

AN INVESTIGATION OF A TABU SEARCH
BASED HYPER-HEURISTIC FOR
EXAMINATION TIMETABLING

Graham Kendall and Naimah Mohd Hussin
Automated Scheduling, Optimisation and Planning (ASAP) Research Group, School of
Computer Science and Information Technology, University of Nottingham, Jubilee Campus,
Wollaton Road, Nottingham NG8 1BB, UK

Abstract: This paper investigates a tabu search based hyper-heuristic for solving
examination timetabling problems. The hyper-heuristic framework uses a tabu
list to monitor the performance of a collection of low-level heuristics and then
make tabu heuristics that have been applied too many times, thus allowing
other heuristics to be applied. Experiments carried out on examination
timetabling datasets from the literature show that this approach is able to
produce good quality solutions.

Key words: Hyper-heuristic, Examination Timetabling, Heuristics, Tabu Search

1. INTRODUCTION

This paper investigates a hyper-heuristic, based on tabu search, and its
application to examination scheduling. The objective is to design a generic
system that is able to select the most appropriate algorithm for the current
instance of a given timetabling problem. Carter (1986), Carter and Laporte
(1996) and Schaerf (1999) have conducted comprehensive surveys on
various methods and strategies applied by researchers to solve timetabling
problems. Many of these methods have successfully solved given problems
and some algorithms/heuristics were reported to work well with particular
data sets whilst others performed better when presented with different data
sets. This indicates that one of the potential research issues in timetabling is

2 Graham Kendall and Naimah Mohd Hussin

to design a high-level algorithm that automatically, and intelligently, chooses
a method suitable for a given problem instance (Burke and Petrovic 2002).

This paper will report on our research into the design of a new hyper-
heuristic framework using a tabu list and adaptive memory with the intention
of monitoring and learning the behaviour and performance of low-level
heuristics so as to help in making a well-informed decision of applying the
best heuristics at each decision point. We test our approach on examination
timetabling problem using examination timetabling problem dataset publicly
available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/.

The next sub-section reviews the use of hyper-heuristic methodologies
and tabu search related to timetabling problems. Section 2 gives a
description of the examination timetabling problem. We describe our hyper-
heuristic framework and strategy in Section 3 and Section 4 gives our
experimental results and analysis. Section 5 concludes with a summary and
presents future research directions.

1.1 Hyper-heuristics

The term hyper-heuristic (Burke et al, 2003) denotes a method that
operates at a higher level of abstraction and can be thought of as a (meta-)
heuristic that is able to intelligently choose a possible heuristic to be applied
at any given time. We refer to Burke et al (2003) for further motivation and
discussion on the emergence of hyper-heuristic to solve optimisation
problems. This includes references to earlier work that can be categorised as
hyper-heuristic approaches, although they do not use this term.

One example of solving a large-scale university examination timetable
problem using a hyper-heuristic approach can be seen in Terashima-Marin,
Ross and Valenzuela-Rendon (1999). Their approach had two phases in the
construction of a timetable. Each phase used a different set of heuristics and
a switch condition determined when to move from one phase to the other. A
genetic algorithm, using a non-direct chromosome representation, was used
to evolve the choice of heuristics, switch condition and strategies.

Burke and Newall (2004) proposed an adaptive method in constructing
initial solutions for the examination timetabling problem. An initial ordering
heuristic produced an order of exams to be scheduled. The ordering
heuristic provides a good solution if the order is ideal, otherwise, it will
adapt and improve the order, thus improving the initial solution. The results
showed that the method could substantially improve the solution quality over
the original heuristic (flat ordering, largest degree and smallest degree).

Cowling, Kendall and Soubeiga (2001) use a choice function in their
hyper-heuristic to determine which low level heuristic will be called next.
The choice function adaptively ranks the low-level heuristics by considering

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

3

recent improvement of each low-level heuristic, recent improvement of
consecutive pairs of low-level heuristics and the number of CPU seconds
elapsed since a particular heuristic was last called. The method was
successfully tested on different applications: sales summit scheduling
(Cowling, Kendall and Soubeiga 2001), nurse scheduling (Kendall, Soubeiga
and Cowling 2002) and project presentation scheduling. (Cowling, Kendall
and Soubeiga 2002).

Cowling, Kendall and Han (2002) use a genetic algorithm based hyper-
heuristic (Hyper-GA) to construct a sequence of heuristics that are applied to
a trainer scheduling problem.

Nareyek (2001) proposed a learning procedure in a search process that
learns to select promising heuristics based on weight adaptation. Their
empirical study was carried out on two problems: Orc Quest and Logistics
Domain.

Burke, Kendall and Soubeiga (2003) have used a tabu search hyper-
heuristic (although different to the one proposed in this paper) and have
successfully applied it to course timetabling and rostering problems. They
used a ranking mechanism to dynamically rank each low-level heuristics.
The heuristic with the highest rank will be applied in the next iteration and if
the heuristic does not improve the solution, it will be placed in a tabu list.
This tabu list is used to prevent non-performing heuristics from being chosen
again in the near future. Our hyper-heuristic differs with respect to how we
use the tabu list and how we choose and apply heuristic. Further details are
given in Section 3.

There are other papers published on methods that are similar to the
concept used in hyper-heuristics. It is not our intention to mention all of
them, but nevertheless, it would be interesting to carry out a complete survey
and categorise all papers that exhibit hyper-heuristic behaviour. Fro what we
have seen from existing papers on hyper-heuristics, we believe that further
research should be carried out in order to inject intelligence into the hyper-
heuristic that does not depend on domain knowledge.

1.2 Tabu Search (Timetabling)

In this section, we will discuss briefly how other researchers apply tabu
search approaches in solving timetabling problem. The basic form of tabu
search (TS) is an idea proposed by Fred Glover (1987) to solve
combinatorial optimisation problems. The following is a definition by
Glover and Laguna (1997):

Tabu search is a meta-heuristic that guides a local heuristic search
procedure to explore the solution space beyond local optimality.

4 Graham Kendall and Naimah Mohd Hussin

The basic concept of tabu search is an extension of steepest descent by
incorporating adaptive memory and responsive exploration. It uses memory
not only to keep track of the current best solution but it also stores
information related to the exploration process. Starting from the initial
solution S0, the algorithm iteratively explores a subset N’(s) of the
neighbourhood, N(s), of the current solution s. The member with the lowest
(assuming minimisation) value becomes the current solution irrespective of
whether its value is better or worse than the current solution. Accepting a
non-improving move will allow the search to continue to explore areas
beyond local optima. However this will typically lead to cycling, that is,
repeatedly moving between some small set of solutions. To avoid this, it
uses memory to store a tabu list. This list contains moves that satisfy some
tabu restriction criteria and these moves are prohibited for a predetermined
number of iterations (tabu tenure). Moves that are in the tabu list are said to
have a tabu-active status. An aspiration criteria is used to make a solution
tabu free if the resultant evaluation is of sufficient quality and can prevent
cycling.

Glover and Laguna (1997) also describe two important strategies used in
tabu search: intensification and diversification. Intensification strategies
involve changing the choice rules to intensify the search to examine
neighbours of elite solutions. The idea is that if certain regions contained
good solutions in the past they may possibly yield better solutions in the
future. The diversification stage encourages the search process to examine
unvisited regions and to generate solutions that differ significantly.

Schaerf and Schaerf (1995) apply tabu search techniques in scheduling
lectures to periods for a large high-school. They represented their timetable
as an integer-valued matrix Mmxp such that each row j of M represents the
weekly assignment for teacher tj. The type of moves used are atomic:
moving a lecture to another period and double moves which are moves made
by a pair of atomic moves. The algorithm used a tabu search with atomic
moves interleaved with a randomised non-ascendant method (RNA) using
double moves. The RNA is used to generate the initial solution and is
applied again after TS has given no improvements for a given number of
iterations. The cycle is repeated allowing TS to start in a different direction.
The tabu list is of variable size. Each move is inserted into the tabu list with
a number of iterations I selected at random within a predetermined range.
The tabu tenure therefore varies for each move. Each time a move is
inserted the value I of all moves in the list will be decremented and once it
reaches zero the move is removed. The algorithm uses the simplest
aspiration criteria of accepting a tabu move only if it improves the current
best solution. The algorithm gave good results for schools of various types,
and for different settings of the weights of the objective functions. The

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

5

timetable produced is better than the manual timetable and it was able to
schedule 90-95% of the lectures.

Di Gaspero and Schaerf (2001) continued this research using tabu search
for the examination timetabling problem. They modified their objective
function using a shifting penalty mechanism (varying weights on soft and
hard constraints) thus causing the search to explore different solution spaces.
In order to decide which exams are to be moved, they maintain two violation
lists: list of exams that violate either hard or soft constraints and list of
exams that violate hard constraints only. During the search, they experiment
on various strategies using shifting penalty mechanisms and the two
violation lists. These two features combined with a variable-size tabu list
and starting the search with a good initial solution, were found to be helpful
in directing the search into promising regions.

Di Gaspero (2002) and Di Gaspero and Schaerf (2003) further enhanced
their algorithm by employing a multi-neighbourhood strategy applied to
examination timetabling and course scheduling respectively. In examination
timetabling problem, Di Gaspero (2002) applied a combination of tabu
search with different neighbourhoods (union and composition). He
categorised these combinations into local search that specialised in
optimising objective function (recolour), perturbing current solution (shake)
or obtaining more improvement (kick). The recolour and shake algorithms
were applied in sequence until no further improvement and the algorithm
ended with the kick. The final results on seven benchmark datasets were
better compared to the basic tabu search with single neighbourhood.

Dowsland (1998) showed that it is possible to design robust solutions
based on simulated annealing and tabu search by applying the algorithms on
different case studies of scheduling, timetabling and staff-rostering problems
in the education and hospital sectors. She applies varying tabu restriction on
different moves and use a frequency-based diversification mechanism and
penalised attributes that occur very frequently. Some of the modifications
included can improve the tabu search but the implementation frequently
depends on the precise details of the problem. Some of these modifications
are different cost functions, variable tabu length list, combining moves into
chains, strategic oscillation that force the search into different regions and
prominent candidate list strategies.

White and Xie (2001) called their algorithm OTTABU and used it to
provide an examination timetable using data provided by the University of
Ottawa. The problem is modelled as a graph. The initial solution was
generated using an algorithm derived from bin packing algorithms (largest
enrolment first). The initial solution does not guarantee a feasible solution. A
new solution is obtained by an atomic move. Their system used recency

6 Graham Kendall and Naimah Mohd Hussin

based short-term memory (TS) and frequency based long-term memory (TL)
to improve the solution quality. The tenure of the short-term tabu list is
found not to be critical if both longer term and short-term memory are used.
Their experiments showed that longer term memory produced better
schedules and since the longer term memory list can reduce its effectiveness,
a quantitative analysis method is used to estimate the appropriate length of
the longer term tabu list and a controlled tabu relaxation technique
(emptying entries in TS and TL) is used to diversify the search. White, Xie
and Zonjic (2004) expand their research to include comparisons between
their results and other published algorithms.

Wright (2001) incorporated sub cost guided search in both simulated
annealing and tabu threshold acceptance methods. In tabu thresholding, the
intensification and diversification are explicitly divided into two separate
phases - the improving (intensifying) phase and the mixed (diversifying)
phase. He used a focus form of diversification by accepting a solution even
though the overall cost had increased but one of the sub costs had decreased.
He experimented on modified school timetabling data and found that it
significantly improved the results.

The tabu search meta-heuristic has been explored in detail and applied to
the examination timetabling problem by the above researchers. The main
issues that were addressed and can be explored further are as follows:

– How can we use memory to help in storing history of previous moves
(adaptive, short-term, long-term etc.)?

– What items should be stored in the tabu list?
– Neighbourhood size.
– Type of moves that dictate the next neighbour of a solution state.
– How to balance and decide when to intensify and diversify the

search?
– Conditions for tabu restriction.
– Factors that affect tabu tenure?
– What aspiration criteria can be used to avoid missing a potentially

good solution?
We incorporate some of the above issues into our hyper-heuristic

framework and apply it to the examination timetabling problem.

2. PROBLEM DESCRIPTION

Timetabling is a special case of a scheduling problem (Wren 1996). The
layman's term for a timetable is normally used in an academic environment,
which refers to a class timetable or examination timetable. A timetable
normally tells you when and where events are to take place. Carter and

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

7

Laporte (1996) defined the basic problem in examination timetabling as “the
assigning of examinations to a limited number of available time periods in
such a way that there are no conflicts or clashes”. In some cases conflict
cannot be avoided and the objective is to minimise the number of student
conflicts.

We can represent the examination timetabling problem using a
mathematical model. From the problem definition we know that it is an
assignment type problem because we need to assign examinations to slots
while minimising an objective function and satisfying a set of constraints.
Thus we can formulate the problem as follows:

• E: A set of m examinations E1, E2,…..Em

• S: A set of n slots S1, S2,…..Sn

• A final exam timetable Tmn such that: Tik = 1 if exam i is scheduled
in slot k, 0 otherwise.

• A conflict matrix Cmm such that: Cij = total number of students
sitting for both exams i and j.

• Pik is a penalty given if exam i is scheduled in slot k.
The examination timetabling problem is to assign examinations to slots

subject to some hard constraints that must be satisfied, and minimise soft
constraints violation.

Hard constraints that must be satisfied are:
1. Feasible: The timetable must be feasible such that all exams must be

scheduled and each exam (E1, E2,…..Em) must be scheduled only
once.

i = 1,…m

 ∑

=

=
n

k
ikT

1
1

2. Student conflict: No student should sit for more than one exam in
the same slot. If exam i and exam j are scheduled in slot k, the
number of students sitting for both exam i and j (Cij) must be equal
to zero, and this should be true for all exams already allocated.

 ∑∑∑

= = =

=
m

i

m

j

n

k
ijjkik CTT

1 1 1
0

8 Graham Kendall and Naimah Mohd Hussin

We determine the quality of an examination timetable solution based on
the penalty given if certain soft constraints are violated. The soft constraint
that we would like to consider is the proximity constraint and a proximity
cost is given when the proximity constraint is violated. A weighted
proximity cost xs is given whenever a student has to sit for two examinations
scheduled s periods apart: these weights are x1 = 16, x2 = 8, x3 = 4, x4 = 2 and
x5 = 1.

Pik, the total proximity cost if exam i is scheduled in slot k, is as follows:

 ∑

=
−=

m

j
ijlkik CxP

1
||

where, j (an exam in conflict with exam i), is scheduled in slot l

Finally, our objective is to minimise the total proximity cost:

 ∑∑

==

n

k
ikik

m

i
PT

11

Other additional soft constraints that are specific to university
requirements can be added to this problem. But in this paper, we apply the
same method of evaluating solution quality so that we can compare our
results with other results published in the literature.

3. HYPER-HEURISTIC FRAMEWORK AND
STRATEGY

A hyper-heuristic framework (Burke et al 2003) works at a higher level
of abstraction than current (meta-)heuristic approaches and does not require
domain knowledge. It only has access to non-domain specific information
that it receives from the heuristics that it operates upon. The hyper-heuristic
can be implemented as a generic module that has a common interface to the
various low-level heuristics and other domain specific knowledge (typically
the evaluation function) of the problem being solved. Initially, the hyper-
heuristic needs to know the number of n heuristics provided by the low-level
heuristic module. It will guide the search for good quality solutions by
setting up its own strategy of calling and evaluating the performance of each
heuristic known by their generic name H1, H2, ….Hn. The hyper-heuristic

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

9

does not need to know the name, purpose or implementation detail of each
low-level heuristic. It just needs to call a specific heuristic, Hi, and the
heuristic may modify the solution state and return the result via an
evaluation function. The low-level-heuristic module can be viewed as a
‘black box’ that hides the implementation detail and only returns a value.

3.1 Hyper-heuristic module

The hyper-heuristic module is the main part of the research area where
we need to design and test strategies that can intelligently select the best
heuristic that will help guide the search to either intensify or diversify the
exploration of the search region.

The general framework for our hyper-heuristic algorithm is as follows:

Step 1. Construct initial solution
Step 2. Do
 Consider heuristics that are not tabu.
 Apply chosen heuristic and make the heuristic tabu.

Update Solution.
 Until terminating condition

The initial solution is produced using a constructive heuristic (largest

degree or saturation degree (Carter and Laporte (1996)). The initial solution
need not be a good solution and it may not be feasible (i.e. some exams are
unscheduled). The algorithm works with infeasible solutions since some of
the low-level heuristics specialised in scheduling unscheduled exams. Next,
a randomisation (randomly move exams to other valid slots) is carried out to
start different runs with different solutions. In Step 2 we explore the
neighbourhood to search for a better solution or local optima (and possibly
global optima). The framework is similar to a local search except that in
Step 2, we explore the neighbourhood by selecting which heuristic to use to
update the current solution.

Our hyper-heuristic differs from other neighbourhood search algorithm or
meta-heuristics (such as Tabu Search and Simulated Annealing) with respect
to the management of several heuristics. The hyper-heuristic manages the
heuristics by selecting which heuristic(s) should be considered and which
heuristic(s) should be applied. In fact, the heuristics being considered can be
a local search algorithm or just a simple move operator.

The hyper-heuristic is like a manager who employs a team of heuristic
workers. A good manager does not need to know how the workers do their
job but it must be intelligent in recognising when a good job is done. The

10 Graham Kendall and Naimah Mohd Hussin

workers may be good or poor and sometimes a good combination of team
workers will produce good solution. Normally when we have a team of
workers, rather than asking them to work in sequence, we can ask them to
perform their specific task simultaneously and whoever produce the best
work will be accepted. Their progress will be monitored so that the manager
can learn and recognise each workers’ specialisation and will be able to
decide and select the next team of workers.

Therefore, we can view the hyper-heuristic as a manager and the
collection of heuristics as a team of workers who are given an area in the
solution space (heuristic search space which is part of the solution search
space) and their task is to find a good solution and return it. The heuristic
may be doing a complex task by intensively exploring a large neighbourhood
search space or it may just do a simple task of exploiting a very small
neighbour solutions. In the search for good quality solutions, the hyper-
heuristic exhibits a kind of reinforcement learning, which will assist in an
intelligent action at each decision point. It monitors the behaviour of each
low–level heuristic by storing information about their performance using
adaptive memory. Our hyper-heuristic uses a tabu list that is of a fixed
length n, where n is the number of low-level heuristics. Instead of storing
moves, each tabu entry stores (non-domain) information about each heuristic
i.e. heuristic number, recent change in evaluation function, CPU time taken
to run the heuristic, and tabu status (or tabu duration, as the term we prefer to
use). Tabu duration indicates how long a heuristic should remain tabu (0-4)
and, will therefore, not applied in the current iteration. If the tabu duration is
zero, the heuristic is said to be tabu inactive and can be applied to update the
solution. If the tabu duration is non-zero, the heuristic is said to be tabu
active and may not be used to update the solution. A heuristic is made tabu
when it satisfies our tabu restriction conditions. We do not use any aspiration
criteria (changing a tabu active status to tabu inactive because the heuristic
improves the solution) at this point because we wanted to compare which
tabu duration produces the best quality solution. Therefore, the only time a
heuristic change its status from tabu active to tabu inactive is when the tabu
duration is zero. The tabu duration is set for a heuristic whenever a tabu
restriction is satisfied. After each iteration, the tabu duration is decremented
until it reaches zero and the heuristic is now tabu inactive. For each test on
the dataset we fixed the tabu duration between zero and four and in this
paper, we will compare which tabu duration produces better quality
solutions.

We use several strategies when considering the heuristics: consider all
heuristics (i.e. no tabu criteria), consider heuristics that are not tabu, or
consider heuristics that lead to improvement only. Each heuristic differs in
how it decides to move, thus creating its own search space region (heuristic

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

11

search space) in the solution search space. At each choice point, we need to
decide whether we want to intensify the search in a particular region by
applying the same heuristic or to diversify the search into another region by
applying a different heuristic. At this point, the hyper-heuristic can actually
choose intelligently when to intensify or diversify because we believe that by
allowing the low-level heuristics to compete at each iteration and selecting
the heuristic with the best performance will help to balance the
diversification and intensification of the solution search space. Heuristics
that have been applied become tabu so that in the next iteration we can look
at the possibility of other low-level heuristic that may perform well but,
perhaps, not as well as the previous heuristics that are now tabu active. We
have implemented the simplest strategy, i.e., Hyper-heuristic with fixed tabu
duration (HH-FTD), where we consider all tabu inactive heuristics and apply
heuristics that has the best improvement only. The algorithm iterates for a
fixed time or until there is no further improvement for a given number of
heuristic calls.

3.2 Low-level heuristics module

Low-level heuristics are heuristics that allow movement through a
solution space that require domain knowledge and are problem dependent.
Each heuristic creates its own heuristic search space that is part of the
solution search space. The idea is to build a collection of possible simple
moves or choices since we would like to provide a library of heuristics that
can be selected intelligently by a hyper-heuristic tool. This library, at the
moment, will only include simple low-level heuristics and future work will
include the possibility of adding other meta-heuristics such as Simulated
Annealing, Tabu Search or a Memetic Algorithm.

The heuristics change the current state of a problem into a new state by
accepting a current solution and returning a new solution. Each low-level
heuristic can be considered as improvement heuristics that returns a move, a
change in the penalty function and the amount of time taken to execute the
heuristic. The best performing heuristic should cause a maximum decrease in
penalty (the lowest value). Each move from an individual heuristic may
cause the search to probe into the current neighbourhood or to explore into a
different neighbourhood. A change in the penalty value means changing the
penalty value for each of the soft constraints that were violated (first order
conflict, second order conflict, etc) or moving an exam into an unscheduled
list (exam becomes unscheduled and violates hard constraints).

We have implemented the following low-level heuristics, grouped into
four categories:

12 Graham Kendall and Naimah Mohd Hussin

1. Select and schedule exam – Selecting the next exam to schedule is

dependent upon which factor is considered to be important in
determining the difficulty of scheduling an exam. The strategies that had
been used in literature, and are adapted from the graph colouring
heuristics, are used here. Once an exam is selected, it will be scheduled
into the best available slot that will maximise the reduction in penalty.

• Largest enrolment – Exam with largest enrolment should be
selected since it might be difficult to schedule at a later time.

• Largest exam conflict – Exam that is in conflict with the largest
number of exams is normally considered to be more difficult to
schedule.

• Largest total student conflict – Exam that has maximum total
number of students in conflict.

• Largest exam conflict already scheduled – Exam that has the
greatest number of exams in conflict already scheduled would
be difficult to schedule since it would have less choice of valid
slots.

• Exam with least valid slots – Exam that has the least valid slots
should be scheduled now since it may not have any slots
available at a later stage.

2. Move exam i from location x to y
• Select an exam at random and move to another random slot.

• Move exam i with maximum penalty from randomly selected
exams.

• Move exam i with highest second order conflict from location x
to a new location y.

• Move exam i with highest second order conflict from location x
to a new location y which maximises the reduction in second
order conflict.

• Move exam i with first order conflict from location x to a new
location y which does not result in first order conflict.

3. Swap
• Random - Select an exam at random and find another exam at

random which can swap slots.

• Min-Max Swap – Swap the slots for exam with minimum
penalty and exam with maximum penalty.

4. Remove – Remove a randomly selected exam from the examinations
already scheduled.

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

13

All of the above low-level heuristics are either 1-opt or 2-opt and there is
also a mixture of some randomness and deterministic selection of exams and
slots. We purposely test low-level heuristics with simple moves rather than
low-level heuristic with intelligence and complex moves because we want to
make sure that the hyper-heuristic can recognise good moves and make an
intelligent decision based on these simple moves. Furthermore, we want to
make the problem-domain knowledge heuristics easy to implement and the
hyper-heuristic more generalised.

4. EXPERIMENTAL RESULTS

We have implemented and tested our tabu search based hyper-heuristic
(TSHH) framework on a PC with an AMD Athlon 1 GHz processor, 128 Mb
RAM and Windows 2000. The program was coded in C++ using an object-
oriented approach. We defined and implemented the hyper-heuristic and
heuristics as objects that have a common interface and can interact with each
other. Once the hyper-heuristic object is fully defined, implemented and
tested with a set of heuristics object for one application, we can easily reuse
the hyper-heuristic object with another set of heuristic objects for a different
application. This approach should be cost effective because it can reduce the
complexity of building another system. Thus, we can easily produce
solutions to users who require “good enough - soon enough - cheap enough”
(Burke et. al. 2003) solutions to their problems by implementing several
domain specific low-level heuristics with simple moves.

Therefore, the objectives of our experiments are:
• To establish a well defined interface between our hyper-heuristic

module and our low-level heuristics module

• To compare the quality of results produced by our hyper-heuristic with
other known methods published using similar quality measures.

• To demonstrate that the hyper-heuristic module does not need to rely
upon domain knowledge to make its decisions.

• To demonstrate that the hyper-heuristic can manage and choose the
low-level heuristics at each decision point in a search.

• To evaluate the performance of low-level heuristic.

• To determine further improvement in our hyper-heuristic module

14 Graham Kendall and Naimah Mohd Hussin

4.1 Datasets

We tested our implementation with datasets taken from established
datasets made public and used by a number of other examination timetabling
researchers. The datasets were provided by Michael Carter and can be
downloaded from ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. Table 1
shows the characteristics of each dataset. Each datasets is stored in two
files; one file contains a list of courses and their enrolment, and the other a
list of student and their course selections. We test our method on eight of the
datasets. We use both data files to construct a conflict graph and the largest
degree algorithm (Carter, Laporte and Lee 1996) to construct the initial
solution. The density of the conflict matrix in Table 1 is calculated as the
average number of other exams that each exam conflicts with, divided by the
total number of exams. For example, a conflict matrix density of 0.5 or 50%
indicates that each exam conflicts with half of the other exams on average.

Table 1. Characteristics of Real Problems
Institu-
tion
Code

Institution No.
of
Slots

No. of
Exams

No. of
Students

No. of
Student
Exams

Conflict
Matrix
Density

Car-f92 Carleton University,
Ottawa

32 543 18,419 55,522 13.8%

Car-s91 Carleton University,
Ottawa

35 682 16,925 56,877 12.8%

Ear-f83 Earl Haig Collegiate
Institute, Toronto

24 189 1,125 8,109 26.7%

Hec-s92 Ecoles des Hautes Etudes
Commercials, Montreal

18 81 2,823 10,632 42.0%

Kfu-s93 King Fahd Uni. Of
Petroleum and Mineral,
Dharan

20 461 5,349 25,113 5.6%

Sta-f83 St Andrews Junior High
Sch.

13 139 611 5,751 14.4%

Tre-s92 Trent University,
Peterborough, Toronto

23 261 4,360 14,901 5.8%

Ute-s92 Faculty of Engineering,
University of Toronto

10 184 2,750 11,793 8.5%

 The numbers of slots are obtained from results reported by Carter, Laporte
and Lee (1996). They used five different graph colouring heuristics to
determine the minimum number of slots (sessions) required to produce a
feasible solution subject to a no clash constraint.

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

15

4.2 Experimental Results and Analysis

Our hyper-heuristic, with fixed tabu duration (HH-FTD), was tested with
eight benchmark datasets. For each dataset, we experimented with tabu
durations varying from 0 to 4 and with two different terminating conditions
(no further improvement for the last 10,000 iterations or running time of 10
minutes). In Table 2, the first column shows the file name of each dataset
and the next five columns show our results (best penalty value per student)
with a tabu duration varying from 0 to 4. We do not show here the actual
time that it finds the best solution but the best results are normally found
towards the end of the search. After further analysis on the performance
graph we found that improvements are still being made toward the end of
run time. Therefore, we run the algorithm again for four hours with a tabu
duration of 2 (many of the datasets work best with tabu duration of 2), to see
whether much better solutions can be found if we run the algorithm longer
than the 10 minutes that we used previously. The last column in Table 2
shows that prolonging the algorithm does improve the solution further and it
demonstrates that it is robust and able to avoid being trapped in local optima.

Table 2. Results with 10 minutes and 4 hours run

File Hyper-Heuristic with fixed TD (best penalty value
per student from 8 runs)

HH-FTD
(TD=2,
4 hr. run)

% improve
with long
run

 TD=0 TD=1 TD=2 TD=3 TD=4

Car-f92 5.94 5.52 5.46 5.63 6.02 4.67 14.47%

Car-s91 6.91 6.47 6.32 6.98 7.10 5.37 15.03%

Ear-f83 47.01 44.58 43.58 43.54 45.16 40.18 7.80%

Hec-s92 13.84 14.09 12.79 12.24 12.86 11.86 7.27%

Kfu-s93 20.53 18.32 18.08 19.22 19.86 15.84 12.39%

Sta-f83 168.4 165.8 165.6 166.3 167.1 157.38 4.96%

Tre-s92 11.01 10.99 9.79 10.99 10.59 8.39 14.30%

Ute-s92 29.34 28.18 27.97 29.20 31.05 27.60 1.32%

When the tabu duration is 0, the hyper-heuristic does not make any

heuristics tabu and, since none of the results is the best among the datasets,
we can conclude that we do need to use a tabu list to guide the hyper-
heuristic in its heuristic selection. In our tabu based hyper-heuristic strategy,
we apply the concept of heuristics cooperating with each other rather than
penalising a non-performing heuristic. When TD is greater than zero, we
apply a tabu restriction where a heuristic will be tabu active if its solution

16 Graham Kendall and Naimah Mohd Hussin

value has been accepted to update the current solution. The heuristic will
remain tabu active for a number of steps equal to TD. We made a heuristic
that has been applied tabu because we want to direct the search to other
possible heuristic search spaces. Eventually we may go back to a heuristic
search space once it is no longer tabu active and can give the best solution
amongst all tabu inactive heuristics. The best result for six of the datasets is
when TD is two and for two of the datasets, the best result is when TD = 3.
It is interesting to find that two datasets (Ear-f83 and HEC-s92) obtain best
result when TD is higher and has a higher conflict matrix density (refer to
Table 1) i.e. 26.7% and 42.0%. An examination timetabling dataset with
higher conflict matrix density would imply that we might have less and
sparsely distributed solution points (feasible solution) in our solution space
since too many exams are conflicting with each other. Thus, a higher TD
may force it to diversify its exploration of the solution search space by
allowing it to move from one heuristic search space to another. For each of
the datasets, except one dataset (Hec-s92), the average penalty started to
decrease as we increased the TD and began to increase again once it reach its
minimum average penalty. This shows that the hyper-heuristic does need to
decide which TD is best for each dataset because a tabu duration, which is
too high or too low, will produce worse solutions.

Figure 1: Hyper-heuristic performance with different TD.

Hyper-heuristic Performance

90000

100000

110000

120000

130000

140000

150000

0 50000 100000 150000 200000 250000

Steps

Pe
na

lty

Tabu=0
(6.01)
Tabu=1
(5.52)
Tabu=2
(5.58)
Tabu=3
(5.90)
Tabu=4
(6.10)

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

17

Figure 1 shows the hyper-heuristic performance with different TD on car-f92
dataset. This dataset is one of the largest dataset with 543 exams to schedule
in 32 slots and with a total number of students of 18,419. This graph
demonstrates how the hyper-heuristic explores the search space. The x-axis
represents the iteration steps up to 250,000 moves while the y-axis represent
overall penalty cost. Note that the timetable quality is measured by taking
the average penalty per student. The curve shows that the algorithm begins
with an initial solution and rapidly improves the result in less than 10,000
moves. The graph shows fluctuations because at every move we accept a
solution from the best performance heuristic even though it does not improve
the solution. The higher TD means that the heuristics will remain tabu
longer, thus allowing other heuristics to be applied next. By increasing the
TD, we notice that the next solution accepted may make the solution much
worse but it can still improve the solution in the next move. So, a tabu
duration value does help to improve solution quality, and too high a value
may make the solution much worse, making it difficult to improve it again.
The simplest form of this hyper-heuristic does not limit the range of how
much a worse solution may be accepted but further investigation on this
hyper-heuristic will limit the acceptance of worst solution.

The graphs in Figure 2 and Figure 3 show when two of the heuristics were
applied and how the two heuristics change the solution state.

Figure 2: Heuristic 6 Figure 3: Heuristic 7
 H6-Select exam at random and move to a

random slot

100000

105000

110000

115000

120000

125000

0 50000 100000 150000 200000

steps

H7-Move exam wit h maximum penalt y f rom
randomly select ed exams

100000

105000

110000

115000

120000

125000

0 50000 100000 150000 200000

steps

The larger number of plots in Figure 2 compared to Figure 3 indicates that
heuristic 6 has been applied more than heuristic 7. We do not show graphs
for other heuristics because the shape is almost the same except that some
are applied more than others. We also do not show how each heuristic
performs in all iterations because we only keep track of its performance
when it is applied. We can also see that for different datasets certain

18

heuristics will be applied more than the other, therefore it is justifiable for us
to use several low-level heuristics that can compete with each other and a
hyper-heuristic can than select the best low-level heuristic to be applied,
given not only the point in the search space but also a specific problem
instance.

Table 3 shows our four hours run results compared to other published
results for benchmark datasets. Our objective here is to show that the HH-
FTD is able to produce good quality and feasible solutions for examination
timetabling problems even though they may not produce the best results.
The results showed that our generic method is able to produce good quality
solutions compared to the others. The first two that we compare are results
against Di Gaspero and Schaerf (2001) who use tabu search and Di Gaspero
(2002) who use tabu search with multi-neighbourhood. Our results are
better than the tabu search method in all cases and almost as good as the tabu
search with multi-neighbourhood. We also compare our results with results
from other methods such as: constructive heuristics with backtracking by
Carter, Laporte and Lee (1996); memetic algorithm by Burke and Newall
(1999); greedy constructive heuristic with an optimiser by Caramia,
Dell’Olmo and Italiano (2001); and hybrid of constraint programming,
simulated annealing and hill climbing with Kempe chain neighbourhood by
Merlot et al (2003). Our results are better than Carter, Laporte and Lee
(1996) and Caramia, Dell’Olmo and Italiano (2001) in four cases. In all
cases we could not produce better results than Burke and Newall (1999) and
Merlot et al (2002).

Table 3. Comparing our best results and published results

File HH-FTD
(TD=2,
4 hr. run)

Di
Gaspero &
Schaerf

Di
Gaspero

Carter
et al

Caramia
et al

Merlot
et al

Burke &
Newall

Car-f92 4.67 5.2 - 6.2 - 7.6 6.0 4.3 4.2

Car-s91 5.37 6.2 5.68 7.1 - 7.9 6.6 5.1 4.8

Ear-f83 40.18 45.7 39.36 36.4 - 46.5 29.3 35.1 35.4

Hec-s92 11.86 12.4 10.91 10.8 - 15.9 9.2 10.6 10.8

Kfu-s93 15.84 18.0 - 14.0 - 20.8 13.8 13.5 13.7

Sta-f83 157.38 160.8 157.43 161.5-165.7 158.2 157.3 159.1

Tre-s92 8.39 10.0 - 9.6 - 11.0 9.4 8.4 8.3

Ute-s92 27.60 29.0 - 25.8 - 38.3 24.4 25.1 25.7

As a whole, we can see that our method do not perform worst in certain

cases and best in other cases, therefore, it does work reasonably well across
all problem instances. We believe that with further enhancements in our

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

19

hyper-heuristic selection method and some adaptive tabu duration, we can
improve our results.

5. CONCLUSIONS AND FUTURE WORK

The simplest form of the hyper-heuristic module HH-FTD has been
implemented and tested on exam timetabling benchmark data. Preliminary
results showed that it is not able to beat the best results in the literature but it
is able to produce good quality solutions. Our objective is not to beat the
best solution but to show that the hyper-heuristic module does produce good
solutions that are feasible and will work across all problem instances and
other real-world problems. Our generic solution methodology can easily be
applied to other problems by just changing the low-level heuristics and the
evaluation function while the search method remains the same.

Currently, we are testing a more advance hyper-heuristic module that
includes more tabu criteria such as tabu criteria based on CPU time, tabu
based on change in penalty function and a probabilistic heuristic selection.
In the future, we will experiment on adaptive tabu strategies and apply our
method on a larger timetabling instance as well as other applications.

Acknowledgements: This research is done at The University of Nottingham and supported
by the Malaysian Public Services Department and University Technology MARA (UiTM),
Malaysia.

REFERENCES

1. Burke E.K, Kendall G. and Soubeiga E. (2003), “A Tabu Search Hyper-heuristic for
Timetabling and Rostering”, Journal of Heuristics, Vol 9(6), pp 451-470.

2. Burke E.K. and Petrovic S. (2002), "Recent research directions in automated
timetabling", European Journal of Operational Research 140, pp 266–280.

3. Burke E.K. and Newall J.P. (2004), "Solving Examination Timetabling Problems through
Adaptation of Heuristics Orderings”, Annals of Operations Research 129, pp 107-134.

4. Burke E.K. and Newall J.P. (1999), "A Multi-Stage Evolutionary Algorithm for the
Timetable Problem", the IEEE Transactions on Evolutionary Computation, Vol 3.1, pp
63-74.

5. Burke E.K., Hart E., Kendall G., Newall J., Ross P and Schulenburg S. (2003), "Hyper-
Heuristics: An Emerging Direction in Modern Search Technology". Ch 16; Handbook of
Meta-Heuristics (eds. Glover F. and Kochenberger), pp 457-474, Kluwer.

6. Caramia, M., Dell'Olmo, P. and Italiano, G.F. (2001), “New Algorithms for Examination
Timetabling”, Lecture Notes in Computer Science 1982, Springer-Verlag, pp 230-242.

20

7. Carter M.W. (1986), "A Survey of Practical Applications of Examination Timetabling

Algorithms", Operations Research Society of America, Vol 34 No 2 March-April.
8. Carter M.W. and Laporte G (1996), "Recent Developments in Practical Examination

Timetabling", In Burke E.K. and Ross P. (eds), The Practice and Theory of Automated
Timetabling (PATAT 1995), Springer-Verlag 1996, pp 3-21.

9. Carter M.W., Laporte G. and Lee S.Y. (1996), "Examination Timetabling: Algorithmic
Strategies and Applications", Journal of the Operational Research Society Vol 47 Issue 3,
pp 373-383.

10. Colorni A., Dorigo M. and Maniezzo V. (1998). "Metaheuristic for high-school
timetabling" Computational Optimization and Applications, 9, Kluwer Acad. Publ.,
Dodrecht, NL, pp. 275-298.

11. Cowling P., Kendall G. and Han L. (2002), "An Investigation of a Hyperheuristic Genetic
Algorithm Applied to a Trainer Scheduling Problem". In proceedings of Congress on
Evolutionary Computation (CEC2002), pp 1185-1190, ISBN 0-7803-7282-4

12. Cowling P., Kendall G. and Soubeiga E.. (2002) "Hyperheuristics: A Tool for Rapid
Prototyping in Scheduling and Optimisation". In LNCS 2279, Applications of
Evolutionary Computing : Proceedings of Evo Workshops 2002, Kinsale, Ireland, April
3-4, 2002, (eds : Cagoni S, Gottlieb J, Hart E, Middendorf M, Günther R), pp 1-10, ISSN
0302-9743, ISBN 3-540-43432-1, Springer-Verlag

13. Cowling P., Kendall G. and Soubeiga E. (2001), "A Hyperheuristic Approach to
Scheduling a Sales Summit". In Burke E.K. and Erben W. (eds.) The Practice and Theory
of Automated Timetabling III (PATAT 2000), Lecture Notes in Computer Science 2079,
Springer-Verlag 2001, pp 176-190.

14. Cowling P, Kendall G and Soubeiga E. (2002), "Hyperheuristics: A robust optimisation
method applied to nurse scheduling". Seventh International Conference on Parallel
Problem Solving from Nature, PPSN2002, Springer LNCS, pp 851-860.

15. De Werra D. (1985), "An introduction to timetabling", EJOR 19 pp 151-162.
16. Di Gaspero L. (2002), "Recolour, Shake and Kick: A recipe for the Examination

Timetabling Problem." In: Burke, E.; De Causmaecker, P. (eds.): Proceedings of the
Fourth International Conference on the Practice and Theory of Automated Timetabling,
Gent, Belgium, August 2002, pp. 404--407.

17. Di Gaspero L. and Schaerf A. (2001), "ATabu Search Techniques for Examination
Timetabling", In Burke E.K. and Erben W. (eds.) The Practice and Theory of Automated
Timetabling III (PATAT 2000), Lecture Notes in Computer Science 2079, Springer-
Verlag 2001, pp 104 –117.

18. Di Gaspero L. and Schaerf A. (2003), "Multi-neighbourhood Local Search with
Application to Course Timetabling". In: Burke, E.K. and De Causmaecker, P. (eds.):
Practice and Theory of Automated Timetabling IV (PATAT 2002), Lecture Notes in
Computer Science 2740, Springer-Verlag 2003, pp 262--275.

19. Dowsland K.A. (1998), “Off-the-Peg or Made-to-Measure? Timetabling and Scheduling
with SA and TS”, In Burke E.K. and Carter M. (eds.) The Practice and Theory of
Automated Timetabling II (PATAT 1997), Lecture Notes in Computer Science 1408,
Springer-Verlag, pp 262--275.

20. Glover F. (1987), “Tabu Search Methods in Artificial Intelligence and Operations
Research”, ORSA Artificial Intelligence, 1(2):6.

21. Glover F. and Laguna M. (1997), "Tabu search", Boston : Kluwer Academic Publishers.
22. Gratch J.M. and Chien S.A. (1996), "Adaptive Problem-solving for Large Scale

Scheduling Problems: A Case Study," Journal of Artificial Intelligence Research Vol. 4,
pp. 365-396.

An Investigation of a Tabu search based Hyper-heuristic for
Examination Timetabling

21

23. Hart E., Ross P.M. and Nelson J. (1998), ``Solving a real-world problem using an

evolving heuristically driven schedule builder'', Evolutionary Computing, vol 6 no 1, pp.
61-80, MIT Press.

24. Hertz A. (1991), "Tabu Search for large scale timetabling problems", EJOR, vol 54, pp.
39-47.

25. Kendall G, Soubeiga E. and Cowling P. (2002), "Choice function and Random
Hyperheuristics". Proceedings of the fourth Asia-Pacific Conference on Simulated
Evolution And Learning, SEAL 2002.

26. Merlot L.T.G., Boland N, Hughes B.D. and Stuckey P.J. (2003), "A Hybrid Algorithm
for the Examination Timetabling Problem", In Burke E.K. and De Causmaecker P. (eds.):
Practice and Theory of Automated Timetabling IV (PATAT 2002), Lecture Notes in
Computer Science 2740, Springer-Verlag 2003, pp 207-231.

27. Nareyek A. (2001), "An Empirical Analysis of Weight-Adaptation Strategies for
Neighborhoods of Heuristics", MIC’2001 - 4th Metaheuristics International Conference,
pp 211–216.

28. Osman I.H. and Kelly J.P. (editors) (1996), "Meta-heuristics : theory & applications",
Kluwer Academic Publishers.

29. Schaerf A. and Schaerf M. (1995), "Local Search Techniques for High School
Timetabling", . Proceedings of the 1st International Conference on the The Practice and
Theory of Automated Timetabling (PATAT 1995), Burke E.K. and Ross P. (eds).

30. Schaerf A. (1999), "A survey of automated timetabling", Artificial Intelligence Review.
n.13, pp 87-127.

31. Terashima-Marín H., Ross P.M. and Valenzuela-Rendón M. (1999), "Clique-Based
Crossover for Solving the Timetabling Problem with Gas", Proceedings of the Congress
on Evolutionary Computation 1999 Washington, D.C., July 6-9,99, pp 1200-1206.

32. Voudoris C. and Tsang E. (1999), "Guided Local Search and its Application to the
Travelling Salesman Problem", European Journal of Operational Research 113, pp 469–
499.

33. White G.M. and .Xie B.S. (2001), "Examination Timetables and Tabu Search with
Longer Term Memory", In Burke E.K. and Erben W. (eds.) The Practice and Theory of
Automated Timetabling III (PATAT 2000), Lecture Notes in Computer Science 2079,
Springer-Verlag 2001, pp 85-103.

34. White G.M., Xie B.S. and Zonjic S. (2004), "Using tabu search with longer-term memory
and relaxation to create examination timetables", European Journal of Operational
Research 153, pp 80-91.

35. Wren A. (1996), "Scheduling, Timetabling and Rostering - a special relationship?", In
Burke E.K. and Ross P. (eds) The Practice and Theory of Automated Timetabling
(PATAT 1995), Lecture Notes in Computer Science Vol. 1153, Springer-Verlag 1996, pp
46-76.

36. Wright M. (2001), "Subcost-Guided Search - Experiments with Timetabling Problems",
Journal of Heuristics, 7, pp 251-260, Kluwer Academic Publishers.

	INTRODUCTION
	Hyper-heuristics
	Tabu Search (Timetabling)

	PROBLEM DESCRIPTION
	HYPER-HEURISTIC FRAMEWORK AND STRATEGY
	Hyper-heuristic module
	Low-level heuristics module

	EXPERIMENTAL RESULTS
	Datasets
	Experimental Results and Analysis

	CONCLUSIONS AND FUTURE WORK

