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sinc-interpolation algorithms for signal and
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The problem of digital signal and image resampling with discrete sinc interpolation is addressed.
Discrete sinc interpolation is theoretically the best one among the digital convolution-based signal
resampling methods because it does not distort the signal as defined by its samples and is completely
reversible. However, sinc interpolation is frequently not considered in applications because it suffers
from boundary effects, tends to produce signal oscillations at the image edges, and has relatively high
computational complexity when irregular signal resampling is required. A solution that enables the
elimination of these limitations of the discrete sinc interpolation is suggested. Two flexible and com-
putationally efficient algorithms for boundary effects free and adaptive discrete sinc interpolation are
presented: frame-wise �global� sinc interpolation in the discrete cosine transform �DCT� domain and
local adaptive sinc interpolation in the DCT domain of a sliding window. The latter offers options not
available with other interpolation methods: interpolation with simultaneous signal restoration�en-
hancement and adaptive interpolation with super resolution. © 2003 Optical Society of America

OCIS codes: 100.0100, 100.200, 110.6980.
1. Introduction

Signal and image resampling is required in many
signal and image processing applications. It is a key
issue in audio signal spectral analysis and fractional
delay, signal and image differentiating and integrat-
ing, image geometrical transformations and rescal-
ing, target location and tracking with subpixel
accuracy, Radon transform and tomographic recon-
struction, and three-dimensional �3-D� image volume
rendering and volumetric imaging. Signal�image
resampling procedes with the assumption that one or
another method of interpolation between available
signal�image samples is employed. By virtue of the
sampling theorem, sinc interpolation is the best in-
terpolation of continuous signals. Given samples
�ak� of a continuous signal a�x�, the sinc-interpolated
approximation a� �x� to this signal is defined as

a� � x� � �
��

�

ak sinc	
� x � k�x���x�, (1)
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where sinc x 
 �sin x��x and �x is the signal discreti-
zation interval. If an unlimited number of samples
obtained as

ak �
1

�x �
��

�

a� x�sinc	
� x � k�x��dx, (2)

is available, sinc interpolation restores the continu-
ous signal with the least mean squared error. For
band-limited signals with a spectrum bandwidth
1�2�x, sinc interpolation provides an exact restora-
tion of signals from their samples. In other words,
signal sampling in accordance with Eq. �2� is in this
case completely reversible. However, exact sinc in-
terpolation cannot be implemented in reality because
it requires an unlimited number of signal samples
and an interpolation function with infinite support.

In digital signal processing with a finite number of
available signal samples a discrete analog of the con-
tinuous sinc interpolation is a discrete sinc interpo-
lation

a� � x� � �
k
0

N�1

ak sincd�N; N; x��x � k�, (3)

where

sincd�N; N; x� �
sin�
x�

N sin�
x�N�
(4)



is a discrete sinc function. It approximates the con-
tinuous sinc function sinc�x� 
 sin x�x for x��x �� N.
As will be shown in Section 2, for a given finite num-
ber of signal samples, a discrete sinc interpolation is
the only convolution-based fully reversible discrete
signal resampling method. This feature defines the
attractiveness of the discrete sinc interpolation for
signal�image resampling.

Conventionally, discrete sinc interpolation is im-
plemented by means of a signal spectrum zero-
padding algorithm.1–3 A more efficient and flexible
discrete sinc-interpolation algorithm was described
in Ref. 4. However, despite the attractiveness of dis-
crete sinc interpolation it is frequently not regarded
appropriate in some applications. First, the discrete
sinc interpolation tends to produce heavy artifacts in
the form of oscillations �ripples� at the signal borders.
This property may be especially restrictive in image
processing because image dimensions are usually rel-
atively small numbers �256–1024�, and noticeable
ripples from the image left, right, upper, and bottom
borders may occupy a substantial part of the image.
Second, signal oscillations caused by sinc interpola-
tion may also be observed in the vicinity of signal�
image sharp edges. These oscillations are
absolutely normal as soon as reversible discrete sinc
interpolation is required. However they are fre-
quently considered undesirable artifacts that worsen
visual-image quality. In addition, the above avail-
able discrete sinc-interpolation methods are not well
suited to irregular �not equidistant� resampling.
Owing to these reasons, discrete sinc interpolation is
quite rarely practiced in digital signal and image pro-
cessing.

In this paper, we introduce what are to our knowl-
edge two new discrete sinc-interpolation algorithms
that eliminate the above-mentioned drawbacks of the
discrete sinc interpolation and offer additional useful
capabilities not available with other methods. In
Section 3, a computationally efficient and flexible al-
gorithm of the discrete sinc interpolation is described
that is free of oscillation phenomena at signal bor-
ders. In differentiation with the known discrete
sinc-interpolation algorithms, this algorithm com-
putes and modifies a discrete cosine transform �DCT�
rather than a discrete Fourier transform �DFT� sig-
nal spectra. It is referred to as the global DCT do-
main discrete sinc-interpolation algorithm. In
Section 4 a sliding window signal resampling algo-
rithm is introduced that also works in the domain of
the DCT. The algorithm is a good approximation to
the ideal global discrete sinc interpolation and is ca-
pable of simultaneous signal denoising and of a local
adaptation of the convolution kernel. The latter fea-
ture enables us, in particular, to eliminate, whenever
it is required by application, oscillations at signal�
image sharp edges and at the same time to avoid
smoothing the edges. In this way, an increased sig-
nal resolution with respect to that defined by the
signal’s initial sampling rate can be obtained.

2. Discrete Sinc Interpolation: Error-Free
Interpolation of Sampled Data

Let a discrete signal of N samples �ak� 	Fig. 1�a�� be
interpolated to a signal with �L � 1� interpolated
intermediate samples per each initial one. For
convolution-based interpolation, the interpolation
process is a digital convolution,

a�k � �
k1
0

N�1

�
k2
0

L�1

ak1
��k2�hint�k � k1 L � k2�,

k � 0, 1, . . . , LN � 1, (5)

with the interpolation kernel �hint�k��, of signal �ãk 

ak1

��k2��, k 
 k1L � k2; k1 
 0, . . . , N � 1; k2 

0, . . . , L � 1; ��x� 
 0x, obtained from the initial
signal �ak� by placing �L � 1� zeros between its sam-
ples as it is illustrated in Fig. 1�b�. Compute the
DFT of signal �ãk�:

�̃r �
1

�LN �
k
0

LN�1

ãk exp�i2

kr
LN�

�
1

�LN �
k1
0

N�1

�
k2
0

L�1

ak1
��k2�exp�i2


�k1 L � k2�

LN
r�

�
1

�LN �
k1
0

N�1

ak1
exp�i2


k1

N
r�

�
1

�L
��r�mod N, (6)

where ��r� is the DFT of signal �ak�. Equation �6�
shows that sampling the discrete signal by placing
zeros between its samples results in a periodical rep-
lication of its DFT spectrum with the number of rep-
licas equal to the number of zeros plus one as
illustrated in Figs. 1�c� and 1�d�, respectively. If in-
terpolation 	Eq. �5�� is computed as a cyclic �periodi-
cal� convolution, it will correspond, in the DFT
domain, to multiplying the spectrum ��̃r� with the
DFT of the interpolation kernel:

DFT�a� k � � a� r � � 1

�L
��r�mod N�DFT�hint�k��. (7)

One can see from this equation that the only way to
secure reversibility of the interpolation and to avoid,
in the interpolation, distorting the initial signal spec-
trum and introducing into the interpolated signal
aliasing spectral components is with signal ideal low-
pass filtering, when DFT�hint�k�� is a rectangular
function of N samples. Such a filtering is graphi-
cally illustrated in Fig. 1�e�. Because the interpola-
tion kernel should be a real-valued function, complex
conjugacy symmetry property a� r 
 a� LN�r* of its DFT
spectrum should be observed in zeroing aliasing spec-
tral components. One can meet this requirement
only for odd-numbered N, in which case DFT�hint�k��
will be:

DFT�hint�k�� � 1 � rect
r � �N � 1��2
LN � N � 1

, (8)
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where

r � 0, 1, . . . , LN � 1; rect� x� � �1, 0 � x � 1
0, otherwise .

The interpolated signal is then

a�k � IDFT��1 � rect
r � �N � 1��2
LN � N � 1 � ��r�mod N

�L 	
�

1

�L �
n
0

N�1

an1
sincd	N; N; �k � n1 L��, (9)

where IDFT� is the inverse discrete Fourier trans-
form and

sincd�K; N; x� �
sin�
Kx�N�

N sin�
x�N�
(10)

is the discrete sinc function. Because no signal spec-
trum components are distorted in the convolution,
discrete sinc interpolation of signals with an odd
number of samples described by Eq. �9� is completely
reversible.

For even-numbered N, interpolation described by
Eq. �9� cannot be implemented since the term with

Fig. 1. Illustration of the discrete sampling theorem: �a� initial signal, �b� initial signal with zeros placed between its samples, �c�
spectrum of signal �a�, �d� spectrum of signal �b�: periodical replication of the initial signal spectrum; �e� removing spectrum replicas that
may cause aliasing by low pass filter; �f � sinc-interpolated signal between samples of signal �b�.
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index �N � 1��2 required by Eq. �9� does not exist.
Two immediate options in this case are

a� k � IDFT��1 � rect
r � N�2
LN � N� ��r�mod N

�L 	
�

1

�L �
n1
0

N�1

an1
sincd	N � 1; N; �k � n1 L��; (11)

a� k � IDFT��1 � rect
r � N�2 � 1
LN � N � 2� ��r�mod N

�L 	
�

1

�L �
n1
0

N�1

an1
sincd�N � 1; N; �k � n1 L��. (12)

Both interpolation functions sincd�N � 1; N; k� and
sincd�N � 1; N; k� converge to zero relatively slowly
and therefore tend to produce severe boundary ef-
fects. A practical compromise in the case of even-
numbered N is to halve the �N�2�-th spectral
coefficient that corresponds to the following interpo-
lation formula:

a� k �
1

�L �
n1
0

N�1

an1
sincd	�1; N; �k � n1 L��, (13)

where

sincd��1; N; k� � 	sincd�N � 1; N; k�

� sincd�N � 1; N; k���2. (14)

It follows from Eqs. �11�–�13� that, for even-
numbered N, one cannot avoid distorting the signal.
Its highest frequency coefficient with index N�2 is
either zeroed 	Eq. �11�� or repeated twice 	Eq. �12�� or
halved 	Eq. �13�� in the interpolation process.

Direct convolution of signal samples with the dis-
crete sinc-interpolation function according to the
right-hand sides of Eqs. �9�, �11�–�13� requires O�N�
operations per output signal sample or O�N2L� oper-
ations for the entire sinc-interpolated output signal of
NL samples. The computational complexity of the
discrete sinc interpolation can be substantially re-
duced if the signal convolution is computed in the
domain of the DFT with the use of fast Fourier trans-
form �FFT� algorithms. Two methods of such an im-
plementation are available. The first method, one
with spectrum zero padding,1–3 literally reproduces
manipulations with the signal DFT spectrum de-
scribed by the middle parts of Eqs. �9�, �11�, and �12�.
The algorithm computes the signal’s DFT spectrum,
pads it with N�L � 1� zeros, and then computes the
inverse DFT of the obtained NL spectrum coeffi-
cients. Thanks to the use of the FFT for computing
the DFT, the computational complexity of the algo-
rithm is O�N log N � NL log NL� operations for the
entire output signal of NL samples or O	�1 � 1�L�log
NL� operations per output signal sample. The sec-
ond algorithm is described in Ref. 4. It enables a
signal with N samples to generate its discrete sinc-
interpolated copy of N samples shifted with respect to

the initial samples by an arbitrary interval. Such a
shifted signal �ak

�p�� is obtained as

�ak
p� � IDFT��r�r� p��, (15)

where ��r�p�� is the DFT of the discrete sinc function:

�r� p� �
1

�N �
k
0

N�1

sincd�K; N; k � p�exp�i2

kr
N �

(16)

and p is a shift parameter �measured in units of the
signal discretization interval�. One can show that

�r� p� �


 1

�N
exp�i2
pr�N�; r � 0, 1, . . . , �N � 1��2 � 1

�N�r*; r � �N � 1��2 � 1, . . . , N � 1
(17)

for odd-numbered N�K 
 N� and

�r� p� �



1

�N
exp�i2
pr�N�; r � 0, 1, . . . , N�2 � 1

1

�N
cos�2
pr�N�; r � N�2

�N�r*; r � N�2 � 1, . . . , N � 1
(18)

for even-numbered N�K 
 �1�.
It follows from Eq. �15� that the algorithm has a

computational complexity of O�2 log N� operations
per output signal sample when one shifted signal
copy is required or O	�1 � 1�L�log N� per sample
operations for obtaining L differently shifted copies.
The algorithm is well suited for arbitrary translation
signal that is required in many signal�image process-
ing applications, such as, for instance, signal frac-
tional delay and image rotation.5

3. Global Discrete Sinc Interpolation in DCT Domain

The discrete sinc interpolation described in Section 2
suffers from boundary effects caused, in particular,
by its implementation as a cyclic convolution. The
simplest and one of the most efficient ways to mini-
mize boundary effects in digital filtering is signal
extension by its mirror reflection from its boundaries.
Such an extension completely eliminates signal dis-
continuities at the boundaries. For such signals,
one still can retain the advantages of computing con-
volution with the use of an FFT if shifted DFT �SD-
FTu,v�6,7

�r
�u,v� �

1

�N �
k
0

N�1

ak exp�i2

�k � u�

N
r�exp�i2


kv
N �
(19)

with shift parameters u 
 1�2 �half discretization
interval in the signal domain� and v 
 0 �no shift in

10 July 2003 � Vol. 42, No. 20 � APPLIED OPTICS 4169



the Fourier domain� is used instead of the DFT. For
a signal extended to its double length by mirror re-
flection, SDFT1�2,0 is reduced to the DCT.6,7 Filter-
ing such signals in the SDFT domain is also of a cyclic
convolution with a period of 2N, where N is the num-
ber of samples of the initial signal. Therefore the
interpolation function for the extended signal should
be obtained from that for the initial signal by padding
it with zeros to the double length of 2N samples as
illustrated in Fig. 2. Zero padding prevents convo-
lution results from the influence of boundary effects
of the cyclic convolution. Specifically, for generating
a discrete sinc-interpolated copy of the initial signal
of N samples shifted by interval p, the interpolation
function �hint

�p��k�� should be

hint
� p��k� �

�sincd�K; N; k � p�; k � 0, 1, . . . N � 1
0; k � N, N � 1, . . . 2N � 1 ,

(20)

where K 
 N for odd-numbered N, and K 
 �1 for
even-numbered N.

With the use of SDFT1�.2,0, the algorithm for gen-
erating p-shifted signal �ak

�p�� described by Eq. �15� is
modified to

�ak
p� � ISDFT1�2,0��r

DCT � �r� p��, (21)

where ISDFT1�2,0 is inverse SDFT1�.2,0, ��r
DCT� are

DCT transform coefficients of signal �ak�, and ��r�p��
are DFT coefficients of the interpolation function
�hint

�p��k��:

�r� p� � �r
re� p� � i�r

im� p�

�
1

�2N �
k
0

2N�1

hint
� p��k�exp�i2


kr
2N� . (22)

As DCT spectral coefficients ��r
DCT� exhibit odd sym-

metry:

�r
DCT �

��r
DCT � DCT�ak�, r � 0, 1, . . . , N � 1;

0, r � N
��2N�1�r

DCT, r � N � 1, N � 2, . . . , 2N � 1
,

(23)

inverse SDFT ISDFT1�2,0 for generating the interpo-
lated signal according to Eq. �21� is reduced to inverse
DCT and DST �discrete sine transform�:

ak
� p� �

1

�2N �
r
0

2N�1

�r
DCT�r� p�exp��i2


�k � 1�2�r
2N �

�
1

�2N (�0
DCT�0 � �

r
1

N�1

�r
DCT

� ��r exp��i

�k � 1�2�

N
r�

� �r* exp�i

�k � 1�2�

N
r�	)

�
1

�2N ��0
DCT�0

� 2 �
r
1

N�1

�r
DCT�r

re cos�

�k � 1�2�

N
r�

� 2 �
r
1

N�1

�r
DCT�r

im sin�

�k � 1�2�

N
r�	 , (24)

where �r* is a complex conjugate to �r. For each p,
coefficients �2r�p� with even indices can be found di-
rectly from the definition of ��r� �Eqs. 20, 22, and 17,
18�:

�2r� p� �
1

�N
exp�i2


pr
N � . (25)

Therefore one needs to compute additionally only
terms ��2r�1�p�� with odd indices:

�2r�1� p� �
1

�2N �
k
0

N�1

sincd�K; N; k

� p�exp�i2

k�2r � 1�

2N � , (26)

where, as in Eqs. �20�, K 
 N for odd-numbered N,
K 
 �1 for even-numbered N.

A flow diagram of this algorithm for generating a
p-shifted sinc-interpolated copy of the signal is shown
in Fig. 3. Figure 4 illustrates the described discrete
sinc interpolation in the DCT domain applied for im-
age zooming and compares it with that implemented
in the DFT domain. One can see that the algorithm
does solve the problem of boundary effects character-
istic for discrete sinc interpolation in the DFT do-
main. It is, however, computationally efficient only
if a regular �equidistant� resampling signal is re-
quired. In this case it enables the computation of a
p-shifted sinc-interpolated copy of the signal of N
samples with the complexity of O�N log N� operations
or O�log N� operations per signal sample. This com-
plexity is, by the order of magnitude, the same as
that of the above DFT domain sinc-interpolation

Fig. 2. Principle of signal convolution in the DCT domain with
signal extension by its mirror reflection.
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algorithm. However, fast algorithms for DCT,
IDCT, and IDST exist8–15 that require even less com-
putations than FFT and IFFT involved in the DFT
domain algorithm.

4. Sinc Interpolation in DCT Domain in a Sliding
Window

When, as frequently happens in signal and image
resampling tasks, required signal sample shifts are

different for different samples, the above global dis-
crete sinc-interpolation algorithm in the DCT domain
has no efficient computational implementation.
However, in these cases it can be implemented in a
sliding window. In processing a signal in the sliding
window, only those shifted and interpolated signal
samples that correspond to the window central sam-
ple have to be computed in each window position from
signal samples within the window. The interpola-
tion function in this case is a windowed discrete sinc
function whose extent is equal to the window size
rather than to the signal size required for the perfect
discrete sinc interpolation. Figure 5 illustrates fre-
quency responses of the corresponding low-pass fil-
ters for different window sizes. As one can see from
the figure, they deviate from a rectangular function
as a frequency response of the ideal low-pass filter
	Eq. �8��.

Such an implementation of the discrete sinc inter-
polation can be regarded as a variety of direct convo-
lution interpolation methods. In terms of the
interpolation accuracy it has no special advantages
over other direct convolution interpolation methods
such as spline-oriented ones.16,17 However, it offers
features that are not available with other methods.
These are: �i� signal resampling with arbitrary
shifts and simultaneous signal restoration and en-
hancement, and �ii� local adaptive interpolation with
super resolution.

For signal resampling with simultaneous restora-
tion�enhancement, sliding window discrete sinc in-
terpolation should be combined with local adaptive
filtering. Local adaptive filters that work in a slid-
ing window in the transform domain, such as that of
DFT or DCT, have shown their high potentials in
signal and image restoration and enhancement.18,19

The filters, in each position k of the window of W
samples �usually an odd number�, compute transform
coefficients ��r 
 T�bn�� of the signal �bn� in the win-
dow �n, r 
 1, 2, . . . , W� and nonlinearly modify them
to obtain the coefficients ��̂r��r��. These coefficients
are used to generate an estimate âk of the window

Fig. 3. Flow diagram of the discrete sinc interpolation in the DCT
domain for generating a p-shifted copy of a signal.

Fig. 4. Enlarging a fragment of an image �left� by sinc interpolation in the DFT domain �upper-right image� and in the DCT domain
�bottom-right image�. Oscillations due to boundary effects that are clearly seen in a DFT-interpolated image completely disappear in the
DCT-interpolated image.
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central pixel by inverse transform Tk
�1� � computed

for the window central pixel as

âk � Tk
�1��̂r��r��. (27)

For instance, for filtering additive noise, soft thresh-
olding �empirical Wiener filter�

�̂r��r� � max�0,
��r�2 � Thr

��r�2
��r (28)

or hard thresholding

�̂r � ��r, ��r�2 � Thr
0, otherwise (29)

are used where Thr is a certain threshold level
associated with the noise variance. Such a filter-
ing can be implemented in the domain of any trans-
form, though DCT has proved to be one of the most
efficient. Therefore one can, in a straightforward

Fig. 6. Flow diagram of a simultaneous signal sliding-window sinc interpolation and restoration�enhancement in the DCT domain.

Fig. 7. Image rectification and denoising by resampling with sinc interpolation in the sliding window in the DCT domain.

Fig. 5. Windowed discrete sinc functions with a window size of 11 and 15 samples �left� and their DFT spectra for 3� signal enlarging
�right�.
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way, combine sliding-window DCT domain discrete
sinc-interpolation signal resampling �Eq. 21� and
filtering for signal restoration and enhancement
�Eq. 27�:

�ak
p� � ISDFT1�2,0��̂r

DCT��r
DCT��r� p��. (30)

Figure 6 shows a flow diagram of such a combined
algorithm for signal restoration�enhancement and
fractional p-shift. It is assumed in the diagram that
signal p-shift is implemented according to the flow
diagram of Fig. 3. Figure 7 illustrates the applica-
tion of the combined filtering�interpolation for image
irregular-to-regular resampling combined with de-
noising. In this example, the left image is distorted
by known displacements of pixels with respect to reg-
ular equidistant positions and by additive noise. In
the right image, these displacements were compen-
sated and noise was substantially reduced with the
above-described sliding-window algorithm.

One can further extend the applicability of this
method to make interpolation kernel transform coef-
ficients ��r�p�� in Eq. �30� to be adaptive to local sig-
nal features that exhibit themselves in local signal
DCT spectra:

�ak
p� � ISDFT1�2,0��̂r

DCT��r
DCT��r� p, ��r

DCT���. (31)

The adaptivity may be desired in such applications
as, for instance, resampling images that contain
gray-scale images in a mixture with graphical data.
While discrete sinc interpolation is completely perfect
for gray-scale images, it may produce undesirable
oscillating artifacts in graphics.

The principle of local adaptive interpolation is
schematically presented on Fig. 8. It assumes that
modification of local signal DCT spectra for signal
resampling and restoration in the above-described
algorithm is supplemented with the spectrum anal-
ysis for generating a control signal. This signal is
used to select, in each sliding-window position, dis-
crete sinc interpolation or another interpolation
method such as, for instance, the nearest neighbor
method. Figure 9 compares nonadaptive and
adaptive sliding-window sinc interpolation on an
example of a shift, by an interval equal to 16.54 of
the discretization intervals, of a test signal com-
posed of a sinusoidal wave and rectangular im-

pulses. As one can see from Fig. 9, nonadaptive
sinc-interpolated resampling of such a signal re-
sults in oscillations at the edges of rectangular im-
pulses. Adaptive resampling implemented in this
example switches between sinc interpolation and
nearest-neighbor interpolation whenever energy of
high-frequency components of local signal spectrum
is higher than a certain threshold level. As a re-
sult, rectangular impulses are resampled with su-
perresolution. Figure 10 illustrates, for comparison,
enlarging a test signal by means of nearest neighbor,
linear, and bicubic spline interpolations, and the
above-described adaptive sliding-window DCT sinc
interpolation. One can see from this figure that in-
terpolation artifacts seen in other interpolation
methods are absent when the adaptive sliding-
window interpolation was used. Nonadaptive and
adaptive sliding-window sinc interpolation are also
illustrated and compared in Fig. 11 for rotation of an

Fig. 8. Principle of local adaptive interpolation.

Fig. 9. Signal �upper plot� shift by nonadaptive �middle plot� and
adaptive �bottom plot� sliding-window DCT sinc interpolation.
One can notice the disappearance of oscillations at the edges of the
rectangular impulses when interpolation is adaptive.
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image that contains gray-scale and graphic compo-
nents.

Computational complexity of sliding-window DCT
sinc interpolation evaluated in terms of the number
of multiplication and summation operations per sig-
nal sample is proportional to the window size because
of the availability of recursive algorithms for comput-
ing DCT in sliding windows.20–25 It is comparable
with that of other convolution-based interpolation
methods. Note that for reconstruction of only the
window central sample, the inverse DCT and DST of
the modified window spectrum required by the inter-

polation algorithm is reduced to simple summations
of the modified spectral coefficients:

bk �
1

�2N ��0
DCT � �

r
1

�N�1��2

��1�r	�2r
DCT�2r

re� p�

� �2r�1
DCT�2r�1

re� p��	 . (32)

5. Conclusion

Two new methods of discrete signal sinc interpolation
are described. The first method implements, by
means of signal processing in the domain of the dis-
crete cosine transform, a discrete sinc interpolation
that is practically free of boundary effects. The sec-
ond method implements discrete sinc interpolation in
a sliding window and enables arbitrary irregular sig-
nal resampling with simultaneous signal and image
restoration and local adaptive interpolation with su-
per resolution.

The author thanks J. Astola, K. Eguiazaryan, A.
Gotchev, and A. Happonen from Tampere Interna-
tional Center for Signal Processing, Tampere Insti-
tute of Technology, Tampere, Finland, for their
assistance and fruitful discussions.
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