation policy. We see substantial improvemént o
average think timeZ and the average service time at theach hybrid RL trained policy over its corresponding initia
server, Y. Using the Interactive Response Time Law, angolicy in both relative and absolute terms. For each of the
assumingVlis1 = M, we can comput& = ¥t — R, whereX;, three pairs of experiments, we can reject the null hyposhesi
is the measured mean overall throughput of the applicaiin. that there is no difference between the means of the two
obtain an estimate of the mean service timig@ by using the performance measures using paired T-test at 1% significance
M/M/1 model as follows:yu = % + At. We apply exponential level with P-value< 10-6.

smoothing (smoothing parameter in the range 0.1-0.5) on
estimates o¥Z andp to account for finite sampling effects and 60
Java garbage collection. We find that under steady workload -
conditions, the means of the actual and predicted responseei 50 I
times differ by less than 25% for a wide range of customer
population sizes and server allocations.

O +11.9% |
; ‘ O +17.0% 1
S279%] O +201% & +12.7%

i p

30 b

40 |

VI. RESULTS
A. Performance Results without Switching Delay

We first present results for open-loop and closed-loop 3
systems for scenarios with no switching delays, i.e., newly ;)
assigned servers are immediately available for processingg 1ot :

. (e}
workload. The performance measure is total SLA revenue per- Inital Policy —E+—
. RL Policy @
allocation decision summed over all three applications.d&o g — : : : bz

. e .. L. Random QModell QModel2 QModel3 QModel4

variety of initial model-based policies, we compare theiahi

policy performance with that of its corresponding hybrid Rlgig. 3. Performance of various strategies in closed-loap-gelay scenario.
trained policy. (The random policy performance lies off the scale at -23.0.)

evenue per allocation de

20 - 1

70 ; In the closed-loop case we again examine a random initial
PR +10.0% policy, whose average utility score of -23.0 lies off theleca
i 1 plus four different queuing model polices. The best model,
w0l | QModel4, is our MVA approach with exponential smooth-
i ing used to estimate customer think time, governed by a
20] smoothing parameter of 0.1. QModell is the MVA approach
with smoothing turned off. QModel2 uses the same model
30 ¢ 1 as QModel4 but predicts cumulative future utility instedd o
immediate utility. Since the model’s predicted utility ieady
[+113%] | in all future time steps, we accomplish this by rescaling its
0l i utility estimates by 1(1—vy) with y= 0.5 identical to the
Initial Policy —&— discount factor used by RL. By examining such a model we
RL Policy -6 address the issue of whether RL obtains an advantage over the
gueuing models merely by estimating future reward instdad o
Fig. 2. Performance of various strategies in open-loop-detay scenario. immediate reward. QModel3 uses the parallel M/M/1 model
designed for the open-loop scenario, which ought to be wholl
The results from the open-loop and closed-loop systems @mappropriate here, but nonetheless provides an intagettst
shown respectively in Figures 2 and 3. The percentage figurddraining hybrid RL with a suboptimal initial model.
denote relative improvement of hybrid RL policies over thei Once again we find substantial improvement of hybrid RL
corresponding initial queuing models. (For the randoniahit over each initial policy. In particular, the improvementothe
policies, such percentages are shown in brackets as they handom policy is enormous, while the improvement over the
dubious meaning in our opinion.) The error bars denote 95§teuing models is consistently at a double-digit percemtag
confidence intervals for the reported values; this caloutat level with high statistical significance (rejected eachlnul
does not reflect the nearly identical demand traces usedhiypothesis using paired T-test at 1% significance level with

60 -

20 -

Total SLA revenue per allocation decision

0 .
Random QModel-nosmooth QModel-smooth

P-value< 4 x 1079), 100
Our general observations regarding the experiments in Fig- 8o
ures 2 and 3 are as follows. First, our hybrid RL approach to
policy improvement clearly works quite well in this domain. _
Second, our results are generally in accordance with prigr 40
studies of policy iteration, where one typically finds Iargé 20
improvement starting from weak initial policies, and pro-ﬁ o,
gressively smaller improvement starting from strongetiahi % '
policies. Third, we have obtained several insights as to ho@ o |
the queuing model estimates lead to suboptimal allocations
and how the RL trained neural nets are able to do better:
One important factor is that the RL nets learn to directly -60 f
estimate expected utility (i.e. SLA revenue), whereas the ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
gueuing models do so indirectly, by first estimating respons 0 50 100 150 200 250 300 350 400 450
time, and then estimating revenue using the SLA payment T1 Demand (requests per second)
function. We find that both open-loop and closed-loop quguin
models tend to overestimate the impact of server additions fgo. 4. Stable allocation policie§T 1, T2 Batch) in an RL value function.
subtractions on current response time. Since in most chees t
application’s current state corresponds to low response tito any other allocation. The horizontal range of each segmen
and high utility, the estimation error will be considerablgrse denotes the range of 1 demand values over which the
for removing servers than for adding servers, due to muelocation is stable, while thg-axis values denote the expected
flatter slope of the SLA function in the latter case. As a resulalue for this allocation, given that the allocation is uasbed
the Trade3 applications tend to be slightly overprovistbndrom the previous decision. The history dependence results
on average. However, the RL nets, by learning to estimdtem the delay-aware representation in the Trade3 neuts) ne
utility directly, are able to achieve less biased estinmaéicors. in which the expected value depends on both the previous and
This leads to the Trade3 applications receiving slightlyfe new allocation decision.
servers on average, with a slight loss of Trade3 revenue, butn the absence of history dependence, clearly there could be
the loss is more than made up by substantially greater Bamhly one stable allocation at any given level D1 demand.
revenue. In terms of application performance metrics, idybrHowever, with history dependence there can be multipldestab
RL policies typically obtain much better Batch throughpuallocations at a given demand level, and the actual allocati
with little degradation in Trade3 response time. For exanplchoice would then depend on the previous allocation.
after training on the best open-loop queuing model in Fi@ure For example, suppose the current joint allocatio(Bi5, 0)
hybrid RL obtains a 12.7% improvement in Batch throughpaind the currenT 1 demand is below 300 requests per second,
while mean Trade3 response time only increases by 2.6%.i.e., to the left of pointb in the figure. If T1 demand
Another important factor is that our steady-state queuirtigen increases slightly past poiht the allocation does not
models are unable to take dynamical effects into accoumtmediately switch tq4,4,0) but instead remains &8,5,0).
(although more sophisticated models could do so). Howevéhis is because the higher value shown(f#, 0) would only
the RL nets are able to take into account dynamic effects suapply if the allocation is already4,4,0). When considering
as transients and switching delays, and possibly evendinplia switch from (3,5,0) to (4,4,0) there would be another
predictability of future demand in a current state, by l@@gn estimated value curve (not shown), lying below the stable
policies that exhibit hysteresis. We analyze this phenamen(3,5,0) curve, incorporating an estimated cost of switching

60

immediately below in Section VI-B. the allocation. The3,5,0) allocation would continue to be
_) selected untilT1 demand increases past pomtwhere the
B. Policy Hysteresis estimated value to switch t¢4,4,0) exceeds the value of

We illustrate how our RL approach deals with dynamicemaining at(3,5,0). Likewise if current allocation i$4,4,0)
effects by examining a value function trained on data froendT1 demand drops below poiltt the preferred allocation
a system with no switching delay using our best open-loapould be to remain at4,4,0) until pointa is reached, where
queuing model. Figure 4 illustrates a portion of the learndgte predicted value of switching t@8,5,0) would exceed the
joint value function, estimating total value summed ovér avalue of remaining af4,4,0).
three applications as a function of the states and allowsitio The retardation of allocation switches with respect to in-
for each application. The plot shows how estimated totaleval stantaneous system state is an example of “hysteresis” in
varies as a function of demand in one Trade3 applicafidr) (the allocation policy, borrowing a term describing phybica
while demand in the other Trade3 application is held fixed aystems with lagged responses. We can identify at least four
400 requests per second. Each curve segment correspondsgohanisms in our system which would make such hysteresis
a stable joint allocation, as indicated, for which the eat®d beneficial. First, there is the obvious case of switchinggg|
value would decrease changing from the indicated allonatizvhen there is a clear and direct cost of reassigning servers,

as they are unable to perform any useful work during thbe improvement increases from 10.0% to 16.4%, while in the
delay interval. Second, there may also be a transient peritddsed-loop scenario the improvement jumps from 11.9% to
of suboptimal performance within an application after sesv 27.9%.
are added or removed. We observe that when a newly assigned

server begins_ processing Trade3 requests_, the performsnce gégﬁms nDteIay:O oM <2rz7> <0§2;8>
initially sluggish, presumably due to starting processed a Open-loop Delay=0 RL 2.04 0.464
creating Java threads in WebSphere. There is also a finite Open-loop Delay=4.5 QM | 2.31 0.581
period of time need to rebalance the load among the new set gﬁ)zgg‘jggp'jg;gig g,\"ﬂ ;:gg 8:222
of servers. Third, the increased need for resource matiyati Closed-loop Delay=0 RL 224 0.486
a potential switch may be temporary (e.g. due to a short-term Closed-loop Delay=4.5 QM 2.36 0.736
demand fluctuation), leading after switching to a futuret eds Closed-loop Delay=45RL| 195 | 0.331
immediately switching back. Fourth, there is the phenomeno TABLE |

of thrashing, in which removing a server from an applicatiofMEASUREMENTS OF MEAN NUMBER OF SERVERS(NT > ASSIGNED TO A

causes it to increase its reported need for servers, sohat t TRADE3 APPLICATION, AND MEAN CHANGE IN NUMBER OF ASSIGNED

server is immediately switched back. SERVERS< dNr > PER TIME STERIN THE EIGHT EXPERIMENTS PLOTTED
We find evidence in our prototype system that all four of IN FIGURES.

the above phenomena can occur using steady-state queuing

models, and that the simple delay-aware input representati The enhanced policy improvement seen above provides one
used by the RL nets enables them to learn hysteretic policigfe of evidence that the RL policies effectively deal with
that effectively deal with these phenomena. Evidence pertaswitching delays. Other evidence of this can be seen in Table
ing to switching delays and thrashing is presented below \jhich exhibits basic statistics averaged over the two T3ade
Section VI-C. applicationsT1 and T2 from the eight experiments shown
in Figure 5. The quantity<ny >= (<nt1> + <nt2>)/2 is
the average number of assigned servers, wkildnt >=
(<oénr1> + <dénr2>)/2 is the RMS change in number of
Initial Policy —E— assigned servers from one time step to the next. As mentioned
RL policy @2 | previously, the mean number of servers assigned to a Trade3
application is slightly less for the RL nets than for the gugu
0T [# ‘ | models, and there is a further slight reduction for the RL
s5 | O +16.4% | nets for 4.5 second delay compared to zero delay. More
importantly, the<dnr > statistics reveal noticeably less server
%] O +11.9% | swapping when using RL nets compared to queuing models,
45 : ‘] with the effect becoming quite pronounced~50% reduc-
%] O +27.9% tion) in the 4.5 second delay case. We attribute the reductio
“ | in <dnt> in the latter case partly to greater stickiness or
35] hysteresis in the RL trained value functions, and partly tdue
f% reduction or elimination of thrashing in overloaded sitias.
%0 Open: Delayo Delay5 Closed: Delay0 Delaya.5 In fact, massive thrashing under very high load appears to be
the main factor behind the poor performance of the closed-
Fig. 5. Comparison of delay=4.5 sec with delay=0 resultsgarsloop and loop queuing model with 4.5 second delay. In this run, we
closed-loop scenarios. found that when one of the Trade3 applicatioffsl(say)
estimates that it needs seven servers to obtain high ytilitst
Figure 5 presents a comparison of our zero-delay resulisys estimates fluctuate between needing one and two servers,
using our best open-loop and closed-loop queuing modelge arbiter’s allocation decision foff (,T2,Batch will thrash
with corresponding experiments that incorporate a swiighi petyween (7,1,0) and (1,2,5) leading to huge loss of utilieg
delay of 4.5 seconds upon reassigning a server to a differgi 4.5 second switching delay. However, the RL nets trained
application. The delay is asymmetric in that the server & this data set prefer to keep a steady allocation of 5 server

immediately unavailable to the old application, but does n@nder a heavy demand spike, thereby eliminating completely
become available to the new application until 4.5 seconus hanjs particular thrashing mode.

elapsed. We chose the delay to be a huge fraction of the five

second allocation interval so that empirical effects duéhto VII. CONCLUSIONS

delay would be as clear as possible. We see in Figure 5 thaDne contribution of this paper is to devise and demonstrate
imposing this delay does in fact substantially harm theayer success of a new hybrid learning method for resource valuati
performance in all cases. However, the amount of poli®stimates, combining disparate strengths of both reiefosnt
improvement of hybrid RL over its initial policy increases i learning and model-based policies, within a dynamic server
both absolute and relative terms. In the open-loop scenaaitocation scenario applicable to Data Centers. Our hybrid

C. Performance Results with Switching Delay

70

o5 | o +10.0%

50 r

40

Total SLA revenue per allocation decision

RL approach neatly takes advantage of RL's ability to leamesults can be obtained via multiple iterations of the polic
in a knowledge-free manner, requiring neither an explicinprovement method. It also will probably be necessary at
system model nor an explicit traffic model, and requiringome point to tackle the issue of adding exploratory actions
little or no domain knowledge built into either its state spa to the initial policy for general usage of hybrid RL, even
representation or its value function representation. ldeee though it was not necessary in our experiments. Finally e ar
through the use of a simple “delay-aware representatioinivestigating with our IBM colleagues whether there may be
including the previous allocation decision, our approalsio a feasible commercial deployments of hybrid RL, for example,
naturally handles transients and switching delays, whigh an WebSphere XD [21] and Tivoli Intelligent OrchestratoR]2
dynamic consequences of reallocation lying outside thpesco
of traditional steady-state queuing models. On the othedha)
our hybrid approach also exploits the ability of a modeldshs The authors would like to thank Jeff Kephart for many
policy to immediately achieve a high (or at least decentllevhelpful discussions.

of performance as soon as it is implemented within a system. REEERENCES

By run.mng such a policy to obtain _trammg data for RL’G{I'J[] R. Das, G. Tesauro, and W. E. Walsh, “Model-based and irfoeile
we maintain acceptable performance in the live system at approaches to autonomic resource allcation,” IBM Resedfeth. Rep.
times, and avoid potentially poor performance that would be RC23802, 2005.

expected using online RL. We mav also exploit robustness dfl G- Tesauro, “Online resource allocation using decoritjposl reinforce-
P 9 Y P ment learning,” inProc. of AAAI-05 2005.

model-based policies under various _types of SySter_n Chang% G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart, “Wtiitnction-
e.g. hardware upgrades or changes in the SLA, which require driven resource allocation in autonomic systems,Pioc. of ICAC-05

retraining of the RL value functions. When such changes 2005 L . .

9 . g 4] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, andlantawi, “An
occur, we can fall back on the mOd_el'baSEd pO|IC>l to delive analytical model for multi-tier internet services and ifsplications,” in
an acceptable performance level which accumulating a secon Proc. of SIGMETRICS-052005.

training set to be used for RL retraining. [5] D. Vengerov and N. lakovlev, “A reinforcement learninguinework for
9 d al lik h 9 hat i id b dynamic resource allocation: First results,”Bnoc. of ICAC-05 2005.
We would also like to stress, however, that it wou e[6] R. S. Sutton and A. G. Bartdzeinforcement Learning: An Introduction

a mistake to view our work solely as a method for server Cambridge, MA: MIT Press, 1998.

; i i 1 G. Tesauro, “Temporal difference learning and TD-Gamth@ommun.
allocation in Data Centers. Due to the broad generality of ACM, vol. 38, no. 3, pp. 5868, 1995,

RL i_tself_’_ we view hybrid RL as having potentially wide (g 3. Moody and M. Saffell, “Learning to trade via direct mércement,”
applicability throughout many different areas of systenasm IEEE Transactions on Neural Networksol. 12, no. 4, pp. 875-889,

agement. The types of management applications holding tthﬁ 2001.
f

. . .. A. Y. Ng et al, “Inverted autonomous helicopter flight via reinforcement
most promise for hybrid RL would have the characteristics o |eaming’n in Intl. Symposium on Expe,imerﬁa, Rogb01i2904.

(a) a tractable state-space representation; (b) frequdimteo [10] R. E. Belman,Dynamic Programming Princeton University Press,
decision making depending upon time-varying system stz;[%'] 1957.

. W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, ‘Wtilunctions
(c) frequent observation of numerical rewards in an immiedi in autonomic systems.” iProc. of ICAC-04 2004, pp. 70—77.

or moderately delayed relation to management actions;réd) p[12] I1BM, “Websphere benchmark sample” http://www-3@60i.com/
existing policies that obtain acceptable (albeit impejfeer- software/webservers/appserv/ibenchmarks.html, 2004.

r{l?é] M. S. Squillante, D. D. Yao, and L. Zhang, “Internet fref Periodicity,
formance levels. Clearly there are a great many performarc€ i, pehavior and performance implications,” Bystem Performance

management applications having such properties. Among the Evaluation: Methodologies and ApplicationE. Gelenbe, Ed. CRC
are dynamic allocation of other types of resources, e.g., Press, 1999.

. . '4] S. Singh and D. Cohn, “How to dynamically merge MarkovcB@®n
bandwidth, memory, CPU slices, threads, LPARSs, etc.. We" processes,” imdvances in Neural Information Processing Systevh.

would also include performance-based online tuning ofesyst Jordan, M. J. Kearns, and S. A. Solla, Eds., vol. 10. MIT Rr&8s8.
control parameters, such as web server parameters, OS-paﬂé?h A. R. Barron, “Complexity regularization with applitan to artificial

. neural networks,” ilNonparametric Functional Estimation and Related
eters, database parameters, etc.. Finally, we note thatdhyb 1qpics 6. Roussas, Ed'_O‘ 1991,

RL could conceivably go beyond performance managemegm] P. Pradhan, R. Tewari, S. Sahu, C. Chandra, and P. Shéaay

to encompass simultaneous management to multiple criteria oPservation-based approach towards self-managing weterser in
P 9 P Proc. of Intl. Workshop on Quality of Servjc2002.

(e.g. performance and availability), as long as the rewarg$; a chandra, W. Gong, and P. Shenoy, “Dynamic resourtceation for
pertaining to each criterion are on an equivalent numerical shared data centers using online measurement®tdn. of ACM/IEEE
scale. Intl. Workshop on Quality of Service (IWQo2D03, pp. 381-400.
. . . [18] M. N. Bennani and D. A. Menasce, “Assessing the robestnof self-
In future work we plan further investigations of the scala~ " managing computer systems under variable workloadsPic. of
bility of hybrid RL/function approximation as the applicat ICAC-04 2004.

state space increases in size and complexity. Specifiaall [}9] ——, “Resource allocation for autonomic data centermgisanalytic
P . P Y. 5P y performance models,” iProc. of ICAC-05 2005.

the_ Data Center scenario, we plan to add several other St3# D. A. Menasce, V. A. F. Almedia, and L. W. Dowdperformance by
variables (e.g. mean response time, mean queue lengtljs, etc design: Computer Capacity Planning by Examplepper Saddle River,
to the RL input representation in order to investigate t NJ: Prentice Hall, 2004. .

.p. .p . 9 1] IBM, “WebSphere Extended Deployment,” www.ibm.coofteare/
effect on training time and sample complexity, as well as webservers/appserviextend/, 2006.
whether further performance improvements can be obtaingzt] TIO, “Tivoli Intelligent Orchestrator product overiv,” http://www.ibm.

We will also study whether progressively better perfornganc ~ com/softwareftivoli/products/intell-orch, 2005.

ACKNOWLEDGMENT

