
Test-suite Augmentation for Evolving Software∗

Raul Santelices,† Pavan Kumar Chittimalli,‡ Taweesup Apiwattanapong,+

Alessandro Orso,† and Mary Jean Harrold†

†College of Computing, Georgia Institute of Technology, USA
‡Tata Research Development & Design Center, TCS Ltd., India

+Software Engineering Technology Laboratory, NECTEC, Thailand
E-mail: {raul|orso|harrold}@cc.gatech.edu,

pavan.chittimalli@tcs.com, taweesup.apiwattanapong@nectec.or.th

Abstract
One activity performed by developers during regres-

sion testing is test-suite augmentation, which consists of
assessing the adequacy of a test suite after a program
is modified and identifying new or modified behaviors
that are not adequately exercised by the existing test
suite and, thus, require additional test cases. In previous
work, we proposed MATRIX, a technique for test-suite
augmentation based on dependence analysis and partial
symbolic execution. In this paper, we present the next step
of our work, where we (1) improve the effectiveness of our
technique by identifying all relevant change-propagation
paths, (2) extend the technique to handle multiple and
more complex changes, (3) introduce the first tool that fully
implements the technique, and (4) present an empirical
evaluation performed on real software. Our results show
that our technique is practical and more effective than
existing test-suite augmentation approaches in identifying
test cases with high fault-detection capabilities.

1. Introduction
Regression testing is the activity of retesting a program

after it has been modified to gain confidence that existing,
changed, and new parts of the program behave correctly.
This activity is typically performed by rerunning, com-
pletely or partially, a set of existing test cases (i.e., its
regression test suite). Given a program P and a modified
version of the program P ′, the regression test suite can
reveal differences in behavior between P and P ′ and, thus,
help developers discover errors caused by the changes or
by unwanted side effects of the changes introduced in P ′.

There is much research on making regression testing
more efficient by (1) identifying test cases in a regression
test suite that need not be rerun on the modified version of

∗ Patent pending, Georgia Institute of Technology.

the software (e.g., [4], [16]), (2) eliminating redundant test
cases in a test suite according to given criteria (e.g., [8],
[22]), and (3) ordering test cases in a test suite to help find
defects earlier (e.g., [17], [18]). Little research, however,
has focused on the effectiveness of the regression test suite
with respect to the changes. To evaluate such effectiveness,
it is necessary, when performing regression testing, to (1)
check whether existing test suites are adequate for the
changes introduced in a program and, if not, (2) provide
guidance for creating new test cases that specifically target
the (intentionally or unintentionally) changed behavior of
the program. We call this problem test-suite augmentation.

Existing test-suite augmentation approaches address this
problem by defining criteria that require exercising sin-
gle control- or data-flow dependences related to program
changes (e.g., [2], [3], [7], [15]). In our experimentation,
we found that considering the effects of changes on single
control- and data-flow relations alone does not adequately
exercise either the effects of software changes or the
modified behavior induced by such changes. To illustrate
this inadequacy, consider a change c and a statement s that
is data and/or control dependent on c. First, the effects of c
may propagate to s only along some of the (possibly many)
paths between c and s. Thus, just covering c and s may
not exercise the effects of c on s. Second, even if a path
that may propagate c’s effects to s is covered, such effects
may manifest themselves only under specific conditions.
Therefore, criteria that simply require the coverage of
program entities (e.g., statements and data-flow relations)
are often inadequate for testing changed behavior.

To address the limitations of existing techniques, we
present an approach that combines dependence analysis
and symbolic execution to identify test requirements that
are likely to exercise the effects of one or more changes to
a program. Our approach is based on two main intuitions.
The first intuition is that test criteria for changed software
must require test cases to reach potentially affected areas

of the code along different, relevant paths. Therefore, our
approach requires that specific chains of data and control
dependences be exercised. The second intuition is that test
requirements for changed software must account for the
state of the software and the effects of changes on that
state. Thus, our approach leverages partial symbolic exe-
cution [1], a type of symbolic execution that is performed
starting from a change, focuses on the parts of the program
state affected by that change, and encodes the effects of
the change at specific program points.

Because of the cost of the analyses involved—in terms
of both their computational complexity (for symbolic ex-
ecution) and the number of test requirements they may
generate—our approach limits its analysis to a given
distance from the changes considered. By doing this, our
approach can leverage the power of its underlying analyses
while still being practical. A test suite that satisfies the
test requirements generated by our approach for a set of
changes is guaranteed to exercise, up to a given distance,
the effects of those changes along relevant paths.

Intuitively, given a program P , its modified version P ′,
the set of changes between P and P ′, a test suite T for
P , and a distance d, our approach performs four main
steps: (1) computes all chains of dependences from the
changes to statements at distance up to d from the changes;
(2) computes the conditions under which the statements in
the identified chains behave differently in P and P ′; (3)
expresses both chains and conditions as test requirements;
(4) assesses the extent to which T satisfies (i.e., covers) the
identified requirements. The computed coverage indicates
the adequacy of T with respect to the changes between P
and P ′. Moreover, the requirements that are not satisfied
can be used to guide the generation of additional test cases.

In previous work, we presented our general approach,
the definition of partial symbolic execution, a first in-
stantiation of the approach for single changes based on
partial symbolic execution, symbolic state differencing,
and dependence distance, and a case study that shows the
feasibility of the approach [1]. In this paper, we extend
our previous definition of the technique in two directions.
First, we define requirements for change-effects propaga-
tion along individual dependence chains, so identifying all
relevant paths to be exercised. Second, we define the way
in which to handle multiple program changes.

In this paper, we also discuss a tool, called MA-
TRIXRELOADED, that fully implements our approach.
Finally, the paper discusses the results of an empirical
study that we performed using MATRIXRELOADED on two
subjects and a set of changes for these subjects. The results
of the study provide evidence that our approach is practical
and more effective than existing test-suite augmentation
approaches in identifying test cases with high likelihood
of detecting change-related faults.

This paper provides the following main contributions:
• A test-suite augmentation technique that extends our

previous approach by targeting all relevant depen-
dence chains and considering multiple changes.

• A tool, MATRIXRELOADED, that fully implements
our approach for programs written in Java.

• An empirical evaluation that shows the practicality
and effectiveness of our approach when applied to
real software and a set of changes for this software.

2. Background

This section describes two main concepts for our paper:
control and data dependences, and symbolic execution.

2.1. Control and Data Dependences

The effects of a change propagate to other statements
through control and data dependences. Informally, state-
ment s1 is control-dependent [5] on statement s2 if s2

has at least two outgoing control edges, and for at least
one but not all of these edges, every path covering that
edge also covers s1. We represent a control dependence as
(a, b), where b is control dependent on a. To illustrate,
consider the program, E, shown in Figure 1(a), whose
control-flow graph (CFG) is shown in Figure 1(b). This
program takes two inputs, x and y, and outputs one of
two values: 0 or 1. Statement 2 is control-dependent on
statement 1, represented as (1, 2).

Statement s1 is data dependent on statement s2 if (1)
s2 defines a variable, v, (2) there is a definition-clear path
from s2 to s1 (i.e., a path that contains no redefinition
of v), and (3) s1 uses v. We represent a data dependence
as a triple (a, b, v), where statement b is dependent on
statement a for variable v. For example, in Figure 1,
statement 6 is data dependent on statement 2 for variable
y, represented as (2, 6, y).

A program dependence graph (PDG) represents both
control and data dependences: nodes represent statements
and edges represent control and data dependences. Fig-
ure 1(c) shows the PDG for E. Statements in a procedure
p that are not control dependent on any other statement in
p (e.g., statements 2 and 6) are control dependent on p’s
entry node.

A sequence of two or more dependences forms a
dependence chain if the target statement of one dependence
is the source of the next dependence in the sequence. For
example, control dependence (1, 2) and data dependence
(2, 6, y) form a chain of length two because statement 2
is control dependent on statement 1, and statement 2 is
the source of data dependence (2, 6, y). In this paper, we
treat a single statement as a chain of length zero. Table 1
shows the dependence chains of lengths 1, 2, and 3 that

program E(int x, int y) // x,y ∈ [1,10]
1. if (x <= 2) // change 1: x > 2
2. ++y
3. else
4. --y
5. // change 2: y *= 2
6. if (y > 2)
7. print 1
8. else
9. print 0

(a)

entry

1 6

2 4 7 9

entry

1

2 4

6

7 9

exit

(b)

(c)

control flow

data dependence on
variable v

control dependence

y

y

v

Figure 1. (a) Example program E, (b) CFG for the program, and (c) PDG for the program.

Table 1. Dependences in Figure 1, change 1
length chains inputs difference

1 ch1,1 = (1, 2) 80 16
ch1,2 = (1, 4) 20 4

2 ch2,1 = (1, 2), (2, 6, y) 80 16
ch2,1 = (1, 4), (4, 6, y) 20 4

3

ch3,1 = (1, 2), (2, 6, y), (6, 7) 72 16
ch3,2 = (1, 2), (2, 6, y), (6, 9) 8 0
ch3,3 = (1, 4), (4, 6, y), (6, 7) 14 0
ch3,4 = (1, 4), (4, 6, y), (6, 9) 6 4

start at change 1 (statement 1) in Figure 1. (The last
two columns of Table 1 are used in Section 3.) A chain
chn,i corresponds to the ith chain of length n.

2.2. Symbolic Execution

Symbolic execution [10] analyzes a program by exe-
cuting it with symbolic inputs along some program path.
Symbolically executing all paths in a program to a given
point (if feasible) effectively describes the semantics of the
program up to that point. Symbolic execution represents
the values of program variables at any given point in
a program path as algebraic expressions by interpreting
the operations performed along that path on the symbolic
inputs. The symbolic state of a program at a given point
consists of the set of symbolic values for the variables in
scope at that point. The set of constraints that the inputs
must satisfy to follow a path is called a path condition and
is a conjunction of constraints pi or ¬pi (depending on
the branch taken), one for each predicate traversed along
the path. Each pi is obtained by substituting the variables
used in the corresponding predicate with their symbolic
values. Symbolic execution on all paths to a program point
represents the set of possible states at that point as a
disjunction of clauses, one for each path that reaches the
point. These clauses are of the form PCi ⇒ Si, where
PCi is the path condition for path i, and Si is the symbolic
state after executing path i.

For example, consider program E in Figure 1, without
changes. Symbolic execution first assigns symbolic values
x0 and y0 to inputs x and y, respectively. When statement 1
is executed, the technique computes the path conditions for
the true and false branches, which are x0 ≤ 2 and x0 > 2,

Table 2. Symbolic execution for E in Figure 1
statement path condition symbolic state

1 true x = x0, y = y0

2 x0 ≤ 2 x = x0, y = y0

4 x0 > 2 x = x0, y = y0

6 x0 ≤ 2 x = x0, y = y0 + 1
x0 > 2 x = x0, y = y0 − 1

7 (x0 ≤ 2) ∧ (y0 > 3) x = x0, y = y0 + 1
(x0 > 2) ∧ (y0 > 1) x = x0, y = y0 − 1

9 (x0 ≤ 2) ∧ (y0 ≤ 3) x = x0, y = y0 + 1
(x0 > 2) ∧ (y0 ≤ 1) x = x0, y = y0 − 1

respectively. These conditions are shown in column path
condition of Table 2, for statements 2 and 4. The values
of variables at the entry of each statement are shown
in column symbolic state. For example, after evaluating
statement 2, the technique updates the value of y to y0+1.
The execution of the remaining statements is performed
analogously. Each row in Table 2 shows the path conditions
and the symbolic values at the entry of the corresponding
statement, after traversing all paths to that statement. For
example, there are two path conditions and symbolic states
for statement 7. Each path condition in the second column
implies the state on its right in the third column. Symbolic
execution associates with each statement the disjunction of
all rows for that statement, where each row represents a
path condition and its corresponding symbolic state.

3. The Test-suite Augmentation Technique
In this section we present our test-suite augmentation

technique. In Section 3.1, we present an overview of our
technique. In Section 3.2, we present our technique for
single changes. Finally, in Section 3.3, we describe how
our technique handles multiple changes.

3.1. Overview of the Technique

Evolving software requires a test suite that evolves
with it. Changes in a program add, remove, or modify
functionality. Thus, it is necessary to assess the adequacy
of an existing test suite after changes are made and
provide guidance in adding new test cases that adequately
exercise all effects of changes. Just as testing requirements
are necessary for software as a whole, specific testing

requirements are also necessary to test changes. We call
these specific requirements change-testing requirements.

Our test-suite augmentation technique is inspired by
the PIE model [20] of fault propagation, in which the
testing criterion for a fault should ensure that the fault
is executed (E), that it infects the state (I), and that the
infected state propagates to the output (P). The goal of
our technique is to provide requirements to achieve such a
propagation for all possible effects of a change. In general,
however, producing such requirements is infeasible, and
even if feasible in particular cases, it is not practical due to
the explosion in the number of constraints as the distance
between changes and output grows.

To address this problem, our technique sets a limit on
the distance from the change to which the requirements
guarantee propagation of the infection. The intuition is that
a test case that propagates the effects of a change up to
this distance has an improved chance of propagating the
effects to the output. Test cases that do not propagate the
infection to this distance definitely do not propagate the
infection to the output and are disregarded.

In earlier work, we proposed a first instantiation of
our approach for generating requirements to test single
changes [1]. That approach requires test cases to propagate
a state infection to a certain dependence distance from
the change. In this paper, we call these requirements
state requirements. State requirements are only partially
effective, in that they do not consider how the infection
propagates to the given distance; often, there are multiple
ways in which the effects of a change can propagate to a
point. To address this limitation, in this paper, we introduce
the concept of multiple-chain propagation requirements,
which complement state-based requirements and improve
the overall effectiveness of the approach. Figure 2 provides
an intuitive depiction of the way our approach works. Our
goal is to create requirements for the difference-revealing
subset of test cases, which are the test cases that produce an
observable different behavior in the original and modified
programs. This subset is first approximated by test cases
that achieve simple change coverage (i.e., they just cover
the change), and then increasingly better approximated by
subsets that satisfy our chain and state requirements—
as distance increases, test suites for our requirements get
closer to the difference-revealing subset.

3.2. Single-change Requirements

In this section, we formulate our requirements genera-
tion technique based on state-infection propagation along
multiple dependence chains. Our technique consists of
two phases. The first phase, presented in Section 3.2.1,
identifies dependence-chain coverage requirements. The
second phase, presented in Section 3.2.2, adds state-
infection propagation requirements for each chain.

difference
revealing

universe of
all possible
test cases

test cases for
chain and state
requirements
and different
distances d=1

d=2
...

test cases
for simple
change
coverage

Figure 2. Intuitive view of change-testing cri-
teria.

3.2.1. Phase 1: Chain requirements. A simple strategy
for testing a change is to cover all changed statements.
However, this strategy often fails to guarantee that all
possible effects of the change on different parts of the
program are tested. Consider program E in Figure 1, with
change 1 applied. We call this modified version E1. The
example program has 10×10=100 valid test inputs. By
examining the code, we can see that the change produces
a different behavior in E1 (i.e., it produces a different
output with respect to E) if and only if y ∈ [2, 3], which
corresponds to 20 inputs, or 20% of the input space. Hence,
randomly selecting an input that covers the change has a
small chance of revealing a difference.

In many cases, an adequate test suite for the simple
change-coverage strategy exercises only a small fraction
of all dependence chains along which a change may
propagate. Because the effects of a change can propagate
forward along any of the chains starting from the change,
producing a potentially different infected state per chain,
an adequate testing strategy should require the coverage of
all such chains. Consider the requirement of propagating
the change along chains of length one (i.e., along direct
dependences) from change 1 in Figure 1. Two control
dependences must be tested: (1, 2) and (1, 4). As Table 1
shows in columns input and difference, for (1, 2) there
are 80 covering inputs, 16 of which reveal a difference.
For (1, 4), there are 20 possible inputs, four of which
reveal a difference. Each chain has a probability of 20%
of revealing a difference. A test suite T that covers all
direct dependences from the change in this example has
thus a 36%1 chance of revealing a difference. Therefore,
covering all chains of length one increases the probability
of difference detection from 20% to 36%.

Consider now dependence chains of length greater
than one. The number of chains can grow exponentially
with their length, but in practice it is possible to require
coverage of chains of a limited length. In the example
for change 1, there are four chains of length 3 reaching

1. The probability of T revealing a difference is 1−
∏

t∈T (1− pt),
where pt is the probability of test case t revealing a difference.

Algorithm COMPUTEREQS()
Input: P , P ′: original and modified programs

outStmts: set of output statements in P ′

changes: set of changes in P ′ respect to P
maxDist: maximum length of chains

Output: chainReqs, stateReqs: chain and state requirements

// Phase 1: chain requirements
(1) alignPrograms (P , P ′, changes)
(2) chainSet = allStmts (changes)
(3) for d = 1 to maxDist
(4) foreach chain ∈ chainSet
(5) chainSet −= chain
(6) if end(chain) ∈ outStmts
(7) chainReqs ∪= chain
(8) endif
(9) foreach dep ∈ nextDep (P ′, end(chain))
(10) newChain = append (chain, dep)
(11) chainSet ∪= newChain
(12) endfor
(13) endfor
(14) endfor
(15) chainReqs ∪= chainSet

// Phase 2: state requirements
(16) foreach chain ∈ chainSet
(17) if existsClearPath (P ′, start(chain), changes))
(18) (S′,S) = PSE (chain, P ′, P)
(19) stateReqs ∪= (chain, live(S′) 6= live(S))
(20) stateReqs ∪= (chain, pc(S′) ∧ ¬ pc(S))
(21) endif
(22) endfor
(23) return chainReqs, stateReqs

Figure 3. The algorithm to compute chain-
and state-requirements.

output statements 7 and 9. Two of these chains can reveal a
difference: ch3,1 (Table 1), which is covered by 72 inputs,
revealing a difference in 16 cases (22.2%), and chain ch3,4,
which is covered by six inputs, revealing a difference in
four cases (66.7%). A test suite that covers all chains of
length 3 would thus reveal a difference with probability
74.1%. A random test suite of size 4, in comparison, has a
59% chance of revealing a difference. This example shows
that longer chains can improve the chances of revealing
a different behavior after a change, compared to shorter
chains or simple change coverage (i.e., chains of length
0), by requiring a well-distributed coverage of propagation
paths from the change.

Figure 3 presents algorithm COMPUTEREQS, which
computes the testing requirements for a set of changes
in two phases. COMPUTEREQS inputs the original and
modified programs (P and P ′), the set outStmts of output
statements in P ′, the set of changes from P to P ′, and
the distance maxDist. Phase 1 (Lines 1–15) computes
the chain-coverage requirements discussed in this section.
(Phase 2 is explained in the next section). Line 1 calls
alignPrograms, which adapts both programs to match all
dependence points. For example, a definition of x deleted
in P ′ is compensated by inserting x = x at the same point
in P ′. In Line 2, the algorithm initializes the set chainSet
of chains to cover the chains of length 0 corresponding

to all changed statements. The loop at lines 3–14 extends
the chains maxDist times. Each chain is extracted from
chainSet in lines 4–5, and Line 6 checks whether the chain
has reached the output (using function end to get the end
point of the chain). If the chain reaches the output, it is
added at this time as a requirement (line 7). Lines 9–12
extend the chain by creating, for each dependence dep
from the last element of the chain (provided by function
nextDep), a new chain. This new chain, which consists of
the original one with dep appended to it, is then added to
chainSet. A chain with no additional dependences from
its final element is therefore discarded (i.e., not added
to chainSet). Finally, Line 15 adds all chains of length
maxDist to the chain requirements.

3.2.2. Phase 2: State requirements. Chain requirements
can increase the probability of finding output differences,
but they cannot guarantee that the effects of the change
propagate to the end of the chain. For example, in Figure 1
with change 1 (i.e., E1), only 16 out of 72 inputs (22%)
that cover chain ch3,1 (Table 1) reveal a difference at the
end of that chain. The reason is that the program state after
covering chain ch3,1 and reaching statement 7 in E1 might
be the same as the state at statement 7 in E (the unmodified
example), for the same input. Hence, to guarantee infection
propagation to the end of a chain, our COMPUTEREQS
algorithm produces additional state requirements.

Defining a requirement to guarantee propagation of the
state infection to the output is infeasible in general. Instead,
our technique computes state requirements to guarantee
propagation of the infection to the end of each chain,
by comparing the symbolic states of the program at the
end of each chain in P ′ (the modified program) and the
corresponding end point in P (the original program). These
states are expressed in terms of the state variables at the
entry of the change. A test case that reaches the endpoint n
of a chain in P ′ would manifest a different behavior in P
and P ′ if it satisfies one of the following two conditions:
• Condition 1: reach n in P through any path after

the change and have different symbolic values for
the live2 variables at n (differences in dead3 variables
have no effect).

• Condition 2: do not reach n in P after the change,
that is, the path condition to reach n after the change
must not hold in P .

These two state conditions for a chain reduce the space
of test cases for the chain to those that propagate an
infection to the end of the chain, thus increasing the
chances of propagating the infection to the output.

2. A variable v is live at a program point n if there is a definition-clear
path from n to a use of v.

3. A variable v is dead at a program point n if v has no definition-clear
path from n to any use.

In Phase 2 of our algorithm in Figure 3, lines 16–22
compute the state requirements for all chains. Phase 2 uses
the function PSE, which performs partial symbolic execu-
tion, a form of symbolic execution that starts at an arbitrary
point in the program instead of the entry point, and uses
as input the state variables at that point [1]. Line 17 is
explained in Section 3.3. Line 18 calls PSE for each chain
in P ′, obtaining symbolic states S′ and S. S′ contains the
path conditions for traversing the chain to its end point
in P ′, whereas S contains the path conditions to reach
the same point in P through all paths. Path conditions
are accessed with function pc, whereas symbolic values
of live variables are accessed with function live. Note
that the algorithm regards Conditions 1 and 2 as separate
requirements (lines 19–20) because we consider that both
exhibit unique change-propagation qualities.

To illustrate, consider again Figure 1. Using symbolic
execution, the technique defines the state of E1 at the
change point as {x = x0, y = y0}. After following chain
ch3,1, the symbolic state in E1 is {x = x0, y = y0 + 1},
and the path condition for this chain is x0 > 2 ∧ y0 > 1.
In the example, both x and y are dead at statement 7,
so the live states are the same in E1 and E, that
is, Condition 1 for ch3,1 is not satisfied. However, the
path condition in E for all paths to statement 7 is
(x0 ≤ 2 ∧ y0 > 1) ∨ (x0 > 2 ∧ y0 > 3), so Condition 2
for ch3,1 (pc(S′) ∧¬pc(S)) is satisfied by x0 > 2 and
y0 ∈ [2, 3]. Condition 2 reduces the number of test cases
that cover the chain from 72 to 16, which are exactly those
revealing a difference. Constraining the other difference-
revealing chain, ch3,4, also yields a 100% detection.

3.3. Multiple-change Requirements

In this section, we extend our technique to handle
multiple changes by accounting for their effect on one
another. Given a change c and a state requirement r for c,
we assume that the set of variables V that appear in r’s
state constraints have the same values at the entry of c in
P and P ′. Hence, if a test case executes another change c′

before c, and c′ causes one or more variables in V to have
a different value at the entry of c, r is no longer applicable
for that test case. More precisely, a change c′ infects a state
requirement r at change c if both changes are executed,
c′ executes before c, and there exists a variable used in
r whose value at the entry of c is infected by c′. Our
technique handles these cases by not considering the state
constraints for r as covered if any of the variables used in
r is infected at the entry of the corresponding change.

Consider program E1,2, for instance, obtained by ap-
plying change 1 and change 2 to our example in
Figure 1. The state requirement for chain (5, 6, y) from
change 2 requires for the value of y at statement 6 to
be different in E and E1,2 due to the additional execution

of y ∗ = 2 in E1,2. However, the value y0 of y at the entry
of change 2 will be different in E and E1,2 because
change 1 executes first and alters y0. The coverage
of a chain requirement in these circumstances does not
qualify as coverage of all requirements for that chain; the
corresponding state requirement remains unsatisfied.

A more conservative but simpler alternative is to assume
that the whole state of the program is infected after
executing a change. In this case, our technique statically
classifies changes in two categories: (1) changes for which
there is a change-clear path, which is a path from the entry
of the program to the change containing no other change,
and (2) changes for which there is no such path.

Our technique computes state requirements only for
changes in the first category. Changes in this cate-
gory are identified by the call to existsClearPath at
Line 17 in algorithm COMPUTEREQS (Figure 3). Function
existsClearPath(P, s, C) returns true if there is a path from
the entry of program P to statement s (excluding s) that
contains no change in C. At runtime, our technique mon-
itors state requirements until a change is executed, after
which our technique monitors only chain requirements.

To illustrate, in E1,2 in Figure 1, change 2 can only
execute after change 1. Therefore, change 2 is in the
second category, and only chain requirements are moni-
tored for it. However, if we imagine the original program
E in Figure 1 with changes at statements 2 and 4 instead,
neither of these changes affects the other. Such changes
are in the first category, and the technique produces state
requirements for both changes. Furthermore, monitoring of
these requirements is never disabled at runtime.

4. Empirical Evaluation

In this section, we present a set of empirical studies
we performed to evaluate our test-suite augmentation tech-
nique. Section 4.1 describes the toolset we implemented
for our technique. Section 4.2 presents our studies, results,
and analysis for single and multiple changes. Finally, Sec-
tion 4.3 discusses threats to the validity of our evaluation.

4.1. The MATRIXRELOADED Toolset

We implemented the MATRIXRELOADED toolset in
Java, using the Soot Analysis Framework (http://www.
sable.mcgill.ca/soot/) to analyze and instrument software in
Java bytecode format. MATRIXRELOADED consists of two
main parts: (1) a program analyzer, which implements al-
gorithm COMPUTEREQS (see Figure 3) to identify change-
testing requirements, and (2) a monitoring component,
which instruments a modified program and monitors at
runtime the coverage of our change-testing requirements.

We implemented two key technologies within our pro-
gram analyzer: a dependence analyzer and a symbolic-

execution engine. Our dependence analyzer identifies con-
trol and data dependences from any point in the program.
Our symbolic-execution engine supports partial symbolic
execution [1], which systematically explores all paths be-
tween a pair of starting and ending points in the program.
The resulting symbolic states are expressed in terms of
the symbolic values of live variables at the entry of the
starting point. In our current implementation, the symbolic
executor performs no more than one iteration per loop
and replaces Java libraries with simple approximations.
To improve the efficiency of the symbolic executor, our
implementation leverages lazy-initialization [19].

To perform our empirical evaluation, we also developed
a supporting tool that creates, given an existing pool of test
cases, test suites that satisfy, to the largest extent possible,
different change-testing criteria, including ours.

4.2. Studies

Table 3 lists the subject programs we used in our stud-
ies, their sizes, and the number of test cases and changes
provided with each subject. The changes we considered are
faults that were seeded in the subjects by other researchers.
Our first subject, Tcas, is an air traffic collision-avoidance
algorithm used in avionics systems. We used a version of
Tcas translated to Java from the original version in C, and
considered its first six changes. As a second subject, we
used releases v1 and v5 of NanoXML, an XML parser,
available from the SIR repository (http://sir.unl.edu). We
considered all changes from v1 and two changes from v5.

These two subjects represent software of different
nature and complexity. Tcas represents modules with
straightforward logic that can be found in avionics systems
and other industrial domains. NanoXML, in contrast, rep-
resents more complex, object-oriented software, and relies
on Java libraries. Note that, because our technique focuses
on changes and their effects at a certain distance, program
size does not affect the scalability of our approach, but
mainly its effectiveness.

We performed our studies on an Intel Core Duo 2 GHz
machine with 1 GB RAM.

4.2.1. Study 1: Effectiveness for single changes. First,
we studied the effectiveness of our technique in detecting
output differences after selecting adequate test suites for
single changes, and compared this effectiveness with the
effectiveness of other change-testing strategies. We used
the following criteria:

1) stmt: changed statements
2) ctrl: control-only dependence chains
3) data: data-only dependence chains
4) chain: our chain requirements (Section 3.2.1)
5) full: our chain and state requirements (Section 3.2.2)

Table 3. Description of experimental subjects
program description LOC tests changes
Tcas air traffic 131 1608 6
NanoXML-v1 XML parser 3497 214 7
NanoXML-v5 XML parser 4782 216 2

We selected Criteria 1–3 for comparison against our
technique because they are representative of previous re-
search other than ours. Criteria 4 is a simplified version
of our technique that considers chain requirements only.
Finally, Criteria 5 is our technique, which considers both
chain and state requirements. Studying Criteria 4 helps us
assess the extent to which the two components of our re-
quirements, chains and state, contribute to the effectiveness
of our technique.

When applicable (i.e., for all criteria except the first),
we used the greatest distance our tool could analyze within
the memory constraints of the machine used. On the per-
formance side, our tool always took less than eight minutes
to successfully analyze a pair of program versions and
generate requirements. Thus, for distances within the reach
of our tool, the time required to generate our requirements
was not an issue.

For each criterion and distance, we randomly generated
100 different satisfying test suites from the pool of avail-
able test cases, determining for each test suite whether
it produced any difference in the output with respect to
the unchanged version of the subject. On average, the
maximum size of a test suite for a change in Tcas was
5.8 test cases, whereas the maximum for NanoXML was
2.4 test cases. Tables 4 and 5 present, for Tcas and
NanoXML, respectively, the average difference detection
(ability to reveal a difference in the output) for the test
suites generated for each criterion and change. In each
table, the first column identifies the change ch, the second
column shows the maximum distance d from the change
our tool analyzed, and the remaining five columns show
the percentage of difference-revealing test suites (i.e., test
suites revealing a difference in the output) for the stud-
ied criteria. The last two columns, corresponding to our
technique, are separated from the rest by a double line.

For the six changes studied in Tcas, Table 4 shows
that detection effectiveness rates for statement coverage are
low—between 0.7% and 41.1%—with all but one below
16%. Control- and data-dependence chains provide almost
no improvement. In contrast, our technique increases the
detection rate considerably in most cases. Some improve-
ments are due to the chain requirements alone, such as
in the case of change 4. In other cases, such as for
changes 1, 2, and 6, the improvements observed are due to
the addition of state requirements (i.e., our full technique)
to chain requirements. Nevertheless, there are cases in
which, despite the improvements, detection rates remain
low (e.g., changes 3 and 5) after applying our technique.

Table 4. Difference detection for Tcas
ch d stmt ctrl data chain full
1 3 41.1% 41.1% 47.3% 47.3% 100%
2 6 15.2% 15.2% 15.2% 16.9% 54.1%
3 6 2% 3.2% 2% 18.4% 18.6%
4 6 10% 19.4% 10% 100% 100%
5 6 0.7% 0.7% 0.7% 3.5% 3.7%
6 5 2.1% 3.7% 2.1% 4.6% 100%

Table 5. Difference detection for NanoXML
ch d stmt ctrl data chain full
v1-1 2 52.2% 100% 52.2% 100% 100%
v1-2 3 67.2% 67.2% 67.2% 67.2% 67.2%
v1-3 3 0% 0% 10.4% 10.4% 10.4%
v1-4 3 13.4% 13.4% 48.7% 48.7% 100%
v1-7 3 18.7% 18.7% 18.7% 18.7% 18.7%
v5-3 4 35% 35% 35% 66% 66%
v5-4 4 21.9% 21.9% 21.9% 42.2% 42.2%

In such cases, we hypothesize that the distances we used
may not be sufficient to provide acceptable confidence
of propagation of the infection to the output; greater
distances, which would require enhanced tool support and
hardware resources, may be necessary.

In NanoXML (Table 5), we studied all seven changes
provided with release v1 of this subject. Changes in
NanoXML are named vX-N, where X is the release (1
or 5) and N is the change number (e.g., 1–7 in v1).
Changes v1-5 and v1-6 are of little interest because all test
cases that cover these changes reveal an output difference,
with no need for further requirements. Therefore, we omit
them in Table 5. To increase the number of interesting
changes considered, we added two changes from release
v5 of NanoXML. The first two changes in v5 are located
in unreachable code, as we confirmed manually, so we
included changes v5-3 and v5-4 instead.

Our technique shows an improvement in detection with
respect to simpler criteria for 3 out of 7 changes listed
in Table 5: v1-4, v5-3, and v5-4. Control- and data-
dependence chains, which are subsumed by our chain
requirements, sufficed in v1-1 and v1-3 for improving on
simple change coverage, although for v1-3 the detection
was still low. Meanwhile, simple change coverage showed
the same performance as the other criteria for the remain-
ing v1-2 and v1-7 changes. By manually inspecting the
code we found that, in these two cases, (1) the infected
states can reach an output, (2) the dependence chains from
the changes to the output are longer than the maximum
distance our toolset could analyze, and (3) the existing test
cases that satisfy our requirements do not always propagate
the infected part of the state to the output. In other words,
our technique pushed the infected state up to a certain
distance, often achieving propagation to the end, but could
not guarantee that the output itself would be infected.

The improvements due to our technique in the case of
NanoXML are not as dramatic as in the case of Tcas.

There are important differences between the two subjects
that help explain these results. First, NanoXML makes
extensive use of strings and containers, and we found that
the infected state is often confined within objects of these
types. Because our current implementation replaces library
objects with simpler approximations, it is limited in gen-
erating requirements for such objects. Second, NanoXML
makes heavier use of heap objects and of polymorphism
than Tcas, therefore imposing a considerably higher burden
on the lazy-initialization part of symbolic execution. These
complications make it more difficult for our current imple-
mentation of dependence analysis and symbolic execution
to operate on NanoXML than on Tcas, as reflected by
the shorter analysis distances achieved on NanoXML.
Nevertheless, our results for NanoXML, even at short
distances, are promising; they show that our approach
can exercise more change-related behaviors in real object-
oriented software, compared to traditional change-testing
criteria. Our results for Tcas are also promising because
they indicate that our technique may be quite effective for
modules similar to Tcas, but within larger software.

4.2.2. Study 2: Multiple-changes case. In this section, we
study a case of interaction between two changes, and the
consequences on requirements monitoring and difference
detection when applying the more conservative version of
our multiple-change handling approach to these changes.

An interesting interaction occurs between changes v1-1
and v1-4 in NanoXML-v1. Change v1-1 is located in
the DTD (Document Type Definition) parsing component,
whereas change v1-4 alters the final step of XML element
attribute processing. We call P1 the program version with
change v1-1 only, P4 the version with change v1-4 only,
and P1,4 the version with both changes. Out of 214 test
cases available, 42 test cases show an output difference in
P1,4. As expected from the results in the previous study, all
test suites we created for our technique obtained a 100%
difference detection for P1,4.

In P1,4, change v1-4 is executed by 164 test cases, out
of which only seven test cases are difference-revealing.
In all seven difference-revealing test cases, change v1-4 is
infected by change v1-1. (Although 135 test cases reach
change v1-4 first, none of these cases reveal a difference.)
Therefore, state requirements in P1,4 for change v1-4 are
never satisfied, even though many test cases cover this
change without infection. In P4, in contrast, change v1-4
is never infected and is covered by 26 difference-revealing
test cases. Because in P4 change v1-4 greatly benefits from
satisfying state requirements over chain requirements alone
(see Table 5), we would expect in P1,4 a reduction in the
ability of our technique to detect differences in test cases
that cover change v1-4.

To measure the impact of infection on change v1-4 in
P1,4, we executed all 164 test cases that cover change v1-4

in this version, and we measured the coverage of our chain
requirements only for change v1-4. From these 164 test
cases, we generated 100 unique test suites satisfying our
chain requirements, of which 23.7% revealed a difference.
In contrast, difference detection in P1,4 for simple coverage
of change v1-4 was 3.6%. Considering that our technique
achieves 100% detection for change v1-4 in P4, there is
a considerable decrease of 76.3% in the detection ability
of our technique for change v1-4 when combined with
change v1-1, due to infection from change v1-1. Yet, our
technique maintains in this scenario an advantage of 20.1%
over simple change coverage.

4.3. Threats to Validity

The main internal threat to the validity of our studies
is the potential presence of implementation errors in our
toolset and experimental setup. To reduce this threat, we
tested and debugged our system with example programs,
including the subjects of our study.

The main external threat for our studies is that we
studied only two subjects and a limited number of changes,
due to the complexity of the technologies involved. More
subjects and changes need to be studied to properly assess
the applicability and expected benefits of our technique.

5. Related Work

The predecessor of our technique, MATRIX [1], is
the work most closely related to our current technique.
In this previous work, we introduced the concepts of
partial symbolic execution and symbolic state differencing
for modified software. That early work focuses on single
changes and presents only a preliminary study with a
partial implementation that does not include symbolic
execution or chain coverage. In this paper, we extend our
previous technique by specifying chain requirements and
handling multiple changes. We also present an improved
implementation of our technique and perform a more
extensive study.

Several other techniques are related to test-suite aug-
mentation and change-testing criteria. These techniques
can be classified into three categories.

Techniques in the first category define general testing
criteria for software in terms of coverage of program
entities, such as statements, branches, and definition-use
pairs (e.g. [6], [11], [13]). These criteria can be adapted,
as we did in our study, for modified software by consid-
ering only changed statements or affected control or data
dependence chains. Our empirical studies show that test
suites satisfying our state and chain requirements have a
greater likelihood of revealing different behavior than those
that are based on control or data flow only.

Techniques in the second category share with our tech-
nique the overall goal of generating requirements for test-
ing changes. Binkley [3] and Rothermel and Harrold [15]
present techniques that use System Dependence Graph
(SDG) based slicing [9] to produce testing requirements
involving individual data- and control-flow relations af-
fected by a change. Gupta and colleagues [7] propose
a technique based on an on-demand version of Weiser’s
slicing algorithm [21]. These techniques have a number of
limitations. SDG-based techniques incur high computing
costs and are memory-intensive in computing summary
edges. Furthermore, these techniques generate require-
ments that involve complete chains of control and data
dependences from a change to output statements, which are
likely difficult to satisfy because these chains may include
most of the program. Our technique differs in two main
ways. First, our technique controls the cost by computing
dependences only up to a given distance from a change.
Second, our technique incorporates state requirements for
increased effectiveness. As our study results suggest, test-
ing requirements based on short-distance dependences can
be practical and effective at the same time.

Techniques in the third category generate requirements
for fault-based testing that integrate propagation condi-
tions. Richardson and Thompson present the RELAY
framework [14], which computes a precise set of con-
ditions to propagate the effects of faults to the output.
Morell [12] presents a theory of fault-based testing, which
uses symbolic execution to determine fault-propagation
equations. The goal of these techniques is to propagate the
effects of faults, not changes, to the output. Moreover, they
rely on symbolic execution of an entire program, which
is generally impractical. Our technique, in contrast, limits
the generation of testing requirements to the selected dis-
tance, and these requirements incorporate conditions that
guarantee propagation up to that distance. Furthermore,
our technique does not need to solve such conditions to
compute the adequacy of a test suite. Our technique only
checks whether these conditions are satisfied at runtime.

6. Conclusion and Future Work
In this paper, we presented our test-suite augmenta-

tion technique that improves upon our previous approach,
MATRIX [1], in two important ways: (1) generating re-
quirements for propagation of the effects of changes along
different dependence chains, which increases the chances
of revealing new or affected behaviors, and (2) handling
multiple changes, which makes the approach applicable in
realistic scenarios.

Our technique has two main applications: assessing
the adequacy of a regression test suite after changes are
made in a program, and guiding developers and tools in
generating new test cases that exercise untested behaviors

introduced by the changes. To achieve these goals, our
technique leverages dependence analysis, partial symbolic
execution [1], symbolic state differencing, and runtime
monitoring. In this way, our technique can identify and
check coverage of thorough requirements for change-
propagation within a given distance, which can increase
the chances of propagating erroneous states to the output
while still remaining practical.

We also described a toolset that implements our tech-
nique and presented two empirical studies performed using
this toolset. The first study shows that, for two subjects,
our technique can considerably improve the chances of
producing output differences. The improvement in effec-
tiveness depends on the complexity of the subject, the
characteristics of the changes involved, and the distance
used. Chain requirements alone appear to be more effective
than simpler criteria in many cases, whereas state require-
ments provide a strong complement to chain coverage in
other cases. The second study shows how our technique
can handle scenarios with multiple changes, which allows
changes to be tested with some degree of effectiveness
even when they are affected by other changes.

We believe that the theoretical foundations of our tech-
nique and the results of our studies encourage future re-
search that could further improve the effectiveness of test-
suite augmentation based on change-infection propagation.
In particular, we can identify several directions for future
work. On the experimental side, we expect to strengthen
our partial symbolic-execution engine to generate require-
ments at longer distances, cover more paths, and better
handle encapsulation in object-oriented software. We are
optimistic about the scalability of our technique because
its costs and limitations depend mostly on the complexity
of the program in the vicinity of changes, rather than on
the overall size of the program. A second direction for
future work is to leverage partial symbolic execution and
program state comparison in novel ways for specifying
additional, complementary requirements that can guide
test-suite augmentation. Another direction for future work
is the investigation of ways of automatically generating
test cases that can cover untested new behaviors identified
by our requirements. Finally, static and dynamic analyses
could be used to determine in a more precise way whether
the state at the entry of a change has been infected by
another change and use that information to improve our
approach for handling multiple changes.

Acknowledgements

This work was supported in part by Tata Consul-
tancy Services and by NSF awards CCR-0306372, SBE-
0123532, and CCF-0725202 to Georgia Tech. The anony-
mous reviewers provided useful comments and suggestions
that improved the presentation of this paper.

References
[1] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso,

and M. J. Harrold. Matrix: Maintenance-oriented testing
requirement identifier and examiner. In Proc. of Testing
and Academic Industrial Conf. Practice and Research Tech-
niques (TAIC PART), pp. 137–146, Aug. 2006.

[2] S. Bates and S. Horwitz. Incremental program testing using
program dependence graphs. In Proc. of ACM Symp. on
Principles of Prog. Lang., pp. 384–396, Jan. 1993.

[3] D. Binkley. Semantics guided regression test cost reduction.
IEEE Trans. on Softw. Eng., 23(8):498–516, Aug. 1997.

[4] Y. F. Chen, D. S. Rosenblum, and K. P. Vo. Testtube: A
system for selective regression testing. In Proc. of Int’l
Conf. on Softw. Eng., pp. 211–222, May 1994.

[5] J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization. ACM Trans.
on Prog. Lang. and Systems, 9(3):319-349, July 1987.

[6] P. Frankl and E. J. Weyuker. An applicable family of data
flow criteria. IEEE Trans. on Softw. Eng., 14(10):1483-
1498, Oct. 1988.

[7] R. Gupta, M. Harrold, and M. Soffa. Program slicing-based
regression testing techniques. Journal of Softw. Testing,
Verif., and Reliability, 6(2):83–111, June 1996.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Trans. on Softw.
Eng. and Methodology, 2(3):270–285, July 1993.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Trans. on Prog. Lang. and
Systems, 12(1):26-60, Jan. 1990.

[10] J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, July 1976.

[11] J. W. Laski and B. Korel. A data flow oriented program
testing strategy. IEEE Trans. on Softw. Eng., 9(3):347–354,
May 1983.

[12] L. Morell. A Theory of Fault-Based Testing. IEEE Trans.
on Softw. Eng., 16(8):844-857, Aug. 1990.

[13] S. C. Ntafos. On required element testing. IEEE Trans. on
Softw. Eng., 10(6):795–803, Nov. 1984.

[14] D. Richardson and M. C. Thompson. The RELAY model of
error detection and its application. In Proc. of Workshop on
Softw. Testing, Analysis and Verif., pp. 223–230, July 1988.

[15] G. Rothermel and M. J. Harrold. Selecting tests and iden-
tifying test coverage requirements for modified software.
In Proc. of Int’l Symp. on Softw. Testing and Analysis, pp.
169–184, Aug. 1994.

[16] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Trans. on Softw. Eng. and
Methodology, 6(2):173–210, Apr. 1997.

[17] G. Rothermel, R. Untch, C. Chu, and M. Harrold. Test Case
Prioritization. IEEE Trans. on Softw. Eng., 27(10):929–948,
Oct. 2001.

[18] A. Srivastava and J. Thiagarajan. Effectively prioritizing
tests in development environment. In Proc. of Int’l Symp.
on Softw. Testing and Analysis, pp. 97–106, July 2002.

[19] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input
generation with java pathfinder. In Proc. of TACAS 2004.
SIGSOFT Softw. Eng. Notes, pp. 97–107, Mar. 2004.

[20] J. Voas. PIE:A Dynamic Failure-Based Technique. IEEE
Trans. on Softw. Eng., 18(8):717–727, Aug. 1992.

[21] M. Weiser. Program slicing. IEEE Trans. on Softw. Eng.,
10(4):352–357, July 1984.

[22] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur.
Effect of test set minimization on fault detection effective-
ness. In Proc. of Int’l Conf. on Softw. Eng., pp. 41–50, Apr.
1995.

