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1 Introduction

The vast number of theories put forth that attempt to explain economic growth has led to an empiri-

cal conundrum known as “theory-openendedness” (Brock and Durlauf 2001). Theory-openendedness

suggests that while numerous theories may indeed explain growth of an economy’s output, no par-

ticular theory rules out another theory as a definitive predictor of cross-country growth. This has

sharpened the need for viable model selection and averaging techniques to parse through the data

being used to empirically test growth models. Such techniques allow empiricists to focus on the

variables which produce (statistically) robust insights regarding economic growth.

Most model selection and averaging studies assume a linear growth process so that functional

form uncertainty can be avoided - see e.g., Fernandez, Ley and Steel (2001), Sala-i-Martin, Dop-

pelhofer and Miller (2004) and Durlauf, Kourtellos and Tan (2008), DKT hereafter. However, an

emerging theme in the empirical growth literature has been the appearance of significant nonlin-

earities in cross-country growth regressions - see Maasoumi, Racine and Stengos (2007) for the

most current research. From this vantage, it is important to identify nonlinearities in the growth

process, for a specific growth theory, so that they can be used to extend the model space in model

averaging/selection exercises.

While the insights of the empirical growth papers employing model averaging techniques are

valuable in and of themselves, their foundation of a priori functional form specification limits the

scope of these methods in uncovering the process dictating economic growth. It may turn out

that a variable found to be statistically relevant in explaining growth is arrived at through an

inappropriate specification of the growth process; or, alternatively, it may be that a theory was

deemed weak given that the functional form used to dictate growth was inappropriate for the theory

of interest.

In this paper, we use recently developed methods for nonparametric regression to investigate

potential nonlinearities in the growth process as well as select relevant variables. We argue that

nonparametric model selection procedures are invaluable as a tool for uncovering the salient features

of growth processes: those variables (conditionally) which are relevant for predicting growth and

their appropriate influence on growth. Our ability to deal with specification uncertainty and variable

uncertainty stems from recent research in nonparametric model selection methods, see Hall, Li

and Racine (2007). These methods are robust to functional form misspecification (specification
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uncertainty) and have the ability to remove irrelevant variables that have been added by the

researcher (variable uncertainty).

Our results highlight the importance of accounting for nonlinearities across the spectrum of

growth variables, including the Solow model variables themselves. We find that nearly all individual

growth theories possess nonlinearities and display heterogeneous partial effects. This is important

in three respects. First, it solidifies the growing consensus in the empirical growth literature that

empirical growth models should be based on functional forms that go beyond traditional linear in

variables parametric models. Second, the results here should prove useful to researchers looking

for additional motivation for incorporating nonlinearities into the BMA paradigm. For example,

we fail to reject the specification of policy theory when including quadratic and simple interaction

terms versus a nonparametric alternative. Third, this paper outlines an approach for determining

potential nonlinearities which may subsequently guide model selection. We then demonstrate how

our approach can unravel important insights that parametric growth models may overlook by

focusing on specific growth theories (geography, demography and policy).

The remainder of the paper is organized as follows. Section 2 provides a brief literature review

while Section 3 takes a look at the data used in estimation. Section 4 presents an intuitive overview

of recently developed nonparametric methods from which our results stem. Section 5 presents the

main results. Section 6 concludes. The Appendix includes a set of Monte Carlo simulations to show

how well the nonparametric methods deployed here work for the sample sizes used in our empirical

investigations.

2 A brief literature review

2.1 Model uncertainty in growth empirics

Model uncertainty has long been recognized as a major econometric problem in regression analysis.

The initial approach to model selection was to use stepwise methods developed by Efroymson (1960)

and search over various classes of models choosing the one that best fits the data. Leamer (1978,

1983) and Leamer and Leonard (1983) developed a method we now call Extreme Bounds Analysis

(EBA) that would be superior to stepwise regression in that it would account not only for the

within model uncertainty, but also the between model uncertainty associated with model selection.

Melding cross-country growth regressions with various conditioning sets dates back to the work
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of Levine and Renelt (1992) who used Leamer’s EBA to examine the robustness of the key economic,

political and institutional variables that, at the time, were used extensively to detect empirical link-

ages with long-run growth rates.1 It was not until the turn of the century that growth empiricists,

notably Brock and Durlauf (2001) and Fernandez, Ley and Steel (2001), incorporated model av-

eraging methods and specifically Bayesian Model Averaging (BMA), in growth regressions. The

basic idea behind model averaging is to estimate the distribution of unknown parameters of interest

across different models. The principle of model averaging is to treat models and related parameters

as unobservable and estimate their distributions based on observable data. In contrast to classical

estimation, model averaging helps account for model uncertainty and consequently produces pos-

terior distributions (which reflect revised beliefs about the underlying statistical process in the face

of model uncertainty) for each parameter. BMA has recently become widely accepted as a way of

accounting for model uncertainty, notably in regression models for identifying the determinants of

economic growth.2

Although the model averaging methodology has been making its mark as a constructive tool

in growth empirics it is not without drawbacks, notably, sensitivity in BMA estimates when many

potential explanatory variables are considered (which is the norm rather than the exception in

this literature which often includes well over 50 variables). For example, in a recent contribution

Ciccone and Jarocinski (2010) take a specific approach to this problem by examining how BMA

estimates change when using slightly different sources of the GDP series (such as PWT version

6.2 vs. version 6.1). They find that when considering a large number of regressors, relatively

small measurement error and data revisions in international GDP estimates result in substantial

instability of estimates that are “... too large for agnostic growth empirics.”

But other aspects related to the sensitivity documented in Ciccone and Jarocinski (2010) have

also been flagged. For example, Kraay and Tawara (2010) use BMA to document partial correlations

between disaggregated governance indicators and related outcome variables. These authors find

instability across both outcomes and levels of disaggregation in the set of indicators identified by

BMA as effective determinants of outcomes. A potential source of the instability in the results may

1Sala-i-Martin (1997) developed alternative methods that still penalized non-robust variables, albeit less harshly
than EBA. While these methods were not based on any formal statistical theory, they did open up a debate on the
relevant sources of growth and how one goes about parsing them out from a very large pool of candidate variables.

2Model averaging in growth empirics has become common practice; see Sala-i-Martin, Doppelhofer and Miller
(2004), Kourtellos, Tan and Zhang (2007), Ley and Steel (2007), Masanjala and Papageorgiou (2008), DKT and
Ciccone and Jarocinski (2010), just to name a few.
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reflect multicollinearity problems in the individual models considered by BMA. As argued by Kraay

and Tawara, a consequence of having nearly collinear regressors in finite samples is that parameter

estimates are highly sensitive to small changes in model specification. Thus unlike Ciccone and

Jarocinski’s work showing sensitivity in BMA results due to measurement error and data revisions,

Kraay and Tawara’s research points to sensitivity arising from model specification; see Doppelhofer

and Weeks (2009) and Ley and Steel (2007, 2009a) for formal treatments of jointness of regressors

in BMA.

Another important aspect regarding BMA’s sensitivity involves the choice of prior structure.

Specifically, the implementation of BMA is subject to the challenge that it requires prior distri-

butions over all parameters in all models and the prior probability of each model must also be

specified. But what is the “correct” choice of prior for a given parameter or model? As Pesaran,

Schleicher and Zaffaroni (2009) eloquently state “... [model averaging] is subject to its own form

of uncertainty, namely the choice of the space of models to be considered and their respective

weights. It is therefore important that applications of model averaging techniques are investigated

for their robustness to such choices.” Indeed recent work by Ley and Steel (2009b), Zeugner and

Feldkircher (2009) and Eicher, Papageorgiou and Raftery (2011), venture in this direction. These

papers compare several candidate default parameter priors that have been advocated in the lit-

erature and alternative model priors and show that results in typical BMA growth applications

involving several dozens of regressors can be highly sensitive to the choice of priors.

Finally, endogeneity of regressors in growth estimation is a challenging problem which has

started to occupy much of the recent work in the literature. The endogeneity challenge can increase

dramatically when considering a very large number of models, as in model averaging exercises. An

emerging line of research examines the combination of model averaging and Instrumental Variables

(IV) models using panel data; pioneering work on this direction includes Tsangarides (2004), DKT,

Eicher, Lenkoski and Raftery (2009) and Moral-Benito (2010a,b). Correcting for potential endo-

geneity concerns in BMA analysis results in findings that differ quite drastically from OLS-based

BMA results reflecting once again instability in results obtained when averaging over a very large

number of models.

Although BMA has its disadvantages, we feel that it is important to highlight the advantages

it has over our approach. Even though BMA models in the literature typically use linear models,

there is no logical necessity for this. It is possible to include nonlinear models as well (albeit
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they must be specified a priori). A correctly specified BMA exercise would be a preferable model

selection tool to what we propose in this paper. The second main benefit of BMA is that for a

given sample size it is able to handle many more variables than we are able to incorporate given the

curse of dimensionality problem we face. In other words, we cannot include 50 potential regressors

in a typical growth regression. We must arbitrarily choose sets of variables and then check to see

what variables are valid within that subset of variables. To put it another way, BMA covers a much

larger model space.

In sum, the promise of model averaging methods in shedding new light on important growth

features depends crucially on further research seeking answers to concerns related to the sensitiv-

ity of results. This paper takes another approach to this problem by considering the effects of

nonlinearities in choosing among different growth theories.

2.2 Incorporating nonlinearities in model uncertainty

Nonparametric kernel methods have been used to uncover nonlinearities in empirical growth regres-

sions. Much of this research is due to the work of Thanasis Stengos which was in turn influenced

by the pioneering contribution of Durlauf and Johnson (1995). Liu and Stengos (1999) consider

an additive partially linear growth specification. Their research influenced a large number of stud-

ies within the semiparametric domain (e.g., see Durlauf, Kourtellos and Minkin 2001, Mamuneas,

Savvides and Stengos 2006, Ketteni, Mamuneas and Stengos 2007, Vaona and Schiavo 2007 and

Minier 2007a,b). We are only aware of two papers which consider model uncertainty in a growth

regression context while allowing for nonlinearities: Kalaitzidakis, Mamuneas and Stengos (2000)

and Minier (2007a). The former paper uses EBA, as in Levine and Renelt (1992), but allows for

nonlinearities by setting up the growth regression in a partially linear framework. The latter intro-

duces nonlinearities and heterogenous partial effects, but still considers models which are linear in

parameters.

All of these papers have uncovered the existence of significant nonlinearities across an array

of variables within cross-country growth regressions. Although these studies are able to relax

functional form assumptions and lessen the curse of dimensionality, their consistency still depends

on restrictive assumptions. As an alternative, Maasoumi, Racine and Stengos (2007) consider a

fully nonparametric growth structure. Specifically, they focus on what happens to predicted growth

rates and residuals over time. In this paper, we deviate from the focus of Maasoumi, Racine and
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Stengos (2007), but exploit their methodology to determine which growth theories empirically

display nonlinear tendencies. It is also worth noting that Hoeting, Raftery and Madigan (2002)

and more recently Gottardo and Raftery (2007) make the same point about the need to consider

variable selection and functional form jointly. However, their potential nonlinearities are typically

far more restrictive than those we allow for in this paper.

3 The data

Our primary data source is DKT, which to our knowledge, is the richest panel dataset for cross-

country growth regressions. While we have considered other datasets in the literature, we have

concluded that DKT is well-suited for our analysis as it allows us to maximize the number of

country-time observations, a primary objective in the use of our nonparametric methods to help

ensure that our results are reliable.3 In its original form the DKT dataset features an unbalanced

panel over three periods; 1965-74 (53 countries), 1975-84 (54 countries) and 1985-94 (57 countries).

We extend DKT in two dimensions to maximize our sample size; first we enlarge the time horizon

to 1960-2000 when possible and second we consider 5-year rather than 10-year intervals.4

An important aspect of our data is that it is as large as possible with respect to countries and

time for the given theories we consider. Our largest dataset spans 1960-2000 (8 time periods) and

includes 98 countries for a total of 731 observations, nearly triple that employed in DKT. We note

that all of our datasets are unbalanced both with respect to countries and time. This construction

is employed to maximize our sample size for each theory. While we certainly could use a balanced

dataset, doing so would decrease our sample by almost 50 percent.

Next we briefly review several key features of the DKT dataset and the main variables consid-

ered. The DKT dataset contains data for the traditional Solow model (initial income, investment

rate, human capital and population growth) as well as variables that compose several of the contend-

ing growth theories being debated today: fractionalization, institutions, demographics, geography

and policy. At least two variables for each theory are used in our statistical analysis. The depen-

3Subsequent analysis with alternative datasets or with a richer set of theories is also an interesting possibility, but
we leave that for future research.

4Our extended dataset along with a Data Appendix reporting in detail the steps followed to construct these data
are available upon request. We have also used 10-year panel data and have confirmed robustness of our results.
This was done in response to Johnson, Larson, Papageorgiou and Subramanian (2009) who pointed out serious
measurement problems in using higher frequency GDP growth data from PWT. These results are also available upon
request.
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dent variable is the average growth rate of real per worker GDP. Data for income are from PWT

6.1 while data for capital per worker are from Caselli (2005).

Following DKT we organize the determinants of growth into 6 theories and follow the existing

literature choosing empirical proxies as follows: (1) Solow growth variables: is measured by

the logarithm of real GDP per worker in the initial year (Initial Income), the logarithm of the

average percentage of a country’s working age population in secondary school (Human Capital), the

logarithm of the average investment to GDP ratio (Investment) and the logarithm of population

growth plus 0.05 over the corresponding periods (Population Growth). (2) Demography: is

measured using the reciprocal of life expectancy at age 1 (Life Expectancy) and the fertility rate

(Fertility). (3) Policy: is measured using three proxies: within-period ratio of exports plus

imports to GDP, filtered for the relation of this ratio to the logs of population and area (Openness),

the inflation rate for each period (Inflation) and within-period ratio of government consumption,

net of outlays on defense and education, to GDP (Net. Govt. Cons.). (4) Geography: is

measured using a climate variable, the percentage of a country’s land area classified as tropical

and subtropical based on the Köeppen-Geiger classification system for climate zones (Köeppen-

Geiger) and a geographic accessibility/isolation variable, the percentage of a country’s land area

within 100km of an ice-free coast based on Gallup, Sachs and Mellinger (1999) (% Ice Free Coast).

(5) Fractionalization: is measured by linguistic fractionalization as constructed by Easterly and

Levine (1997) and Alesina et al. (2003) (Language) and a measure of “the degree of tension within

a country attributable to racial, nationality, or language divisions” from the International Country

Risk Guide (Ethnic Tension). (6) Institutions: is measured using eight variables: the within-

period average constraints on executive power (Exec. Constraints), the risk of expropriation of

private investments, as in Acemoglu, Johnson and Robinson (2001) (Exprop. Risk), an index of

legal formalism based on the number of procedures for collecting on a bounced check developed

by Djankov, La Porta, Lopez-de-Silanes and Shleifer (2002) (Eviction), an index for the quality

of governance in 1996 using a composite of governance index developed by Kaufmann, Kraay and

Mastruzzi (2005) (KKZ96 ), in addition to Bureaucratic Quality, Civil Liberties, Political Rights

and Rule of Law.5

Finally, regional heterogeneity and time variation are captured using categorical variables. In

a nonparametric analysis these variables are the equivalent of standard dummy variables in linear

5We thank Andros Kourtellos for providing detailed data on these variables.
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parametric modelling. That is, instead of using regional and time dummies, we introduce two

discrete variables. The first variable contains the region to which a country is deemed to belong

to and the second denotes the time period under investigation. In our data we follow the regional

country classification of the World Bank while our categorical variable for time is constructed based

on the time interval. An additional benefit of the nonparametric method is that our categorical

variables are allowed to interact with the continuous regressors allowing for more than simple

intercept shifts.

4 Nonparametric methods for growth empirics

In regression we are typically concerned with predicting the left-hand-side variable given specific

values of one or more right-hand-side variables. For a particular observation, this is the conditional

expectation E(yi|xi = x). The general regression model, with an additive mean zero random error,

is written as

yi = E(yi|xi) + ui, i = 1, 2, . . . , n.

We often omit this step and assume that E(yi|xi) is linear in x, i.e. E(yi|xi) = α + βxi. If this

functional form is true and the other Gauss-Markov assumptions hold, then the OLS estimators

of α and β are the best linear unbiased estimators and we can proceed with inference and policy

suggestions. However, if the true model is nonlinear and we ignore this, estimation may not only

lead to inconsistent estimates, but it can also mask important heterogeneity in the partial effects.

For example, suppose the true model is quadratic in x, but we fit a linear model. In a linear

model, the estimated partial effect ∂y/∂x = β, is constant for all x. Thus, not only will the linear

model’s result be inconsistent, but it is also ignorant of the fact that the true partial effect varies

with x. Even worse, the partial effect could take both positive and negative values. Implementing

a policy based on results from the linear model when the true relationship is quadratic could

lead to unintended consequences for a particular group (say, Sub-Saharan Africa), for example, a

detrimental instead of positive impact for a group within the population.

Standard growth regressions take the following (log-linear) form:

gi = β0 + β′wi + γ′zi + εi, (1)

where gi is the growth rate of output over a predetermined time period, εi is the additive error



Growth Empirics without Parameters 9

which has expectation zero, wi is a vector composed of the ‘Solow’ variables,6 initial income,

physical capital saving rate, human capital saving rate and the joint depreciation term on both

types of capital,7 while zi is a vector of a given length that contains variables associated with

several alternative growth theories. Uncertainty over the exact choice of variables within the zi

vector is what typically gives rise to model uncertainty. While there are many growth theories,

none refutes the others and so an exact specification of (1) becomes increasingly difficult as more

growth theories are constructed. Empiricists have used BMA to uncover just what variables matter

in both the wi and zi vectors, but to date most have yet to break free of the linear growth structure

implicit in (1).

Given that we generally do not know the true data generating process, we have a few options:

First, we can simply hope that the true model is linear. Given that this is only one possibility

out of an infinite number of possibilities, this may be a bit näıve. Second, we can fit higher order

polynomials as well as use interaction terms. This is a promising approach, but given the number

of possibilities, it is difficult to model all of these without quickly running out of degrees of freedom.

Finally, we can let the data tell the form of the relationship. This is the approach we take.

Now, consider a general growth specification taking the unknown form

gi = m(xi) + ui, i = 1, ..., n, (2)

where xi is the union of wi and zi, m(·) is the unknown smooth growth process (conditional mean

of g given x). It does not assume that the variables enter in linearly or that they are separable

from one another. For the argument xi = [xci , x
u
i , x

o
i ], we make distinct reference to data type; xci

is a qc × 1 vector of continuous regressors (for example, initial income, capital savings rate, % ice

free coast), xui is a qu × 1 vector of regressors that assume unordered discrete values (geographic

regions) and xoi is a qo × 1 vector of regressors that assume ordered discrete values (time). An

additive, mean zero error is captured through ui.

6When we discuss the Solow variables, initial income, population growth, investment and human capital, we assume
it is taken to mean the logarithm of these respective variables. We generally omit the word logarithm hereafter for
simplicity.

7The common ni+g+δ term that includes population growth rate, technology growth rate, and factor depreciation
rates, respectively.
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4.1 Nonparametric regression

In this section we consider two nonparametric regression methods: Local-Constant Least-Squares

(LCLS) and Local-Linear Least-Squares (LLLS). Neither estimator requires functional form as-

sumptions for the conditional mean nor do they require us to assume a specific distribution for

the error term.8 The additional benefit of LCLS that we exploit here is its ability to detect irrele-

vant regressors when automated bandwidth selection is used. The additional benefit of LLLS that

we exploit here is its ability to detect linearity of regressors when automated bandwidth selection

is used. In what follows we explain each estimation method as well as how to determine when

variables are relevant or enter linearly.

The basic idea behind LCLS is to calculate a (locally) weighted average of the left-hand-side

variable. This estimate of the conditional mean is also known as a local average. It is the average

of g local to a point x. We estimate the conditional mean function by locally averaging those values

of the left-hand-side variable which are “close” in terms of the values taken on by the regressors.

The amount of local information used to construct the average is controlled by the bandwidth.

The unknown function (conditional mean) is estimated by connecting the (locally averaged) point

estimates over a range of x.

Our LCLS estimate of the conditional mean in (2) at a specific point x is given by

m̂(x) =
(
i′K (x) i

)−1
i′K (x) g, (3)

where g ≡ (g1, g2, . . . , gn)′, i is a n × 1 vector of ones and K(x) is a diagonal n matrix of kernel

weighting functions for mixed continuous (Gaussian kernel) and discrete (Li-Racine kernel) data

with bandwidth vector h = (h1, h2, . . . , hqc) for the continuous variables and bandwidth vector

λ = (λu, λo) = (λu1 , . . . , λ
u
qu , λ

o
1, . . . , λ

o
qo) for the discrete regressors (Li and Racine, 2007). Note

here that instead of using a single bandwidth for all regressors we instead have a bandwidth for

each covariate, both continuous and discrete.

The bandwidths, by affecting the degree of smoothing, are not just a means to an end; they

provide some indication of how the left-hand-side variable is affected by the regressors. Hall, Li

8The lack of a specific functional form for the conditional mean and the lack of a specific distribution for the error
term does not imply that our estimation and inference do not require assumptions. For example, theory requires
that the conditional mean is twice continuously differentiable. For the case of the error term, the paper which proves
the properties of detecting irrelevance and linearity with bandwidth selection (Hall, Li and Racine 2007) assumes
in its proof that the error term has finite moments of any order. In the Appendix we show that even with errors
which generate this moment assumption the methods described here still perform admirably. The exact assumptions
necessary for our estimation and inference can be found in Li and Racine (2007).
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and Racine (2007) show that with LCLS, when the bandwidth on any regressor reaches its upper

bound, the regressor is essentially smoothed out. Specifically, when the bandwidth reaches its upper

bound, the kernel function becomes a constant. It is obvious in (3) that if the kernel function for a

particular regressor is a constant, it can be pulled out of each term and they will cancel one another

out. In other words, it is as if the variable never entered the model in the first place.

Our second nonparametric estimation procedure employed is LLLS. In short, LLLS performs

weighted least-squares regressions around a point x with weights determined by a kernel function

and bandwidth vector. Again, more weight is given to observations in the neighborhood of x. This

is performed over the range of x and then the unknown function is estimated by connecting the

point estimates. An added benefit is that if indeed the true functional form is linear, the LLLS

estimator nests the OLS estimator when the bandwidth is very large.

Specifically, taking a first-order Taylor expansion9 of (2) around x, yields

gi ≈ m(x) + (xci − xc)β(xc) + εi, (4)

where β(xc) is defined as the partial derivative of m(x) with respect to xc.10 The LLLS estimator

of δ(x) ≡
(m(x)
β(xc)

)
is given by

δ̂(x) =
(
X ′K (x)X

)−1
X ′K (x) g, (5)

where X is a n× (qc + 1) matrix with ith row being (1, (xci − xc)) and K (x) is the same as in (3).

Note that here we obtain a fitted value and derivative estimate (for each regressor) for each xc.

This allows us to observe (potential) heterogeneity in the partial effects. Estimates of categorical

variables are obtained separately. Specifically, they are estimated as the counterfactual difference

in the conditional mean when switching from one value of the categorical regressor to another.

Consequently, the returns to the categorical variables also vary across observations. This type of

analysis is not common in parametric or even semiparametric procedures (Li and Racine, 2007).

Hall, Li and Racine (2007) also show what happens when the bandwidth reaches its upper

bound in LLLS estimation. For ordered and unordered regressors, a bandwidth equal to the upper

bound again smooths the regressor out. However, for continuous regressors, when the bandwidth

reaches its upper bound, the variable enters linearly. From (5) we can see that when the bandwidth

9The Taylor expansion is only taken for the continuous variables.
10Our later discussion often refers to our gradient estimates as if they are causal effects. We want to emphasize here

that we do not take into account the potential endogeneity of any regressor. This should be taken into consideration
when interpreting the results of our study.
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approaches its upper limit and the kernel function is constant, it cancels out; then we are left with

the familiar OLS estimator. Hence, automatic bandwidth selection criteria can show whether or

not a continuous variable enters in linearly.

It is important to note that while we consider two estimation procedures, most of the results

of this study can be performed using solely LCLS. LCLS can be used to determine relevance as

well as estimate the partial effects of the model. In other words, we can handle nonlinearities and

variable selection simultaneously, but this approach would not be ideal for at least two reasons.

First, one property that LCLS does not have is detecting linearity. This is of particular interest

in this application. Second, it is well known (e.g., see Fan and Gijbels 1996) that LCLS is less

desirable than LLLS in terms of estimation. Hence, we will conduct our study in two steps, not

out of necessity, but for improved performance. The first step will be to use LCLS to determine

relevance. In the second step, we will take the variables that survive the first step (for each theory

considered) to determine linearity as well as to examine partial effects and conduct inference.

4.2 Cross-validatory bandwidth selection

Estimation of the bandwidths (h) is typically the most critical factor when performing nonpara-

metric estimation. For example, choosing a very small h means that there may not be enough

points for smoothing and thus we may get an undersmoothed estimate (low bias, high variance).

On the other hand, choosing a very large h, we may include too many points and thus get an

oversmoothed estimate (high bias, low variance). This trade-off is a well-known dilemma in applied

nonparametric econometrics and thus we usually resort to automatic selection procedures to esti-

mate the bandwidths. Although there exist many selection methods, Hall, Li and Racine (2007)

have shown that Least Squares Cross-Validation (LSCV) has the ability to smooth away irrelevant

variables that may have been erroneously included into the unknown regression function. They also

show that the procedure has the ability to detect whether continuous variables enter in linearly in

the LLLS case.

For continuous regressors, in the LCLS case, a bandwidth equal to the upper bound implies

that the variable is irrelevant. In the LLLS case, a bandwidth equal to the upper bound determines

that the variable enters in linearly. The upper bound for the bandwidth on a continuous regressor

in either case is infinity. This is impossible to observe in practice. However, when using a Gaussian

kernel function, any bandwidth in excess of two standard deviations of the regressor gives essentially
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equal weight to all observations.11 In other words, in the local-constant setting, the local average

with respect to that variable is actually a global average of the left-hand-side variable and hence

the regressor (essentially) has no impact on the conditional mean. In the local-linear setting, all

observations are given equal weight and hence the regressor enters the model (essentially) in a

linear fashion. Thus, we follow the suggestion of Hall, Li and Racine (2007) and use two standard

deviations of the regressor as the bound for relevance/linearity. Thus, if any bandwidth on a

continuous regressor exceeds two standard deviations of its associated variable, we conclude that it

enters in an irrelevant fashion (in the local-constant setting) or linearly (in the local-linear setting).

For the discrete variables, the bandwidths, either for LCLS or LLLS, indicate which variables are

relevant, as well as the extent of smoothing in the estimation. From the definitions for the ordered

and unordered kernels, it follows that if the bandwidth for a particular unordered or ordered

discrete variable equals zero, then the kernel reduces to an indicator function and no weight is

given to observations for which xoi 6= xo or xui 6= xu. On the other hand, if the bandwidth for

a particular unordered or ordered discrete variable reaches its upper bound, then equal weight is

given to observations with xoi = xo and xoi 6= xo. In this case, the variable is completely smoothed

out (and thus does not impact the estimation results). For both unordered and ordered discrete

variables, the upper bound is unity. See Hall, Li and Racine (2007) for further details.

5 Empirical results

Our first goal is to examine the Solow growth variables and use these results as a baseline when

additional theories are investigated. Specifically, we will use nonparametric methods to determine

the relevance of each regressor and whether or not it enters the model linearly. From there we will

examine which of the individual growth theories are nonlinear by testing our nonparametric model

versus both linear and nonlinear parametric specifications. We will then briefly discuss the findings

of each theory. Afterwords, we will examine in detail results stemming from three separate theories

(geography, policy, demography). These results will demonstrate how nonparametric methods can

be used to deepen our understanding of growth theory. Separately, we also provide Monte Carlo

evidence that the nonparametric model selection methods work well for the sample sizes used in

11The use of two standard deviations is based on the kernel, not the distribution of the data. For instance, even
if the underlying variable was excessively skewed, the use of any standard, second-order kernel would render this
variable irrelevant from the viewpoint of smoothing.
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our empirical investigations (see the Appendix).

Our bandwidths for the sample, across all theories, are presented in Tables 1 and 2. The band-

widths in the first table come from estimation by LCLS. Here we can observe which variables are

relevant and which are irrelevant. The second table gives the bandwidths from the LLLS estima-

tor. Here we can determine which variables enter the model linearly. Just below the separation

in Table 2, we give the p-values (399 wild bootstrap replications)12 of a consistent test of model

misspecification (Hsiao, Li and Racine, 2007) for both a linear (HLR1) and nonlinear parametric

specification (HLR2), similar to those found in Maasoumi, Racine and Stengos (2007). We also

present the model fit (square correlation coefficient between the fitted and actual growth rates) for

each theory in the final row of the second table.

5.1 Solow variables

Our bandwidths for the Solow variables, when considering only the Solow model, provide a snap

shot of the model’s perceived fit when viewed as the main driver behind economic growth. We

first note that human capital is smoothed out. Specifically, the asterisk in Table 1 for the LCLS

bandwidth on human capital (19955251) signifies that it is larger than two times the standard

deviation of human capital (7.852 = 2 × 3.9258). We remove this variable when we estimate the

Solow model via LLLS given that this method cannot automatically remove irrelevant continuous

variables. All other variables have estimated bandwidths which are smaller than our benchmark

threshold and thus are considered to be relevant in terms of the estimation of output growth. A

point worth noting here is that the bandwidth on time is zero to four decimal places. What this

implies is that each cross-section can (essentially) be treated separately. This result suggests that

there are significant differences across time in this model.

Turning to Table 2, we see that there are nonlinearities occurring in both population growth

and initial income.13 The nonlinearities in initial income are in accord with the findings of Durlauf,

Kourtellos and Minkin (2001). Aside from a handful of studies, most growth researchers ignore any

type of nonlinear structure either between or across these variables. We also see that investment

has a bandwidth that is more than twice the size of its standard deviation. The cross next to

the bandwidth denotes this. Finally, we note that the bandwidth on time is now larger and does

12A wild bootstrap is necessary when the errors are heteroskedastic. For more discussion see Cameron and Trivedi
(2005).

13Again note that we are checking whether or not the variables enter linearly in logarithmic form.
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not (essentially) run the cross-sections separately. While we see this as more intuitive, it does

not imply that the coefficients are constant over time. Instead, it suggests that past and future

observations are being used when estimating a unit in a particular year as countries evolve over

time. The conflict between these two tables should be pointed out here. Whereas both estimators

are consistent, in finite samples small differences between these estimators will exist. That being

said, LLLS is generally shown to outperform LCLS in relatively small samples. Hence, we use this

estimation method to conduct inference and assess model fit.

The second column of numbers in Tables 1 and 2 correspond to the regional Solow theory

(Region). We take the Solow model and add a regional indicator (Temple 1998a). The first thing

to note here is that in Table 1, in addition to human capital, population growth is smoothed out.

The region variable here may pick up population growth differences across regions as well as other

regional differences. Turning to the results of Table 2, we see that all variables enter the model

nonlinearly. One possible explanation for this difference between models may be omitted variable

bias. The Solow model may be too simple to adequately describe the growth process. We note in

passing that just the inclusion of regional effects improves the model’s fit, bumping up the pseudo-

R2 from 0.46 to 0.52. This is similar to the result of Temple (1998a) who found that there were

significant regional impacts on output growth. Looking across the columns of either table we note

that region is never smoothed away. However, it is also important to note that the bandwidth on

region in the additionaly models we consider is generally different from zero. Therefore, there likely

exist important interactions between region and the continuous variables entering the models that

are not captured with simple intercept shifts.

When looking at the Solow variables across theories, it is interesting to note that human capital

is smoothed out in most settings. This is not necessarily surprising as DKT show the posterior

probability of inclusion for human capital to be 0.019. Note that both investment and initial income

are each relevant across all theories. Similarly, DKT have posterior inclusion probabilities near one

for each of these regressors. Moving to the local-linear results, we see that while initial income and

investment are relevant across the space of theories, assessing their perceived linearity depends upon

the model. In the demography and policy theories, initial income enters in linearly. The linearity

of investment appears to hold both in the Solow and policy theories. Thus we again confirm that

in general both investment and initial income are relevant predictors of economic growth. The

perceived linearity depends upon the model. It is interesting to note that human capital enters



Growth Empirics without Parameters 16

linearly in all models for which it is relevant. That being said, further examination shows that this

variable is generally statistically insignificant in each of these theories.

5.2 Estimating alternative theories

While examining the impact of the Solow variables on economic growth is interesting and insightful,

much of the recent focus on economic growth has focused on alternative explanations aside from

factor accumulation and initial conditions. Theories such as geography, institutions and policy

have permeated the literature in recent years and generated academic debate.14 To determine how

each theory on its own affects growth aside from factor accumulation, as well as the variables that

may be seen as suitably characterizing the theory under consideration, we keep the same Solow

variables, as well as region and time effects, in the models.

The third column of numbers in Tables 1 and 2 correspond to the demography theory. Table 1

shows that the fertility rate and reciprocal of life expectancy at age one are both relevant predictors

of growth. Tables 2 shows that both these variables enter the model in a nonlinear fashion. The

results here suggest that (for a portion of the sample) after region and time effects have been

controlled for, increasing investment in health should lead to higher growth. We also note that

the demography theory provides a considerable improvement in fit over the basic Solow model.

Specifically, the R2 measure jumps above 0.75. We examine this theory in more detail later.

The geography theory has the largest goodness-of-fit measure (0.86). This is perhaps surprising

given that so many variables are smoothed out. We also note that the sample size is smaller than

that of the previous theories. Here we see that in the first table, population growth, human capital

and % ice free coast all have bandwidths greater than two times their standard deviations. It is

important to note that DKT find a large posterior inclusion probability for the Köeppen-Geiger

measure, but not for % ice free coast. It appears that the relevance of the Köeppen-Geiger measure

and the irrelevance of % ice free coast are robust to nonlinearities. Therefore, in Table 2, we

have three continuous regressors: investment, initial income and the Köeppen-Geiger measure. Of

note is the result from this table that shows that each of the variables enter nonlinearly. Of the

competing (extended) models, this is the only one to do so. This fact is also apparent by the p-values

from the HLR tests which reject the parametric models. Whereas we stated that the relevance of

14See the papers by Sachs (2003) and Rodrik, Subramanian and Trebbi (2004) for one exchange in the ongoing
debates over the causes of growth.
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the Köeppen-Geiger variable was robust to potential nonlinearities, the perceived ‘importance’ of

the geography model, in terms of posterior probability in the BMA setting, does not seem to

be. Specifically, DKT give a low posterior probability for the theory, while, as mentioned earlier,

our goodness-of-fit measure is highest for the geography theory.15 For this and other reasons, we

examine this theory further in the next sub-section.

According to the policy model, output growth is said to depend upon the level of openness of a

country, net government consumption, as well as the inflation rate. Our local-constant bandwidths

show that each of these variables are relevant. Further, each of the Solow variables are relevant

within this theory. Turning to the local-linear bandwidths, we see that each of the Solow variables

are assumed to enter linearly. Further, the HLR test fails to reject the null of linearity. This is

the only theory where we fail to reject the parametric model(s). It can be argued that a reason

the model averaging papers point to variables that fall under the policy nomenclature is that this

model is correctly specified. Even though we fail to reject the null, we see that several bandwidths

in Table 2 are relatively small. These nonlinearities and interactions still allow for heterogeneity.

It appears that a nonlinear parametric model along the lines of that specified in HLR2 could lead

to a consistent (efficient) parametric model. We also examine this theory in more detail below.

As with the policy model, in the fractionalization theory it is shown that each of the regressors

are relevant. Further, both additional variables (ethnic tension and language) enter nonlinearly.

Here we see the opposite result for linearity as only the human capital measure enters linearly

according to its bandwidth. Also different from the policy column, we reject the null that the model

is linear. The goodness of fit measure is quite large here and nonlinearities could be an explanation

for this type of improvement. For example, in linear regressions, linguistic fractionalization has

a constant partial effect. This implies that larger levels of fractionalization are always worse for

an economy (assuming a negative coefficient). However, it can be argued that uniformity (South

Korea) or high fractionalization (the United States) may be preferable to a near-even split in

language (Belgium). To be fair this result is not new, as an existing strand of the literature has

often considered nonlinearities in the effect of ethnic diversity on development outcomes and/or used

measures of polarization to address the idea that intermediate levels of diversity may be especially

harmful – see, e.g. Easterly and Levine (1997), Collier and Hoeffler (1998), Temple (1998b), Block

15The reader should be careful when comparing the fit of our model versus DKT. In DKT geography is compared
simultaneously with other theories. Further, our sample size is much larger than theirs.
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(2001) and Montalvo and Reynal-Querol (2005), among others.

Finally, our setting for studying institutions uses eight proxy variables, of which five are deemed

relevant and three of these enter nonlinearly. This theory also has the third highest goodness-of-

fit measure. DKT note that when they consider fundamental growth theories separate from the

proximate growth theories, their posterior inclusion probability for institutions is 0.96.

What is desirable at this stage is a model combining all of our competing growth theories to

see which variables are robust predictors. However, in a nonparametric setting, the inclusion of

additional predictors decreases the ability of the methods to provide sound insights. Thus, while

we feel confident analyzing individual growth theories for nonlinearities, a combined nonparametric

regression would be based on fewer observations than is required for reliable results.16 Again,

even though we have argued for use of these methods, they do not dominate other approaches (for

example, BMA) in all dimensions.

In summary, we have presented evidence to suggest that each individual growth theory empirical

model has nonlinearities and heterogeneous partial effects. Thus, we suggest that future research

focusing exclusively on any of these individual theories consider nonlinear impacts of the proxy

variables. Next we demonstrate the benefits of our approach by focusing further on three theories

with relatively large data coverage and with a high R2.

5.2.1 Geography

Our analysis so far has shown that the geography theory fits the data well, is nonlinear and

relatively parsimonious (recall results from Tables 1 and 2). In Table 3 we give a summary of the

LLLS partial effect estimates for each of the continuous regressors included in the model (initial

income, investment and Köeppen-Geiger). Specifically, we take the vector of partial effects for each

continuous regressor and then take the mean, median (Q2), first (Q1) and second (Q3) quartiles

of this vector. Below each estimate we give the corresponding (wild) bootstrapped standard error

for that particular partial effect.

We note that there is substantial variation in the marginal effects. This suggests that assuming

homogeneous effects across the sample is incorrect. For the initial income variable, the interquartile

range is approximately 0.0129. In other words, as the gradients measure the percentage change

in the growth rate with respect to a particular regressor, the absolute difference between the first

16In the Appendix we use Monte Carlo simulation methods to guide us on how reliable our methods are in practice.
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and third quartile is −0.0026− (−0.0155) = 0.0129 or 1.29 percentage points. That same value is

0.0102 (= 0.0354−0.0252) for investment. In comparison, the interquartile range for the Köeppen-

Geiger measure is much larger (0.1190 − (−0.0198) = 0.1388), thus providing further evidence of

heterogeneity. Table 3 also shows that the partial effect of initial income is significant at the first

quartile and median, but insignificant at the mean and upper quartile. Investment is significant

at each point whereas we get predominantly insignificant results for each number associated with

Köeppen-Geiger in Table 3. In other words, although we found the variable to be relevant in the

prediction of growth, we only find the upper quartile of the partial effects to be significantly different

from zero. The (uncommon) positive and significant result will be discussed further below.

Although informative, these descriptive statistics can only tell us what happens at particular

points of the distribution. In Figure 1, we examine the kernel density estimates of the vector of

partial effects for each continuous regressor. Here we can see the entire spread of the estimates. It

is worth noting that we find a significant percentage of the partial effects of initial income with a

positive sign. As expected, we find that most of the mass for the partial effects of investment is

to the right of zero implying that additional investment is shown to systematically increase output

growth. That being said, we again note that this effect is quite heterogeneous across the sample.

Finally, although we find our Köeppen-Geiger variable to be generally insignificant in Table 3, we

see that there is substantial variation in the partial effect with some mass to both the left and right

of zero.

We now return to the positive partial effects for the Köeppen-Geiger variable which warrant

further explanation. The conventional wisdom is that more tropical climates have lower levels of

output growth. DKT find a negative and insignificant value. However, here we see that a large per-

centage of the coefficients are positive. Further, taken literally, this implies that a certain percentage

of the observations are positive and significant reflecting that some countries with relatively cold

climates could be worse off, other things equal. It is possible that after controlling for investment,

the nonlinearities in the various controls, as well as regional effects, that the expected negative

effect does not emerge as strongly as expected.

To look for an explanation for the change in sign, we split the estimated partial effects into

countries with above and below median levels of the Köeppen-Geiger measure (0.20). In Figure

2, we plot the kernel density estimates of partial effects on the Köeppen-Geiger measure for each

group in one panel. For those countries with above median Köeppen-Geiger measures, the density
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is centered slightly to the left of zero. We see both positive and negative partial effects and

the results are generally insignificant. At the same time, for those countries with below median

Köeppen-Geigen values, we see that the density is shifted to the right.17

To get a better understanding of the impact of the results as well as to further understand the

nature of the heterogeneity in the partial effects, we further dissect the partial effects of initial

income. Whereas we split the partial effects solely on the regressor in Figure 2, here we split

the partial effects based on several criteria to observe the behavior of the partial effects of initial

income. Specifically, we look at differences in the estimated partial effect densities for initial income

across splits along the median for the three continuous variables. We see that these results are

again indicative of parameter heterogeneity. The Li (1996) test rejects equality of the estimated

densities for every split in the table (all p-values are zero to four decimal points) suggesting potential

interactions between initial income and the other variables used in the model (see Table 4 and Figure

3). Higher initial income, higher investment and lower values for the Köeppen-Geiger measure are

associated with more negative partial effects of initial income. While theory suggests that none of

these variables play a role in determining the converence rate in the vicinity of the steady state,

most would suspect that countries with these attributes converge faster.

5.2.2 Demography

We now turn our focus to the demography theory as it has a large number of observations and the

goodness-of-fit measure is relatively high.18 The results for the Solow variables are as expected. The

partial effects of initial income are generally negative, those of investment are mostly positive and

those of population growth show both signs and are generally insignificant. For the demography

variables, fertility is mostly insignificant whereas the reciprocal of life expectancy is shown to have

a negative and significant effect on growth for 140 of the 715 observations in our sample. This result

may be surprising at first but in fact it is consistent with the current state of the existing literature.

While there is compelling microeconomic evidence that health is important for economic outcomes

(see, e.g. Strauss and Thomas 1998), the macroeconomic evidence has been mixed. On the one

hand, early empirical work by Gallup and Sachs (2001) and more recently by Lorentzen, McMillan

and Wacziarg (2008) find a large positive effect. On the other hand, the findings of Acemoglu and

17The Li (1996) test rejects equality of these densities at the 1% level.
18Here we omit presenting the results formally to save space. They are available from the authors upon request.
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Johnson (2007) and Weil (2007) question a strong impact of health on growth.

We extend our analysis to explore whether a particular group of countries is associated with the

one fifth of observations significantly benefiting from improved life expectancy. Table 5 is analogous

to Table 4 except now we are examining the partial effects of the reciprocal life expectancy variable

based on splits of the continuous regressors. The first point worth making here is that the standard

errors are quite large as compared to other partial effects in the paper. That being said, we

find (expected) negative partial effects across the columns for below median initial income, above

median population growth, above median fertility and above median reciprocal life expectancy.

Each of these cases can be considered as proxies for low-income countries. We take these results to

suggest that increases in life-expectancy would benefit less developed countries more than developed

countries. Future work focusing solely on observations which produce negative and significant

results could lead to a better understanding of what conditions are necessary to obtain economic

gains from increases in life expectancy.

5.2.3 Policy

The final model we study in more detail is the policy model. This model is of interest for a variety of

reasons. First, as DKT found, the policy (their macro) model had a high posterior probability and

two of the three variables used as proxies (government consumption and inflation) also had posterior

inclusion probabilities very close to 1. Second, the HLR test was unable to reject either parametric

model. These two pieces of information suggest that a deeper look at how policy variables influence

growth is warranted.

To avoid being repetitive, we look at a subset of the results for the policy theory. Analogous to

Table 3, in Table 6 we present the quartile and mean values of the estimated coefficients for each of

the continuous variables in the policy growth regression. The associated standard errors are listed

underneath each estimate. The table suggests that there is some dispersion in the estimated impact

that any given variable has on growth across country/time. That being said, the interquartile range

for each of the estimated marginal effects for each variable is substantially smaller than what we

saw with the geography theory. This does not necessarily imply that there is no variation in the

partial effects, but it does suggest that a linear model is not far off the mark. Here we see that

our nonparametric estimates are not substantially different from what we would expect to find in

a typical parametric model.
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This result suggests that this model may be best represented by a simple parametric model

with a few quadratic terms as well as a few interactions. Future research on this theory should

focus on trying to find an effective and efficient parametric model.

6 Conclusion

This paper uses recently developed methods for nonparametric regression to investigate poten-

tial nonlinearities in the growth process and to select relevant variables. This is beneficial as a

variable might be wrongly dropped, or wrongly included, because of omitted nonlinearities. Fur-

ther, estimation and inference from an improperly specified model could lead to incorrect policy

prescriptions.

Our main findings are twofold. First, our perceptions on economic growth are necessarily linked

to the types of empirical models used to link growth determinants and output. This suggests a

more careful consideration of individual growth models and theories in future research since a linear

parametric model may mislead one in both the direction of believing the theory is true when model

misspecification is left unaccounted for or towards rejection of a theory given that the nonlinearity

of the theory is missed by a linear model. We argue that empirical studies of economic growth

should attempt to determine the robustness of variables to nonlinearities in their model as well the

consequences of said nonlinearities.

Second, in a specific context, we focused on three separate theories: geography, demography

and policy. Further analysis of the geography theory revealed that this theory was heavily non-

linear and the simple parametric models traditionally considered missed substantial heterogeneity

in the partial effects. Our study of the demography theory provided suggestive evidence that less-

developed countries would gain the most from increases in life expectancy. Finally, our analysis of

the policy theory showed that a simple parametric model may be appropriate as we found little

heterogeneity in the partial effects.

A particularly promising line of future research is to investigate whether the nonparametric

models used in this paper might translate into parametric models with several regimes, such as

Durlauf and Johnson (1995) and Hansen (2000)-type threshold-based parametric models. As shown

in this paper, when a given parametric model cannot be ascertained to be statistically valid via

testing, partial effects based on given levels of the remaining variables (see e.g., Table 4) can be
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insightful. These splits could actually link with threshold effects. That is, if distinct differences

based on these splits exist, then this may suggest that a parametric type threshold model could in

fact be valid.
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Table 1: Bandwidths using Local-Constant Regression and Penn World Table 6.1

Variable Solow Region Demo. Geo. Policy Frac. Inst.
Population Growth 0.1021 470531∗ 0.2797 386408∗ 0.1328 0.0838 0.1023
Investment 0.5076 0.4509 0.5306 0.5742 0.3898 0.3978 0.2998
Human Capital 19955251∗ 7230883∗ 4894096∗ 1653682∗ 2.3827 5.1338 20633303∗

Initial Income 0.9395 1.0423 1.1007 1.1413 0.7347 0.6233 0.4590
Time 0.0000 0.7459 0.7377 0.7114 0.8012 0.7311 0.4264
Region . 0.0165 0.0391 0.0220 0.2538 0.1121 0.2000
Fertility . . 0.9638 . . . .
Life Expectancy . . 0.0038 . . . .
Keppen-Geiger . . . 0.7057 . . .
% Ice Free Coast . . . 3016761∗ . . .
Openness . . . . 0.3979 . .
Net Govt. Cons. . . . . 0.0539 . .
Inflation . . . . 2.6982 . .
Language . . . . . 0.1798 .
Ethnic Tension . . . . . 0.1585 .
Exec. Constraints . . . . . . 0.2555
Exprop. Risk . . . . . . 461711∗

KKZ96 . . . . . . 0.3902
Eviction . . . . . . 0.1162
Civil Liberties . . . . . . 0.3641
Bur. Quality . . . . . . 0.1636
Political Rights . . . . . . 814386∗

Rule of Law . . . . . . 3010408∗

Bandwidths obtained using LSCV as described in the text for the local-constant nonparametric
regression. A bandwidth with a ∗ next to it indicates that this variable is smoothed out of the
regression.
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Table 2: Bandwidths using Local-Linear Regression and Penn World Table 6.1

Variable Solow Region Demo. Geo. Policy Frac. Inst.
Population Growth 0.0612 . 0.1055 . 710656.8+ 0.3226 424078.4+

Investment 2095.654+ 0.5575 0.5223 0.3075 983401.6+ 0.4769 1.0568
Human Capital . . . . 7881216+ 13564807+ 4090271+

Initial Income 0.8777 5.3597 117891.5+ 0.9865 878412+ 1.5261 1.0556
Time 0.8007 0.8174 0.8395 0.6454 0.9553 0.7701 0.8634
Region . 0.0169 0.2243 0.1047 0.7670 0.1266 0.2196
Fertility . . 0.6697 . . . .
Life Expectancy . . 0.0063 . . . .
Keppen-Geiger . . . 0.0741 . . .
% Ice Free Coast . . . . . . .
Openness . . . . 0.7670 . .
Net Govt. Cons . . . . 0.9781 . .
Inflation . . . . 5.8763+ . .
Language . . . . . 0.6181 .
Ethnic Tension . . . . . 0.2255 .
Exec. Constraints . . . . . . 0.5524
Exprop. Risk . . . . . . .
KKZ96 . . . . . . 295035.9+

Eviction . . . . . . 89357.11+

Civil Liberties . . . . . . 602819.7+

Bur. Quality . . . . . . 0.2225
Political Rights . . . . . . .
Rule of Law . . . . . . .
HLR1 Test 0.003 0.008 0.005 0.010 0.120 0.000 0.013
HLR2 Test 0.000 0.000 0.002 0.025 0.226 0.000 0.003
# of Countries 98 98 96 92 94 85 60
# of Observations 731 731 715 691 532 562 409
R2 0.4634 0.5200 0.7531 0.8582 0.6224 0.8016 0.7660

Bandwidths obtained using LSCV as described in the text for the local-linear nonparametric regression.
A bandwidth with a + next to it indicates that this variable enters the regression in a linear fashion.
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Table 3: Partial effects for all continuous regressors for the geography model

Variable Mean Q1 Q2 Q3
Initial Income -0.0102 -0.0155 -0.0116 -0.0026

0.0041 0.0056 0.0025 0.0060
Investment 0.0289 0.0252 0.0327 0.0354

0.0081 0.0073 0.0054 0.0073
Keppen-Geiger 0.0601 -0.0198 0.0588 0.1190

0.0507 0.0258 0.0426 0.0590

Partial effects are tabulated as the estimated deriva-
tives from the local-linear regression using the band-
widths obtained in Table 2 for the Geography (Geo)
column. The estimate in the table for a particular con-
tinuous regressor represents the mean, median (Q2),
first (Q1) or third (Q3) quartile of the vector of partial
effects for that particular regressor. Beneath each es-
timate is the corresponding (wild) bootstrapped stan-
dard error.

Table 4: Partial effects of initial income across various groups for the geography model

Variable Mean Q1 Q2 Q3 Li Test
Above Median Initial Income -0.0143 -0.0160 -0.0147 -0.0122 0.0000

0.0035 0.0064 0.0045 0.0028
Below Median Initial Income -0.0062 -0.0105 -0.0035 0.0010

0.0030 0.0045 0.0053 0.0079
Above Median Investment -0.0147 -0.0162 -0.0148 -0.0127 0.0000

0.0026 0.0025 0.0024 0.0025
Below Median Investment -0.0057 -0.0101 -0.0032 0.0007

0.0025 0.0080 0.0025 0.0025
Above Median Keppen-Geiger -0.0089 -0.0175 -0.0066 -0.0002 0.0000

0.0027 0.0025 0.0047 0.0064
Below Median Keppen-Geiger -0.0116 -0.0153 -0.0137 -0.0085

0.0025 0.01153 0.0039 0.0057

Partial effects are tabulated as the estimated derivatives from the local-linear
regression using the bandwidths obtained in Table 2 for the Geography (Geo)
column. Results are tabulated based on splits of the data indicated by the
first column of this table. The estimate in the table for a particular continuous
regressor represents the mean, median (Q2), first (Q1) or third (Q3) quartile
of the vector of partial effects (based on the split) for that particular regressor.
Beneath each estimate is the corresponding (wild) bootstrapped standard error.
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Table 5: Partial effects of (the reciprocal of) life expectancy (at age 1) across various groups for
the demography model

Variable Mean Q1 Q2 Q3 Li Test
Above Median Initial Income -0.0569 -3.867 0.3607 4.2816 0.0000

1.1738 1.4480 1.5164 7.6324
Below Median Initial Income -1.9860 -3.3731 -2.1264 -0.4583

1.4830 6.7051 3.0681 4.8863
Above Median Population Growth -1.6618 -3.3378 -2.1313 -0.3470 0.0000

1.8149 1.5295 3.0252 3.2255
Below Median Population Growth -0.3767 -4.0400 0.2161 4.3002

3.0755 5.3138 1.1626 8.5103
Above Median Investment -0.3980 -4.1268 -0.5829 3.9685 0.0000

3.2796 1.1339 1.5994 1.7870
Below Median Investment -1.6439 -3.2734 -1.8776 0.3938

9.0246 1.4725 9.1179 8.7375
Above Median Fertility Rate -2.4022 -3.4623 -2.2887 -1.0647 0.0000

2.2499 5.0324 7.4060 1.1401
Below Median Fertility Rate 0.3657 -3.3283 1.1866 4.9003

1.5155 7.745 7.4900 1.2758
Above Median Life Expectancy -2.1598 -3.4175 -2.1537 -0.9021 0.0000

8.4173 1.7896 1.7824 1.2064
Below Median Life Expectancy 0.12276 -3.6379 0.8454 4.6098

4.6533 1.8152 6.7051 7.9399

Partial effects are tabulated as the estimated derivatives from the local-linear regres-
sion using the bandwidths obtained in Table 2 for the Demography (Demo.) column.
Results are tabulated based on splits of the data indicated by the first column of this
table. The estimates in the table for a particular continuous regressor represents the
mean, median (Q2), first (Q1) or third (Q3) quartile of the vector of partial effects
(based on the split) for that particular regressor. Beneath each estimate is the cor-
responding (wild) bootstrapped standard error. Recall that a negative partial effect
implies that increases in life- expectancy will lead to increases in economic growth
as life is defined as the inverse of life expectancy at age one.
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Table 6: Partial effects for all continuous regressors for the policy model

m Mean Q1 Q2 Q3
Initial Income −0.0133 −0.0167 −0.0144 −0.0047

0.0036 0.0038 0.0035 0.0034
Population Growth −0.0081 −0.0301 −0.0128 0.0074

0.0088 0.0126 0.0179 0.0198
Human Capital 0.0007 −0.0004 0.0001 0.0017

0.0008 0.0009 0.0008 0.0008
Investment 0.0248 0.0175 0.0250 0.0282

0.0041 0.0042 0.0030 0.0039
Openness 0.0075 −0.0007 0.0069 0.0156

0.0062 0.0170 0.0053 0.0065
Net Govt. Cons. −0.1171 −0.1345 −0.1053 −0.0878

0.0328 0.0287 0.0249 0.0266
Inflation −0.0004 −0.0006 −0.0004 −0.0002

0.0004 0.0003 0.0005 0.0005

Partial effects are tabulated as the estimated derivatives from
the local-linear regression using the bandwidths obtained in
Table 2 for the Policy column. The estimates in the table for
a particular continuous regressor represents the mean, median
(Q2), first (Q1) or third (Q3) quartile of the vector of partial
effects for that particular regressor. Beneath each estimate is
the corresponding (wild) bootstrapped standard error.
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Figure 1: Estimated marginal effects for each continuous regressor for the geography theory

(a) (b)

(c)
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Figure 2: Comparison of estimated marginal effects of the Köeppen-Geiger measure for values both
above and below the Köeppen-Geiger measure
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Figure 3: Comparison of estimated marginal effects of initial income by various splits for the
geography theory

(a) (b)

(c)
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A Appendix

Our main findings rest on the parameter estimates that we report in the previous tables and figures.

A natural question concerns the reliability of the estimates we have obtained using nonparametric

estimation techniques for the growth specification given our “small” samples. Since these estimates

are the primary concern of our study, we felt it pertinent to undertake a set of Monte Carlo

experiments to assess the (very) small sample properties of nonparametric model selection in the

face of more than one relevant covariate as well as many irrelevant covariates. This should lend

credibility and insight into our assessment of growth theories found above. We notice that due

to lack of information on certain variables, for any given theory we have samples as small as 409

observations and as large as 731. Therefore we conduct our small sample (balanced panel) analysis

using both n1 = 59 and 95 cross-sectional units and T = 7 time periods. Our setup is similar to

that in Hall, Li and Racine (2007), except that we include more relevant and irrelevant regressors as

well as allow for observations to be observed over multiple time periods in a manner which we would

expect in a panel growth study. Our goal is to generate a data set that is similar to the one used

in the empirical section. We judge the performance of the nonparametric model selection exercise

based on out-of-sample predictive performance and the behavior of the cross-validated bandwidths.

For i = 1, 2, . . . , n1, with n1 = 59 or 95 and t = 1, 2, . . . , 7, we generate three types of random

variables: unordered categorical (zit), ordered categorical (wit) and continuous (xit). For each of

the three unordered categorical variables (z1i, z2i, z3i) ∈ {0, 1}, Pr[z1it = z1it−1] = ρ1, Pr[z2it =

z2it−1] = ρ2 and Pr[z3it = z3it−1] = ρ3, where Pr[z1i0 = 1] = 0.62, Pr[z2i0 = 1] = 0.71, Pr[z3i0 =

1] = 0.82. ρ1, ρ2 and ρ3 are set equal to 0.50, 0.70 and 0.90, respectively. Obviously, Pr[zjit 6=

zjit−1] = 1− ρj for j = 1, 2, 3. In other words, a higher value of ρ indicates a stronger persistence

in the unordered categorical variable over time.

We allow each of the ordered categorical variables (w1it, w2it) to take integer values from 0 to

3. They are generated as Pr[w1it = w1it−1] = φ1 and Pr[w2it = w2it−1] = φ2. We set Pr[w1i0 =

`] = 0.25 ∀`, Pr[w2i0 = 0] = 0.40 and Pr[w2i0 = `] = 0.20 for ` = 1, 2 and 3. The persistence

parameters φ1 and φ2 are set equal to 0.50 and 0.90, respectively. When wsit 6= wsit−1 for s = 1 or

2, wsit takes one of the other values from 0 to 3 with equivalent probability, (1− φs)/3.

Finally, we consider five continuous variables (x1it, x2it, x3it, x4it, x5it) which are generated as

xjit = ϕjxjit−1 + νjit, where for j = 1, 2, . . . , 5, ϕj is set equal to 0.80, 0.90, 1.00, 1.10 and
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1.20, respectively. Notice that we have constructed x3 to have a unit root while x4 and x5 are

explosive. We choose to construct our irrelevant variables in this fashion for two reasons. First, the

theoretical results of Hall, Li and Racine (2007) consider well-behaved, relevant covariates. Second,

their simulations have covered cases where the irrelevant covariates display nonzero correlation with

the relevant covariates but are well-behaved. Thus, our simulations can be viewed as a complement

to those of Hall, Li and Racine (2007). Assuming a zero error (νjit = 0), values of ϕ less than

one indicate that the regressor is decreasing with time (e.g., population growth) and values of ϕ in

excess of one indicate that the regressor is increasing with time (e.g., human capital accumulation).

Further, xji0 are generated as uniform from one to two and the νjit are generated as normal with

mean zero and variance equal to 0.10. The initial values are drawn so that they exhibit a 0.50

degree of correlation.19

We generate yit according to

yit = z1it + x1it + x2it + x1it · x2it + εit, (DGP 1)

or

yit = z1it +
√
w1it · x1it + x2it + x1it · x2it + x23it + εit, (DGP 2)

where εit = πεit−1 + uit, π = 0.50, uit is drawn from a normal distribution with mean zero and

variance equal to 0.10 and εi0 is drawn from a t-distribution with five degrees of freedom. In the

data set considered in our study, the role of outliers could be critical and to assume normality may

under-estimate the practical importance of extreme observations.

In each model there are at least two relevant continuous variables as well as categorical and

continuous variables that are irrelevant. Both setups also contain nonlinearities to fully highlight

the nonparametric approach. We feel that while limited, these two models should provide good

insight into how this method performs with a small sample and more than one relevant continuous

covariate. Indeed, Fernandez, Ley and Steel (2001) and Sala-i-Martin, Doppelhofer and Miller

(2004) have both shown using BMA (BACE) that four continuous variables are a part of the true

growth model with very high probability.20

19To generate the initial values we take draws of size n1 from a 10-dimensional multivariate normal distribution
with zero means and variances equal to 1. The covariances are set so that the initial values display positive correlation
of 0.5. The five discrete variables are constructed by taking the corresponding draw from the normal and using the
quantile transformation based on φ or ρ to assign an integer value.

20The four that each found are different, with the exception of initial income, but both winnow the large set of
potential covariates down to a relatively small set that is manageable for empirical studies employing nonparametric
estimation methods.
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Our first assessment is the ability of the cross-validation procedure to smooth away the variables

that are indeed not present in the data generating process. We use LCLS to assess if both continuous

and discrete variables have been correctly smoothed away. For the categorical variables we use the

rule of thumb that if the bandwidth is within 80% of its upper bound (i.e., bandwidths larger

than 0.80) that the variable has been smoothed out and for the continuous variables we look

at the bandwidth compared to the standard deviation of the data drawn. If the bandwidth is

larger then two standard deviations of the regressor we conclude that the continuous variable has

been smoothed out of the exercise. For our 399 replications, we note the median, 10th and 90th

percentiles of the cross-validated bandwidths.

We see from Tables A1 and A2 that the median results suggest that the method is correctly

smoothing away irrelevant discrete and continuous variables. For instance, in DGP 1, only z1, x1

and x2 are relevant. Table A1 shows that hz1 is the only categorical bandwidth whose median value

is well below its upper bound. At the same time, the median bandwidths for x1 and x2 in Table

A2 correctly suggest that they are relevant while each of the other median bandwidths correctly

suggest irrelevance. Although the results are good for the smaller sample, it is obvious that the

ability to smooth away irrelevant regressors is generally enhanced by additional data. Notice that

the median bandwidths increase for all irrelevant variables and the 10th percentiles increase. We

note again that this is also for data that are drawn to have a 0.5 degree of correlation, lending

further evidence that the method works well when variables are correlated.

These results do not suggest that irrelevant variables are always smoothed away, especially in

small samples. Table A1 suggests that in some instances (for n1 = 59) the discrete variables are not

smoothed out of the model. For example, the results on λ̂z2 suggest that while the upper bound is

obtained in at least 10% of the simulations, there are also numerous simulations where z2 was not

smoothed away. The results are much better for the continuous variables, however, as in almost all

the simulations the irrelevant continuous variables are smoothed away.

One point of concern is the behavior of the estimated bandwidths on the continuous regressor

x3. Recall that x3 contains a unit root. In DGP 2 the variable is relevant and the results from

Table A2 shows that the bandwidth selector correctly shows this. However, in DGP 1 the variable

is irrelevant and the bandwidth at the median is roughly equal to two times its standard deviation.

Further, we see some decrease in the 10th percentile and median bandwidth when the sample

size is increased. Fortunately, in each case the 90th percentile is significantly large. The limited
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evidence here suggests that when the regressor possesses a unit root that the user should be careful

interpreting the result. At the same time, we see that the explosive irrelevant variables (ϕ > 1: x4

and x5) are correctly smoothed out. It is unclear why the unit root would behave worse than the

explosive cases. Clearly, further careful research (both theoretical and empirical) needs to be done

before we can make strong claims on this result.

Our second assessment involves the model’s predictive performance where we generate data,

independent from the original draw, from the same DGP of the same size, n2 = 413 or 665. Pre-

dictive performance on n1 out-of-sample points is assessed via PMSE = 1/n1
∑n1

j=1(ŷj − yj)2. We

repeat this process 500 times for each simulation and for each DGP. We consider three parametric

models, an incorrect linear model (PI-ALL) that includes all the variables, an incorrect linear model

that only includes the relevant variables (PI-ONLY) and the correct nonlinear, interactions model

(PC), as well as the LCLS cross-validated results. The estimators for the first two models should

lead to inconsistent estimates while the second two are consistent estimators. Table A3 suggests

that while the correctly specified parametric model dominates all the competitors, as expected, the

performance of the nonparametric model relative to the two incorrect models is notable. For DGP

1, when n1 = 59, the relative performance is approximately 60% better than both the incorrectly

specified linear model with every variable included and the incorrectly specified linear model with

only the relevant variables. Additionally, as the sample size increases, the relative performance

of the nonparametric model relative to the correctly specified linear model improves (in terms of

the ratio of PMSE across the models) from 28.8% to 24.5%. We also mention that this relative

performance improves with the sample size as more data helps the nonparametric estimates, but

does not ameliorate the inconsistent parametric estimators.

In summary, we see that even with the threat of the curse of dimensionality, the nonparametric

estimators with bandwidths selected via LSCV perform well in small samples with relatively large

numbers of relevant and irrelevant variables. We note here that this level of performance testing

with such small samples and so many regressors has not been attempted in the literature. The

ability to smooth out irrelevant regressors with relatively small samples gives us more confidence

in the results in the main text.
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Table A1: Summary of cross-validated bandwidths for the discrete covariates (NP LSCV estimator)

Median, [10th Percentile, 90th Percentile] of λ̂

λ̂z1 λ̂z2 λ̂z3 λ̂w1 λ̂w2

n = 59

DGP 1 0.007 0.704 0.695 0.869 0.650
[0.000,0.027] [0.399,1.000] [0.253,1.000] [0.623,1.000] [0.381,0.999]

DGP 2 0.050 0.894 0.894 0.280 0.861
[0.026,0.074] [0.563,1.000] [0.491,1.000] [0.220,0.404] [0.641,1.000]

n = 95

DGP 1 0.002 0.894 0.790 0.886 0.709
[0.000,0.021] [0.400,1.000] [0.259,1.000] [0.662,1.000] [0.410,0.957]

DGP 2 0.039 0.997 1.000 0.303 0.885
[0.016,0.059] [0.600,1.000] [0.536,1.000] [0.192,0.352] [0.709,1.000]

Median bandwidths for our discrete covariates using LSCV and local-constant ker-
nel regression. The interdecile range of our estimated bandwidths are presented in
square brackets beneath the median value.

Table A2: Summary of cross-validated bandwidths for the continuous covariates (NP LSCV esti-
mator)

Median, [10th Percentile, 90th Percentile] of ĥ

ĥx1
ĥx2

ĥx3
ĥx4

ĥx5

n = 59

DGP 1 0.157 0.171 2.397 2.675 ≈ ∞
[0.115,0.189] [0.128,0.228] [0.746,≈ ∞] [0.911,≈ ∞] [1.886,≈ ∞]

DGP 2 0.245 0.300 0.186 ≈ ∞ 16.155
[0.188,0.282] [0.231,0.386] [0.143,0.252] [2.252,≈ ∞] [3.261,≈ ∞]

n = 95

DGP 1 0.142 0.160 1.812 3.512 7.071
[0.111,0.162] [0.117,0.195] [0.627,≈ ∞] [1.188,≈ ∞] [2.022,≈ ∞]

DGP 2 0.213 0.265 0.155 ≈ ∞ ≈ ∞
[0.179,0.256] [0.226,0.324] [0.125,0.195] [3.036,≈ ∞] [5.509,≈ ∞]

Median bandwidths for our continuous covariates using LSCV and local-constant
kernel regression. The interdecile range of our estimated bandwidths are presented
in square brackets beneath the median value. When an estimated bandwidth is
very large it is replaced by ≈ ∞ to denote that it is effectively equal to the
asymptotic upper bound.
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Table A3: Out-of-sample PMSE performance for parametric and nonparametric models containing
irrelevant regressors (ρ = 0.5)

Median, [10th Percentile, 90th Percentile] of PMSE
NP-LSCV PI-ALL PI-ONLY PC

n1 = 59, n2 = 413

DGP 1 0.118 0.297 0.294 0.084
[0.092,0.158] [0.215,0.434] [0.216,0.434] [0.064,0.125]

DGP 2 0.414 2.977 3.010 0.086
[0.337,0.529] [2.098,4.510] [2.119,4.527] [0.065,0.125]

n1 = 95, n2 = 665

DGP 1 0.094 0.245 0.240 0.071
[0.074,0.122] [0.183,0.343] [0.183,0.343] [0.056,0.095]

DGP 2 0.344 3.296 3.289 0.084
[0.296,0.422] [2.228,4.119] [2.236,4.107] [0.071,0.112]

Median predicted mean square errors (PMSE) for our different estimation
methodologies. The interdecile range of our estimated PMSE are presented
in square brackets beneath the median value. NP-LSCV refers to our local-
constant nonparametric regression estimates with bandwidths obtained via
LSCV, PI-ALL refers to a linear in parameters model including all variables
(relevant and irrelevant), PI-ONLY is our linear in parameters model that only
includes the relevant variables and PC is the correctly specified parametric
model.


