
Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems

�

Antony Rowstron
�

and Peter Druschel
�����

�
Microsoft Research Ltd, St. George House,

1 Guildhall Street, Cambridge, CB2 3NH, UK.
antr@microsoft.com

�
Rice University MS-132, 6100 Main Street,

Houston, TX 77005-1892, USA.
druschel@cs.rice.edu

Abstract. This paper presents the design and evaluation of Pastry, a scalable,
distributed object location and routing substrate for wide-area peer-to-peer ap-
plications. Pastry performs application-level routing and object location in a po-
tentially very large overlay network of nodes connected via the Internet. It can
be used to support a variety of peer-to-peer applications, including global data
storage, data sharing, group communication and naming.
Each node in the Pastry network has a unique identifier (nodeId). When presented
with a message and a key, a Pastry node efficiently routes the message to the
node with a nodeId that is numerically closest to the key, among all currently
live Pastry nodes. Each Pastry node keeps track of its immediate neighbors in
the nodeId space, and notifies applications of new node arrivals, node failures
and recoveries. Pastry takes into account network locality; it seeks to minimize
the distance messages travel, according to a to scalar proximity metric like the
number of IP routing hops.
Pastry is completely decentralized, scalable, and self-organizing; it automatically
adapts to the arrival, departure and failure of nodes. Experimental results obtained
with a prototype implementation on an emulated network of up to 100,000 nodes
confirm Pastry’s scalability and efficiency, its ability to self-organize and adapt to
node failures, and its good network locality properties.

1 Introduction

Peer-to-peer Internet applications have recently been popularized through file sharing
applications like Napster, Gnutella and FreeNet [1, 2, 8]. While much of the attention
has been focused on the copyright issues raised by these particular applications, peer-
to-peer systems have many interesting technical aspects like decentralized control, self-
organization, adaptation and scalability. Peer-to-peer systems can be characterized as
distributed systems in which all nodes have identical capabilities and responsibilities
and all communication is symmetric.
�

Appears in Proc. of the 18th IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware 2001). Heidelberg, Germany, November 2001.

�	�
Work done in part while visiting Microsoft Research, Cambridge, UK.

There are currently many projects aimed at constructing peer-to-peer applications
and understanding more of the issues and requirements of such applications and sys-
tems [1, 2, 5, 8, 10, 15]. One of the key problems in large-scale peer-to-peer applications
is to provide efficient algorithms for object location and routing within the network.
This paper presents Pastry, a generic peer-to-peer object location and routing scheme,
based on a self-organizing overlay network of nodes connected to the Internet. Pastry
is completely decentralized, fault-resilient, scalable, and reliable. Moreover, Pastry has
good route locality properties.

Pastry is intended as general substrate for the construction of a variety of peer-to-
peer Internet applications like global file sharing, file storage, group communication and
naming systems. Several application have been built on top of Pastry to date, including
a global, persistent storage utility called PAST [11, 21] and a scalable publish/subscribe
system called SCRIBE [22]. Other applications are under development.

Pastry provides the following capability. Each node in the Pastry network has a
unique numeric identifier (nodeId). When presented with a message and a numeric key,
a Pastry node efficiently routes the message to the node with a nodeId that is numeri-
cally closest to the key, among all currently live Pastry nodes. The expected number of
routing steps is O(log N), where N is the number of Pastry nodes in the network. At
each Pastry node along the route that a message takes, the application is notified and
may perform application-specific computations related to the message.

Pastry takes into account network locality; it seeks to minimize the distance mes-
sages travel, according to a scalar proximity metric like the number of IP routing hops.
Each Pastry node keeps track of its immediate neighbors in the nodeId space, and no-
tifies applications of new node arrivals, node failures and recoveries. Because nodeIds
are randomly assigned, with high probability, the set of nodes with adjacent nodeId is
diverse in geography, ownership, jurisdiction, etc. Applications can leverage this, as
Pastry can route to one of

�
nodes that are numerically closest to the key. A heuristic

ensures that among a set of nodes with the
�

closest nodeIds to the key, the message is
likely to first reach a node “near” the node from which the message originates, in terms
of the proximity metric.

Applications use these capabilities in different ways. PAST, for instance, uses a
fileId, computed as the hash of the file’s name and owner, as a Pastry key for a file.
Replicas of the file are stored on the

�
Pastry nodes with nodeIds numerically closest to

the fileId. A file can be looked up by sending a message via Pastry, using the fileId as the
key. By definition, the lookup is guaranteed to reach a node that stores the file as long
as one of the

�
nodes is live. Moreover, it follows that the message is likely to first reach

a node near the client, among the
�

nodes; that node delivers the file and consumes the
message. Pastry’s notification mechanisms allow PAST to maintain replicas of a file
on the

�
nodes closest to the key, despite node failure and node arrivals, and using only

local coordination among nodes with adjacent nodeIds. Details on PAST’s use of Pastry
can be found in [11, 21].

As another sample application, in the SCRIBE publish/subscribe System, a list of
subscribers is stored on the node with nodeId numerically closest to the topicId of a
topic, where the topicId is a hash of the topic name. That node forms a rendez-vous
point for publishers and subscribers. Subscribers send a message via Pastry using the

topicId as the key; the registration is recorded at each node along the path. A publisher
sends data to the rendez-vous point via Pastry, again using the topicId as the key. The
rendez-vous point forwards the data along the multicast tree formed by the reverse paths
from the rendez-vous point to all subscribers. Full details of Scribe’s use of Pastry can
be found in [22].

These and other applications currently under development were all built with little
effort on top of the basic capability provided by Pastry. The rest of this paper is orga-
nized as follows. Section 2 presents the design of Pastry, including a description of the
API. Experimental results with a prototype implementation of Pastry are presented in
Section 3. Related work is discussed in Section 4 and Section 5 concludes.

2 Design of Pastry

A Pastry system is a self-organizing overlay network of nodes, where each node routes
client requests and interacts with local instances of one or more applications. Any com-
puter that is connected to the Internet and runs the Pastry node software can act as a
Pastry node, subject only to application-specific security policies.

Each node in the Pastry peer-to-peer overlay network is assigned a 128-bit node
identifier (nodeId). The nodeId is used to indicate a node’s position in a circular nodeId
space, which ranges from � to � �	�������

. The nodeId is assigned randomly when a node
joins the system. It is assumed that nodeIds are generated such that the resulting set
of nodeIds is uniformly distributed in the 128-bit nodeId space. For instance, nodeIds
could be generated by computing a cryptographic hash of the node’s public key or its
IP address. As a result of this random assignment of nodeIds, with high probability,
nodes with adjacent nodeIds are diverse in geography, ownership, jurisdiction, network
attachment, etc.

Assuming a network consisting of � nodes, Pastry can route to the numerically
closest node to a given key in less than 	�
��� ��� ��� steps under normal operation (�
is a configuration parameter with typical value 4). Despite concurrent node failures,
eventual delivery is guaranteed unless ��� ��� ����� nodes with adjacent nodeIds fail simul-
taneously (� ��� is a configuration parameter with a typical value of

���
or � �). In the

following, we present the Pastry scheme.
For the purpose of routing, nodeIds and keys are thought of as a sequence of digits

with base �"! . Pastry routes messages to the node whose nodeId is numerically closest
to the given key. This is accomplished as follows. In each routing step, a node normally
forwards the message to a node whose nodeId shares with the key a prefix that is at least
one digit (or � bits) longer than the prefix that the key shares with the present node’s
id. If no such node is known, the message is forwarded to a node whose nodeId shares
a prefix with the key as long as the current node, but is numerically closer to the key
than the present node’s id. To support this routing procedure, each node maintains some
routing state, which we describe next.

2.1 Pastry node state

Each Pastry node maintains a routing table, a neighborhood set and a leaf set. We begin
with a description of the routing table. A node’s routing table, # , is organized into

NodeId 10233102

-0-2212102 1 -2-2301203 -3-1203203
0 1-1-301233 1-2-230203 1-3-021022

Routing table

10-0-31203 10-1-32102 2 10-3-23302
102-0-0230 102-1-1302 102-2-2302 3
1023-0-322 1023-1-000 1023-2-121 3
10233-0-01 1 10233-2-32

0 102331-2-0
2

Neighborhood set
13021022 10200230 11301233 31301233
02212102 22301203 31203203 33213321

Leaf set
10233033 10233021 10233120 10233122
10233001 10233000 10233230 10233232

LARGERSMALLER

Fig. 1. State of a hypothetical Pastry node with nodeId 10233102, ����� , and ����� . All numbers
are in base 4. The top row of the routing table is row zero. The shaded cell in each row of the
routing table shows the corresponding digit of the present node’s nodeId. The nodeIds in each
entry have been split to show the common prefix with 10233102 - next digit - rest of nodeId. The
associated IP addresses are not shown.

	
��� � � � � rows with �"! � �
entries each. The � ! � �

entries at row 	 of the routing table
each refer to a node whose nodeId shares the present node’s nodeId in the first 	 digits,
but whose 	�
 �

th digit has one of the � ! � �
possible values other than the 	�
 �

th
digit in the present node’s id.

Each entry in the routing table contains the IP address of one of potentially many
nodes whose nodeId have the appropriate prefix; in practice, a node is chosen that is
close to the present node, according to the proximity metric. We will show in Section 2.5
that this choice provides good locality properties. If no node is known with a suitable
nodeId, then the routing table entry is left empty. The uniform distribution of nodeIds
ensures an even population of the nodeId space; thus, on average, only 	�
��� � � � � rows
are populated in the routing table.

The choice of � involves a trade-off between the size of the populated portion of the
routing table (approximately 	
��� � � � ���� �"! � ���

entries) and the maximum number
of hops required to route between any pair of nodes (�
��� � � � �). With a value of �����
and

� ��� nodes, a routing table contains on average 75 entries and the expected number
of routing hops is 5, whilst with

� ��� nodes, the routing table contains on average 105
entries, and the expected number of routing hops in 7.

The neighborhood set � contains the nodeIds and IP addresses of the � � � nodes
that are closest (according the proximity metric) to the local node. The neighborhood set
is not normally used in routing messages; it is useful in maintaining locality properties,
as discussed in Section 2.5. The leaf set � is the set of nodes with the � � � � � numerically
closest larger nodeIds, and the � ��� ��� nodes with numerically closest smaller nodeIds,
relative to the present node’s nodeId. The leaf set is used during the message routing,
as described below. Typical values for � ��� and � � � are � ! or �����"! .

How the various tables of a Pastry node are initialized and maintained is the subject
of Section 2.4. Figure 1 depicts the state of a hypothetical Pastry node with the nodeId
10233102 (base 4), in a system that uses 16 bit nodeIds and a value of � � � .

2.2 Routing

The Pastry routing procedure is shown in pseudo code form in Table 1. The procedure
is executed whenever a message with key

�
arrives at a node with nodeId � . We begin

by defining some notation.
#��� : the entry in the routing table # at column � , ���	��
 � ! and row
 , ���

 � � ��� ��� � .
� � : the i-th closest nodeId in the leaf set � ,

� ��� ��� ����������� ��� � � � � � , where neg-
ative/positive indices indicate nodeIds smaller/larger than the present nodeId, respec-
tively.� � : the value of the
 ’s digit in the key

�
.���
 ������� � : the length of the prefix shared among � and � , in digits.

(1) if (�����! "# $ �&%('*)+' �(�! ", $ �&%) -
(2) //) is within range of our leaf set
(3) forward to �/. , s.th. 0)21 �/.30 is minimal;
(4) 4 else -
(5) // use the routing table
(6) Let ���6587 �&9)�:3;=< ;
(7) if (>@?BACED�GF#H � �) -
(8) forward to >@?BAC ;
(9) 4
(10) else -
(11) // rare case
(12) forward to IKJL��MN>OM�P , s.th.
(13) 587 �&9QI :3)�<R � ,
(14) 0 I 1S) 0UT�0 ;V1W) 0
(15) 4
(16) 4

Table 1. Pseudo code for Pastry core routing algorithm.

Given a message, the node first checks to see if the key falls within the range of
nodeIds covered by its leaf set (line 1). If so, the message is forwarded directly to the
destination node, namely the node in the leaf set whose nodeId is closest to the key
(possibly the present node) (line 3).

If the key is not covered by the leaf set, then the routing table is used and the
message is forwarded to a node that shares a common prefix with the key by at least
one more digit (lines 6–8). In certain cases, it is possible that the appropriate entry in
the routing table is empty or the associated node is not reachable (line 11–14), in which
case the message is forwarded to a node that shares a prefix with the key at least as
long as the local node, and is numerically closer to the key than the present node’s id.

Such a node must be in the leaf set unless the message has already arrived at the node
with numerically closest nodeId. And, unless ��� ��� ��� � adjacent nodes in the leaf set have
failed simultaneously, at least one of those nodes must be live.

This simple routing procedure always converges, because each step takes the mes-
sage to a node that either (1) shares a longer prefix with the key than the local node, or
(2) shares as long a prefix with, but is numerically closer to the key than the local node.

Routing performance It can be shown that the expected number of routing steps is
	
��� ��� � � steps, assuming accurate routing tables and no recent node failures. Briefly,
consider the three cases in the routing procedure. If a message is forwarded using the
routing table (lines 6–8), then the set of nodes whose ids have a longer prefix match
with the key is reduced by a factor of � ! in each step, which means the destination is
reached in 	�
��� � � � � steps. If the key is within range of the leaf set (lines 2–3), then the
destination node is at most one hop away.

The third case arises when the key is not covered by the leaf set (i.e., it is still more
than one hop away from the destination), but there is no routing table entry. Assuming
accurate routing tables and no recent node failures, this means that a node with the
appropriate prefix does not exist (lines 11–14). The likelihood of this case, given the
uniform distribution of nodeIds, depends on � ��� . Analysis shows that with � ��� � � ! and
� � ��� � ��� ! , the probability that this case arises during a given message transmission
is less than .02 and 0.006, respectively. When it happens, no more than one additional
routing step results with high probability.

In the event of many simultaneous node failures, the number of routing steps re-
quired may be at worst linear in � , while the nodes are updating their state. This is a
loose upper bound; in practice, routing performance degrades gradually with the num-
ber of recent node failures, as we will show experimentally in Section 3.1. Eventual
message delivery is guaranteed unless ��� ��� ��� � nodes with consecutive nodeIds fail si-
multaneously. Due to the expected diversity of nodes with adjacent nodeIds, and with
a reasonable choice for � � � (e.g. � !), the probability of such a failure can be made very
low.

2.3 Pastry API

Next, we briefly outline Pastry’s application programming interface (API). The pre-
sented API is slightly simplified for clarity. Pastry exports the following operations:

nodeId = pastryInit(Credentials, Application) causes the local node to join an ex-
isting Pastry network (or start a new one), initialize all relevant state, and return
the local node’s nodeId. The application-specific credentials contain information
needed to authenticate the local node. The application argument is a handle to the
application object that provides the Pastry node with the procedures to invoke when
certain events happen, e.g., a message arrival.

route(msg,key) causes Pastry to route the given message to the node with nodeId nu-
merically closest to the key, among all live Pastry nodes.

Applications layered on top of Pastry must export the following operations:

deliver(msg,key) called by Pastry when a message is received and the local node’s
nodeId is numerically closest to key, among all live nodes.

forward(msg,key,nextId) called by Pastry just before a message is forwarded to the
node with nodeId = nextId. The application may change the contents of the message
or the value of nextId. Setting the nextId to NULL terminates the message at the
local node.

newLeafs(leafSet) called by Pastry whenever there is a change in the local node’s leaf
set. This provides the application with an opportunity to adjust application-specific
invariants based on the leaf set.

Several applications have been built on top of Pastry using this simple API, includ-
ing PAST [11, 21] and SCRIBE [22], and several applications are under development.

2.4 Self-organization and adaptation

In this section, we describe Pastry’s protocols for handling the arrival and departure
of nodes in the Pastry network. We begin with the arrival of a new node that joins the
system. Aspects of this process pertaining to the locality properties of the routing tables
are discussed in Section 2.5.

Node arrival When a new node arrives, it needs to initialize its state tables, and then
inform other nodes of its presence. We assume the new node knows initially about a
nearby Pastry node � , according to the proximity metric, that is already part of the
system. Such a node can be located automatically, for instance, using “expanding ring”
IP multicast, or be obtained by the system administrator through outside channels.

Let us assume the new node’s nodeId is � . (The assignment of nodeIds is application-
specific; typically it is computed as the SHA-1 hash of its IP address or its public key).
Node � then asks � to route a special “join” message with the key equal to � . Like any
message, Pastry routes the join message to the existing node � whose id is numerically
closest to � .

In response to receiving the “join” request, nodes � , � , and all nodes encountered
on the path from � to � send their state tables to � . The new node � inspects this
information, may request state from additional nodes, and then initializes its own state
tables, using a procedure describe below. Finally, � informs any nodes that need to be
aware of its arrival. This procedure ensures that � initializes its state with appropriate
values, and that the state in all other affected nodes is updated.

Since node � is assumed to be in proximity to the new node � , � ’s neighborhood
set to initialize � ’s neighborhood set. Moreover, � has the closest existing nodeId to
� , thus its leaf set is the basis for � ’s leaf set. Next, we consider the routing table,
starting at row zero. We consider the most general case, where the nodeIds of � and
� share no common prefix. Let � � denote node � ’s row of the routing table at level � .
Note that the entries in row zero of the routing table are independent of a node’s nodeId.
Thus, ��� contains appropriate values for ��� . Other levels of � ’s routing table are of no
use to � , since � ’s and � ’s ids share no common prefix.

However, appropriate values for � � can be taken from � � , where � is the first node
encountered along the route from � to � . To see this, observe that entries in � � and

� � share the same prefix, because � and � have the same first digit in their nodeId.
Similarly, � obtains appropriate entries for � � from node � , the next node encountered
along the route from � to � , and so on.

Finally, � transmits a copy of its resulting state to each of the nodes found in its
neighborhood set, leaf set, and routing table. Those nodes in turn update their own state
based on the information received. One can show that at this stage, the new node �
is able to route and receive messages, and participate in the Pastry network. The total
cost for a node join, in terms of the number of messages exchanged, is ���
��� � � � � . The
constant is about �� �"! .

Pastry uses an optimistic approach to controlling concurrent node arrivals and de-
partures. Since the arrival/departure of a node affects only a small number of exist-
ing nodes in the system, contention is rare and an optimistic approach is appropriate.
Briefly, whenever a node � provides state information to a node � , it attaches a times-
tamp to the message. � adjusts its own state based on this information and eventually
sends an update message to � (e.g., notifying � of its arrival). � attaches the original
timestamp, which allows � to check if its state has since changed. In the event that its
state has changed, it responds with its updated state and � restarts its operation.

Node departure Nodes in the Pastry network may fail or depart without warning. In
this section, we discuss how the Pastry network handles such node departures. A Pastry
node is considered failed when its immediate neighbors in the nodeId space can no
longer communicate with the node.

To replace a failed node in the leaf set, its neighbor in the nodeId space contacts the
live node with the largest index on the side of the failed node, and asks that node for its
leaf table. For instance, if � � failed for ��� ��� �����
+�
 � , it requests the leaf set from
������� �	�
 ��� . Let the received leaf set be �� . This set partly overlaps the present node’s
leaf set � , and it contains nodes with nearby ids not presently in � . Among these new
nodes, the appropriate one is then chosen to insert into � , verifying that the node is
actually alive by contacting it. This procedure guarantees that each node lazily repairs
its leaf set unless ��� ��� ��� � nodes with adjacent nodeIds have failed simultaneously. Due
to the diversity of nodes with adjacent nodeIds, such a failure is very unlikely even for
modest values of � ��� .

The failure of a node that appears in the routing table of another node is detected
when that node attempts to contact the failed node and there is no response. As ex-
plained in Section 2.2, this event does not normally delay the routing of a message,
since the message can be forwarded to another node. However, a replacement entry
must be found to preserve the integrity of the routing table.

To repair a failed routing table entry #��� , a node contacts first the node referred to
by another entry # �� �3������ of the same row, and asks for that node’s entry for #��� . In the
event that none of the entries in row
 have a pointer to a live node with the appropriate
prefix, the node next contacts an entry #����� � �3������ , thereby casting a wider net. This
procedure is highly likely to eventually find an appropriate node if one exists.

The neighborhood set is not normally used in the routing of messages, yet it is im-
portant to keep it current, because the set plays an important role in exchanging infor-
mation about nearby nodes. For this purpose, a node attempts to contact each member
of the neighborhood set periodically to see if it is still alive. If a member is not respond-

ing, the node asks other members for their neighborhood tables, checks the distance of
each of the newly discovered nodes, and updates it own neighborhood set accordingly.

Experimental results in Section 3.2 demonstrate Pastry’s effectiveness in repairing
the node state in the presences of node failures, and quantify the cost of this repair in
terms of the number of messages exchanged.

2.5 Locality

In the previous sections, we discussed Pastry’s basic routing properties and discussed
its performance in terms of the expected number of routing hops and the number of
messages exchanged as part of a node join operation. This section focuses on another
aspect of Pastry’s routing performance, namely its properties with respect to locality.
We will show that the route chosen for a message is likely to be “good” with respect to
the proximity metric.

Pastry’s notion of network proximity is based on a scalar proximity metric, such as
the number of IP routing hops or geographic distance. It is assumed that the application
provides a function that allows each Pastry node to determine the “distance” of a node
with a given IP address to itself. A node with a lower distance value is assumed to be
more desirable. An application is expected to implements this function depending on its
choice of a proximity metric, using network services like traceroute or Internet subnet
maps, and appropriate caching and approximation techniques to minimize overhead.

Throughout this discussion, we assume that the proximity space defined by the cho-
sen proximity metric is Euclidean; that is, the triangulation inequality holds for dis-
tances among Pastry nodes. This assumption does not hold in practice for some prox-
imity metrics, such as the number of IP routing hops in the Internet. If the triangulation
inequality does not hold, Pastry’s basic routing is not affected; however, the locality
properties of Pastry routes may suffer. Quantifying the impact of such deviations is the
subject of ongoing work.

We begin by describing how the previously described procedure for node arrival is
augmented with a heuristic that ensures that routing table entries are chosen to provide
good locality properties.

Locality in the routing table In Section 2.4, we described how a newly joining node
initializes its routing table. Recall that a newly joining node � asks an existing node �
to route a join message using � as the key. The message follows a paths through nodes
� , � , etc., and eventually reaches node � , which is the live node with the numerically
closest nodeId to � . Node � initialized its routing table by obtaining the � -th row of its
routing table from the � -th node encountered along the route from � to � .

The property we wish to maintain is that all routing table entries refer to a node that
is near the present node, according to the proximity metric, among all live nodes with
a prefix appropriate for the entry. Let us assume that this property holds prior to node
� ’s joining the system, and show how we can maintains the property as node � joins.

First, we require that node � is near � , according to the proximity metric. Since the
entries in row zero of � ’s routing table are close to � , � is close to � , and we assume
that the triangulation inequality holds in the proximity space, it follows that the entries

are relatively near � . Therefore, the desired property is preserved. Likewise, obtaining
� ’s neighborhood set from � is appropriate.

Let us next consider row one of � ’s routing table, which is obtained from node � .
The entries in this row are near � , however, it is not clear how close � is to � . Intu-
itively, it would appear that for � to take row one of its routing table from node � does
not preserve the desired property, since the entries are close to � , but not necessarily
to � . In reality, the entries tend to be reasonably close to � . Recall that the entries in
each successive row are chosen from an exponentially decreasing set size. Therefore,
the expected distance from � to its row one entries (� �) is much larger than the ex-
pected distance traveled from node � to � . As a result, � � is a reasonable choice for
� � . This same argument applies for each successive level and routing step, as depicted
in Figure 2.

Level 0

Level 1

Level 2
Z

X

A

Level 0

Fig. 2. Routing step distance versus distance of the representatives at each level (based on exper-
imental data). The circles around the n-th node along the route from ; to � indicate the average
distance of the node’s representatives at level F . Note that � lies within each circle.

After � has initialized its state in this fashion, its routing table and neighborhood set
approximate the desired locality property. However, the quality of this approximation
must be improved to avoid cascading errors that could eventually lead to poor route
locality. For this purpose, there is a second stage in which � requests the state from each
of the nodes in its routing table and neighborhood set. It then compares the distance
of corresponding entries found in those nodes’ routing tables and neighborhood sets,
respectively, and updates its own state with any closer nodes it finds. The neighborhood
set contributes valuable information in this process, because it maintains and propagates
information about nearby nodes regardless of their nodeId prefix.

Intuitively, a look at Figure 2 illuminates why incorporating the state of nodes men-
tioned in the routing and neighborhood tables from stage one provides good represen-
tatives for � . The circles show the average distance of the entry from each node along
the route, corresponding to the rows in the routing table. Observe that � lies within
each circle, albeit off-center. In the second stage, � obtains the state from the entries
discovered in stage one, which are located at an average distance equal to the perimeter
of each respective circle. These states must include entries that are appropriate for � ,
but were not discovered by � in stage one, due to its off-center location.

Experimental results in Section 3.2 show that this procedure maintains the locality
property in the routing table and neighborhood sets with high fidelity. Next, we discuss
how the locality in Pastry’s routing tables affects Pastry routes.

Route locality The entries in the routing table of each Pastry node are chosen to be
close to the present node, according to the proximity metric, among all nodes with
the desired nodeId prefix. As a result, in each routing step, a message is forwarded to a
relatively close node with a nodeId that shares a longer common prefix or is numerically
closer to the key than the local node. That is, each step moves the message closer to
the destination in the nodeId space, while traveling the least possible distance in the
proximity space.

Since only local information is used, Pastry minimizes the distance of the next rout-
ing step with no sense of global direction. This procedure clearly does not guarantee
that the shortest path from source to destination is chosen; however, it does give rise to
relatively good routes. Two facts are relevant to this statement. First, given a message
was routed from node � to node � at distance � from � , the message cannot subse-
quently be routed to a node with a distance of less than � from � . This follows directly
from the routing procedure, assuming accurate routing tables.

Second, the expected distance traveled by a messages during each successive rout-
ing step is exponentially increasing. To see this, observe that an entry in the routing
table in row
 is chosen from a set of nodes of size � ��� ! � . That is, the entries in suc-
cessive rows are chosen from an exponentially decreasing number of nodes. Given the
random and uniform distribution of nodeIds in the network, this means that the expected
distance of the closest entry in each successive row is exponentially increasing.

Jointly, these two facts imply that although it cannot be guaranteed that the distance
of a message from its source increases monotonically at each step, a message tends to
make larger and larger strides with no possibility of returning to a node within � � of
any node � encountered on the route, where � � is the distance of the routing step taken
away from node � . Therefore, the message has nowhere to go but towards its destination.
Figure 3 illustrates this effect.

Locating the nearest among
�

nodes Some peer-to-peer application we have built using
Pastry replicate information on the

�
Pastry nodes with the numerically closest nodeIds

to a key in the Pastry nodeId space. PAST, for instance, replicates files in this way to
ensure high availability despite node failures. Pastry naturally routes a message with
the given key to the live node with the numerically closest nodeId, thus ensuring that
the message reaches one of the

�
nodes as long as at least one of them is live.

Moreover, Pastry’s locality properties make it likely that, along the route from a
client to the numerically closest node, the message first reaches a node near the client, in
terms of the proximity metric, among the

�
numerically closest nodes. This is useful in

applications such as PAST, because retrieving a file from a nearby node minimizes client
latency and network load. Moreover, observe that due to the random assignment of
nodeIds, nodes with adjacent nodeIds are likely to be widely dispersed in the network.
Thus, it is important to direct a lookup query towards a node that is located relatively
near the client.

Level 1

Level 2

Level 3Level 0

Level 0

Fig. 3. Sample trajectory of a typical message in the Pastry network, based on experimental data.
The message cannot re-enter the circles representing the distance of each of its routing steps away
from intermediate nodes. Although the message may partly “turn back” during its initial steps,
the exponentially increasing distances traveled in each step cause it to move toward its destination
quickly.

Recall that Pastry routes messages towards the node with the nodeId closest to the
key, while attempting to travel the smallest possible distance in each step. Therefore,
among the

�
numerically closest nodes to a key, a message tends to first reach a node

near the client. Of course, this process only approximates routing to the nearest node.
Firstly, as discussed above, Pastry makes only local routing decisions, minimizing the
distance traveled on the next step with no sense of global direction. Secondly, since Pas-
try routes primarily based on nodeId prefixes, it may miss nearby nodes with a different
prefix than the key. In the worst case,

� ��� � �
of the replicas are stored on nodes whose

nodeIds differ from the key in their domain at level zero. As a result, Pastry will first
route towards the nearest among the

� ���
 �
remaining nodes.

Pastry uses a heuristic to overcome the prefix mismatch issue described above. The
heuristic is based on estimating the density of nodeIds in the nodeId space using local
information. Based on this estimation, the heuristic detects when a message approaches
the set of

�
numerically closest nodes, and then switches to numerically nearest address

based routing to locate the nearest replica. Results presented in Section 3.3 show that
Pastry is able to locate the nearest node in over 75%, and one of the two nearest nodes
in over 91% of all queries.

2.6 Arbitrary node failures and network partitions

Throughout this paper, it is assumed that Pastry nodes fail silently. Here, we briefly
discuss how a Pastry network could deal with arbitrary nodes failures, where a failed
node continues to be responsive, but behaves incorrectly or even maliciously. The Pastry
routing scheme as described so far is deterministic. Thus, it is vulnerable to malicious
or failed nodes along the route that accept messages but do not correctly forward them.
Repeated queries could thus fail each time, since they normally take the same route.

In applications where arbitrary node failures must be tolerated, the routing can be
randomized. Recall that in order to avoid routing loops, a message must always be
forwarded to a node that shares a longer prefix with the destination, or shares the same
prefix length as the current node but is numerically closer in the nodeId space than the
current node. However, the choice among multiple nodes that satisfy this criterion can
be made randomly. In practice, the probability distribution should be biased towards the
best choice to ensure low average route delay. In the event of a malicious or failed node
along the path, the query may have to be repeated several times by the client, until a
route is chosen that avoids the bad node. Furthermore, the protocols for node join and
node failure can be extended to tolerate misbehaving nodes. The details are beyond the
scope of this paper.

Another challenge are IP routing anomalies in the Internet that cause IP hosts to be
unreachable from certain IP hosts but not others. The Pastry routing is tolerant of such
anomalies; Pastry nodes are considered live and remain reachable in the overlay net-
work as long as they are able to communication with their immediate neighbors in the
nodeId space. However, Pastry’s self-organization protocol may cause the creation of
multiple, isolated Pastry overlay networks during periods of IP routing failures. Because
Pastry relies almost exclusively on information exchange within the overlay network to
self-organize, such isolated overlays may persist after full IP connectivity resumes.

One solution to this problem involves the use of IP multicast. Pastry nodes can pe-
riodically perform an expanding ring multicast search for other Pastry nodes in their
vicinity. If isolated Pastry overlays exists, they will be discovered eventually, and rein-
tegrated. To minimize the cost, this procedure can be performed randomly and infre-
quently by Pastry nodes, only within a limited range of IP routing hops from the node,
and only if no search was performed by another nearby Pastry node recently. As an
added benefit, the results of this search can also be used to improve the quality of the
routing tables.

3 Experimental results

In this section, we present experimental results obtained with a prototype implementa-
tion of Pastry. The Pastry node software was implemented in Java. To be able to perform
experiments with large networks of Pastry nodes, we also implemented a network em-
ulation environment, permitting experiments with up to 100,000 Pastry nodes.

All experiments were performed on a quad-processor Compaq AlphaServer ES40
(500MHz 21264 Alpha CPUs) with 6GBytes of main memory, running True64 UNIX,
version 4.0F. The Pastry node software was implemented in Java and executed using
Compaq’s Java 2 SDK, version 1.2.2-6 and the Compaq FastVM, version 1.2.2-4.

In all experiments reported in this paper, the Pastry nodes were configured to run
in a single Java VM. This is largely transparent to the Pastry implementation—the Java
runtime system automatically reduces communication among the Pastry nodes to local
object invocations.

The emulated network environment maintains distance information between the
Pastry nodes. Each Pastry node is assigned a location in a plane; coordinates in the
plane are randomly assigned in the range � �#� � �"� ��� . Nodes in the Internet are not uni-

formly distributed in a Euclidean space; instead, there is a strong clustering of nodes
and the triangulation inequality doesn’t always hold. We are currently performing emu-
lations based on a more realistic network topology model taken from [26]. Early results
indicate that overall, Pastry’s locality related routing properties are not significantly
affected by this change.

A number of Pastry properties are evaluated experimentally. The first set of results
demonstrates the basic performance of Pastry routing. The routing tables created within
the Pastry nodes are evaluated in Section 3.2. In Section 3.3 we evaluate Pastry’s ability
to route to the nearest among the

�
numerically closest nodes to a key. Finally, in 3.4

the properties of Pastry under node failures are considered.

3.1 Routing performance

The first experiment shows the number of routing hops as a function of the size of
the Pastry network. We vary the number of Pastry nodes from 1,000 to 100,000 in a
network where � � � , � ����� ���

, � � ��� �"� . In each of 200,000 trials, two Pastry nodes
are selected at random and a message is routed between the pair using Pastry.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1000 10000 100000

Number of nodes

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

Pastry

Log(N)

Fig. 4. Average number of routing hops versus number of Pastry nodes, ����� , 0 � 0 ����� , 0 P20��� � and 200,000 lookups.

Figure 4 show the average number of routing hops taken, as a function of the net-
work size. “Log N” shows the value
 �� � � � and is included for comparison. (
��� � � ���
is the expected maximum number of hops required to route in a network containing
� nodes). The results show that the number of route hops scale with the size of the
network as predicted.

Figure 5 shows the distribution of the number of routing hops taken, for a network
size of 100,000 nodes, in the same experiment. The results show that the maximum
route length is (
 �� � � ��� (
 �� � � � �"�#���"� ��� ���), as expected.

The second experiment evaluated the locality properties of Pastry routes. It com-
pares the relative distance a message travels using Pastry, according to the proximity

0.0000 0.0006 0.0156

0.1643

0.6449

0.1745

0.0000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6

Number of hops

P
ro

b
ab

ili
ty

Fig. 5. Probability versus number of routing hops, � � � , 0 � 0 � ��� , 0 P 0 � � � , � � ����� : �����
and 200,000 lookups.

metric, with that of a fictitious routing scheme that maintains complete routing tables.
The distance traveled is the sum of the distances between consecutive nodes encoun-
tered along the route in the emulated network. For the fictitious routing scheme, the
distance traveled is simply the distance between the source and the destination node.
The results are normalized to the distance traveled in the fictitious routing scheme. The
goal of this experiment is to quantify the cost, in terms of distance traveled in the prox-
imity space, of maintaining only small routing tables in Pastry.

0.8

0.9

1

1.1

1.2

1.3

1.4

1000 10000 100000
Number of nodes

R
el

at
iv

e
D

is
ta

n
ce

Pastry

Complete routing table

Fig. 6. Route distance versus number of Pastry nodes, � � � , 0 � 0�� ��� , 0 P20 � � � , and 200,000
lookups.

The number of nodes varies between 1,000 and 100,000, � � � , � ����� ���
, � � � �

�"� . 200,000 pairs of Pastry nodes are selected and a message is routed between each
pair. Figure 6 shows the results for Pastry and the fictitious scheme (labeled “Complete
routing tables”). The results show that the Pastry routes are only approximately 30% to
40% longer. Considering that the routing tables in Pastry contain only approximately

	
��� ��� � ���� � ! � ���
entries, this result is quite good. For 100,000 nodes the Pastry rout-

ing tables contain approximately 75 entries, compared to 99,999 in the case of complete
routing tables.

We also determined the routing throughput, in messages per second, of a Pastry
node. Our unoptimized Java implementation handled over 3,000 messages per second.
This indicates that the routing procedure is very lightweight.

3.2 Maintaining the network

Figure 7 shows the quality of the routing tables with respect to the locality property, and
how the extent of information exchange during a node join operation affects the quality
of the resulting routing tables vis-à-vis locality. In this experiment, 5,000 nodes join the
Pastry network one by one. After all nodes joined, the routing tables were examined.
The parameters are � � � ��� ��� � ��� ��� � � � �"� .

Three options were used to gather information when a node joins. “SL” is a hypo-
thetical method where the joining node considers only the appropriate row from each
node along the route from itself to the node with the closest existing nodeId (see Sec-
tion 2.4). With “WT”, the joining node fetches the entire state of each node along the
path, but does not fetch state from the resulting entries. This is equivalent to omitting
the second stage. “WTF” is the actual method used in Pastry, where state is fetched
from each node that appears in the tables after the first stage.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

SL WT WTF SL WT WTF SL WT WTF SL WT WTF

Level 0 Level 1 Level 2 Level 3

N
u

m
b

er
 o

f
en

tr
ie

s
in

 r
o

u
ti

n
g

 t
ab

le

Empty
Sub-Optimal
Optimal

Fig. 7. Quality of routing tables (locality), ��� � , 0 � 0������ , 0 P20�� � � and 5,000 nodes.

The results are shown in Figure 7. For levels 0 to 3, we show the quality of the
routing table entries with each method. With 5,000 nodes and ��� � , levels 2 and 3 are
not fully populated, which explains the missing entries shown. “Optimal” means that
the best (i.e., closest according to the proximity metric) node appeared in a routing table
entry, “sub-optimal” means that an entry was not the closest or was missing.

The results show that Pastry’s method of node integration (“WTF”) is highly effec-
tive in initializing the routing tables with good locality. On average, less than 1 entry
per level of the routing able is not the best choice. Moreover, the comparison with “SL”
and “WT” shows that less information exchange during the node join operation comes
at a dramatic cost in routing table quality with respect to locality.

3.3 Replica routing

The next experiment examines Pastry’s ability to route to one of the
�

closest nodes
to a key, where

� � � . In particular, the experiment explores Pastry’s ability to locate
one of the

�
nodes near the client. In a Pastry network of 10,000 nodes with ��� � and

� � � � � , 100,000 times a Pastry node and a key are chosen randomly, and a message is
routed using Pastry from the node using the key. The first of the

�
numerically closest

nodes to the key that is reached along the route is recorded.

0

10

20

30

40

50

60

70

80

90

100

S
T

A
N

D
A

R
D

E
S

T
IM

A
T

IO
N

P
E

R
F

E
C

T
E

S
T

IM
A

T
IO

N

S
T

A
N

D
A

R
D

E
S

T
IM

A
T

IO
N

P
E

R
F

E
C

T
E

S
T

IM
A

T
IO

N

S
T

A
N

D
A

R
D

E
S

T
IM

A
T

IO
N

P
E

R
F

E
C

T
E

S
T

IM
A

T
IO

N
SL WT WTF

P
er

ce
n

ta
g

e
o

f
lo

o
ku

p
s

4
3
2
1
0

Fig. 8. Number of nodes closer to the client than the node discovered. (� � � , 0 � 0 ��� , 0 P 0 ����� ,
10,000 nodes and 100,000 message routes).

Figure 8 shows the percentage of lookups that reached the closest node, accord-
ing to the proximity metric (0 closer nodes), the second closest node (1 closer node),
and so forth. Results are shown for the three different protocols for initializing a new
node’s state, with (“Estimation”) and without (“Standard”) the heuristic mentioned in
Section 2.5, and for an idealized, optimal version of the heuristic (“Perfect estimation”).
Recall that the heuristic estimates the nodeId space coverage of other nodes’ leaf sets,
using an estimate based on its own leaf sets coverage. The “Perfect estimation” ensures
that this estimate of a node’s leaf set coverage is correct for every node.

Without the heuristic and the standard node joining protocol (WTF), Pastry is able
to locate the closest node 68% of the time, and one of the top two nodes 87% of the time.
With the heuristic routing option, this figures increase to 76% and 92%, respectively.

The lesser routing table quality resulting from the “SL” and “WT” methods for node
joining have a strong negative effect on Pastry’s ability to locate nearby nodes, as one
would expect. Also, the heuristic approach is only approximately 2% worse than the
best possible results using perfect estimation.

The results show that Pastry is effective in locating a node near the client in the vast
majority of cases, and that the use of the heuristic is effective.

3.4 Node failures

The next experiment explores Pastry’s behavior in the presence of node failures. A
5,000 node Pastry network is used with � � � , � � � � ���

, � � � � � � ,
� � � . Then,

10% (500) randomly selected nodes fail silently. After these failures, a key is chosen
at random, and two Pastry nodes are randomly selected. A message is routed from
these two nodes to the key, and this is repeated 100,000 times (200,000 lookups total).
Initially, the node state repair facilities in Pastry were disabled, which allows us to
measure the full impact of the failures on Pastry’s routing performance. Next, the node
state repair facilities were enabled, and another 200,000 lookups were performed from
the same Pastry nodes to the same key.

8

9

10

11

12

13

14

15

No fail No repair Repair No fail No repair Repair No fail No repair Repair

Level 0 Level 1 Level 2

N
u

m
b

er
 o

f
en

tr
ie

s
in

 r
o

u
ti

n
g

 t
ab

le

Empty
Missing
Sub-Optimal
Optimal

Fig. 9. Quality of routing tables before and after 500 node failures, � ��� , 0 � 0���� � , 0 P 0�� � �
and 5,000 starting nodes.

Figure 9 shows the average routing table quality across all nodes for levels 0–2,
as measured before the failures, after the failures, and after the repair. Note that in
this figure, missing entries are shown separately from sub-optimal entries. Also, recall
that Pastry lazily repairs routing tables entries when they are being used. As a result,
routing table entries that were not used during the 200,000 lookups are not discovered
and therefore not repaired. To isolate the effectiveness of Pastry’s repair procedure, we
excluded table entries that were never used.

The results show that Pastry recovers all missing table entries, and that the quality
of the entries with respect to locality (fraction of optimal entries) approaches that before
the failures. At row zero, the average number of best entries after the repair is approx-
imately one below that prior to the failure. However, although this can’t be seen in the
figure, our results show that the actual distance between the suboptimal and the optimal
entries is very small. This is intuitive, since the average distance of row zero entries is
very small. Note that the increase in empty entries at levels 1 and 2 after the failures is
due to the reduction in the total number of Pastry nodes, which increases the sparseness
of the tables at the upper rows. Thus, this increase does not constitute a reduction in the
quality of the tables.

Figure 10 shows the impact of failures and repairs on the route quality. The left
bar shows the average number of hops before the failures; the middle bar shows the
average number of hops after the failures, and before the tables were repaired. Finally,
the right bar shows the average number of hops after the repair. The data shows that
without repairs, the stale routing table state causes as significant deterioration of route
quality. After the repair, however, the average number of hops is only slightly higher
than before the failures.

2.73

2.96

2.74

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

No Failure Failure with no routing
table repair

Failure with routing table
repair

A
ve

ra
ge

 h
op

s
pe

r
lo

ok
up

Fig. 10. Number of routing hops versus node failures, � � � , 0 � 0 � ��� , 0 P20 � � � , 200,000
lookups and 5,000 nodes with 500 failing.

We also measured the average cost, in messages, for repairing the tables after node
failure. In our experiments, a total of 57 remote procedure calls were needed on average
per failed node to repair all relevant table entries.

4 Related Work

There are currently several peer-to-peer systems in use, and many more are under de-
velopment. Among the most prominent are file sharing facilities, such as Gnutella [2]
and Freenet [8]. The Napster [1] music exchange service provided much of the original
motivation for peer-to-peer systems, but it is not a pure peer-to-peer system because
its database is centralized. All three systems are primarily intended for the large-scale

sharing of data files; reliable content location is not guaranteed or necessary in this
environment. In Gnutella, the use of a broadcast based protocol limits the system’s
scalability and incurs a high bandwidth requirement. Both Gnutella and Freenet are not
guaranteed to find an existing object.

Pastry, along with Tapestry [27], Chord [24] and CAN [19], represent a second gen-
eration of peer-to-peer routing and location schemes that were inspired by the pioneer-
ing work of systems like FreeNet and Gnutella. Unlike that earlier work, they guarantee
a definite answer to a query in a bounded number of network hops, while retaining the
scalability of FreeNet and the self-organizing properties of both FreeNet and Gnutella.

Pastry and Tapestry bear some similarity to the work by Plaxton et al [18] and
to routing in the landmark hierarchy [25]. The approach of routing based on address
prefixes, which can be viewed as a generalization of hypercube routing, is common to
all these schemes. However, neither Plaxton nor the landmark approach are fully self-
organizing. Pastry and Tapestry differ in their approach to achieving network locality
and to supporting replication, and Pastry appears to be less complex.

The Chord protocol is closely related to both Pastry and Tapestry, but instead of
routing towards nodes that share successively longer address prefixes with the desti-
nation, Chord forwards messages based on numerical difference with the destination
address. Unlike Pastry and Tapestry, Chord makes no explicit effort to achieve good
network locality. CAN routes messages in a � -dimensional space, where each node
maintains a routing table with ���� � entries and any node can be reached in ���� � �
 � �
routing hops. Unlike Pastry, the routing table does not grow with the network size, but
the number of routing hops grows faster than
 �� � .

Existing applications built on top of Pastry include PAST [11, 21] and SCRIBE [22].
Other peer-to-peer applications that were built on top of a generic routing and location
substrate like Pastry are OceanStore [15] (Tapestry) and CFS [9] (Chord). FarSite [5]
uses a conventional distributed directory service, but could potentially be built on top
of a system like Pastry. Pastry can be seen as an overlay network that provides a self-
organizing routing and location service. Another example of an overlay network is the
Overcast system [12], which provides reliable single-source multicast streams.

There has been considerable work on routing in general, on hypercube and mesh
routing in parallel computers, and more recently on routing in ad hoc networks, for ex-
ample GRID [17]. In Pastry, we assume an existing infrastructure at the network layer,
and the emphasis in on self-organization and the integration of content location and
routing. In the interest of scalability, Pastry nodes only use local information, while tra-
ditional routing algorithms (like link-state and distance vector methods) globally prop-
agate information about routes to each destination. This global information exchange
limits the scalability of these routing algorithms, necessitating a hierarchical routing
architecture like the one used in the Internet.

Several prior works consider issues in replicating Web content in the Internet, and
selecting the nearest replica relative to a client HTTP query [4, 13, 14]. Pastry provides
a more general infrastructure aimed at a variety of peer-to-peer applications. Another
related area is that of naming services, which are largely orthogonal to Pastry’s content
location and routing. Lampson’s Global Naming System (GNS) [16] is an example
of a scalable naming system that relies on a hierarchy of name servers that directly

corresponds to the structure of the name space. Cheriton and Mann [7] describe another
scalable naming service.

Finally, attribute based and intentional naming systems [6, 3], as well as directory
services [20, 23] resolve a set of attributes that describe the properties of an object to
the address of an object instance that satisfies the given properties. Thus, these systems
support far more powerful queries than Pastry. However, this power comes at the ex-
pense of scalability, performance and administrative overhead. Such systems could be
potentially built upon Pastry.

5 Conclusion

This paper presents and evaluates Pastry, a generic peer-to-peer content location and
routing system based on a self-organizing overlay network of nodes connected via the
Internet. Pastry is completely decentralized, fault-resilient, scalable, and reliably routes
a message to the live node with a nodeId numerically closest to a key. Pastry can be used
as a building block in the construction of a variety of peer-to-peer Internet applications
like global file sharing, file storage, group communication and naming systems.

Pastry routes to any node in the overlay network in O(log N) steps in the absence of
recent node failures, and it maintains routing tables with only O(log N) entries. More-
over, Pastry takes into account locality when routing messages. Results with as many as
100,000 nodes in an emulated network confirm that Pastry is efficient and scales well,
that it is self-organizing and can gracefully adapt to node failures, and that it has good
locality properties.

Acknowledgments

We thank Miguel Castro and the anonymous reviewers for their useful comments and
feedback. Peter Druschel thanks Microsoft Research, Cambridge, UK, and the Mas-
sachusetts Institute of Technology for their support during his visits in Fall 2000 and
Spring 2001, respectively, and Compaq for donating equipment used in this work.

References

1. Napster. http://www.napster.com/.
2. The Gnutella protocol specification, 2000. http://dss.clip2.com/GnutellaProtocol04.pdf.
3. W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and implementa-

tion of an intentional naming system. In Proc. SOSP’99, Kiawah Island, SC, Dec. 1999.
4. Y. Amir, A. Peterson, and D. Shaw. Seamlessly selecting the best copy from Internet-wide

replicated web servers. In Proc. 12th Symposium on Distributed Computing, Andros, Greece,
Sept. 1998.

5. W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop PCs. In Proc. SIGMETRICS’2000, Santa
Clara, CA, 2000.

6. M. Bowman, L. L. Peterson, and A. Yeatts. Univers: An attribute-based name server. Soft-
ware — Practice and Experience, 20(4):403–424, Apr. 1990.

7. D. R. Cheriton and T. P. Mann. Decentralizing a global naming service for improved perfor-
mance and fault tolerance. ACM Trans. Comput. Syst., 7(2):147–183, May 1989.

8. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system. In Workshop on Design Issues in Anonymity and
Unobservability, pages 311–320, July 2000. ICSI, Berkeley, CA, USA.

9. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage
with CFS. In Proc. ACM SOSP’01, Banff, Canada, Oct. 2001.

10. R. Dingledine, M. J. Freedman, and D. Molnar. The Free Haven project: Distributed anony-
mous storage service. In Proc. Workshop on Design Issues in Anonymity and Unobservabil-
ity, Berkeley, CA, July 2000.

11. P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility. In
Proc. HotOS VIII, Schloss Elmau, Germany, May 2001.

12. J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W. O’Toole. Overcast:
Reliable multicasting with an overlay network. In Proc. OSDI 2000, San Diego, CA, 2000.

13. J. Kangasharju, J. W. Roberts, and K. W. Ross. Performance evaluation of redirection
schemes in content distribution networks. In Proc. 4th Web Caching Workshop, San Diego,
CA, Mar. 1999.

14. J. Kangasharju and K. W. Ross. A replicated architecture for the domain name system. In
Proc. IEEE Infocom 2000, Tel Aviv, Israel, Mar. 2000.

15. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent store. In Proc. ASPLOS’2000, Cambridge, MA, November 2000.

16. B. Lampson. Designing a global name service. In Proc. Fifth Symposium on the Principles
of Distributed Computing, pages 1–10, Minaki, Canada, Aug. 1986.

17. J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A scalable location service
for geographical ad hoc routing. In Proc. of ACM MOBICOM 2000, Boston, MA, 2000.

18. C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated objects
in a distributed environment. Theory of Computing Systems, 32:241–280, 1999.

19. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proc. ACM SIGCOMM’01, San Diego, CA, Aug. 2001.

20. J. Reynolds. RFC 1309: Technical overview of directory services using the X.500 protocol,
Mar. 1992.

21. A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,
persistent peer-to-peer storage utility. In Proc. ACM SOSP’01, Banff, Canada, Oct. 2001.

22. A. Rowstron, A.-M. Kermarrec, P. Druschel, and M. Castro. Scribe: The design of
a large-scale event notification infrastructure. Submitted for publication. June 2001.
http://www.research.microsoft.com/ antr/SCRIBE/.

23. M. A. Sheldon, A. Duda, R. Weiss, and D. K. Gifford. Discover: A resource discovery
system based on content routing. In Proc. 3rd International World Wide Web Conference,
Darmstadt, Germany, 1995.

24. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proc. ACM SIGCOMM’01, San
Diego, CA, Aug. 2001.

25. P. F. Tsuchiya. The landmark hierarchy: a new hierarchy for routing in very large networks.
In SIGCOMM’88, Stanford, CA, 1988.

26. E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In INFOCOM96,
San Francisco, CA, 1996.

27. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-
resilient wide-area location and routing. Technical Report UCB//CSD-01-1141, U. C. Berke-
ley, April 2001.

