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ABSTRACT
When a new bug report is received, developers usually need
to reproduce the bug and perform code reviews to find the
cause, a process that can be tedious and time consuming. A
tool for ranking all the source files of a project with respect
to how likely they are to contain the cause of the bug would
enable developers to narrow down their search and poten-
tially could lead to a substantial increase in productivity.
This paper introduces an adaptive ranking approach that
leverages domain knowledge through functional decomposi-
tions of source code files into methods, API descriptions of
library components used in the code, the bug-fixing history,
and the code change history. Given a bug report, the ranking
score of each source file is computed as a weighted combi-
nation of an array of features encoding domain knowledge,
where the weights are trained automatically on previously
solved bug reports using a learning-to-rank technique. We
evaluated our system on six large scale open source Java
projects, using the before-fix version of the project for every
bug report. The experimental results show that the newly
introduced learning-to-rank approach significantly outper-
forms two recent state-of-the-art methods in recommending
relevant files for bug reports. In particular, our method
makes correct recommendations within the top 10 ranked
source files for over 70% of the bug reports in the Eclipse
Platform and Tomcat projects.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging Aids; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval—Retrieval mod-
els; I.2.6 [Artificial Intelligence]: Learning—Parameter
learning ; I.2.7 [Artificial Intelligence]: Natural Language
Processing—Text Analysis
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1. INTRODUCTION AND MOTIVATION
A software bug or defect is a coding mistake that may

cause unintended and unexpected behaviors of the software
component [7]. Upon discovering an abnormal behavior of
the software project, a developer or a user will report it
in a document, called a bug report or issue report. A bug
report provides information that could help in fixing a bug,
with the overall aim of improving the software quality. A
large number of bug reports could be opened during the
development life-cycle of a software product. For example,
there were 3,389 bug reports created for the Eclipse Platform
product in 2013 alone. In a software team, bug reports are
extensively used by both managers and developers in their
daily development process [10].

A developer who is assigned a bug report usually needs
to reproduce the abnormal behavior [22] and perform code
reviews [2] in order to find the cause. However, the diversity
and uneven quality of bug reports can make this process
nontrivial. Essential information is often missing from a bug
report [6]. Lexical mismatches between natural language
statements in bug reports and technical terms in software
systems [4] limit the accuracy of ranking methods that are
based on simple lexical matching scores. To locate the bug,
a developer needs to not only analyze the bug report using
their domain knowledge, but also collect information from
peer developers and users. Employing such a manual process
in order to find and understand the cause of a bug can be
tedious and time consuming [31]. Therefore, an automatic
approach that ranked the source files with respect to their
relevance for the bug report could speed up the bug finding
process, which in turn will lead to an overall improvement
in the software team productivity.

If the bug report is construed as a query and the source
code files in the software repository are viewed as a collec-
tion of documents, then the problem of finding source files
that are relevant for a given bug report can be modeled as a
standard task in information retrieval (IR) [27]. As such, we
propose to approach it as a ranking problem, in which the
source files (documents) are ranked with respect to their
relevance to a given bug report (query). In this context,
relevance is equated with the likelihood that a particular
source file contains the cause of the bug described in the
bug report. The ranking function is defined as a weighted
combination of features, where the features draw heavily
on knowledge specific to the software engineering domain
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in order to measure relevant relationships between the bug
report and the source code file. While a bug report may
share textual tokens with its relevant source files, in general
there is a significant inherent mismatch between the natural
language employed in the bug report and the programming
language used in the code. Our system features bridge the
corresponding lexical gap by using project specific API doc-
umentation to connect natural language terms in the bug
report with programming language constructs in the code.
Furthermore, source code files may contain a large number
of methods of which only a small number may be causing
the bug. Correspondingly, the source code is syntactically
parsed into methods and the features are designed to exploit
method-level measures of relevance for a bug report. It has
been previously observed that software process metrics (e.g.,
change history) are more important than code metrics (e.g.,
size of codes) in detecting defects [39]. Consequently, we
use the change history of source code as a strong signal for
linking fault-prone files with bug reports. Another useful
domain specific observation is that a buggy source file may
cause more than one abnormal behavior, and therefore may
be responsible for similar bug reports. If we equate a bug
report with a user and a source code file with an item that
the user may like or not, then we can draw an analogy with
recommender systems [28] and employ the concept of col-
laborative filtering. Thus, if previously fixed bug reports are
textually similar with the current bug report, then files that
have been associated with the similar reports may also be
relevant for the current report.
The resulting ranking function is a linear combination of

features, whose weights are automatically trained on previ-
ously solved bug reports using a learning-to-rank technique.
We have conducted extensive empirical evaluations on six
large-scale, open-source software projects with more than
22,000 bug reports in total. To avoid contaminating the
training data with future bug-fixing information from pre-
vious reports, we created strong benchmarks by checking
out the before-fix version of the project for every bug re-
port. Experimental results on the before-fix versions show
that our system significantly outperforms a number of strong
baselines as well as two recent state-of-the-art approaches.
In particular, when evaluated on the Eclipse Platform UI
dataset containing over 6,400 solved bug reports, the learning-
to-rank system is able to successfully locate the true buggy
files within the top 10 recommendations for over 70% of the
bug reports, corresponding to a mean average precision of
over 40%. Overall, we see our adaptive ranking approach as
general enough to be applicable to a wide diversity of soft-
ware projects for which domain knowledge, in the form of
API documentation and syntactically parsed code, is readily
available.
The main contributions of this paper include: using API

descriptions to bridge the lexical gap between bug reports
and source code; exploiting previously fixed bug reports as
training examples for the proposed ranking model in con-
junction with a learning-to-rank technique; and a strong
benchmark dataset created by checking out a before-fix ver-
sion of the source code package for each bug report.
The rest of the paper is structured as follows. Section 2

outlines the system architecture. This is followed in Sec-
tion 3 by a detailed description of the features employed in
the definition of the ranking function. The strong bench-
mark datasets are introduced in Section 4, followed by a de-

scription of the experimental evaluation setting and results
in Section 5. After a discussion of related work in Section 6,
the paper ends with future work and concluding remarks.

2. RANKING MODEL
A ranking model is defined to compute a matching score

for any bug report r and source code file s combination. The
scoring function f(r, s) is defined as a weighted sum of k fea-
tures (k = 6), where each feature ϕi(r, s) measures a specific
relationship between the source file s and the received bug
report r:

f(r, s) = wTΦ(r, s) =

k∑
i=1

wi ∗ ϕi(r, s) (1)

Given an arbitrary bug report r as input at test time, the
model computes the score f(r, s) for each source file s in the
software project and uses this value to rank all the files in
descending order. The user is then presented with a ranked
list of files, with the expectation that files appearing higher
in the list are more likely to be relevant for the bug report
i.e., more likely to contain the cause of the bug.

The model parameters wi are trained on previously solved
bug reports using a learning-to-rank technique. In this learn-
ing framework, the optimization procedure tries to find a set
of parameters for which the scoring function ranks the files
that are known to be relevant for a bug report at the top of
the list for that bug report.

3. FEATURE ENGINEERING

3.1 Vector Space Representation
If we regard the bug report as a query and the source

code file as a text document, then we can employ the classic
Vector Space Model (VSM) for ranking, a standard model
used in information retrieval. In this model, both the query
and the document are represented as vectors of term weights.
Given an arbitrary document d (a bug report or a source
code file), we compute the term weights wt,d for each term
t in the vocabulary based on the classical tf.idf weighting
scheme in which the term frequency factors are normalized,
as follows:

wt,d = nft,d × idft

nft,d = 0.5 +
0.5× tft,d
maxt∈d tft,d

idft = log
N

dft

(2)

The term frequency factor tft,d represents the number of oc-
currences of term t in document d, whereas the document
frequency factor dft represents the number of documents in
the repository that contain term t. N is to the total num-
ber of documents in the repository, while idft refers to the
inverse document frequency, which is computed using a log-
arithm in order to dampen the effect of the document fre-
quency factor in the overall term weight.

3.1.1 Surface Lexical Similarity
For a bug report, we use both its summary and descrip-

tion to create the VSM representation. For a source file,
we use its whole content – code and comments. To tok-
enize an input document, we first split the text into a bag
of words using white spaces. We then remove punctuation,
numbers, and standard IR stop words such as conjunctions
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or determiners. Compound words such as “WorkBench” are
split into their components based on capital letters, although
more sophisticated methods such as [13, 41] could have been
used here too. The bag of words representation of the docu-
ment is then augmented with the resulting tokens – “Work”
and “Bench” in this example – while also keeping the orig-
inal word as a token. Finally, all words are reduced to
their stem using the Porter stemmer, as implemented in the
NLTK1 package. This process will reduce derivationally re-
lated words such as “programming” and “programs” to the
same stem “program”, which is known to have a positive
impact on the recall performance of the final system.
Let V be the vocabulary of all text tokens appearing in

bug reports and source code files. Let r = [wt,r|t ∈ V ]
and s = [wt,s|t ∈ V ] be the VSM vector representations of
the bug report r and the source code file s, where the term
weights wt,r and wt,s are computed using the tf.idf formula
as shown in Equation 2 above. Once the vector space rep-
resentations are computed, the textual similarity between a
source code file and a bug report can be computed using
the standard cosine similarity between their corresponding
vectors:

sim(r, s) = cos(r, s) =
rT s

∥r∥∥s∥ (3)

This is simply the inner product of the two vectors, normal-
ized by their Euclidean norm.
The VSM cosine similarity could be used directly as a

feature in the computation of the scoring function in Equa-
tion 1. However, this would ignore the fact that bugs are
often localized in a small portion of the code, such as one
method. When the source file is large, its corresponding
norm will also be large, which will result in a small cosine
similarity with the bug report, even though one method in
the file may be actually very relevant for the same bug re-
port. Therefore, we use the AST parser from Eclipse JDT2

and segment the source code into methods in order to com-
pute per-method similarities with the bug report. We con-
sider each method m as a separate document and calculate
its lexical similarity with the bug report using the same co-
sine similarity formula. We then compute a surface lexical
similarity feature as follows:

ϕ1(r, s) = max({sim(r, s)} ∪ {sim(r,m)|m ∈ s}) (4)

i.e., the maximum from all per-method similarities and the
whole file similarity.

3.1.2 API-Enriched Lexical Similarity
In general, most of the text in a bug report is expressed in

natural language (e.g., English), whereas most of the content
of a source code file is expressed in a programming language
(e.g., Java). Since the inner product used in the cosine simi-
larity function has non-zero terms only for tokens that are in
common between the bug report and the source file, this im-
plies that the surface lexical similarity feature described in
the previous section will be helpful only when 1) the source
code has extensive, comprehensive comments, or 2) the bug
report includes snippets of code or programming language
constructs such as names of classes or methods. In practice,
it is often the case that the bug report and a relevant buggy

1http://www.nltk.org/api/nltk.stem.html
2http://www.eclipse.org/jdt/

file share very few tokens, if any. For example, Figure 1
below shows a sample from a bug report3 from the Eclipse
project. This bug report describes a defect in which the
toolbar is missing icons and showing wrong menus. Figure 2
shows a snippet from a buggy file that is known to be rele-
vant for this report. At the surface level, the two documents
do not share any tokens, consequently their cosine similarity
will be 0, thus unuseful for determining relevance.

Bug ID: 339286
Summary: Toolbars missing icons and show wrong
menus.
Description: The toolbars for my stacked views were:
missing icons, showing the wrong drop-down menus (from
others in the stack), showing multiple drop-down menus,
missing the min/max buttons ...

Figure 1: Eclipse bug report 339286.

public class PartRenderingEngine
implements IPresentationEngine {

private EventHandler trimHandler = new Even-
tHandler() {
public void handleEvent(Event event) { ...
MTrimmedWindow window =

(MTrimmedWindow) changedObj;
... } ... } ... }

Figure 2: Code from PartRenderingEngine.java

Interface MUILabel

All Known Subinterfaces: MTrimmedWindow, ...
Description: A representation of the model object ’UI
Label’. This is a mix in that will be used for UI Ele-
ments that are capable of showing label information in
the GUI (e.g. Parts, Menus / Toolbars, Perspectives, ...).
The following features are supported: Label, Icon URI,
Tooltip ...

Figure 3: API specification for MUILabel interface.

However, we can bridge the lexical gap by using the API
specification of the classes and interfaces used in the source
code. The buggy file PartRenderingEngine.java declares a
variable window whose type is MTrimmedWindow. As spec-
ified in the Eclipse API, MUILabel is a superinterface of
MTrimmedWindow. As can be seen in Figure 3, the API docu-
mentation of the MUILabel interface mentions tokens such as
toolbar, icon, and menu that also appear in the bug report.

Therefore, for each method in a source file, we extracts a
set of class and interface names from the explicit type dec-
larations of all local variables. Using the project API spec-
ification, we obtain the textual descriptions of these classes
and interfaces, including the descriptions of all their direct
or indirect superclasses or superinterfaces. For each method

3https://bugs.eclipse.org/bugs/show bug.cgi?id=339286
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m we create a document m.api by concatenating the corre-
sponding API descriptions. Finally, we take the API speci-
fications of all methods in the source file s and concatenate
them into an overall document s.api = ∪m∈sm.api. We

Bug ID: 378535
Summary: “Close All” and “Close Others” menu options
available when right clicking on tab in PartStack when no
part is closeable.
Description: If I create a PartStack that contains multi-
ple parts but none of the parts are closeable, when I right
click on any of the tabs I get menu options for “Close All”
and “Close Others”. Selection of either of the menu options
doesn’t cause any tabs to be closed since none of the tabs
can be closed. I don’t think the menu options should be
available if none of the tabs can be closed ...

Figure 4: Eclipse bug report 378535.

Bug ID: 329950
Summary: “Close All” and “Close Others”may cause bun-
dle activation.
Description: ...

Bug ID: 325722
Summary: “Close”-related context menu actions should
show up for all stacks and apply to all items.
Description: ...

Bug ID: 313328
Summary: Close parts under stacks with middle mouse
click.
Description: ...

Figure 5: Bug reports that are similar with 378535.

then compute an API-enriched lexical similarity feature as
follows:

ϕ2(r, s) = max{sim(r, s.api)} ∪ {sim(r,m.api)|m ∈ s} (5)

i.e., the maximum from all per-method API similarities and
the whole file API similarity.

3.2 Collaborative Filtering Score
It has been observed in [31] that a file that has been fixed

before may be responsible for similar bugs. For example,
Figure 4 displays an Eclipse bug report about incorrect menu
options for parts that are not closeable. Figure 5 shows three
other bug reports that were solved before bug 378535 was
reported. These three reports describe similar defects and
therefore share many keywords with report 378535 (shown
underlined in the figures). Consequently, is is not surprising
that source file StackRenderer.java, which had been previ-
ously found to be relevant for the three reports in Figure 4,
was also found to be relevant for the textually similar bug
report in Figure 5.
This collaborative filtering effect has been used before to

improve the accuracy of recommender systems [28], conse-
quently it is expected to be beneficial in our retrieval set-
ting, too. Given a bug report r and a source code file s, let
br(r, s) be the set of bug reports for which file s was fixed

before r was reported. The collaborative filtering feature is
then defined as follows:

ϕ3(r, s) = sim(r, br(r, s)) (6)

The feature computes the textual similarity between the text
of the current bug report r and the summaries of all the bug
reports in br(r, s).

3.3 Class Name Similarity
A bug report summary may directly mention a class name

in the summary, which provides a useful signal that the cor-
responding source file implementing that class may be rele-
vant for the bug report. Our hypothesis is that the signal
becomes stronger when the class name is longer and thus
more specific. For example, the summary of the Eclipse bug
report 409274 contains the class names WorkbenchWindow,
Workbench, and Window after tokenization, but only Work-
benchWindow.java is a relevant file.

Let s.class denote the name of the main class implemented
in source file s, and |s.class| the name length. Based on the
observation above, we define a class name similarity feature
as follows:

ϕ4(r, s) =

{
|s.class| if s.class ∈ r

0 otherwise
(7)

This feature will be automatically normalized during the
feature scaling step described in Section 3.6.

3.4 Bug-Fixing Recency
The change history of source codes provides information

that can help predict fault-prone files [39]. For example, a
source code file that was fixed very recently is more likely
to still contain bugs than a file that was last fixed long time
in the past, or never fixed.

As in Section 3.2, let br(r, s) be the set of bug reports for
which file s was fixed before bug report r was created. Let
last(r, s) ∈ br(r, s) be the most recent previously fixed bug.
Also, for any bug report r, let r.month denote the month
when the bug report was created. We then define the bug-
fixing recency feature to be the inverse of the distance in
months between r and last(r, s):

ϕ5(r, s) = (r.month− last(r, s).month+ 1)−1 (8)

Thus, if s was last fixed in the same month that r was cre-
ated, ϕ5(r, s) is 1. If s was last fixed one month before r was
created, ϕ5(r, s) is 0.5.

3.5 Bug-Fixing Frequency
A source file that has been frequently fixed may be a fault-

prone file. Consequently, we define a bug-fixing frequency
feature as the number of times a source file has been fixed
before the current bug report:

ϕ6(r, s) = |br(r, s)| (9)

This feature will be automatically normalized during the
feature scaling step described in Section 3.6 below.

3.6 Feature Scaling
Features with widely different ranges of values are detri-

mental in machine learning models. Feature scaling helps
bring all features to the same scale so that they become
comparable with each other. For an arbitrary feature ϕ, let
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Table 1: Benchmark Datasets: Eclipse∗ refers to Eclipse Platform UI.
# of bug # of fixed files # of Java files in

Project Time Range reports per bug report different versions of the # of API
mapped project source package entries

max median min max median min
AspectJ 2002-03-13 – 2014-01-10 593 87 2 1 6,879 4,439 2,076 54
Birt 2005-06-14 – 2013-12-19 4,178 230 1 1 9,697 6,841 1,700 957

Eclipse∗ 2001-10-10 – 2014-01-17 6,495 587 2 1 6,243 3,454 382 1,314
JDT 2001-10-10 – 2014-01-14 6,274 118 2 1 10,544 8,184 2,294 1,329
SWT 2002-02-19 – 2014-01-17 4,151 430 3 1 2,795 2,056 1,037 161

Tomcat 2002-07-06 – 2014-01-18 1,056 94 1 1 2,042 1,552 924 389

ϕ.min and ϕ.max be the minimum and the maximum ob-
served values in the training dataset. A feature ϕ may have
values in the testing dataset that are larger than ϕ.max,
or smaller than ϕ.min. Therefore, examples in both the
training and testing dataset will have their features scaled
as follows:

ϕ′ =


0 if ϕ < ϕ.min

ϕ− ϕ.min

ϕ.max− ϕ.min
if ϕ.min ≤ ϕ ≤ ϕ.max

1 if ϕ > ϕ.max

(10)

4. BENCHMARK DATASETS
We created benchmark datasets for evaluation from six

open-source projects:

1. AspectJ4: an aspect-oriented programming extension
for Java.

2. Birt5: an Eclipse-based business intelligence and re-
porting tool.

3. Eclipse Platform UI6: the user interface of an inte-
grated development platform.

4. JDT7: a suite of Java development tools for Eclipse.

5. SWT8: a widget toolkit for Java.

6. Tomcat9: a web application server and servlet con-
tainer.

All these projects use BugZilla as their issue tracking sys-
tem and GIT as a version control system (earlier versions
are transferred from CVS/SVN to GIT). The bug reports,
source code repositories, and API specifications are all pub-
licly accessible.
Bug reports with status marked as resolved fixed, veri-

fied fixed, or closed fixed were collected for evaluation. To
map a bug report with its fixed files, we apply the heuristics
proposed by Dallmeier and Zimmermann in [12]. Thus, we
searched through the project change logs for special phrases
such as “bug 319463” or “fix for 319463”. If a bug report
links to multiple git commits or revisions, or if it shares the
same commit with others, it will be ignored because it is

4http://eclipse.org/aspectj/
5https://www.eclipse.org/birt/
6http://projects.eclipse.org/projects/eclipse.platform.ui
7http://www.eclipse.org/jdt/
8http://www.eclipse.org/swt/
9http://tomcat.apache.org

not clear which fixed file is relevant. Bug reports without
fixed files are also ignored because they are considered not
functional [12]. Overall, we collected more than 22,000 bug
reports from the six projects.

Previous approaches to bug localization used just one code
revision to evaluate the system performance on multiple bug
reports. However, software bugs are often found in different
revisions of the source code package. Consequently, using
just one revision of the source code package for evaluation
may lead to performance assessments that do not match the
actual performance of the system when used in practice. For
example, the fixed revision that is used for evaluation may
contain future bug-fixing information for older bug reports.
Furthermore, a buggy file might not even exist in the fixed
revision, if it were deleted after the bug was reported. To
avoid the problems associated with using a fixed code revi-
sion, we check out a before-fix version of the project for each
bug report.

The exact versions of the software packages for which bugs
were reported were not all available. Therefore, for each bug
report, the version of the corresponding software package
right before the fix was committed was used in the exper-
iment. This may not be the exact same version based on
which the bug was reported originally. Therefore, the asso-
ciation may not capture exactly what took place in the real
world. However, since the corresponding fix had not been
checked in, and the bug still existed in that version, it is
reasonable to use this association in our evaluation.

For each project and the corresponding dataset, Table 1
shows the time range for the bug reports and a number of
basic statistics such as the number of bug reports that were
mapped to fixed files, the number of fixed files per bug re-
port, the project size, and the number of API entries (classes
or interfaces) from the project API specification that are
used in our evaluation. Our dataset is publicly available10.

5. EXPERIMENTAL EVALUATION
As described in Section 2, our ranking model f(r, s) is

based on a weighted combination of features that capture
domain dependent relationships between a bug report r and
a source code file s. The model parameters wi are trained
using the learning-to-rank approach [17], as implemented in
the SVMrank package [18]. In this learning framework, the
optimization procedure tries to find a set of parameters such
that the scoring function ranks the files that are known to
be relevant for a bug report at the top of the list for that
bug report. Thus, if s1 is known to be relevant for bug

10http://dx.doi.org/10.6084/m9.figshare.951967
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report r and s2 is known to be irrelevant for the same bug
report, then the objective of the optimization procedure is
to find parameters wi such that f(r, s1) > f(r, s2). For any
given bug report, the number of irrelevant source code files
is very large, which would make the training time infeasible.
Therefore, for each bug report r we first use the VSM cosine
similarity feature ϕ1(r, s) to rank all the files in the dataset
and then select only the top 300 irrelevant files for training.
In order to create disjoint training and test data, the bug

reports from each benchmark dataset are sorted chronologi-
cally by their report timestamp. For all the projects but As-
pectJ, the sorted bug reports are then split into 10 equally
sized folds fold1, fold2, ..., fold10, where fold1 contains the
most recent bug reports while fold10 is the oldest. The re-
ports from AspectJ are split only into 3 folds, due to the
smaller size of the project. Furthermore, the oldest fold is
split into 60% training and 40% validation, and a grid search
is performed in order to tune the capacity parameter C of
the ranking SVM. This is done by repeatedly training on the
60% and testing on the 40% for different values of C and se-
lecting the one that maximizes mean average precision on
the validation data. Since tuning on other folds results in
similar values for C, we use the C value that was tuned on
the oldest fold for all training folds.
The ranking model is trained on foldk+1 and tested on

foldk, for all k ≤ 9. Since the folds are arranged chronologi-
cally, this means that we always train on the most recent bug
reports, which are supposed to better match the properties
of the bugs in the current fold. For each bug report from a
test fold, testing the model means computing the weighted
scoring function f(r, s) for each source code file using the
learned weights, and ranking all the files in descending or-
der of their scores. The system ranking is then compared
with the ideal ranking in which the relevant files should be
listed at the top. At the end, we pool the bug reports from
all 9 test folds and compute the overall system performance
using the following evaluation metrics:

• Accuracy@k measures the percentage of bug reports for
which we make at least one correct recommendation in
the top k ranked files.

• Mean Average Precision (MAP) is a standard metric
widely used in information retrieval [27]. It is defined
as the mean of the Average Precision (AvgP) values
obtained for all the evaluation queries:

MAP =

|Q|∑
q=1

AvgP (q)

|Q| , AvgP =
∑
k∈K

Prec@k

|K| (11)

Here Q is the set of all queries (i.e., bug reports), K
is the set of the positions of the relevant documents in
the ranked list, as computed by the system. Prec@k
is the retrieval precision over the top k documents in
the ranked list:

Prec@k =
# of relevant docs in top k

k
(12)

• Mean Reciprocal Rank (MRR) [43] is based on the posi-
tion firstq of the first relevant document in the ranked
list, for each query q:

MRR =
1

|Q|

|Q|∑
q=1

1

firstq
(13)

5.1 Results and Comparisons
We compared our learning-to-rank (LR) approach with

the following 2 baselines:

1. The standard VSMmethod that ranks source files based
on their textual similarity with the bug report.

2. The Usual Suspects method that recommends only the
top k most frequently fixed files [19]

We also compared against 2 recent state-of-the-art systems:

1. BugLocator [45] ranks source files based on textual
similarity, the size of source files, and information about
previous bug fixes.

2. BugScout [34] classifies source files as relevant or not
based on an extension to Latent Dirichlet Allocation
(LDA) [5].

We implemented the two baselines as well as the BugLocator
method. We tuned the parameter α of BugLocator on the
training data for each project using a grid search from 0.0
to 1.0 with a step of 0.1. We used the tuned α value for
testing because we observed it gives better results than the
optimal value published in [45].

Figures 6 to 11 present the Accuracy@k results for the 4
implemented methods, with k ranging from 1 to 20. The
LR approach achieves better results than the other three
methods on all six projects. For example, on the Eclipse
Platform UI our approach achieved Accuracy@k of 35.7%,
52.7%, 60.5%, and 70.4% for k = 1, 3, 5, and 10 respectively.
That is to say if we recommend only one source file to users,
we can make correct recommendations for 35.7% of 6,495
collected bug reports. If we recommend ten source files,
we can make correct recommendations for 70.4% bug re-
ports. In comparison, BugLocator achieved Accuracy@1 of
25.9% and Accuracy@10 of 59.7%. VSM and Usual Suspect
achieved Accuracy@10 of 42.2% and 18.3%, respectively. An
application of the Mann-Whitney U Test [26] shows that the
LR approach significantly (p < 0.05) outperformed BugLo-
cator in terms of Accuracy@k for Eclipse Platform UI, JDT,
and SWT. It also significantly outperformed VSM and Usual
Suspects in terms of Accuracy@k for all six projects.

AspectJ and Tomcat are two projects where BugLocator
performs close to the LR approach. For many bug reports in
AspectJ, it is often the case that relevant files are files that
have been frequently fixed, which also explains the relatively
high performance obtained by Usual Suspects. Since the
bug-fixing information is exploited by both the LR approach
and BugLocator, it is expected that they obtain compara-
ble performance on this dataset. With respect to Tomcat,
numerous bug reports contain rich descriptions that share
many terms with the relevant files, which explains the rel-
atively high performance obtained by VSM. Consequently,
since both BugLocator and our LR approach exploit textual
similarity between bug reports and source files, it is expected
that they perform comparably on this dataset, too.

Figure 12 and Figure 13 compare the same 4 methods in
terms of MAP and MRR. Here too, the LR approach out-
performs the two baselines and BugScout on all six projects.
For example, on the Eclipse Platform UI project, the MAP
and MRR results for our LR approach are 0.40 and 0.47,
which compare favorably with Bug Locator (0.31 and 0.37),
VSM (0.20 and 0.25), and Usual Suspects (0.07 and 0.10).
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Figure 6: Accuracy graphs on AspectJ.
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Figure 7: Accuracy graphs on Birt.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
cc

u
ra

cy
@

k 

k 

Learning to Rank BugLocator VSM Usual Suspects

Figure 8: Accuracy graphs on Eclipse Platform UI.
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Figure 9: Accuracy graphs on JDT.
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Figure 10: Accuracy graphs on SWT.
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Figure 11: Accuracy graphs on Tomcat.

AspectJ Birt Eclipse JDT SWT Tomcat

Learning to Rank 0.25 0.15 0.40 0.34 0.36 0.49

BugLocator 0.22 0.14 0.31 0.23 0.25 0.43

VSM 0.12 0.05 0.20 0.12 0.09 0.33

Usual Suspects 0.16 0.03 0.07 0.04 0.11 0.08
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Figure 12: MAP comparison.

AspectJ Birt Eclipse JDT SWT Tomcat

Learning to Rank 0.33 0.20 0.47 0.42 0.41 0.55

BugLocator 0.32 0.18 0.37 0.30 0.28 0.48

VSM 0.16 0.07 0.25 0.15 0.10 0.36

Usual Suspects 0.25 0.05 0.10 0.06 0.14 0.10
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Figure 13: MRR comparison.
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Table 2: Comparison between BugScout (BS) and
Learning-to-Rank (LR) on data replicated from [34].
Project Accuracy@1 Accuracy@10 Accuracy@20

BS LR BS LR BS LR
AspectJ <15% 23% <40% 60% <60% 73%
Eclipse <15% 38% <35% 72% <40% 79%

Compared to BugLocator, BugScout is a more complex
approach and thus more difficult to implement correctly.
Since we were unable to get access to either the tool or
the actual dataset used in [34] , we tried to recreate their
dataset by following the description from [12, 34]. Thus, we
created a test dataset by collecting the specified number of
fixed bug reports from the Eclipse Platform (4,136) and As-
pectJ (271) projects, going backwards from the end of 2010
(when BogScout was published). To train our LR method,
we used bug reports that were solved before the bug reports
in the testing dataset.
Table 2 shows the Accuracy@k results of the BugScout

(BS) and the LR method, for k = 1, 10, and 20. The
BugScout results are copied from [34] and are substantially
lower than the LR results. While it is possible that our
replicated dataset is different from their dataset, we believe
there are two main reasons why the LR method performs
better than BugScout:

1. LR uses features that capture domain knowledge rela-
tionships between bug reports and source files.

2. LR is trained directly to optimize ranking results. But
BugScout is trained for classification into multiple top-
ics, which may represent a mismatch during testing,
when the system is evaluated for ranking.

Various IR approaches have been applied before on the
task of identifying source files that are relevant for a bug
report. These include approaches based on LDA [25, 34, 40],
Latent Semantic Indexing (LSI) [40, 45], Smoothed Unigram
Model (SUM) [40, 45], and SVMs [19, 34]. Since BugLocator
was reported to outperform the existing approaches using
LDA, LSI, and SUM [45], and since BugScout was reported
to outperform the SVM model proposed in [34], we expect
our LR system to compare favorably with all these previous
approaches.

5.2 Evaluation of Feature Utility
In order to estimate the utility of the features used in our

system, for each feature ϕi we report in Table 3 the corre-
sponding weight wi, averaged over all training folds foldk,
where 2 ≤ k ≤ 10. Based on the magnitude of the weights,
we can say for example that feature ϕ1 is the most impor-
tant feature in all projects but Birt, followed by feature ϕ3.
Looking in more detail at the Eclipse Platform UI project,
we performed a set of evaluations in which we used each
feature separately for ranking. The Accuracy@k results are
shown in Figure 14 for each feature. The accuracy-based
ranking of features shown in this figure is identical with
the weight-based ranking from Table 3. The best results
are achieved when the system uses all the features, a be-
havior that is consistent over all values of k from 1 to 20.
The next best results are obtained when using only feature
ϕ1, followed by feature ϕ3. That is to say, on this project,
the most helpful information for ranking is provided by the

textual similarity between the bug report and the source
file and its methods, and by the textual similarity with the
summaries of previously fixed bug reports.

Table 3: The average model parameters.
Project w1 w2 w3 w4 w5 w6

AspectJ 10.63 3.92 5.79 2.29 4.04 4.26
Birt 2.28 3.84 8.20 1.27 1.61 3.57

Eclipse 7.77 3.47 6.23 0.82 0.86 4.39
JDT 15.64 5.07 4.11 0.24 0.04 0.52
SWT 16.93 1.23 4.99 1.32 1.16 10.48

Tomcat 14.00 3.69 6.38 1.45 0.64 1.67
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Figure 14: Single feature performance on Eclipse.
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Figure 15: Learning Curves for Eclipse Platform UI.

5.3 Impact of Training Data Size
In the evaluation of the LR method, we always trained

on foldk+1 and tested on foldk, for k ≤ 9. To evaluate the
impact of increasing the size of the training data, we ran an
experiment on the Eclipse Platform UI project in which we
kept the test dataset unchanged as fold1, and trained on in-
creasingly larger datsets. Thus, we first train on fold2, then
we trained on fold2 ∪ fold3, until, in the final evaluation,
we train on all 9 folds fold2∪fold3∪ ...fold10. The learning
curves in Figure 15 show the behavior of Accuracy@k as a
function of the number of folds used during training. The
figure shows that increasing the size of the training data not
improve the accuracy. In terms of MAP, training on fold2
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Table 4: Runtime Performance Results.
Project index (s) training (s) ranking (s)

max avg. max avg. max avg.
AspectJ 1300.78 17.59 1.51 1.51 0.28 0.14
Birt 2229.40 32.52 2.85 2.85 1.59 0.69

Eclipse 2577.48 44.26 3.32 3.32 1.19 0.63
JDT 3643.56 72.71 3.56 3.56 1.27 0.63
SWT 929.97 39.63 2.17 2.17 0.39 0.12

Tomcat 435.63 13.99 0.63 0.63 0.28 0.07

achieved a value of 0.3271, while the best result is 0.3299
when training on fold2 to fold9. The MRR when training
on fold2 is 0.3788, while the best MRR is 0.3834, obtained
when training on fold2 to fold9. We applied the Mann-
Whitney U Test and found no significant difference between
the result of training on fold2 and the result of training on
a larger dataset.
Given the reduced number of parameters in our model, it

is perhaps not surprising that we obtain flat learning curves.
Furthermore, since fold2 is chronologically the closest to
fold1, it is expected that bug reports from the other folds
will not be as similar to bugs from fold1, and thus not as
useful for ranking source files with respect to these bugs.
Furthermore, achieving optimal results using only a rela-
tively small training dataset has a beneficial impact on the
system’s time and memory complexity.

5.4 Runtime Performance
We performed time complexity evaluations on a computer

with CPU Intel(R) Core(TM) i7 920 2.67GHz (8 cores), 24G
RAM, and Linux 3.2. Table 4 presents the runtime perfor-
mance of our approach. The indexing time refers to the
time used to create a posting list and a term vocabulary
for source files, API descriptions, and previously fixed bug
reports, respectively. The training time is the time needed
to train the weight parameters of our ranking function. The
ranking time is the time used to calculate the file scores and
to rank all source files for a bug report. The average ranking
time, ranging from 0.07s to 0.69s, makes the system suitable
for practical use.
The maximum indexing time for every project is relatively

high because we need to index all source files for the before-
fix version of the first bug report. When using VSM, we need
to index (calculate tft,d and idft for) all source files and cre-
ate a postings list and a term vocabulary [27]. To efficiently
perform evaluation on over 22,000 before-fix project ver-
sions, we designed a method that indexes only the changed
files. Taking the Eclipse bug 420972 as an example, we check
out its before-fix version “2143203”, index the 6,188 source
files and perform evaluation. When we perform evaluation
for another bug 423588, we check out its before-fix version
“602d549” and use the git diff command to obtain the
list of changed (“Added”, “Modified”, and “Deleted”) files.
Based on this list, we remove 16 “Deleted” and 77 “Modi-
fied”files from the postings list and the term vocabulary, and
index only 14“Added”plus 77 “Modified”files, instead of re-
indexing all 6,186 source files present in version “602d549”.
Therefore, when we evaluate another bug report, we only

need to index the changed files. This results in an average
indexing time that is much lower than the maximum index
time. In practice, because we just need to update the post-

ing lists and the term vocabularies for only the changed files
in the new commit, the average indexing time, ranging from
13.99s to 72.71s, is representative for most cases. Further-
more, it is not necessary to perform indexing and training
for every bug report because there may be multiple bugs
found in the same version of the project.

6. RELATED WORK
Recently, researchers [19, 25, 34, 40, 41, 44, 45] have de-

veloped methods that concentrate on ranking source files for
given bug reports automatically. Saha et al. [41] syntacti-
cally parse the source code into four document fields: class,
method, variable, and comment. The summary and the de-
scription of a bug report are considered as two query fields.
Textual similarities are computed for each of the eight doc-
ument field - query field pairs and then summed up into an
overall ranking measure. Compared to our method, the ap-
proach from [41] assumes all features are equally important
and ignores the lexical gap between bug reports and source
code files. Furthermore, the approach is evaluated on a fixed
version of the source code package of every project, which
is problematic due to potential contamination with future
bug-fixing information.

Kim et al. [19] propose both a one-phase and a two-phase
prediction model to recommend files to fix. In the one-phase
model, they create features from textual information and
metadata (e.g., version, platform, priority, etc.) of bug re-
ports, apply Näıve Bayes to train the model using previously
fixed files as classification labels, and then use the trained
model to assign multiple source files to a bug report. In
the two-phase model, they first apply their one-phase model
to classify a new bug report as either “predictable” or “defi-
cient”, and then make predictions only for “predictable” re-
port. However, their one-phase model uses only previously
fixed files as labels in the training process, and therefore
cannot be used to recommend files that have not been fixed
before when being presented with a new bug report. Fur-
thermore, while their two-phase model aims at improving
prediction accuracy by ignoring “deficient” reports, our ap-
proach can be used on all bug reports.

Zhou et al. [45] not only measure the lexical similarity
between a new bug report and every source file but also give
more weight to larger size files and files that have been fixed
before for similar bug reports. Their model, namely Bu-
gLocator, depends only on one parameter α, even though
it is based on three different features. The parameter is
tuned on the same data that is used for evaluation, which
means that the results reported in their paper correspond
to training performance. It is therefore unclear how well
their model generalizes to unseen bug reports. Wong et al.
[44] show that source file segmentation and stack-trace anal-
ysis lead to complementary improvements in BugLocator’s
performance. In comparison, our approach introduces more
project-oriented features and applies an automatic learning-
to-rank technique to learn the weight of every feature on a
separated training dataset. The generalization performance
is computed by running the trained model on a separate test
dataset.

Nguyen et al. [34] apply LDA to predict buggy files for
given bug reports. In their extended LDA model, the topic
distribution of a bug report is influenced by the topic distri-
butions of its corresponding buggy files. For ranking, they
use the trained LDA model to estimate the topic distribu-
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tion of a new bug report and compare it with the topic
distributions of all the source files. They also introduce a
defect-proneness factor that gives more weight to frequently
fixed files and files with large size. In evaluations conducted
by other researchers [19], their approach performs compa-
rably with the Usual Suspects method. While they model
the training task as a classification problem in which bug
reports and files are assigned to multiple topics, we directly
train our model for ranking, which we believe is a better
match for the way the model is used in testing.
Rao et al. [40] apply various IR models to measure the

textual similarity between the bug report and a fragment of
a source file. Through evaluations, they reported that more
sophisticated models such as LDA and LSA did not outper-
form a Unigram model or VSM. Lukins et al. [25] combine
LDA and VSM for ranking. They index source files with
topics estimated by the LDA model, and use VSM to mea-
sure the similarity between the description of a bug report
and the topics of a source file. Our approach builds rela-
tionships between bug reports and source files by extracting
information not only from bug reports and code, but also
from API documents and software repositories.
To support fault localization, a number of approaches [9,

11, 16, 24] use runtime information that was generated for
debugging. Other approaches [8, 42] analyze dynamic prop-
erties of programs such as code changes in order to infer
causes of failures. Jin and Orso [16], Burger and Zeller [9],
and Cleve and Zeller [11] use passing and failing execution
information to locate buggy program entities. Liu et al.
[24] locate faults by performing statistical analysis on pro-
gram runtime behavior. Unlike these methods that require
runtime executions, our approach responds to bug reports
without the need to run the program.
Other researchers build models that associate bug reports

to individual developers and functions, in addition to source
files. Ashok et al. [1] introduce DebugAdvisor, a tool that
allows search with free-text queries that contain both struc-
tured and unstructured data describing a bug. A graph with
linked elements in the repository is used to recommend files
and functions. Gay et al. [14] combine an IR-based con-
cept location method with explicit relevance feedback mech-
anisms to recommend artifacts for bug reports. Poshyvanyk
et al. [37, 38] introduce PROMESIR, which combines LSI
and execution scenario based probabilistic ranking method,
to locate bugs for Mozilla and Eclipse systems.
Another related area focuses on predicting software de-

fects. In order to support defect prediction, Lee et al. [23]
analyze developer behaviors and build interaction patterns;
Nagappan et al. [33] utilize the frequency of similar changes
described as change burts; Hassan et al. [15] use code change
complexity; Zimmermann et al. [46] build a dependency
graph that implies an error-proneness for files linked to buggy
models. Moser et al. [30] and Kim et al. [20] use ma-
chine learning techniques to train a prediction model based
on code changes. Kim et al. [21] cache fault-related code
changes, and predict fault-prone entities based on the cached
history. Menzies et al. [29] build a prediction model based
on static code attributes. Nagappan et al. [32] apply prin-
ciple component analysis (PCA), while Bell et al. [3] and
Ostrand et al. [35] use negative binomial regression to build
models that predict fault-prone files.

7. CONCLUSION & FUTURE WORK
To locate a bug, developers use not only the content of the

bug report but also domain knowledge relevant to the soft-
ware project. We introduced a learning-to-rank approach
that emulates the bug finding process employed by devel-
opers. The ranking model characterizes useful relationships
between a bug report and source code files by leveraging do-
main knowledge, such as: API specifications, the syntactic
structure of code, and issue tracking data. Experimental
evaluations on six Java projects show that our approach can
locate the relevant files within the top 10 recommendations
for over 70% of the bug reports in Eclipse Platform and
Tomcat. Our ranking model outperforms BugLocator [45]
and BugScout [34], two recent state-of-the-art approaches.

In future work, we will leverage additional types of do-
main knowledge, such as the authorship of a source file or
the PageRank [36] score associated with each file in the de-
pendency graph of the project. We also plan to use the rank-
ing SVM with nonlinear kernels. The model will be further
evaluated on projects in other programming languages.
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