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Abstract: This paper investigates a tabu search based hyper-heuristic for solving 
examination timetabling problems.  The hyper-heuristic framework uses a tabu 
list to monitor the performance of a collection of low-level heuristics and then 
make tabu heuristics that have been applied too many times, thus allowing 
other heuristics to be applied.  Experiments carried out on examination 
timetabling datasets from the literature show that this approach is able to 
produce good quality solutions. 
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1. INTRODUCTION 

This paper investigates a hyper-heuristic, based on tabu search, and its 
application to examination scheduling.  The objective is to design a generic 
system that is able to select the most appropriate algorithm for the current 
instance of a given timetabling problem.  Carter (1986), Carter and Laporte 
(1996) and Schaerf (1999) have conducted comprehensive surveys on 
various methods and strategies applied by researchers to solve timetabling 
problems.  Many of these methods have successfully solved given problems 
and some algorithms/heuristics were reported to work well with particular 
data sets whilst others performed better when presented with different data 
sets.  This indicates that one of the potential research issues in timetabling is 
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to design a high-level algorithm that automatically, and intelligently, chooses 
a method suitable for a given problem instance (Burke and Petrovic 2002).  

This paper will report on our research into the design of a new hyper-
heuristic framework using a tabu list and adaptive memory with the intention 
of monitoring and learning the behaviour and performance of low-level 
heuristics so as to help in making a well-informed decision of applying the 
best heuristics at each decision point.  We test our approach on examination 
timetabling problem using examination timetabling problem dataset publicly 
available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. 

The next sub-section reviews the use of hyper-heuristic methodologies 
and tabu search related to timetabling problems. Section 2 gives a 
description of the examination timetabling problem. We describe our hyper-
heuristic framework and strategy in Section 3 and Section 4 gives our 
experimental results and analysis. Section 5 concludes with a summary and 
presents future research directions.  

1.1 Hyper-heuristics 

The term hyper-heuristic (Burke et al, 2003) denotes a method that 
operates at a higher level of abstraction and can be thought of as a (meta-) 
heuristic that is able to intelligently choose a possible heuristic to be applied 
at any given time. We refer to Burke et al (2003) for further motivation and 
discussion on the emergence of hyper-heuristic to solve optimisation 
problems.  This includes references to earlier work that can be categorised as 
hyper-heuristic approaches, although they do not use this term. 

One example of solving a large-scale university examination timetable 
problem using a hyper-heuristic approach can be seen in Terashima-Marin, 
Ross and Valenzuela-Rendon (1999).  Their approach had two phases in the 
construction of a timetable.  Each phase used a different set of heuristics and 
a switch condition determined when to move from one phase to the other.  A 
genetic algorithm, using a non-direct chromosome representation, was used 
to evolve the choice of heuristics, switch condition and strategies.  

Burke and Newall (2004) proposed an adaptive method in constructing 
initial solutions for the examination timetabling problem. An initial ordering 
heuristic produced an order of exams to be scheduled.  The ordering 
heuristic provides a good solution if the order is ideal, otherwise, it will 
adapt and improve the order, thus improving the initial solution.  The results 
showed that the method could substantially improve the solution quality over 
the original heuristic (flat ordering, largest degree and smallest degree).  

Cowling, Kendall and Soubeiga (2001) use a choice function in their 
hyper-heuristic to determine which low level heuristic will be called next.  
The choice function adaptively ranks the low-level heuristics by considering 
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recent improvement of each low-level heuristic, recent improvement of 
consecutive pairs of low-level heuristics and the number of CPU seconds 
elapsed since a particular heuristic was last called.  The method was 
successfully tested on different applications: sales summit scheduling 
(Cowling, Kendall and Soubeiga 2001), nurse scheduling (Kendall, Soubeiga 
and Cowling 2002) and project presentation scheduling. (Cowling, Kendall 
and Soubeiga 2002).   

Cowling, Kendall and Han (2002) use a genetic algorithm based hyper-
heuristic (Hyper-GA) to construct a sequence of heuristics that are applied to 
a trainer scheduling problem.  

Nareyek (2001) proposed a learning procedure in a search process that 
learns to select promising heuristics based on weight adaptation.  Their 
empirical study was carried out on two problems: Orc Quest and Logistics 
Domain.  

Burke, Kendall and Soubeiga (2003) have used a tabu search hyper-
heuristic (although different to the one proposed in this paper) and have 
successfully applied it to course timetabling and rostering problems.  They 
used a ranking mechanism to dynamically rank each low-level heuristics. 
The heuristic with the highest rank will be applied in the next iteration and if 
the heuristic does not improve the solution, it will be placed in a tabu list.  
This tabu list is used to prevent non-performing heuristics from being chosen 
again in the near future.  Our hyper-heuristic differs with respect to how we 
use the tabu list and how we choose and apply heuristic.  Further details are 
given in Section 3.    

There are other papers published on methods that are similar to the 
concept used in hyper-heuristics. It is not our intention to mention all of 
them, but nevertheless, it would be interesting to carry out a complete survey 
and categorise all papers that exhibit hyper-heuristic behaviour. Fro what we 
have seen from existing papers on hyper-heuristics, we believe that further 
research should be carried out in order to inject intelligence into the hyper-
heuristic that does not depend on domain knowledge. 

1.2 Tabu Search (Timetabling) 

In this section, we will discuss briefly how other researchers apply tabu 
search approaches in solving timetabling problem.  The basic form of tabu 
search (TS) is an idea proposed by Fred Glover (1987) to solve 
combinatorial optimisation problems.  The following is a definition by 
Glover and Laguna (1997): 

Tabu search is a meta-heuristic that guides a local heuristic search 
procedure to explore the solution space beyond local optimality. 
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The basic concept of tabu search is an extension of steepest descent by 
incorporating adaptive memory and responsive exploration. It uses memory 
not only to keep track of the current best solution but it also stores 
information related to the exploration process.  Starting from the initial 
solution S0, the algorithm iteratively explores a subset N’(s) of the 
neighbourhood, N(s), of the current solution s. The member with the lowest 
(assuming minimisation) value becomes the current solution irrespective of 
whether its value is better or worse than the current solution. Accepting a 
non-improving move will allow the search to continue to explore areas 
beyond local optima. However this will typically lead to cycling, that is, 
repeatedly moving between some small set of solutions.  To avoid this, it 
uses memory to store a tabu list.  This list contains moves that satisfy some 
tabu restriction criteria and these moves are prohibited for a predetermined 
number of iterations (tabu tenure). Moves that are in the tabu list are said to 
have a tabu-active status.  An aspiration criteria is used to make a solution 
tabu free if the resultant evaluation is of sufficient quality and can prevent 
cycling.  

Glover and Laguna (1997) also describe two important strategies used in 
tabu search: intensification and diversification. Intensification strategies 
involve changing the choice rules to intensify the search to examine 
neighbours of elite solutions.  The idea is that if certain regions contained 
good solutions in the past they may possibly yield better solutions in the 
future.  The diversification stage encourages the search process to examine 
unvisited regions and to generate solutions that differ significantly. 

Schaerf and Schaerf (1995) apply tabu search techniques in scheduling 
lectures to periods for a large high-school.  They represented their timetable 
as an integer-valued matrix Mmxp such that each row j of M represents the 
weekly assignment for teacher tj. The type of moves used are atomic: 
moving a lecture to another period and double moves which are moves made 
by a pair of atomic moves. The algorithm used a tabu search with atomic 
moves interleaved with a randomised non-ascendant method (RNA) using 
double moves. The RNA is used to generate the initial solution and is 
applied again after TS has given no improvements for a given number of 
iterations. The cycle is repeated allowing TS to start in a different direction.  
The tabu list is of variable size.  Each move is inserted into the tabu list with 
a number of iterations I selected at random within a predetermined range. 
The tabu tenure therefore varies for each move.  Each time a move is 
inserted the value I of all moves in the list will be decremented and once it 
reaches zero the move is removed.  The algorithm uses the simplest 
aspiration criteria of accepting a tabu move only if it improves the current 
best solution.  The algorithm gave good results for schools of various types, 
and for different settings of the weights of the objective functions.  The 
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timetable produced is better than the manual timetable and it was able to 
schedule 90-95% of the lectures. 

Di Gaspero and Schaerf (2001) continued this research using tabu search 
for the examination timetabling problem.  They modified their objective 
function using a shifting penalty mechanism (varying weights on soft and 
hard constraints) thus causing the search to explore different solution spaces.  
In order to decide which exams are to be moved, they maintain two violation 
lists: list of exams that violate either hard or soft constraints and list of 
exams that violate hard constraints only.  During the search, they experiment 
on various strategies using shifting penalty mechanisms and the two 
violation lists.  These two features combined with a variable-size tabu list 
and starting the search with a good initial solution, were found to be helpful 
in directing the search into promising regions.  

Di Gaspero (2002) and Di Gaspero and Schaerf (2003) further enhanced 
their algorithm by employing a multi-neighbourhood strategy applied to 
examination timetabling and course scheduling respectively.  In examination 
timetabling problem, Di Gaspero (2002) applied a combination of tabu 
search with different neighbourhoods (union and composition). He 
categorised these combinations into local search that specialised in 
optimising objective function (recolour), perturbing current solution (shake) 
or obtaining more improvement (kick).   The recolour and shake algorithms 
were applied in sequence until no further improvement and the algorithm 
ended with the kick.  The final results on seven benchmark datasets were 
better compared to the basic tabu search with single neighbourhood. 

Dowsland (1998) showed that it is possible to design robust solutions 
based on simulated annealing and tabu search by applying the algorithms on 
different case studies of scheduling, timetabling and staff-rostering problems 
in the education and hospital sectors. She applies varying tabu restriction on 
different moves and use a frequency-based diversification mechanism and 
penalised attributes that occur very frequently. Some of the modifications 
included can improve the tabu search but the implementation frequently 
depends on the precise details of the problem.  Some of these modifications 
are different cost functions, variable tabu length list, combining moves into 
chains, strategic oscillation that force the search into different regions and 
prominent candidate list strategies. 

White and Xie (2001) called their algorithm OTTABU and used it to 
provide an examination timetable using data provided by the University of 
Ottawa.  The problem is modelled as a graph.  The initial solution was 
generated using an algorithm derived from bin packing algorithms (largest 
enrolment first). The initial solution does not guarantee a feasible solution. A 
new solution is obtained by an atomic move. Their system used recency 
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based short-term memory (TS) and frequency based long-term memory (TL) 
to improve the solution quality. The tenure of the short-term tabu list is 
found not to be critical if both longer term and short-term memory are used. 
Their experiments showed that longer term memory produced better 
schedules and since the longer term memory list can reduce its effectiveness, 
a quantitative analysis method is used to estimate the appropriate length of 
the longer term tabu list and a controlled tabu relaxation technique 
(emptying entries in TS and TL) is used to diversify the search. White, Xie 
and Zonjic (2004) expand their research to include comparisons between 
their results and other published algorithms. 

Wright (2001) incorporated sub cost guided search in both simulated 
annealing and tabu threshold acceptance methods.  In tabu thresholding, the 
intensification and diversification are explicitly divided into two separate 
phases - the improving (intensifying) phase and the mixed (diversifying) 
phase. He used a focus form of diversification by accepting a solution even 
though the overall cost had increased but one of the sub costs had decreased.  
He experimented on modified school timetabling data and found that it 
significantly improved the results.   

The tabu search meta-heuristic has been explored in detail and applied to 
the examination timetabling problem by the above researchers.  The main 
issues that were addressed and can be explored further are as follows: 

– How can we use memory to help in storing history of previous moves 
(adaptive, short-term, long-term etc.)? 

– What items should be stored in the tabu list? 
– Neighbourhood size. 
– Type of moves that dictate the next neighbour of a solution state. 
– How to balance and decide when to intensify and diversify the 

search? 
– Conditions for tabu restriction. 
– Factors that affect tabu tenure? 
– What aspiration criteria can be used to avoid missing a potentially 

good solution? 
We incorporate some of the above issues into our hyper-heuristic 

framework and apply it to the examination timetabling problem. 

2. PROBLEM DESCRIPTION 

Timetabling is a special case of a scheduling problem (Wren 1996). The 
layman's term for a timetable is normally used in an academic environment, 
which refers to a class timetable or examination timetable.  A timetable 
normally tells you when and where events are to take place.  Carter and 
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Laporte (1996) defined the basic problem in examination timetabling as “the 
assigning of examinations to a limited number of available time periods in 
such a way that there are no conflicts or clashes”.  In some cases conflict 
cannot be avoided and the objective is to minimise the number of student 
conflicts.   

We can represent the examination timetabling problem using a 
mathematical model.  From the problem definition we know that it is an 
assignment type problem because we need to assign examinations to slots 
while minimising an objective function and satisfying a set of constraints.  
Thus we can formulate the problem as follows: 

• E: A set of m examinations E1, E2,…..Em 

• S: A set of n slots S1, S2,…..Sn 

• A final exam timetable Tmn such that: Tik = 1 if exam i is scheduled 
in slot k, 0 otherwise. 

• A conflict matrix Cmm such that: Cij = total number of students 
sitting for both exams i and j. 

• Pik is a penalty given if exam i is scheduled in slot k.  
The examination timetabling problem is to assign examinations to slots 

subject to some hard constraints that must be satisfied, and minimise soft 
constraints violation. 

 
Hard constraints that must be satisfied are: 
1. Feasible: The timetable must be feasible such that all exams must be 

scheduled and each exam (E1, E2,…..Em) must be scheduled only 
once. 
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We determine the quality of an examination timetable solution based on 
the penalty given if certain soft constraints are violated.  The soft constraint 
that we would like to consider is the proximity constraint and a proximity 
cost is given when the proximity constraint is violated.  A weighted 
proximity cost xs is given whenever a student has to sit for two examinations 
scheduled s periods apart: these weights are x1 = 16, x2 = 8, x3 = 4, x4 = 2 and 
x5 = 1.   

Pik, the total proximity cost if exam i is scheduled in slot k, is as follows:  
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where,  j (an exam in conflict with exam i), is scheduled in slot l  
 

Finally, our objective is to minimise the total proximity cost: 
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Other additional soft constraints that are specific to university 
requirements can be added to this problem.  But in this paper, we apply the 
same method of evaluating solution quality so that we can compare our 
results with other results published in the literature. 

3. HYPER-HEURISTIC FRAMEWORK AND 
STRATEGY 

A hyper-heuristic framework (Burke et al 2003) works at a higher level 
of abstraction than current (meta-)heuristic approaches and does not require 
domain knowledge.  It only has access to non-domain specific information 
that it receives from the heuristics that it operates upon.  The hyper-heuristic 
can be implemented as a generic module that has a common interface to the 
various low-level heuristics and other domain specific knowledge (typically 
the evaluation function) of the problem being solved.  Initially, the hyper-
heuristic needs to know the number of n heuristics provided by the low-level 
heuristic module.  It will guide the search for good quality solutions by 
setting up its own strategy of calling and evaluating the performance of each 
heuristic known by their generic name H1, H2, ….Hn.  The hyper-heuristic 
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does not need to know the name, purpose or implementation detail of each 
low-level heuristic.  It just needs to call a specific heuristic, Hi, and the 
heuristic may modify the solution state and return the result via an 
evaluation function.  The low-level-heuristic module can be viewed as a 
‘black box’ that hides the implementation detail and only returns a value. 

3.1 Hyper-heuristic module 

The hyper-heuristic module is the main part of the research area where 
we need to design and test strategies that can intelligently select the best 
heuristic that will help guide the search to either intensify or diversify the 
exploration of the search region. 

The general framework for our hyper-heuristic algorithm is as follows: 
 
Step 1.   Construct initial solution 
Step 2.   Do 
     Consider heuristics that are not tabu. 
     Apply chosen heuristic and make the heuristic tabu. 

Update Solution. 
    Until terminating condition 
 
The initial solution is produced using a constructive heuristic (largest 

degree or saturation degree (Carter and Laporte (1996)).  The initial solution 
need not be a good solution and it may not be feasible (i.e. some exams are 
unscheduled).  The algorithm works with infeasible solutions since some of 
the low-level heuristics specialised in scheduling unscheduled exams.  Next, 
a randomisation (randomly move exams to other valid slots) is carried out to 
start different runs with different solutions. In Step 2 we explore the 
neighbourhood to search for a better solution or local optima (and possibly 
global optima).  The framework is similar to a local search except that in 
Step 2, we explore the neighbourhood by selecting which heuristic to use to 
update the current solution.  

Our hyper-heuristic differs from other neighbourhood search algorithm or 
meta-heuristics (such as Tabu Search and Simulated Annealing) with respect 
to the management of several heuristics.  The hyper-heuristic manages the 
heuristics by selecting which heuristic(s) should be considered and which 
heuristic(s) should be applied.  In fact, the heuristics being considered can be 
a local search algorithm or just a simple move operator.   

The hyper-heuristic is like a manager who employs a team of heuristic 
workers.  A good manager does not need to know how the workers do their 
job but it must be intelligent in recognising when a good job is done.  The 
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workers may be good or poor and sometimes a good combination of team 
workers will produce good solution.  Normally when we have a team of 
workers, rather than asking them to work in sequence, we can ask them to 
perform their specific task simultaneously and whoever produce the best 
work will be accepted.  Their progress will be monitored so that the manager 
can learn and recognise each workers’ specialisation and will be able to 
decide and select the next team of workers.  

Therefore, we can view the hyper-heuristic as a manager and the 
collection of heuristics as a team of workers who are given an area in the 
solution space (heuristic search space which is part of the solution search 
space) and their task is to find a good solution and return it.  The heuristic 
may be doing a complex task by intensively exploring a large neighbourhood 
search space or it may just do a simple task of exploiting a very small 
neighbour solutions.  In the search for good quality solutions, the hyper-
heuristic exhibits a kind of reinforcement learning, which will assist in an 
intelligent action at each decision point.  It monitors the behaviour of each 
low–level heuristic by storing information about their performance using 
adaptive memory. Our hyper-heuristic uses a tabu list that is of a fixed 
length n, where n is the number of low-level heuristics.  Instead of storing 
moves, each tabu entry stores (non-domain) information about each heuristic 
i.e. heuristic number, recent change in evaluation function, CPU time taken 
to run the heuristic, and tabu status (or tabu duration, as the term we prefer to 
use). Tabu duration indicates how long a heuristic should remain tabu (0-4) 
and, will therefore, not applied in the current iteration. If the tabu duration is 
zero, the heuristic is said to be tabu inactive and can be applied to update the 
solution.  If the tabu duration is non-zero, the heuristic is said to be tabu 
active and may not be used to update the solution. A heuristic is made tabu 
when it satisfies our tabu restriction conditions. We do not use any aspiration 
criteria (changing a tabu active status to tabu inactive because the heuristic 
improves the solution) at this point because we wanted to compare which 
tabu duration produces the best quality solution.  Therefore, the only time a 
heuristic change its status from tabu active to tabu inactive is when the tabu 
duration is zero.  The tabu duration is set for a heuristic whenever a tabu 
restriction is satisfied.  After each iteration, the tabu duration is decremented 
until it reaches zero and the heuristic is now tabu inactive.  For each test on 
the dataset we fixed the tabu duration between zero and four and in this 
paper, we will compare which tabu duration produces better quality 
solutions.  

We use several strategies when considering the heuristics: consider all 
heuristics (i.e. no tabu criteria), consider heuristics that are not tabu, or 
consider heuristics that lead to improvement only.  Each heuristic differs in 
how it decides to move, thus creating its own search space region (heuristic 
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search space) in the solution search space.  At each choice point, we need to 
decide whether we want to intensify the search in a particular region by 
applying the same heuristic or to diversify the search into another region by 
applying a different heuristic. At this point, the hyper-heuristic can actually 
choose intelligently when to intensify or diversify because we believe that by 
allowing the low-level heuristics to compete at each iteration and selecting 
the heuristic with the best performance will help to balance the 
diversification and intensification of the solution search space. Heuristics 
that have been applied become tabu so that in the next iteration we can look 
at the possibility of other low-level heuristic that may perform well but, 
perhaps, not as well as the previous heuristics that are now tabu active. We 
have implemented the simplest strategy, i.e., Hyper-heuristic with fixed tabu 
duration (HH-FTD), where we consider all tabu inactive heuristics and apply 
heuristics that has the best improvement only.  The algorithm iterates for a 
fixed time or until there is no further improvement for a given number of 
heuristic calls.  

3.2 Low-level heuristics module 

Low-level heuristics are heuristics that allow movement through a 
solution space that require domain knowledge and are problem dependent.  
Each heuristic creates its own heuristic search space that is part of the 
solution search space. The idea is to build a collection of possible simple 
moves or choices since we would like to provide a library of heuristics that 
can be selected intelligently by a hyper-heuristic tool.  This library, at the 
moment, will only include simple low-level heuristics and future work will 
include the possibility of adding other meta-heuristics such as Simulated 
Annealing, Tabu Search or a Memetic Algorithm.   

The heuristics change the current state of a problem into a new state by 
accepting a current solution and returning a new solution.  Each low-level 
heuristic can be considered as improvement heuristics that returns a move, a 
change in the penalty function and the amount of time taken to execute the 
heuristic. The best performing heuristic should cause a maximum decrease in 
penalty (the lowest value).  Each move from an individual heuristic may 
cause the search to probe into the current neighbourhood or to explore into a 
different neighbourhood.  A change in the penalty value means changing the 
penalty value for each of the soft constraints that were violated (first order 
conflict, second order conflict, etc) or moving an exam into an unscheduled 
list (exam becomes unscheduled and violates hard constraints). 

We have implemented the following low-level heuristics, grouped into 
four categories:  
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1. Select and schedule exam – Selecting the next exam to schedule is 

dependent upon which factor is considered to be important in 
determining the difficulty of scheduling an exam.  The strategies that had 
been used in literature, and are adapted from the graph colouring 
heuristics, are used here.  Once an exam is selected, it will be scheduled 
into the best available slot that will maximise the reduction in penalty. 

• Largest enrolment – Exam with largest enrolment should be 
selected since it might be difficult to schedule at a later time. 

• Largest exam conflict – Exam that is in conflict with the largest 
number of exams is normally considered to be more difficult to 
schedule. 

• Largest total student conflict – Exam that has maximum total 
number of students in conflict.  

• Largest exam conflict already scheduled – Exam that has the 
greatest number of exams in conflict already scheduled would 
be difficult to schedule since it would have less choice of valid 
slots. 

• Exam with least valid slots – Exam that has the least valid slots 
should be scheduled now since it may not have any slots 
available at a later stage. 

2. Move exam i from location x to y 
• Select an exam at random and move to another random slot. 

• Move exam i with maximum penalty from randomly selected 
exams. 

• Move exam i with highest second order conflict from location x 
to a new location y. 

• Move exam i with highest second order conflict from location x 
to a new location y which maximises the reduction in second 
order conflict. 

• Move exam i with first order conflict from location x to a new 
location y which does not result in first order conflict. 

3. Swap  
• Random - Select an exam at random and find another exam at 

random which can swap slots. 

• Min-Max Swap – Swap the slots for exam with minimum 
penalty and exam with maximum penalty.  

4. Remove – Remove a randomly selected exam from the examinations 
already scheduled. 
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All of the above low-level heuristics are either 1-opt or 2-opt and there is 
also a mixture of some randomness and deterministic selection of exams and 
slots.  We purposely test low-level heuristics with simple moves rather than 
low-level heuristic with intelligence and complex moves because we want to 
make sure that the hyper-heuristic can recognise good moves and make an 
intelligent decision based on these simple moves.  Furthermore, we want to 
make the problem-domain knowledge heuristics easy to implement and the 
hyper-heuristic more generalised.  

4. EXPERIMENTAL RESULTS 

We have implemented and tested our tabu search based hyper-heuristic 
(TSHH) framework on a PC with an AMD Athlon 1 GHz processor, 128 Mb 
RAM and Windows 2000.  The program was coded in C++ using an object-
oriented approach.  We defined and implemented the hyper-heuristic and 
heuristics as objects that have a common interface and can interact with each 
other.  Once the hyper-heuristic object is fully defined, implemented and 
tested with a set of heuristics object for one application, we can easily reuse 
the hyper-heuristic object with another set of heuristic objects for a different 
application.  This approach should be cost effective because it can reduce the 
complexity of building another system. Thus, we can easily produce 
solutions to users who require “good enough - soon enough - cheap enough” 
(Burke et. al. 2003) solutions to their problems by implementing several 
domain specific low-level heuristics with simple moves. 

Therefore, the objectives of our experiments are: 
• To establish a well defined interface between our hyper-heuristic 

module and our low-level heuristics module 

• To compare the quality of results produced by our hyper-heuristic with 
other known methods published using similar quality measures. 

• To demonstrate that the hyper-heuristic module does not need to rely 
upon domain knowledge to make its decisions. 

• To demonstrate that the hyper-heuristic can manage and choose the 
low-level heuristics at each decision point in a search. 

• To evaluate the performance of low-level heuristic. 

• To determine further improvement in our hyper-heuristic module 
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4.1 Datasets 

We tested our implementation with datasets taken from established 
datasets made public and used by a number of other examination timetabling 
researchers.  The datasets were provided by Michael Carter and can be 
downloaded from ftp://ftp.mie.utoronto.ca/pub/carter/testprob/.  Table 1 
shows the characteristics of each dataset.  Each datasets is stored in two 
files; one file contains a list of courses and their enrolment, and the other a 
list of student and their course selections. We test our method on eight of the 
datasets. We use both data files to construct a conflict graph and the largest 
degree algorithm (Carter, Laporte and Lee 1996) to construct the initial 
solution. The density of the conflict matrix in Table 1 is calculated as the 
average number of other exams that each exam conflicts with, divided by the 
total number of exams. For example, a conflict matrix density of 0.5 or 50% 
indicates that each exam conflicts with half of the other exams on average. 

Table 1. Characteristics of Real Problems 
Institu-
tion 
Code 

Institution No. 
of 
Slots 

No. of 
Exams 

No. of 
Students 

No. of 
Student 
Exams 

Conflict 
Matrix 
Density 

Car-f92 Carleton University, 
Ottawa 

32 543 18,419 55,522 13.8% 

Car-s91 Carleton University, 
Ottawa 

35 682 16,925 56,877 12.8% 

Ear-f83 Earl Haig Collegiate 
Institute, Toronto 

24 189 1,125 8,109 26.7% 

Hec-s92 Ecoles des Hautes Etudes 
Commercials, Montreal 

18 81 2,823 10,632 42.0% 

Kfu-s93 King Fahd Uni. Of 
Petroleum and Mineral, 
Dharan 

20 461 5,349 25,113 5.6% 

Sta-f83 St Andrews Junior High 
Sch. 

13 139 611 5,751 14.4% 

Tre-s92 Trent University, 
Peterborough, Toronto 

23 261 4,360 14,901 5.8% 

Ute-s92 Faculty of Engineering, 
University of Toronto 

10 184 2,750 11,793 8.5% 

 
 The numbers of slots are obtained from results reported by Carter, Laporte 
and Lee (1996).  They used five different graph colouring heuristics to 
determine the minimum number of slots (sessions) required to produce a 
feasible solution subject to a no clash constraint.   
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4.2 Experimental Results and Analysis 

Our hyper-heuristic, with fixed tabu duration (HH-FTD), was tested with 
eight benchmark datasets.  For each dataset, we experimented with tabu 
durations varying from 0 to 4 and with two different terminating conditions 
(no further improvement for the last 10,000 iterations or running time of 10 
minutes).  In Table 2, the first column shows the file name of each dataset 
and the next five columns show our results (best penalty value per student) 
with a tabu duration varying from 0 to 4.  We do not show here the actual 
time that it finds the best solution but the best results are normally found 
towards the end of the search.  After further analysis on the performance 
graph we found that improvements are still being made toward the end of 
run time.  Therefore, we run the algorithm again for four hours with a tabu 
duration of 2 (many of the datasets work best with tabu duration of 2), to see 
whether much better solutions can be found if we run the algorithm longer 
than the 10 minutes that we used previously. The last column in Table 2 
shows that prolonging the algorithm does improve the solution further and it 
demonstrates that it is robust and able to avoid being trapped in local optima.   

 

Table 2. Results with 10 minutes and 4 hours run 

File Hyper-Heuristic with fixed TD (best penalty value 
per student from 8 runs) 

HH-FTD 
(TD=2,  
4 hr. run) 

% improve 
with long 
run 

 TD=0 TD=1 TD=2 TD=3 TD=4   

Car-f92   5.94   5.52   5.46   5.63   6.02 4.67 14.47% 

Car-s91   6.91   6.47   6.32   6.98   7.10 5.37 15.03% 

Ear-f83 47.01 44.58 43.58 43.54 45.16 40.18 7.80% 

Hec-s92 13.84 14.09 12.79 12.24 12.86 11.86 7.27% 

Kfu-s93 20.53 18.32 18.08 19.22 19.86 15.84 12.39% 

Sta-f83 168.4 165.8 165.6 166.3 167.1 157.38 4.96% 

Tre-s92 11.01 10.99   9.79 10.99 10.59 8.39 14.30% 

Ute-s92 29.34 28.18 27.97 29.20 31.05 27.60 1.32% 

 
When the tabu duration is 0, the hyper-heuristic does not make any 

heuristics tabu and, since none of the results is the best among the datasets, 
we can conclude that we do need to use a tabu list to guide the hyper-
heuristic in its heuristic selection. In our tabu based hyper-heuristic strategy, 
we apply the concept of heuristics cooperating with each other rather than 
penalising a non-performing heuristic.  When TD is greater than zero, we 
apply a tabu restriction where a heuristic will be tabu active if its solution 
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value has been accepted to update the current solution.  The heuristic will 
remain tabu active for a number of steps equal to TD.  We made a heuristic 
that has been applied tabu because we want to direct the search to other 
possible heuristic search spaces.  Eventually we may go back to a heuristic 
search space once it is no longer tabu active and can give the best solution 
amongst all tabu inactive heuristics.  The best result for six of the datasets is 
when TD is two and for two of the datasets, the best result is when TD = 3.  
It is interesting to find that two datasets (Ear-f83 and HEC-s92) obtain best 
result when TD is higher and has a higher conflict matrix density (refer to 
Table 1) i.e. 26.7% and 42.0%.  An examination timetabling dataset with 
higher conflict matrix density would imply that we might have less and 
sparsely distributed solution points (feasible solution) in our solution space 
since too many exams are conflicting with each other.  Thus, a higher TD 
may force it to diversify its exploration of the solution search space by 
allowing it to move from one heuristic search space to another.  For each of 
the datasets, except one dataset (Hec-s92), the average penalty started to 
decrease as we increased the TD and began to increase again once it reach its 
minimum average penalty.  This shows that the hyper-heuristic does need to 
decide which TD is best for each dataset because a tabu duration, which is 
too high or too low, will produce worse solutions. 

 
Figure 1: Hyper-heuristic performance with different TD. 
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Figure 1 shows the hyper-heuristic performance with different TD on car-f92 
dataset.  This dataset is one of the largest dataset with 543 exams to schedule 
in 32 slots and with a total number of students of 18,419. This graph 
demonstrates how the hyper-heuristic explores the search space. The x-axis 
represents the iteration steps up to 250,000 moves while the y-axis represent 
overall penalty cost.  Note that the timetable quality is measured by taking 
the average penalty per student.  The curve shows that the algorithm begins 
with an initial solution and rapidly improves the result in less than 10,000 
moves.  The graph shows fluctuations because at every move we accept a 
solution from the best performance heuristic even though it does not improve 
the solution.  The higher TD means that the heuristics will remain tabu 
longer, thus allowing other heuristics to be applied next.  By increasing the 
TD, we notice that the next solution accepted may make the solution much 
worse but it can still improve the solution in the next move.  So, a tabu 
duration value does help to improve solution quality, and too high a value 
may make the solution much worse, making it difficult to improve it again.  
The simplest form of this hyper-heuristic does not limit the range of how 
much a worse solution may be accepted but further investigation on this 
hyper-heuristic will limit the acceptance of worst solution.  

The graphs in Figure 2 and Figure 3 show when two of the heuristics were 
applied and how the two heuristics change the solution state. 
 
Figure 2: Heuristic 6   Figure 3: Heuristic 7 
 H6-Select exam at  random and move to a 

random slot

100000

105000

110000

115000

120000

125000

0 50000 100000 150000 200000

steps

H7-Move exam wit h maximum penalt y f rom 
randomly select ed exams

100000

105000

110000

115000

120000

125000

0 50000 100000 150000 200000

steps

 
 
 
 
 
 
 
 
 
 
 

The larger number of plots in Figure 2 compared to Figure 3 indicates that 
heuristic 6 has been applied more than heuristic 7.  We do not show graphs 
for other heuristics because the shape is almost the same except that some 
are applied more than others.  We also do not show how each heuristic 
performs in all iterations because we only keep track of its performance 
when it is applied. We can also see that for different datasets certain 
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heuristics will be applied more than the other, therefore it is justifiable for us 
to use several low-level heuristics that can compete with each other and a 
hyper-heuristic can than select the best low-level heuristic to be applied, 
given not only the point in the search space but also a specific problem 
instance. 

Table 3 shows our four hours run results compared to other published 
results for benchmark datasets.  Our objective here is to show that the HH-
FTD is able to produce good quality and feasible solutions for examination 
timetabling problems even though they may not produce the best results.  
The results showed that our generic method is able to produce good quality 
solutions compared to the others.  The first two that we compare are results 
against Di Gaspero and Schaerf (2001) who use tabu search and Di Gaspero 
(2002) who use tabu search with multi-neighbourhood.  Our results are 
better than the tabu search method in all cases and almost as good as the tabu 
search with multi-neighbourhood.  We also compare our results with results 
from other methods such as: constructive heuristics with backtracking by 
Carter, Laporte and Lee (1996); memetic algorithm by Burke and Newall 
(1999); greedy constructive heuristic with an optimiser by Caramia, 
Dell’Olmo and Italiano (2001); and hybrid of constraint programming, 
simulated annealing and hill climbing with Kempe chain neighbourhood by 
Merlot et al (2003).  Our results are better than Carter, Laporte and Lee 
(1996) and Caramia, Dell’Olmo and Italiano (2001) in four cases.  In all 
cases we could not produce better results than Burke and Newall (1999) and 
Merlot et al (2002).  

Table 3. Comparing our best results and published results 

File HH-FTD 
(TD=2,  
4 hr. run) 

Di 
Gaspero & 
Schaerf  

Di 
Gaspero 

Carter  
et al 

Caramia 
et al 

Merlot 
et al 

Burke & 
Newall 

Car-f92 4.67    5.2 - 6.2 - 7.6 6.0 4.3 4.2 

Car-s91 5.37    6.2 5.68 7.1 - 7.9 6.6 5.1 4.8 

Ear-f83 40.18  45.7 39.36 36.4 - 46.5 29.3 35.1 35.4 

Hec-s92 11.86  12.4 10.91 10.8 - 15.9 9.2 10.6 10.8 

Kfu-s93 15.84  18.0 - 14.0 - 20.8 13.8 13.5 13.7 

Sta-f83 157.38 160.8 157.43 161.5-165.7 158.2 157.3 159.1 

Tre-s92 8.39  10.0 - 9.6 - 11.0 9.4 8.4 8.3 

Ute-s92 27.60  29.0 - 25.8 - 38.3 24.4 25.1 25.7 

 
As a whole, we can see that our method do not perform worst in certain 

cases and best in other cases, therefore, it does work reasonably well across 
all problem instances. We believe that with further enhancements in our 
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hyper-heuristic selection method and some adaptive tabu duration, we can 
improve our results. 

5. CONCLUSIONS AND FUTURE WORK 

The simplest form of the hyper-heuristic module HH-FTD has been 
implemented and tested on exam timetabling benchmark data.  Preliminary 
results showed that it is not able to beat the best results in the literature but it 
is able to produce good quality solutions.  Our objective is not to beat the 
best solution but to show that the hyper-heuristic module does produce good 
solutions that are feasible and will work across all problem instances and 
other real-world problems.  Our generic solution methodology can easily be 
applied to other problems by just changing the low-level heuristics and the 
evaluation function while the search method remains the same. 

Currently, we are testing a more advance hyper-heuristic module that 
includes more tabu criteria such as tabu criteria based on CPU time, tabu 
based on change in penalty function and a probabilistic heuristic selection.  
In the future, we will experiment on adaptive tabu strategies and apply our 
method on a larger timetabling instance as well as other applications. 
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