
A Dynamic Popularity-based Partial Caching Scheme

for Video on Demand Service in IPTV Networks

Krishna Mohan Agrawal∗, T.Venkatesh† and Deep Medhi‡

∗Cisco Systems India Private Limited

Bengaluru, INDIA.

Email: kragrawa@cisco.com
†Department of Computer Science and Engineering

Indian Institute of Technology Guwahati, INDIA

Email:t.venkat@iitg.ernet.in
‡Department of Computer Science and Electrical Engineering

University of Missouri Kansas City, USA

Email:dmedhi@umkc.edu

Abstract—Caching video objects closer to the users in delivery
of on-demand video services in IPTV networks reduces the load
on the network and improves the latency in video delivery.
Partial caching of the video objects is attractive due to the space
constraints of the cache and also due to the fact that some parts
of the video might be more popular than the others. However,
fixed segment-based caching of videos does not take into account
the changing popularity of the segments and the changes in the
viewing patterns of the users. In this work, we propose a partial
caching strategy that considers the changes in the popularity of
the segments over time and the access patterns of the users to
compute the utility of the objects in the cache. We also propose
to partition the cache to avoid the eviction of the popular objects
(those not accessed frequently) by the unpopular ones which
are accessed with higher frequency. We measured the popularity
distribution and ageing of popularity from two online datasets
and use the parameters in simulations. Our simulation results
show that the proposed caching scheme improves the byte hit
ratio when compared to the LRU caching scheme both for static
and dynamic object pools and ageing of popularity.

I. INTRODUCTION

With recent advances in high-speed broadband network
technologies, the deployment of Internet Protocol Television
(IPTV) services has been increasing all over the world during
the past few years. Recent market surveys show that the global
consumer Internet video traffic is expected to be 69% of the
consumer Internet traffic by 2017. It is also expected that the
IPTV traffic alone will be 14% of the consumer Internet video
traffic in 2017, up from the current figure of 9% in 2012 [1].
Among the various IPTV services, meeting the demands of
the video-on-demand (VOD) service is challenging due to the
asynchronous viewing patterns among the users, and the need
to support VCR-like functions (play, pause, and seek) [2]. In
an IPTV network, VOD services generate a large amount of
unicast traffic from the Video Head Office (VHO) to the sub-
scribers, consuming a significant amount of network resources.
In such applications caching of the video objects that are
viewed frequently, reduces the network traffic, and thereby,
the cost of delivering the VOD services. Caching strategies
are also important in reducing the latency experienced by the

This work was done when Mr.Agrawal was a student of IIT Guwahati.

users and minimizing the stalling time during seek operations.
In a typical IPTV architecture, the video objects may be
stored in caches positioned closer to the subscribers either at
the Digital Subscriber line Access Multiplexers (DSLAMs),
Central Offices (COs), or the Intermediate Offices (IOs) [3].

Traditional caching strategies employed for the web objects
have been shown to be ineffective for video objects primarily
due to the large size of the video objects and the difference in
the access patterns of these objects [4]. Further, owing to the
large size of the video objects, caching entire videos may not
be possible with a limited cache memory. Even if the cache
were to store the full video, its utility may not be high if
the user quits after watching only a part of the video. Partial
caching of videos is also advantageous when the users watch
only parts of the video more often than the entire video (also
the case with skipped viewing) [5].

Some of the popular partial caching strategies proposed
for caching multimedia objects at the proxies include prefix
caching, which caches the initial part (prefix) of the video
to reduce the start-up delay, sliding-interval caching, which
caches different sizes of the video based on the temporal sep-
aration of requests, and segment-based caching which caches
fixed length segments of the video based on the frequency
of their access [4]. All the partial caching strategies have
been shown to outperform the full object caching strategies
since, the same area of cache could satisfy a larger number of
requests. While prefix caching can reduce the start-up delay
experienced by the user, it does not reduce the bandwidth
consumed if the user plays different parts of the video. Sliding
interval caching degenerates to full object caching if the access
interval is longer than the playback duration. While a segment-
based caching scheme is a generalized version of partial
caching that can result in a better performance of the cache,
it was shown in [6] that any pre-defined segmentation of the
video will not work well if the segmentation does not consider
the viewing pattern. All these partial caching strategies use a
rigid approach in segmenting the video object and do not adapt
to changes in the user’s viewing patterns.

In a typical VOD system, the probability of accessing a
video (or segment of a video) increases with its popularity.

deepmedhi
Typewritten Text
Proc. of Sixth International Conference on COMmunication Systems and NETworkS (COMSNETS 2014)}, Bangalore, India, January 2014

deepmedhi
Typewritten Text

deepmedhi
Typewritten Text

Some caching strategies have been proposed in the literature
taking into account the popularity of the video and not just
the recency of its access (which is taken care of by the LRU
scheme) or the frequency of its access (which is taken care
of by the LFU scheme) [7]. However, it was rightly observed
that most of the schemes assume that the popularity of the
objects is known apriori and do not consider the change in
popularity over time. Additionally, the user in a VOD system
has the option to watch a video any number of times and can
also decide to play only some parts of the video. Considering
this behavior, it can be assumed that some parts of any video
have higher popularity than the others [8]. Caching these
popular segments would lead to a greater reduction in the
bandwidth. Even if the video is partitioned into a fixed number
of segments, tracking the changes in the popularity of the
segments is an important requirement to design effective partial
caching schemes. It was also observed that the popularity of the
videos (or segments) can decrease rapidly with time [7]. While
it can take some time for a movie, since its induction into the
system to become popular, the popularity can also decrease
with time. Any partial caching scheme based on popularity
should consider the volatile nature of popularity to increase the
effectiveness of the cache. Segment-based caching that does
not track changes in popularity can lead to diminishing returns
over time.

This work is motivated by the observation that neither a
frequency-based technique like LFU nor a recency-based tech-
nique like LRU can give satisfactory performance for objects
with volatile popularity (likelihood of future accesses) [5].
While the existing partial caching schemes fare better than
full object caching schemes, the volatile nature of popularity
and the viewing pattern should be considered to increase the
effectiveness of the cache in a VOD system. In this work, we
consider both the frequency and the recency of access for seg-
ment caching and propose a method to dynamically compute
the utility of a segment stored in the cache with changes in the
viewing pattern over time. We also observe that the objects in a
VOD system have a wide variation in popularity over time. To
protect the previously popular objects from being evicted by
objects that see a sudden popularity, we propose to partition the
cache into two caches. Each partitioned cache uses a different
function to update the utility of segments present in its cache.
We also determine the popularity distribution and ageing in
popularity based on user ratings from two online datasets.

The rest of the paper is organized as follows. Section II
discusses the literature on partial caching schemes for VOD
systems. In Section III, we discuss the proposed caching
scheme along with the motivation behind the work. Section IV
presents the data from an analysis of movie ratings from
two data sources and results from simulation of the proposed
caching scheme and LRU. Section V concludes the paper.

II. RELATED WORK

Though slightly dated, a good description of different
caching schemes for a multimedia streaming proxy is given
in [4]. As mentioned in the previous section, the traditional
schemes for multimedia such as prefix-based caching, sliding
interval caching, and segment-based caching suffer from the
rigidity in segmentation and do not consider the volatile nature
of the popularity of the video segments. Some of the earlier

papers like [9] also addressed the issue of partial caching in
multimedia delivery systems. The work in [7] argues the need
to consider the volatile nature of the popularity of the videos in
a VOD system while caching. It also demonstrates the volatile
nature of popularity using a trace collected from a movie
rental portal and developed a model to generate requests that
considered popularity changes. The proposed caching scheme
is shown to outperform both LFU and LRU schemes. However,
it does not track the popularity of segments and it is complex
to implement when there are dynamic changes in viewing
patterns.

The work in [10] considers partitioning a video into seg-
ments and uses different segment lengths across the video. The
paper assumes that the popularity of the segment is inversely
proportional to its length. For variable length segmentation,
the paper uses two approaches: pyramid segmentation in which
the lengths grow exponentially and skyscraper segmentation in
which the growth is gradual. Though the schemes use variable
segmentation, the segmentation approach is rigid and does
not consider the changes in the viewing pattern or priority
over time. It also uses two caches, one for a fixed number
of prefixes to lower the start-up latency and another for the
variable-length segments. The first cache uses a simple LRU
replacement policy while the second one evicts the segments
based on priority.

The work in [6] proposes a scheme called lazy segmen-
tation that caches the full object initially and then computes
the length of the segment to be cached based on the average
playtime of the video and the number of accesses. For each
object in the cache, this scheme assigns a utility value based
on the number of accesses observed over time and the average
duration of the segment played. The segment with the smallest
utility value is evicted. This scheme degenerates to the full
object caching if the average playtime of the video is almost
equal to the full length, or there is no history available. Al-
though proposed in a different context of peer-to-peer systems,
a partial caching scheme called proportional partial caching
stores a small segment initially and then increases the size
of the segment cached based on the number of accesses, the
average length of the video played, and the current size already
in cache [11]. However, this scheme also does not consider
volatile popularity and increases the cached segment size very
slowly over time.

The authors in [8] compute the popularity of segments
based on the access pattern and propose to cache only the seg-
ments that are popular. However, this distribution is computed
at the video server and it is difficult to estimate the parameters
of the distribution at run-time at a cache. Recently, the work
in [5] addresses the need for partial caching of user generated
videos (e.g., YouTube videos) in a cellular network. The work
computes the utility of each segment in a cache based on both
the recency and frequency of accesses and adaptively computes
the sizes of segments to be cached. It is perhaps the closest
one to our work as far as the basic approach of computing
the utility of segments in the cache is concerned. However,
there are a number of differences. We partition the cache
into two caches to address the volatility in popularity (which
is elaborated further in Section III-B). Due to the overhead
involved in handling fragmented memory blocks, we use fixed
segments in our work. We compute the utility of each segment

dynamically based on the request arrival rate and the average
length of the segment played. The formulas we propose are
different for each cache.

III. PROPOSED CACHING SCHEME

As discussed in Section I, the two main factors that
motivated this work are 1) multimedia objects are associated
with a popularity (utility) that changes with the time and
2) any segment-based caching scheme should consider the
changes in the popularity in an eviction policy. In this section,
we first describe the assumptions and motivate the need for
a cache partitioning approach followed in this work. Then
we propose the cache partitioning scheme and describe the
procedure used to compute the utility of segments in a cache
based dynamically on both recency and frequency.

A. Assumptions

We assume a hierarchical IPTV network (operated by a
single telecom provider) for the delivery of VOD services
in which the video objects are located at the VHO and the
users are connected to DSLAMs. The network is supported by
multiple levels of caches at the DSLAMs, the COs and the IOs.
We do not assume any cooperation among the caches in this
work. We assume that video objects are partitioned into fixed
size segments. Based on conversations with system engineers
at Netflix, we found that fixed segmentation with a moderate
size is preferred over adaptive segmentation owing to memory
management issues. One problem with fixed segmentation is
that the segment boundaries may not align with those of
heavily-viewed portions, leading to caching inefficiency. To
avoid this problem, we measure the utility of a segment based
on the number of bytes played from it, thereby capturing
the utility of caching the segment. We assume that different
segments of the same video might differ in their popularity.
This is a reasonable assumption when the user has already
watched the video earlier and is determined to watch some
parts it again [12]. Changes in the popularity of a video at
the segment level are also seen when the user can seek to
watch different parts of the video (termed skipped viewing)
so that some segments of the video tend to have a higher
popularity than the others. In this work, we use a segment
as a basic unit of a video object for caching and replacement.
Henceforth, we use the words ‘segment’ and ‘object’ in a cache
interchangeably. Following [5], a chunk is used as the basic
unit of a video and a segment can be viewed as a collection
of chunks.

B. Cache Partitioning Scheme

In LRU-based caching, objects that were popular (but not
often watched) in recent times, tend to get evicted from the
cache. This can lead to the eviction of popular objects when
the temporal distribution of the accesses to an object (segment)
is not uniform. Similarly, frequency-based caching schemes
(LFU) do not perform well when the object pool is dynamic
and the popularity of the objects in a cache decreases with
time (termed ageing) [5]. Popularity of an object in a cache
increases with time if the number of requests made for that
object increases. Typically, in a VOD system, the popularity of
some objects could decrease with time if the viewers do not see
the video often. Thus, it is necessary to consider the last time

when the object was accessed along with its popularity when
making a cache replacement. The utility of the objects already
in a cache should consider both the frequency and recency
of accesses to account for the temporal changes in popularity.
Typically, a simple popularity-based caching scheme considers
the ranking of objects before caching and does not adapt to
the ageing popularity. Caching schemes that capture the ageing
popularity should compute the utility for objects in the cache
continuously, based on both recency and frequency of the
accesses. Since this computation becomes complex with an
increasing number of segments, the objects in the cache should
not be evicted too soon before the computation is effective in
reflecting the temporal changes in popularity. New objects with
a high popularity inserted in the cache should not evict older
objects (with relatively lower popularity) whose utility reflects
the temporal distribution of accesses.

Considering the aforementioned issues with caching
schemes that ignore the volatile nature of popularity, we
propose to divide a cache into two parts. Cache1 (primary
cache) is used to cache a segment that is accessed for the
first time (on a typical cache miss) and Cache2 (secondary
cache) is used to store segments whose utility is already
determined to be high (i.e., popular over a longer period of
time). We use independent functions to determine the utility
of segments in these two partitions because the eviction of
segments from them should be handled differently. A segment
that is accessed for the first time (or which is not in the cache)
is cached in the primary cache. The utility of each segment
in the primary cache is updated based on the recency and
frequency of accesses made to it. Once the utility of a segment
crosses a threshold (a user-defined parameter), it is moved to
the secondary cache. In this way, all segments in Cache2 have
a larger utility, determined over a longer period of time, when
compared to the short-term popularity of segments in Cache1.
The replacement of segments in both the partitions is handled
independently according to the smallest-utility-first policy.

C. Dynamic Caching Scheme

A request is identified by an object ID, starting chunk ID,
and the time at which the request arrives. Whenever a request
for an object is made, the object is fetched in a segment-wise
fashion. Depending on the state of segments (whether cached
or not), our caching algorithm makes a decision as explained
below.

Caching in Cache1: If a requested segment is neither
present in Cache1 nor in Cache2, then it will be cached in
Cache1. That is, Cache1 is used to store segments whose
utility is yet to be determined. Clearly, our approach is
aggressive for segments whose utility is yet to be determined.
Subsequently, as the number of requests for the segment
increases, we determine its utility based on the average length
of the segment played and the recency of the request.

Segments in Cache1 are evicted based on the utility value
determined by a utility function. Since the segment is inducted
into the cache without any prior information about its popular-
ity, the utility must be proportional to the average number of
chunks played in the segment, and inversely proportional to the
total number of chunks in the segment and its last access time.

We determine the utility of segments in Cache1 as follows:

Utility1 =
Nchunks played ∗ Frecency

Nchunks in segment ∗Nrequest

, (1)

where

Frecency =
1

1 +
(

Tcurrent − Tlast accessed

β

) . (2)

Here, Nrequest denotes the number of requests,
Nchunks played denotes the number of chunks played,
Nchunks in segment denotes the number of chunks in a
segment, Frecency denotes the recency factor, Tcurrent

denotes the time when the request arrives, and Tlast accessed

denotes the time when the segment was last accessed.

The utility value based on Eq.(1) decreases as the segment
ages. This ensures that older segments are evicted from the
cache. β is used to smoothen the recency factor, Frecency ,
based on the last access time, Tlast accessed. This ensures that
the utility of the segments does not change by a large amount
in a short duration, which otherwise leads to a false prediction
of the popularity of segments.

While the segment with the least utility is evicted, we do
not evict a segment being played to avoid a cache miss. If all
the segments in Cache1 are being played and a new request
arrives for the segment currently not in the cache, then the new
request is dropped as there is no segment to replace. When a
segment already in Cache1 is requested, the data related to that
segment such as, Nrequest, Nchunks played, and Tlast accessed

are updated.

Promotion to Cache2: For each request made for a
segment in Cache1, its utility is checked; if this crosses
a predefined threshold (THRESHOLD), then the segment is
marked for promotion to Cache2. The marked segment is
moved to Cache2. If necessary, another segment in Cache2 is
replaced based on the utility values. Cache2 is used to keep
segments with a utility value that is greater than the THRESH-
OLD. A different function is used to compute the utility of
segments in Cache2 because the popularity of segments is
already determined before promotion. In Cache2, instead of
using Frecency while calculating the utility, we determine the
probability of the next request for the segment. This gives
a better prediction for the popularity of a segment based on
the inter-arrival time, 1/λ, of requests for that segment. As
the popularity of a segment decreases, the inter-arrival time
between the requests for the segment increases. The utility
function for Cache2 is given by

Utility2 =
Nchunks played ∗ Pnext request

Nchunks in segment ∗Nrequest

. (3)

Here, Pnext request denotes the probability of the next request,
given by

Pnext request =
1/λ

max{1/λ, Tsince last request}
. (4)

where Tsince last request denotes the time since the last re-
quest.

Furthermore, to determine the correct utility of a segment
in a cache, we propose to keep each segment in Cache1
for a minimum time that is proportional to the segment size

Algorithm 1 Dynamic Caching Scheme

for each request for an object; construct request for corre-
sponding Segment
If Segment is cached in Cache1
Serve the Segment and update utility of the Segment.
elseif Segment is cached in Cache1
Serve the Segment; update Utility1
If Utility1 is greater than THRESHOLD
promote the Segment to Cache2 replacing a segment (if
needed).
Else Cache the Segment in Cache1 evicting a segment
based on Utility1.
Initialize/update utility of all segments in Cache.

whenever it enters the system for the first time. This is
particularly beneficial when the request arrival rate is very
high. The minimum time for which a segment is kept in
Cache1 is the maximum of either the playback time of the
segment or the playback time of the current request.

IV. PERFORMANCE EVALUATION

We simulated the proposed caching scheme using a trace-
driven simulation. We developed a traffic generator and a cache
simulator in C++. A tree topology that typically depicts the
hierarchical caching architecture in IPTV networks is used for
simulations. The link capacities are not important as we do not
consider network congestion and only study the performance
of a stand-alone cache using the byte hit ratio. Based on our
initial experimentations, we set β = 10 in Eq.(2) in our work.
We study the impact of the popularity distribution and the
ageing of the popularity on the performance of our caching
scheme. When ageing is introduced, the popularity of objects
and the object pool is changed over time. A video library
of 20,000 objects is considered from the datasets discussed
below since this collection represents movies with a reasonably
large number of user ratings, and for which the popularity
distribution is modeled as the MZipf distribution with the
parameters estimated from real traces.

It was observed in [13] that the popularity in streaming
videos deviates from Zipf and Zipf-like distributions. The
deviation is due to the immutable nature of video objects
and the fetch at-most-once behavior of users. The Zipf-
Mandelbrot (MZipf) distribution, which uses a shift parameter
q, in addition to the shape parameter α (used by the Zipf-
like distribution) has been shown to model such a behavior
and is a good fit for the popularity distribution of video
objects [11]. The shift parameter of MZipf can also explain
the flattened head observed in the log-log frequency plot of
YouTube viewing patterns [14].

To obtain the values for the parameters of the MZipf
distribution and to understand the changes in popularity,
we first study movie ratings from two sites IMDb and
www.filmtipset.se. While IMDb data is publicly ac-
cessible, the data from filmtipset.se is obtained from the site
administrator. Both the datasets show that the movie ratings
follow MZipf distribution (albeit with different parameters)
and there is also evidence to support the claim that popularity
changes with time (see the discussion below).

A. Analysis of data from IMDb

For each movie title in the IMDb database, we collected
user ratings, number of voters, playtime, genre and the release
date. We studied the popularity distribution of movies in IMDb.
In IMDb, a user can rate a movie on a scale of 1 to 10. We
first filter the movies rated by the users for analysis, as not all
the movies are rated by the users. Out of a total of 277,935
titles, only 135,009 movie titles were rated by users. The
popularity of a movie is calculated as the product of an average
rating of the movie and the number of users rating the movie.
Table I shows the popularity distribution of movies based on
the number of users rating a movie. We find that the popularity
distribution of movies rated by at least 1,000 users in IMDb
follows MZipf distribution with α and q approximately equal
to 0.95 and 58, respectively.

Minimum number of voters Number of movies Popularity distribution

100 47,658 MZipf(0.9980, 69.8404)

500 21,265 MZipf(0.9661, 63.1332)

1,000 14,816 MZipf(0.9427, 58.4949)

5,000 6,201 MZipf(0.8528, 42.5598)

TABLE I: Statistics for the movie ratings from IMDb

Minimum number of voters Number of movies Popularity distribution

1 12,830 MZipf(1.113, 21.436)

1,000 1,716 MZipf(0.9712, 14.0201)

5,000 792 MZipf(0.7859, 6.5406)

TABLE II: Statistics for movies released in 2009-2011

We see from the above table that the number of movies,
which are rated by more than 1,000 users, is considerably low.
This analysis suggests that the unpopular movies do not get
rated by as many users as a popular movie gets rated. This
also suggests that the utility of an object in a cache should
be evaluated based on continuous requests and static ratings
cannot be used for cache replacement.

1 5 10 50 100 500

1
e
−

0
5

5
e
−

0
5

5
e
−

0
4

5
e
−

0
3

rank of objects

fr
e
q
u
e
n
c
y

IMDB data

Predicted

Fig. 1: Popularity distribution of movies released during 2009
and 2011 (rated by at least 1,000 users)

Since users frequently access recent movies, we focus on
the popularity distribution of recently released movies. Table II
summarizes the popularity distribution of all movies released
from 2009 to 2011. We find that the popularity distribution of
movies released from 2009 to 2011 in IMDb (rated by at least
1000 users) follows MZipf distribution with α and q equal to

+

+++
+

+

+++++
++

+

++++++++++++++++
+++

+++

2000 2002 2004 2006 2008 2010

3
.2

3
.3

3
.4

3
.5

3
.6

3
.7

3
.8

Date

A
ve

ra
g
e
 R

a
ti
n
g

Fig. 2: The average rating of an arbitrary movie measured over
time

0.97 and 14.02, respectively. Fig. 1 shows the log-log plot of
the popularity distribution of movies released from 2009 to
2011 that had at least 1,000 voters along with the predicted
popularity distribution. Note that of the 12,830 movies released
between 2009 and 2011, only 1,716 movies were rated by at
least 1,000 users, which is quite low.

B. Analysis of data from www.filmtipset.se

We have analyzed the data from www.filmtipset.se that
contain ratings for 91,576 movies. The data contain the ratings
given by every user on a scale of 1 to 5 for each movie. It
also contains other information related to the genre, actors,
and director of a movie. Fig 2 shows the evolution of an
average rating of an arbitrary movie from the time it was
released. We see that the average rating (which also represents
the popularity) of a movie increases initially and then decreases
over time before stabilizing to a constant value after a large
number of users rated the movie. The evolution of rating over
time is not measurable with the ratings on IMDb. We use this
evolution of popularity as an indication for the volatile nature
of the popularity of movies.

In order to measure the popularity distribution of the
movies, we sorted the list of movies based on the number of
users who rated the movie. Movies rated by at least 100 users
are considered for the analysis. Fig. 3 shows the log-log plot of
the number of movies vs the number of users rating them. We
observed that there were a large number of movies rated by a
few users and the number of movies rated by more than 1,000
users was quite small. This is because unpopular movies do
not get rated by many users, while a popular movie gets rated
by many users. The popularity of a movie is determined as
the total sum of ratings given by voters. Table III summarizes
statistics of our analysis. The total number of movies rated by
at least 100 voters was 32,774. Even for this data, we found
that the popularity follows MZipf distribution. Fig. 4 shows the
log-log plot of the popularity distribution of movies rated by
at least 100 voters along with the predicted MZipf distribution
with q = 286.5 and α = 0.5862.

Our analysis confirms that using a Zipf-like distribution
to model the popularity of movies or video objects would
result in a significant error. In the log-log scale, the Zipf-like
distribution appears as a straight line, which can reasonably
fit most of the popularity distribution except the left-most

+

+
+ + ++++++++++++++++++++++++++++

+
++++++++++++++++++++++++++++++++

+

+

+
++++++++++++++

+
+++++++++++++++++++++++++

+++++
+++++++
+++++++++++
++++++++
+
++++++++++++
+++
++
+++++++
+
+

++
+
+++
++
+++++
+++++++
++
+
+++
+
+
+++
+

+
+
++
+++++++
++
+
+++++++++
+
+
++
++
++++
+
++++++
+++++++++++++
+
+++++++++++
+
+
+
++++++++++++
++++++
+
++++++
+
+
++

++
+

+
++++
+
+++
++
++
++++
+
++++++
+
++++
+
+
+++++
+++++++
++++
+
+
+
+
++
+++
++
+
+
+

++++++
+

+

+
+
++

+
+
+++
+
+
+++
+
++++++
+++
+
+

+

++
++
+++
+++
++++++
+
++++++++++++++
++
+++++
++++
++

++++
+

+
+
+
+
++
++
+
++

+

+++
+++
+++
++
++
+++
+
+
+

++++++++
+

+
++
+
+
+

+
+
+
++++++
+
+++

+++++++
+++
++
+
++
+

+
+
+
++++

+
+++
++
+++

+
+
++
+

+
+
+
++
++
+

+

+

+
++
+++++++
+++
+++

+

+

++++
+

+++

+

+
+++++++
+
+++
+
++

+

+++
+
+

+
+
+
+
+

+

+

++
+
+++
++
+
+++++

+
+++
++
++
+
+++++
+

++
+++
++
+++
++

+

+
++
+
++
++
+++++++
+
+

+

+
+++
++

+
+
+

+
+
+
+++
+

+

++
+++
+
++++
+++
+
+
++
+
+
+

+

+++
+
+
+
++++
+
+

+
+
+
+
++++
+

++
+

+++
+++++

+
++
+

++
+
+
+
+++
++++
++
+++
+
++
+
+
+++

+
+

+

++++
++

+

+

+

++++
+

+
++
+
+
+

+++
+
+
+
++
+
+
+++
+++
++
+

+

+
+

+
+
+
+++
+

+
++++
++
+
+
+

+

+
+

++

+

+

++

+

++
++
+

+

+
+++
+

+
+
+

++

+

+

++
+

++

+
+++
++

+
+

+++++++
++
+
+
++

+
+

++
+

+

+
+
+
+
+
+

+

+
+
+
++
+
+
+

+

++
+

+
+

+++
++

+

++
+++
+++++
+
++
++++
++++
++++

+

+

+
+

+

+

+
+
+
+

+++
+
++

+++

++
+
+

+
+++

+

+++++

+

+

+

+
+
++
++++

+

+++
+

+

+
+
+
+++

+

+

+

++

+

++

+

+

++
++
+

+
+
+

+

+

+

+
+
+

+

+

++

+
+
++
+
+

+

++++
++

+

++

+

++

++

+
+

+

+
++

+

+
+
++

+

+
+

++

+
+

+++
+++++
+

+

++++

+
+
+
++
+
+

+
+
++
+

+

++
+++
++
+

+

+

++
+

+

+

+++

+

++
++

++

+
+

+

+
+
++
++

+

+

+

++
+

+
++
+

+

++
+
+

++
+
++
++

+
+
+

+

+
+
+
+
+
+++
+
+++

+

+

+

+
+
++

+

+++

+

+

+
+
+
+
+
++
+
++

+

+
+
+
+

+

++
+

+

++

+

+++++
+
+

+++
+++
+

+

+

+

++
+

+

+++

+
+

+

+++++
+

+
++

++

++

+

+

+
+

+

+

+

+
+

+
+

+
+

+++
++

+

++
+++

+

+

+
+
+

+

+

++

+

+
+++++

+

+

+

+

+

+
+
++

+

+
+
+

+
+

+

+
+

+

++
++

+
+
+
+
++

+

+

+

+
+

+

+

+
++
++++

+++

+
++

+
++
+

+++++

+

+
+
++
++
++
+
++

+

+

+
+
+

+

+

+
+

+

+

+

+

++

+
+
+

+

+

+
++

+

+
++

+

+

+

+

+
+

+

+
+

+
+

+

++

+

+
+

+
+

+

+++
+
++
+

+
+

+

+
+
++

+

+

+++

+

+
++
++++

+

++

++

+

++
+

+

+

+

+
+

+

+
+++
++
+

+
++

+
+
+
+
++

+
+

+

+

+
+
+
+
+

+

++

+

+

+

+

++
+

+

+
+

+

+

+

+
+

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

++

+
+

+
+

+++++

+

+

+
+

+

+
+
+

+

+
+
+

+

+

+

++

+

+
+
++
+++

+

+

++
+
+

+

+
+
+++
++
+

+

+

+

+

+

+
++
+

+

++
+
++

+

+

+

+

+

+

+
+
+

+

+
+
+

+
+++
+

+

++

+++

+

+
+++
+
+
+

++
+

+
++
+

+

+
+

+

+

+

+

+
+
+

+
++
+

+
+
+
+

+

+

+

++

+

+
+
+
+

+

+

+

+++

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+
+

+

++
+

++++

++
+
+
+

+

+

+

+
+
+

+

+++

+

+
+

+

+
++
++
+
++

+

++
+

+

+

++

+

+

+

+
+

+

+
+

+

++++

++

++

+

+

+

+

+++
+
++

+
++
+

+

+

++

+++
+

++

+

++

++
++
++
+
++

+

+

+
+

++

+

+

+
+
+

+

++

+
+
++
+

++

+++
+

++

++

++

++
++

+

+

+++

+
+
++++

+

+

+

+

+

+

+

+
+
+
++

++++

+

++

++
+

+++

+
+
++
+

+

+

+

++
+

+
+
+
+

+++

++

+

++++++
+

++

+++
++

+

+

+

+

+

++
+

+++

+
+
+++

+

++
++

+

+

+

+

+

+

++++

+
++

+

+
+

++++

+

+

++++

++

+++

++

+

+

+

+

++

+

+

++

++

+++

+

+

+

+

+++

+

+++

+

+

+

+

+

++++

+
+

+

+

+

++
+

+

+

+

+

+++

+

+

++

+

++++

+++++

+

++++

+

+

++

+++

+

++

++

++++

+

++

+
+

++

+
+

++++

+

++

+
+

+

++

++++

+

++++

+

+++

+

+++

++

++

+

+++++

+

+++++

+

+

+

++

+

+++++++

+

++

+

++

+

++++

+

++++

+++

++++++

+

+++

+

+++

+

+++

+
+

++

+

++++++

+

+

+

+

+

+

+

++++++

+

++

+++

++++++

+

+++++++++++++++++++

+

++

+

+

++

+

+

+++++++++

+

+

+

++++

+

++

+

++++++++

+

+++

+

+

+
++

+++

+

+++++++++++++++++++++++

+
+

++++

++

+++++

+

++++

+

+++

+

+++

+

+++++++

+

+++++++++

+

+

+

++++++++++++++++++++++++++++++++++

+

++++++++++++++

++

++

+

++++++++++++++++++++++++++++++++++

+

+++ +

1 10 100 1000 10000

1
1
0

1
0
0

1
0
0
0

1
0
0
0
0

Number of users rated

N
u
m

b
e
r

o
f
m

o
v
ie

s

Fig. 3: Number of movies rated by the users

1 10 100 1000 10000

2
e
−

0
6

1
e
−

0
5

5
e
−

0
5

2
e
−

0
4

rank of objects

fr
e
q
u
e
n
c
y

filmtipsset data

Predicted

Fig. 4: Popularity distribution of movies rated by at least 100
users on www.filmtipset.se

part. A Zipf-like distribution would largely overestimate the
popularity of objects with higher ranks. This region is the
most important for caching as the highly ranked objects are
the potential candidates for caching.

Minimum number of voters Number of movies Popularity distribution

100 32,774 MZipf(0.5862, 286.5)

200 24,485 MZipf(0.4463, 46.1245)

500 12,869 MZipf(0.3511, 3.6603)

TABLE III: Statistics for movies rated by users on filmtipset.se

C. Simulation of the Proposed Caching Scheme

We simulated the proposed caching scheme with MZipf
distribution for object popularity using several values of q
and α. We also studied the scheme with ageing popularity,
in which the popularity of objects in the object pool degraded
with time and new popular objects were inserted frequently
into the object pool. We found the performance of our proposed
algorithm to be much better than LRU. Here, we present results
for the MZipf distribution with q = 20 and α ranging from
0.5 to 0.9. The request arrival is assumed to follow Poisson
distribution with a mean inter-arrival time of 120 seconds.
Video objects are 100 minutes long (based on the average
movie length observed in the datasets) with a playback rate
of 2 Mbps, which amounts to an approximate size of 1.5 GB
for each movie. All requests were initially for the starting
point of a movie, but they ended at different times. The time

Parameter Default value

Simulation Time 24 days

Cache warm-up time 2 days

Ratio of Cache2 and Total cache 0.1

Average request arrival time 120 seconds

Popularity distribution Mzipf (0.5, 20)

Segment size in uniform segmentation 10 mins playtime

Threshold 0.45

TABLE IV: Default Values for Simulation

when a user quit is assumed to follow a trimodal distribution
with a probability of 0.4, 0.2, and 0.4 for a playback time
of 0 to 20 minutes, 20 to 80 minutes, and 80 to 100 minutes,
respectively [12]. The segment size is assumed to be equivalent
to 10 minutes of playback time. All the results were computed
with a 95% confidence interval. These are not showed in the
figures as the interval was very small, within 4% of the mean
values plotted.

Table IV gives the set of default parameters used in
simulation unless otherwise specified. We used byte-hit ratio,
defined as the total number of bytes served to the total number
of bytes requested as the cache performance metric. A higher
byte-hit ratio indicates a reduction in the core network load.

1) Simulation with static object pool: For this case, the
set of videos remains constant, i.e., the ranking of objects
is constant during the simulation. Figs. 5 and 6 show the
performance of the proposed scheme compared with LRU for
α = 0.5 and α = 0.9, respectively. We notice that the proposed
scheme performs much better then LRU when the value of α is
low. The performance of LRU approaches that of our proposed
algorithm, as the value of α increases. This suggests that our
proposed algorithm gives better results than LRU when the
requests are spread over a wide range of popular objects, than
when they are concentrated over a small subset of popular
objects. This is because of the partitioning of the cache, which
requires computing the utility of each set in a different manner.

2) Simulation with dynamic object pool: We now study
the performance of the proposed caching scheme when the
set of videos changes and/or the popularity of videos changes
with time. We first explore how ageing of popularity affects
the caching scheme. In this case, a limited number of objects
are added periodically to the top 100 list, with an effect that
some objects move down the ranking within a short duration
of time. This is to mimic the scenario wherein the movies,
which were popular at a certain time, are no longer popular at
another time while new movies become instantly popular. The
number of objects in the object pool remained the same and no
new object was inserted into the object pool during simulation.
Fig. 7 shows the performance of our proposed algorithm and
LRU in this case. We observed that our algorithm performed
better than LRU and the increase in performance was around
10% at all times.

Next, we explored the effect of introducing new objects into
the system and the ageing popularity of existing objects. To
simulate this case, for each day in the simulation, the ranks of
all the objects were decreased by X , which may be interpreted
as a measure for the rate of ageing. In order to maintain the
overall popularity distribution, the bottom X objects with rank
from N −X to N were removed while new objects with rank

0 5 10 15 20

0
5

1
0

1
5

2
0

cache size (percentage of total object size)

b
y
te

−
h

it
 r

a
ti
o

 i
n

 p
e

rc
e

n
ta

g
e

LRU

Proposed Scheme

Fig. 5: Performance for static pool with MZipf(0.5,20)

0 5 10 15 20

0
5

1
0

1
5

2
0

2
5

3
0

cache size (percentage of total object size)

b
y
te

−
h
it
 r

a
ti
o

 i
n

 p
e

rc
e

n
ta

g
e

LRU

Proposed Scheme

Fig. 6: Performance for static pool with MZipf(0.9,20)

0 5 10 15 20

0
5

1
0

1
5

2
0

cache size (percentage of total object size)

b
y
te

−
h
it
 r

a
ti
o
 i
n
 p

e
rc

e
n
ta

g
e

LRU

Proposed Scheme

Fig. 7: Performance of proposed caching scheme with dynamic
object pool

from 1 to X were inserted into the object pool. Equivalently,
each object remained for N

X
days in the object pool over

its active lifetime. The total number of objects in the object
pool remained constant. In our simulation, we kept the rate of
ageing to 200 objects per day, which is equal to 1% of the
total number of objects in the pool.

Fig. 8 and 9 show the performance of our algorithm and
LRU for different values of α with ageing and the dynamic
object pool. We fixed the ratio of size of Cache2 to total
cache size at 0.1. We see from the results that in all the
cases, our algorithm performs better than LRU. The increase in
performance relative to LRU was upto 10%. Also, we noticed
that LRU approached the performance of our algorithm as the

0 5 10 15 20

0
5

1
0

1
5

2
0

cache size (percentage of total object size)

b
y
te

−
h

it
 r

a
ti
o

 i
n

 p
e

rc
e

n
ta

g
e

LRU

Proposed Scheme

Fig. 8: Performance with ageing for MZipf(0.5,20)

0 5 10 15 20

0
5

1
0

1
5

2
0

cache size (percentage of total object size)

b
y
te

−
h
it
 r

a
ti
o

 i
n

 p
e

rc
e

n
ta

g
e

LRU

Proposed Scheme

Fig. 9: Performance with ageing for MZipf(0.9,20)

value of α increased. This is because our scheme dynamically
updated the utility of segments in the cache and by using two
partitions, our scheme allowed the utility computation to get
stabilized before replacement.

3) Effect of ageing rate: We also studied the impact of the
rate of ageing on the performance of the caching schemes. For
this study, we set α = 0.9 and q = 10. We varied the rate of
ageing from 100 objects per day to 200 objects per day, which
represents 0.5% to 1.0% of the total number of objects in the
pool. Fig. 10 shows the performance of the proposed caching
scheme and LRU for different ageing rates. We see that the
gain in byte-hit ratio decreased with an increase in the rate of
ageing. This may be explained from the fact that the constant
churn requires the cache content to be updated continually. On
the other hand, in the static case, i.e., when there is no ageing,
the cache content gradually saturates to a fixed set of objects
as requests arrive for the same objects. We conclude from the
result that our algorithm is constrained by the rate of ageing
and the benefits of caching decreases with the ageing rate.

We also studied the impact of the relative sizes of the
cache partitions (Cache1 and Cache2) on the performance
of the proposed scheme. We kept the total size of the cache
fixed and varied the ratio of Cache2 to the total cache size
from 0.1 to 0.3. Fig. 11 shows the performance for various
ratios. We see that for a small cache size, the performance
increased by a small amount with an increase in the size of
Cache2. However, for larger sizes of cache, the size of Cache2
did not effect the performance of the caching algorithm. This
is due to the reason that when the cache size is large, the

segments above certain popularity are already promoted and
the segments, which are less popular (but are promoted because
of large cache size) do not contribute to the performance.
That is why when the cache size is small, the impact of the
change in the size of Cache2 is seen in the performance of a
cache but not when the cache size is large. Thus, a moderate
ratio can be used for the partitioning of caches. This ratio can
be obtained from data already collected or can be calculated
experimentally. Also, due to fetch-atmost-once behavior of
users and the large number of unpopular objects, the fraction
of popular objects almost remains constant over time. Any
small change in the fraction of the popular objects does not
affect the ratio noticeably. Thus, we can use a moderate ratio
to partition the cache to obtain maximum benefits.

We also studied the effect of the segment size. For different
segment sizes, we studied the improvement in the byte-hit
ratio of the proposed scheme compared to the LRU. We
noticed that as the segment size increased, the byte-hit ratio
decreased because only a smaller number of segments can be
stored. However, the drop in the performance is not large. This
convinced us that any moderate segment size is sufficient for
the partial caching scheme.

V. CONCLUSION

In this work, we proposed a dynamic cache partitioning
and caching scheme for caching video segments in a VOD
system. The proposed scheme partitions the cache into two
caches to avoid eviction of popular objects due to a sudden
increase in the number of accesses for less popular objects.
The proposed caching scheme considers both recency and
frequency of accesses to overcome the problems with simple
LRU and LFU schemes. The proposed caching scheme keeps
track of the average duration for which the video is played and
over time, protects the popular objects from being evicted (due
to ageing), and new objects introduced into the system. Our
simulation results showed that the proposed caching scheme
works well when new objects with greater popularity are
introduced into the system and likewise, when the popularity of
older objects decreased over time. Partitioning of a cache could
be also used to isolate popular content in one category/genre
contending for cache memory with popular content of another
category/genre.

0 5 10 15 20

0
1
0

2
0

3
0

4
0

cache size (percentage of total object size)

b
y
te

−
h
it
 r

a
ti
o
 i
n
 p

e
rc

e
n
ta

g
e

100 obj per day

150 obj per day

200 obj per day

Fig. 10: Plot comparing performance for different ageing rates

0 2 4 6 8 10

1
0

2
0

3
0

4
0

5
0

cache size vs byte−hit ratio for MZipf(1.2,10)

cache size (percentage of total object size)

b
y
te

−
h
it
 r

a
ti
o
 i
n
 p

e
rc

e
n
ta

g
e

Cache_2 ratio 0.1

Cache_2 ratio 0.2

Cache_2 ratio 0.3

Fig. 11: Performance of caching scheme with different Cache2
sizes

ACKNOWLEDGMENT

The authors would like to thank Mr. Magnus Hoem of
www.filmtipset.se for allowing access to their data set.

REFERENCES

[1] “Cisco visual network index: Forecast and methodology 2012-2017,”
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/
ns705/ns827/white paper c11-481360.pdf.

[2] S. Zeadally, H. Moustafa, and F. Siddiqui, “Internet protocol television
(IPTV): Architecture, trends, and challenges,” IEEE Systems Journal,
vol. 5, no. 4, pp. 518–527, 2011.

[3] B. Krogfoss, L. Sofman, and A. Agrawal, “Caching architectures
and optimization strategies for IPTV networks,” Bell Labs Technical

Journal, vol. 13, no. 3, pp. 13–28, 2008.

[4] J. Liu and J. Xu, “Proxy caching for media streaming over the Internet,”
IEEE Communications Magazine, vol. 42, no. 8, pp. 88–94, 2004.

[5] U. Devi, P. Ramana, M. Chetlur, and S. Kalyanaraman, “On the partial
caching of streaming video,” in Proceedings of International Workshop

on Quality of Service (IWQoS), 2012.

[6] S. Chen, H. Wang, X. Zhang, B. Shen, and S. Wee, “Segment-based
proxy caching for Internet streaming media delivery,” IEEE Multimedia,
vol. 12, no. 3, pp. 59–67, 2005.

[7] D. De Vleeschauwer and K. Laevens, “Performance of caching algo-
rithms for IPTV on-demand services,” IEEE Transactions on Broad-

casting, vol. 55, no. 2, pp. 491–501, 2009.

[8] J. Yu, C. Chou, X. Du, and T. Wang, “Internal popularity of stream-
ing video and its implication on caching,” in Proceedings of 20th

International Conference on Advanced Information Networking and

Applications, 2006, p. 6.

[9] J. M. Almeida, D. L. Eager, and M. K. Vernon, “A hybrid caching
strategy for streaming media files,” in Proceedings of Multimedia

Computing and Networking, Jan. 2001.

[10] K.-L. Wu, P. S. Yu, and J. L. Wolf, “Segment-based proxy caching of
multimedia streams,” in Proceedings of the 10th international confer-

ence on World Wide Web, 2001, pp. 36–44.

[11] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial
caching for peer-to-peer systems,” IEEE/ACM Transactions on Network-

ing, vol. 16, no. 6, pp. 1447–1460, 2008.

[12] “Video heatmaps,” http://www.wistia.com/index.html.

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: evidence and implications,” in Proceedings

of IEEE INFOCOM, Mar 1999, pp. 126 –134.

[14] M. Cha, H. Kwak, P. Rodriguez, Y. yeol Ahn, and S. Moon, “I tube,
you tube, everybody tubes: Analyzing the worlds largest user generated
content video system,” in Proceedings of the 5th ACM/USENIX Internet

Measurement Conference, 2007.

deepmedhi
Typewritten Text

