
SUNCAT: Helping Developers Understand and Predict
Performance Problems in Smartphone Applications

Adrian Nistor
Chapman University, USA
anistor@chapman.edu

Lenin Ravindranath
Massachusetts Institute of Technology, USA

lenin@csail.mit.edu

ABSTRACT
The number of smartphones shipped in 2014 will be four times
larger than the number of PCs. Compared to PCs, smartphones
have limited computing resources, and smartphone applications are
more prone to performance problems. Traditionally, developers
use profilers to detect performance problems by running applica-
tions with relatively large inputs. Unfortunately, for smartphone
applications, the developer cannot easily control the input, because
smartphone applications interact heavily with the environment.

Given a run on a small input, how can a developer detect per-
formance problems that would occur for a run with large input?
We present SUNCAT, a novel technique that helps developers un-
derstand and predict performance problems in smartphone appli-
cations. The developer runs the application using a common input,
typically small, and SUNCAT presents a prioritized list of repetition
patterns that summarize the current run plus additional information
to help the developer understand how these patterns may grow in
the future runs with large inputs. We implemented SUNCAT for
Windows Phone systems and used it to understand the performance
characteristics of 29 usage scenarios in 5 popular applications. We
found one performance problem that was confirmed and fixed, four
problems that were confirmed, one confirmed problem that was a
duplicate of an older report, and three more potential performance
problems that developers agree may be improved.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance measures;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Performance

Keywords
Predicting performance problems, smartphone applications

1. INTRODUCTION
Smartphones are extremely popular, and the number of smart-

phones shipped in 2014 is expected to be four times larger than the
number of PCs [15]. Each of Apple’s and Google’s online App
Stores has about 1.2 million applications [38], and each day 500

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

new applications are added to the Windows Phone Store [8]. Fur-
thermore, smartphones are used primarily as devices for displaying
data and not for making phone calls [11].

Compared to PCs, smartphones have very limited computing re-
sources. Hence, even small code inefficiencies, that would go un-
noticed when running on a typical PC, can create glitches and po-
tentially long delays in a smartphone application. Most smartphone
applications are intended to be highly interactive, and such glitches
and delays create a negative user experience. For example, One-
BusAway [3] is a popular smartphone application that displays bus
traffic information for the Seattle area. The reviews of OneBusAway
on Windows Phone Store are highly positive about its functionality,
but one in every six reviews mentions performance, and 94% of the
reviews mentioning performance are negative, i.e., only 6% of the
reviews praise the current performance.

Traditionally, developers use profilers to detect performance prob-
lems [26, 40, 48]. The developer runs the code on a relatively large
input and collects profile information, e.g., collects for each method
the time taken for execution or the number of times the method was
executed. The developer then focuses on optimizing the methods
that were the most expensive. Unlike correctness bugs that can
manifest for both small and large inputs, many performance prob-
lems only manifest for large inputs. Therefore, developers typically
do not use small inputs for profiling.

A major challenge in testing many smartphone applications is
that the developer cannot easily control the entire input because
smartphone applications interact heavily with the environment. For
example, OneBusAway communicates with a bus traffic server us-
ing a complex protocol, gets GPS data about the location, and uses
current time. Modeling the entire environment—including proto-
col, GPS data, time—would be difficult. Therefore, system testing
of smartphone applications is typically done with common, rela-
tively small inputs, by manually performing GUI actions. For ex-
ample, OneBusAway has automated tests only for unit testing; for
system testing, developers can easily test OneBusAway with, say,
5 buses, but they cannot easily try it for a larger input with, say,
50 buses. However, such uncommon inputs can still happen in the
actual use and can create performance problems.

What information can we extract from runs with small inputs to
help developers understand how the application would behave for
larger inputs? We develop SUNCAT, a specialized techniques that
answers this question for smartphone applications, which are an
increasingly important and popular domain.

The calling patterns of string getters help developers under-
stand and predict performance in smartphone applications: Pro-
filing all methods can give misleading results for small inputs. For
example, for a previously unknown performance problem we found
in OneBusAway, the methods related to the problem execute only

3-4 times for small inputs, while many other methods execute well
over 4 times; however, for large inputs, the methods related to the
problem can execute hundreds of times, creating performance prob-
lems. We propose to use only string getters—i.e., the methods that
return values of string fields—both to enable effective profiling and
to provide useful additional information.

The rationale for using string getters is twofold. First, the num-
ber of string getter calls is closely related with the computation
being done and thus can help in correlating calls with performance.
The reason is that many smartphone applications display and pro-
cess text information (with video games being a notable exception).
For example, a sequence of string getter calls for bus stop names
reflects the computation that OneBusAway performs to save a bus
route (which include bus stop names and a lot of other information);
the more string getter calls there are, the more work OneBusAway
needs to do. Even when displaying mainly non-text, smartphone
applications process some text, e.g., to display the maps in fig-
ures 1(a) and 1(b), OneBusAway finds the bus stop names close to
the current geographical location. Second, the return string values
provide useful information for understanding the code. SUNCAT
presents these strings to the developer, to help her relate the com-
putation she is investigating with the information that she saw on
the smartphone screen. For example, in OneBusAway, she can find
that several calls were performed for the same bus stop that was
viewed (rather than, say, for different nearby bus stops).

Prioritizing and understanding the repetition patterns ob-
served in runs with small inputs: SUNCAT instruments an ap-
plication to log events that consist of string getter calls and their
return values. When the developer runs the application, SUNCAT
records a trace. The main algorithmic contribution of SUNCAT
is a novel algorithm for lossy grammar-based compression, which
summarizes long and complex event traces in easy to understand
execution overviews. SUNCAT presents to the user a Performance
Summary that shows how groups of events repeat in the trace. Each
repetition pattern shows repetition counts for events and how these
counts vary in the trace. SUNCAT can prioritize the patterns using
the maximum counts and/or count variations. Based on the expec-
tations the developer has—e.g., that some computation should take
constant time or have a small maximum count—the developer then
chooses to investigate the most suspicious, unexpected patterns that
are more likely to cause performance problems for large inputs.

The goal of SUNCAT is to help the developer reason about the
performance problems that can manifest in the future runs, even
if these problems did not manifest in the current run. Research
shows that providing only a prioritized list of suspicious patterns is
not enough to explain even correctness bugs that did manifest—as
Parnin and Orso phrase it: “Programmers want values, overviews,
and explanations” [37]—and more information is needed to under-
stand performance problems [6,7,17,19,41,42]. Therefore, in addi-
tion to the Prioritized Patterns, the Performance Summary presents
a grammar that hierarchically groups related events. The developer
can choose the level of detail presented in the grammar (e.g., Full
Grammar or Summarized Grammar) and can also see the concrete
string values from the performed run.

While computing repetition patterns from an entire trace pro-
vides useful information for predicting performance problems, our
experience shows that it can be even more useful to compare how
repetition patterns vary across multiple sub-traces within a trace.
For example, in OneBusAway, one could find that the number of
certain getter calls increases across sub-traces. Such sub-traces can
be naturally obtained in many smartphone applications by repeat-
ing GUI actions. For example, OneBusAway displays a list of bus
stops, and the developer can navigate to several of them.

(a) AllStops (b) OneStop (c) RecentViews
Figure 1: Screenshots for OneBusAway

Assessing the impact on user-perceived performance: Devel-
opers of smartphone applications are aware of the limited comput-
ing resources of smartphones and try to enhance the user-perceived
performance [14]. For example, to enhance the responsiveness of
the threads producing data immediately shown to the user, code
has other threads that prefetch some data or perform some of the
expensive but non-critical work in the background. Hence, while
some computation may be truly expensive, the user need not no-
tice any performance problem. As a result, the important perfor-
mance problems in smartphone applications are only those that do
affect the user-perceived performance. We find that a simple solu-
tion helps to determine such computations: SUNCAT inserts time
delays in some string getters selected by the developer, so when she
reruns the application, she can check if it becomes slow.

Experience with previously unknown performance problems
in real-world smartphone applications: We used SUNCAT to un-
derstand 29 usage scenarios in 5 real-world Windows Phone ap-
plications: Conference [25], Pex4Phone [27], OneBusAway [3],
TouchDevelop [5], and Subsonic [4]. These applications can be
downloaded from the Windows Phone Store and are quite popular,
e.g., OneBusAway and TouchDevelop each have more than 270
reviews on Windows Phone Store. We were unfamiliar with these
applications before starting the study.

SUNCAT helped us understand these applications, and we found
nine performance problems: one problem we reported was already
confirmed and fixed by developers [34], four problems were con-
firmed by developers [25], one problem we found was a duplicate
of an older confirmed performance problem [35], and three more
problems we found developers labeled as cases that could be im-
proved but are not a high priority. In brief, while SUNCAT is a
technique specialized for smartphone applications, it showed very
good results for this increasingly important domain.

2. EXAMPLE
We describe in more detail our running example—a test scenario

in OneBusAway [3]—and a performance problem we found in it us-
ing SUNCAT. OneBusAway displays bus information such as stops,
routes, schedules, and arrivals in screens with various formats and
levels of detail. Figure 1 shows three sample screenshots. The
AllStops screen shows a map with the bus stops (top of screen)
and a list of these stops (bottom of screen). The OneStop screen
displays information about buses arriving at the selected bus stop.
The RecentViews screen shows recently viewed bus stops and
routes. The user can navigate among these screens in several ways,
so it is natural to test the interactiveness of these navigations [19].

Suppose a developer wants to test the navigation between the
AllStops and OneStop screens. The developer cap tap a bus stop
in the list on the AllStops screen and, consequently, OneBus-
Away displays the OneStop screen. The developer can now press

2

1 <TextBlock Grid.Row="1" x:Name="RouteInfo"
2 Foreground="{StaticResource OBAForegroundBrush}"
3 Text="{Binding Path=CurrentViewState.CurrentStop.name}"
4 FontSize="{StaticResource PhoneFontSizeMedium}"/>

Figure 2: XAML declaration from OneBusAway

���

����������	

��	��

��
 ���	�

��

��
	
�������

���
��������
�����

��������
�����

��������
�����

������

��������
�������

���������

����
���	�
������

������
�����������
�

����������	
����	������

�������

���������
����������

�������	
�����

���

� � � �

	

�
�

�

�

Figure 3: Process of using SUNCAT

the back button, and OneBusAway returns to the AllStops screen.
Navigating back and forth among AllStops and OneStop screens,
the developer can visit several OneStop screens. Note that the de-
veloper can repeat these GUI actions several times even if a part of
the input is quite small (e.g., the list has only a few bus stops).

Using SUNCAT while navigating among AllStops and a small
number of OneStop screens helped us to identify a performance
problem that would affect the user for a large number of OneStop
screens. Recall that SUNCAT logs string getter calls and computes
a Performance Summary that includes repetition patterns of these
calls, grouped by a grammar. Our analysis of the grammar and the
rest of the summary for our run of OneBusAway showed that the
number of the getter calls for bus stop name unexpectedly increases
during the run (Section 4.3.1). To check if this increase would af-
fect the user-perceived performance, we instructed SUNCAT to in-
sert time delays for this getter. Navigating again among a small
number of OneStop screens, we noticed a substantial slowdown.

Our further analysis showed that this slowdown is indeed due to
a real performance problem that would be difficult to detect with-
out SUNCAT for at least two reasons. First, the long delay is un-
likely to manifest in regular testing. The developer (with or with-
out using a profiler) cannot encounter the long delay unless she dis-
plays OneStop screen a very large number of times without closing
the application. Displaying OneStop screen many times can easily
happen for an end user but is less likely to happen during in-house
testing, where individual tests tend to be short and stand alone.

Second, off-the-shelf static or dynamic tools that analyze code
cannot be directly used because the root of the performance prob-
lem is not in the (compiled) C# code on which such tools typically
operate. In addition to C#, OneBusAway uses the XAML declar-
ative language [28]. Figure 2 shows a snippet of the XAML file
that declares a certain field (RouteInfo of type TextBlock) and
specifies that the Windows Phone runtime should update the field
with the value of the CurrentViewState.CurrentStop.name
field whenever the latter changes. Each time OneBusAway displays
a OneStop screen, it creates a C# object (DetailsPage) for the
current stop which will be automatically updated when the current
stop changes. The runtime updates the DetailsPage object using
reflection, and reflection is also difficult to analyze [9].

We found that OneBusAway has a leak where the number of De-
tailsPage objects grows over time, and they are never used by the
application, leading to many unnecessary, slow updates. While the
objects are small and do not take much memory, eventually their
automatic updates can lead to a long delay in displaying OneStop
screens. We reported this problem to the developers [34], who fixed
it within hours. The information provided by SUNCAT helped us
to provide a clear and convincing report describing how the perfor-
mance problem will affect the application for larger inputs.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�

�
	
�

�
	
�

�
	
�

�
	
�

�
	
�

�

��	�
���
�
����

����
���
�
����

������������������������	
	
	
	
	
	

��
	��������������������������������
���� �
������!��"#�$�%	�#&'����!����
�	��(�����
����
�����')����*��+�,-
����$���+�.������	'��.���	+�&���'�/��'�/���
���/��' �,-
���������������0���+'
������ ��
�+�����1

��	�
���
���	��

�
�

Figure 4: Sample concrete event and traces for OneBusAway

3. SUNCAT
SUNCAT works in several steps (Figure 3). 1© SUNCAT in-

struments the application bytecode to log all string getters (Sec-
tion 3.1). 2© The developer then runs the modified binary in a test
scenario, and the logging saves a trace of concrete events that in-
clude the call stack for getters and return values (e.g., in OneBus-
Away, concrete events include reads of specific bus station names).
While developers typically test smartphone applications manually,
SUNCAT could work equally well with automated testing. 3© SUN-
CAT creates a list of abstract events by ignoring the return values
(e.g., in OneBusAway, abstract events include reads of some bus
station name) and then 4©, 5© computes a Performance Summary,
which summarizes repetitions of abstract events into repetition pat-
terns and prioritizes these patterns (Section 3.2). 6©, 7© The SUN-
CAT user inspects the Prioritized Patterns and can further modify
the summary in various ways to understand which patterns could
create performance problems for runs with large inputs. 8© SUN-
CAT can add time delays in the application to allow the user to
9©, 10© check if the suspicious patterns can indeed affect the user-

perceived performance (Section 3.3).

3.1 Logging
SUNCAT by default logs only calls to string getters, although

one could also specify other events, e.g., network calls. Specifi-
cally, for each call, SUNCAT logs: (1) the call stack (as in calling
context profiling [13]) and (2) the return string value. For exam-
ple, in OneBusAway, one of the getters is get_name for the field
CurrentViewState.CurrentStop.name. Figure 4 shows an ex-
ample concrete event a1 for one call to get_name with the example
string value (“NE 65TH ST & OSWEGO...”).

SUNCAT uses off-the-shelf binary instrumentation of .NET to
add logging methods to each string getter. Note that SUNCAT in-
struments the method body (effectively the callee), which is in the
smartphone application binary itself, rather than the call site (in the
caller), which may be elsewhere. For example, for get_name, the
caller is in the Windows Phone runtime, making calls through re-
flection, based on the XAML file. For each update to the Details-
Page object, the runtime calls get_name to update the RouteInfo
field, and SUNCAT logs these calls to get_name as concrete events.

To illustrate an example trace, assume the developer navigates to
the OneStop screen when there are 4 DetailsPage objects in the
system; the runtime calls get_name 4 times to perform 4 updates
to the RouteInfo fields. Figure 4 shows the concrete event trace
with 4 events ai, corresponding to 4 calls to get_name, and several
other events, corresponding to the calls to other string getters.

3.1.1 Comparison Mode
While computing repetition counts from one trace can provide

useful information for predicting performance problems, our expe-
rience shows that it can be even more useful to compare how repe-
tition counts vary across multiple sub-traces. For example, while it
helps to know there are 4 get_name calls for the current OneStop
screen, it helps even more to know that the number grows (4, 5,

3

6...) as we navigate to more OneStop screens. Creating small vari-
ations of GUI actions is natural for many smartphone applications,
because they display data (e.g., bus stops, tweets, music songs),
typically organized in groups of similar elements. Intuitively, ac-
tions for these elements should be similar and thus great candidates
for comparison. For example, the AllStops screen in OneBus-
Away displays a list of bus stops, and navigating to their OneStop
screens should be similar. To enable comparison across sub-traces,
SUNCAT allows the user to specify them in the Comparison Mode,
e.g., when testing the navigation to OneStop screens, the user can
specify that navigating to and from each OneStop screen forms a
start and stop point of a sub-trace.

3.2 Performance Summaries
SUNCAT abstracts each concrete event to an abstract event by

ignoring the return string value and considering only the call stack.
(In general, other abstractions could be used, e.g., taking only top
N entries from the stack [7].) However, SUNCAT still allows the
user to inspect concrete string values because many of them help
in understanding the application. For example, in OneBusAway,
bus stop names (e.g., NE 65TH ST & OSWEGO in the concrete event
a1 in Figure 4) are easy to understand and relate with the input
because they show on the phone screen. Figure 4 shows a simple
abstract trace. Figure 5(a) shows an abstract trace for an example
run of OneBusAway when navigating to four OneStop screens. The
symbol ‘♦’ shows the points in the sub-trace that correspond to the
four different screens in the Comparison Mode.

Given an abstract trace, SUNCAT computes a Performance Sum-
mary that summarizes the repetition patterns in the trace. The goal
is to help developers understand how the execution cost may evolve
for larger inputs. To achieve this, SUNCAT can count the number of
event occurrences, even non-consecutive ones, or can provide ad-
ditional information by hierarchically grouping related events and
counting consecutive occurrences. The SUNCAT user can sum-
marize and prioritize these patterns in various ways to determine
which repetition patterns are likely to create performance problems.

Figure 5(c) shows several kinds of summaries for the example
abstract trace from Figure 5(a). The simplest summary is Count
Summary, which just counts the number of events in the entire
trace. The core of the advanced summary is the Full Grammar,
which is a context-free grammar (Section 3.2.1) obtained by a novel
lossy grammar-based compression of the trace (Section 3.2.2). The
previous grammar-based compression algorithms [20,22,23,31,46]
were lossless: their goal was to compress a string into a grammar
that can generate only one string, but that results in large and hard
to read grammars. In contrast, our goal is a short and intuitive sum-
mary of execution, so we allow grammars that can generate many
strings. The user can further omit some details from Full Grammar
to obtain a smaller Summarized Grammar and can prioritize the
terms from the grammar to obtain the list of Prioritized Patterns.
These forms show different levels of detail that allow the developer
to “zoom in/out” while inspecting the patterns. For all levels, the
developer can follow the abstract events to the call stack and strings
in the concrete events (the right-most part of Figure 5(c)).

Both Count Summary and grammars are much more succinct
and easier to inspect than full traces. While grammars are longer
than Count Summary, they offer several additional pieces of infor-
mation. First, they group symbols together, effectively providing a
context for understanding correlated events. Second, they preserve
ordering among events. Third, they provide a hierarchical organi-
zation of events, e.g., in Figure 5(c), g and h are together in B which
is nested in A which is repeated in S. Fourth, they provide a trend
that shows how repetition counts vary during execution.

������������	�
���
������������
��
���
�����	����������������
��������������
���������	������������������������
�����������	������
���������������	��������������������
� !�"�����#�����$
����#��������	��%����
�&'�(������)�*+�
�
�%����
�&'�(�����	�
����������������
�)�*+�
����	���������
��������
����	�,��-(���.���/����,��

Figure 6: EBNF for grammars produced by SUNCAT

3.2.1 Grammars
Figure 6 shows the full meta-grammar for the grammars that

SUNCAT computes. It is best explained on an example, so consider
the Summarized Grammar from Figure 5. The uppercase letters are
non-terminals, and lowercase letters are terminals that correspond
to abstract events. A4 is shorthand for AAAA. a4|5|6|7 denotes that
a can repeat 4, 5, 6, or 7 times. C≤6 denotes that C can repeat up to
6 times. “...” denotes ignored unimportant details, e.g., the user
can decide to ignore repetition counts smaller than 3, and the rules
for B and C are omitted because their right-hand side is only “...”.

3.2.2 Computing the Performance Summary
SUNCAT performs lossy grammar-based compression on the ab-

stract event trace. We modify a known lossless algorithm [46] with
the goal to produce more compact grammars. Figure 7 shows the
pseudo-code of our algorithm. The input to main is a sequence of
terminals, and the output is a context-free grammar that can gener-
ate this input string and many other strings (for our lossy compres-
sion) or only the input string (for the lossless compression). The
algorithm maintains a map rules that is used to create the rules
for the output grammar. To create the starting rule for the output
grammar, main computes for each sub-trace a sequence of repeti-
tion patterns—where each repetition pattern RP is a symbol (termi-
nal or non-terminal) with its list of repetition counts—and appends
these repetition patterns. For example, the rule S -> A4 in Fig-
ure 5 comes from merging four sequences, each being A, of four
sub-traces. Note that the non-terminal symbols from rules are
reused across sub-traces, so in this example all repetition counts
come from merging across sub-traces. However, in general, repeti-
tion counts can come from within one sub-trace (e.g., abbbabbbb
would be A2 with A -> ab3|4) due to our algorithm being lossy.

The computeRPList method takes the string for each sub-trace
and proceeds as follows. For increasing substring length (lines 13,
20), it finds repeated substrings that are adjacent (lines 15–18),
merges them to represent repetition (lines 22–30) and then starts
again from the beginning (line 31). The process repeats until there
are no more repeated adjacent substrings (line 13). Along the way,
our algorithm attaches to each symbol (terminal or non-terminal) a
list of repetition counts.

A crucial part of our algorithm is in lines 15 and 28: when de-
ciding whether to merge two adjacent substrings, the algorithm ig-
nores the repetition counts, e.g., it allows merging a3b5a4b3. The
method und returns the underlying sequence of symbols, effec-
tively abab in this example (and even the lossless algorithm would
merge abab). To merge the repeated adjacent substrings of length
greater than 1 (lines 27, 28), a non-terminal is used, and the repeti-
tion counts are merged from the corresponding lists for each sym-
bol, e.g., a3b5a4b3 is merged into N2 where N -> a3|4b5|3. This
is lossy because the resulting expression encodes all (16) strings of
form an1bn2an3bn4 , where n1, n3 ∈ {3, 4} and n2, n4 ∈ {5, 3}.
The method merge preserves the order of repetition counts but re-
moves the duplicates (so that the resulting lists are not too long).

4

������������������������	
	
	
	
	
	
����������������������������	
	
	
���������������������������	
	
	
	
	
�
�����������������������������	
	
	
	

��������������	

(a) Abstract trace

�������������	�	�	�	
�
�
�
�
�
���������������	�	�	�	
�
�
���������������	�	�	�	
�
�
�
�
���������������	�	�	�	
�
�
�
�

�����
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��

�
��
�
	
�
��

�

�
��
��

�
��
��������
��
��
��
����
����
��
��������

�
��
�
	
�
��

�

��	
�
�������

�
����
���������
��
�	�
��������
�����
�	��

��	
�
�������

�
���������
����
��
���
�����
�����
�	��

(b) Steps of the algorithm (some intermediate steps are not shown)

�������
�����
�����	�
��
�
������������
	�������
�����
��
�
��
��
�������
�
�
������������
���������
��
�
��
��
�������
�
�
������������
���������
��
�
��
�
�������
�
����
��������
�!���
��
"
���#	�$%�����
���%
	�
�
���
��!���
��
&&&&&&&&'������
&	����&����
	���(

!���
	
)*&+,-.&�-&/&0�"* 0&&&���&��
�
��	&1&�
�
	�
)*&+,-.&�-&/&)*&�2!*&&���&��
�
��	&,&�
�
	�
)*&�2!*))2&�%!�&/&�&&&���&��
�
��	&+&�
�
	�
)*&+,-.&�-&/&�00�*!*&&���&��
�
��	&3&�
�
	�

��	�
������������
���

�&45&2�

2&45&�����������
�����������&$�������

��		����������		��

�&45&2�

2&45&���������6��������
�����������&$�������

�&45&�&�
$&45&
&7

��

����		��
� ��

$ ��

 ��

� ��

��

2�

����

��

 �����������
 ������!

����
"#�7"#&�"�&�"�&�"�&
"�&6#&�#&�#&

��������		��$

(c) Performance summary with four levels of detail, linked to the concrete events with stacks and string values

Figure 5: Example input, steps, and output of our lossy grammar-based compression algorithm

Figure 5(b) shows several steps of the algorithm. Merging sub-
strings of length 1 simply adds a repetition count. Merging longer
substrings introduces non-terminals, e.g., B -> g h or C -> i j,
which are reused when the same underlying sequence is encoun-
tered. For example, after C is introduced for C6, the sequence
ijijij is merged into C3 (without introducing a new non-terminal).

Our lossy compression can produce substantially shorter gram-
mars than the original lossless compression [46]. For example, the
last step in Figure 5(b) is the output of our algorithm, and the sec-
ond step would be the output of the lossless compression (with the
first line starting with S ->). The lossless algorithm can only merge
the exact repetitions (e.g., aaa into a3 or a3b5a3b5 into M2 where
M -> a3b5), but it does not merge different repetitions such as
a3b5a4b3. In contrast, our algorithm merges these different rep-
etitions with the same underlying sequence of symbols.

3.2.3 Summarizing and Prioritizing Patterns
After SUNCAT computes the entire grammar, the user can mod-

ify it in various ways (e.g., replace some sequences with “...” or
replace repetition counts with the maximum values) and can build
different prioritization lists for inspection. By default, SUNCAT re-
places all (non-constant) repetition counts with the maximum val-
ues, e.g., C6|3|5|4 with C≤6. The user can sort the patterns based
on whether/how they vary (constant, increasing, varying) and what
their maximum values are. SUNCAT does not automatically predict
which patterns are more likely to lead to performance problems in
the future runs. Indeed, many patterns naturally grow as a program
input gets larger, e.g., we expect more computation to process 500
bus stops than 50 bus stops than 5 bus stops. Not every large/grow-
ing/varying pattern indicates a performance problem.

However, the user often has some expectation for how the pat-
terns should vary and can look for the most suspicious patterns that
violate this expectation. Consider, for example, two hypothetical
patterns p4|10|8 and Q38. If the user expects computation to take
constant time, then p is more suspicious than Q: p varies, so it may
repeat many more times, while Q seems to always repeat a constant
number of times. In contrast, if the user expects the maximum
value to be small (e.g., the phone screen showed a small number
of elements), then Q is more suspicious than p. Likewise, patterns
with a monotonically increasing vs. varying number of repetitions
may be more or less suspicious, based on the expectation.

3.3 User-Perceived Performance
An important problem in evaluating suspicious patterns and meth-

ods is to establish whether they affect user-perceived performance.
Recall that smartphone applications hide the latency of expensive
computation, e.g., in OneBusAway some threads prefetch data from
the server and store it in local memory. Statically determining
whether a method is on a critical path for GUI is extremely hard be-
cause smartphone applications use many asynchronous event han-
dlers, making it hard even to statically build a call graph. Using
large inputs to dynamically evaluate problems is not an option.

SUNCAT helps the developer to use common, small inputs to
decide which expensive patterns could impact the user-perceived
performance for larger inputs. After the developer identifies a set
of suspicious methods (e.g., get_name in our example), SUNCAT
can instrument the application binary to insert time delays only in
the identified methods. Effectively, SUNCAT inserts time delays
in some locations where it previously inserted logging methods for
the events. The developer then runs the modified application bi-
nary for a similar input as the original run (e.g., navigating among

5

1 Map〈List〈Symbol〉, Pair〈List〈RC〉, Nonterminal〉〉 rules
2 method Grammar main(String S)
3 List〈RPList〉 l = [] // empty list
4 foreach (String s : S .split(’♦’)) // substrings for sub-traces
5 l = l @ computeRPList(s) // append to the list
6 endfor
7 Grammar g = new Grammar("S", "−>", l) // starting rule
8 foreach(〈sl, 〈rc, N〉〉 : rules) do g.add(N, "−>", new RPList(sl, rc)) done
9 return g

10 method RPList computeRPList(String S)
11 RPList X = new RPList(S , 1) // repetition count 1 for each terminal
12 int n = 1 // length of substring
13 while (n < X.len / 2)
14 // find all occurences of all substrings of length n
15 Set〈Set〈int〉〉 r={{i}∪{j∈{i+1..X.len-n|X.und(i,n).equals(X.und(j,n))}|
16 i∈{1..X.len-n}}}
17 // find repeated adjacent substrings of length n
18 Set〈Set〈int〉〉 a = {s ⊆ s’ ∈ r | ∀ i ∈ s. ∃ j ∈ s. i=j+n∨ i=j-n}
19 if (a is empty)
20 n++
21 else
22 Set〈int〉 Q = from a, pick set with the largest number of elements
23 if (n == 1)
24 // invariant: repetitionsCount is 1 for all elements in Q
25 Symbol N = X.get(min(Q)).symbol
26 else
27 List〈List〈RC〉〉 e = X.getRepetitionsCounts(Q, n)
28 Symbol N = getNonterminal(X.und(min(Q),n),e)
29 endif
30 X = X.prefix(min(Q)) @ new RP(N, [|Q|]) @ X.suffix(max(Q)+n)
31 n = 1
32 endif
33 endwhile
34 return X
35 method Nonterminal getNonterminal(List〈Symbol〉 s, List〈List〈RC〉〉 e)
36 if (rules.containsKey(s))
37 Pair〈List〈RC〉 c, Nonterminal N〉 = rules.get(s)
38 e = c @ e
39 else
40 Nonterminal N = createNewNonterminal()
41 endif
42 rules.put(s, new Pair(merge(e), N))
43 return N
44 method List〈RC〉 merge(List〈List〈RC〉〉 e)
45 List〈RC〉 r = []
46 for (int i = 1..e.getFirst().size())
47 RC rc = new RC()
48 foreach (List〈RC〉 l : e)
49 foreach (int count : l.get(i))
50 if (! rc.contains(count)) rc.add(count)
51 endforeach
52 endforeach
53 r = r @ rc
54 endfor
55 return r
56 struct RC { List〈int〉 counts; } // repetitions count
57 struct RP {Symbol symbol; RC repetitionCount; } // repetition pattern
58 class RPList
59 method RP get(int i) {...} // return RP at the offset i
60 method RPList sub(int start, int len) {...} // sublist [start, start+len)
61 // return underlying sequence of symbols without repetition counts
62 // − lossy compression ignores repetition counts
63 // − lossless compression would preserve counts (‘‘und’’ same as ‘‘sub’’)
64 method List〈Symbol〉 und(int start, int len)
65 List〈Symbol〉 l = []
66 foreach (int i = start..start+length-1) do l = l @ get(i).symbol done
67 return l
68 method List〈List〈RC〉〉 getRepetitionCounts(Set〈int〉 Q, int n)
69 List〈List〈RC〉〉 r = []
70 foreach (int i : sorted(Q))
71 List〈RC〉 l = []
72 foreach (int j = i..i+n-1) do l = l @ X.get(j).repetitionCount done
73 r = r @ l
74 endforeach
75 return r

Figure 7: Lossy grammar-based compression

AllStops screen and a small number of OneStop screens as de-
scribed in Section 2). If the delays are noticeable, the developer
decides that the selected methods can indeed create problems.

Application Source #Rev #Class LOC
Conference Microsoft 0 61 3,271
Pex4Phone Microsoft 80 40 3,355
OneBusAway Open Src 272 152 4,107
TouchDevelop Microsoft 332 1,005 >14,753
Subsonic Open Src n/a 252 6,105

Figure 8: Programs used in evaluation. #Rev is the number
of reviews on Windows Phone Store; #Class and LOC are the
numbers of classes and lines of code.

4. EVALUATION
We implemented SUNCAT following the description from Sec-

tion 3. For logging and inserting delays, we used CCI [2], an off-
the-shelf static binary rewriter for .NET bytecode. SUNCAT can
work both on the Windows Phone simulator and on real phones.

4.1 Applications
We used SUNCAT to understand the performance characteristics

of 29 usage scenarios in five real-world applications (Figure 8).
We selected these applications from the applications developed at
Microsoft Research and from popular applications hosted on Mi-
crosoft’s CodePlex web site [1]. We needed to have the source
code available; while SUNCAT instruments bytecode, to decide if
the problem detected is real, we needed to double check with the
source code. We did not know in advance if these applications have
performance problems or not. Also, we were not familiar with any
of these applications before this study and did not contact the de-
velopers until after we found the performance problems.

Conference displays the program for research conferences and
was used at ICSE, FSE, ISSTA, and MSR. It displays information
such as the authors that published at the conference, papers pre-
sented in each session, details about each paper, etc. The user can
navigate between various screens, e.g., from a screen displaying
details about one paper to the screen displaying details for an au-
thor of the paper. OneBusAway is our running example that displays
public transportation information such as bus stops, routes, sched-
ules, and arrivals. TouchDevelop lets the user build scripts for
smartphones in a user friendly GUI, i.e., the user can visually build
scripts. Pex4Phone lets the user interact with the Pex4Fun [27]
web site to solve “code puzzles”, i.e., write C# code that matches a
secret implementation. Subsonic enables the user to interact with
a server where the user stored favorite songs: the user can play
songs from the server, see the most recently played songs and al-
bums, get info about the albums, songs, and artists, etc.

4.2 Scenarios
Figure 9 (first three columns) lists the test scenarios that we ana-

lyzed using SUNCAT. The name for each scenario has the applica-
tion name and an ID. For each scenario, we first navigate to some
application screen (shown in a typewriter font), then start SUN-
CAT logging, perform a user action (shown in a bold font), poten-
tially press back button and repeat the action multiple times in the
Comparison Mode (column ‘R?’), and stop SUNCAT logging. For
example, for OneBusAway #4, we first go to the AllStops screen
and then perform the action “go to OneStop” multiple times.

We came up with these scenarios by ourselves, while using the
applications in an intuitive manner. We explored each application a
bit to see what screens it has; if a screen showed a list, we thought
it natural to test it in the Comparison Mode, e.g., displaying the de-
tails of one bus stop should be comparable to displaying the details
of another bus stop. The application developers themselves could
prepare a longer list of scenarios, covering all screens.

6

Test Scenario Description: Screen. Action R? PP? Ev. #CS Number of patterns and top 3 patterns Str T(s)

Conference #1 Authors. Go to OneAuthor Y
√

1489 6 2 B≤203 C≤5 2 1.1

Conference #2 Session. Back to Main Y
√

8912 10 4 B≤718 C≤316 A21 4 7.1

Conference #3 Authors. Tap letter & pop-up Y
√

15580 8 3 C≤20 A1279 B1279 3 14.0

Conference #4 Session. Go to OnePaper Y
√

1344 4 2 a≤444 A≤5 1 2.1

Pex4Phone #1 Main. Go to Leaderboards N 303 3 1 A≤13 0 0.5

Pex4Phone #2 Main. Go to Play N 1287 12 2 C21 B3 2 2.7

Pex4Phone #3 Play, navigate away. Back to Play N 395 8 5 C≤3 B21 B11 5 0.5

Pex4Phone #4 Main. Go to Learn N 175 10 2 A17 B15 2 0.2

Pex4Phone #5 Learn, navigate away. Back to Learn N 280 10 3 A17 B15 B15 3 0.4

Pex4Phone #6 Learn. Go to OneCourse Y
√

320 14 4 C≤7 D4 A4 4 0.5

Pex4Phone #7 Play. Go to Training N 156 8 2 B≤15 A4 2 0.2

OneBusAway #1 All Routes. Go to OneRoute Y
√

2481 24 8 C≤82 E≤81 D≤6 7 118.5

OneBusAway #2 One Route. No action N 1302 6 3 a≤12 B11 c6 2 13.0

OneBusAway #3 All Stops. Go to the map N 179 5 2 e62 d31 0 0.3

OneBusAway #4 All Stops. Go to OneStop Y
√

312 13 5 a≤16 C≤11 e≤10 5 0.8

OneBusAway #5 Recent Views. Go to OneStop Y
√

362 9 5 a≤28 b≤16 c≤16 5 0.9

OneBusAway #6 Main. Go to AllStops N 88 3 5 a≤5 B≤3 a6 5 0.1

TouchDevelop #1 Welcome. Go to Main N 339 18 8 f46 e24 d23 6 1.6

TouchDevelop #2 Tile. Go to Script N 161 7 1 A23 1 0.2

TouchDevelop #3 Script. Go to Tile and return Y 645 11 5 e46 d23 a7 4 1.0

TouchDevelop #4 Scripts. Create new script Y
√

5497 10 12 b≤352 a38 a38 6 30.9

TouchDevelop #5 New Script. Go to MainScript N 38 3 1 a3 1 0.1

TouchDevelop #6 Main Script. Create new IF stmt. N 21 3 2 a7 A7 2 0.1

TouchDevelop #7 IF stmt. wizard. Create IF stmt. N
√

478 25 10 e48 B24 d24 9 6.2

Subsonic #1 Music Library. Tap group letter N 18 1 2 a10 a8 2 0.1

Subsonic #2 Music Library. Go to OneArtist N 149 19 2 C14 D4 2 0.5

Subsonic #3 Artist. Go to OneAlbum N 280 30 3 D11 c4 a3 2 1.0

Subsonic #4 Music Library. Go to Newest N 183 17 2 A10 B6 2 0.6

Subsonic #5 Newest. Go to OneAlbum N 77 35 5 B10 b10 C5 3 0.7

OVERALL 10 43X 121X 84% 7.1

Figure 9: Performance characteristics. “R?” = is the action in Scenario Description repeated? “PP?” = was a performance problem
found? “Ev.” = number of concrete events. “#CS” = number of terminals in Count Summary. “Str” = number of patterns in the
Summarized Grammar for which strings were useful. “T(s)” = time to process the trace (in seconds).

4.3 Performance Problems Found
For ten usage scenarios from Figure 9 (column ‘PP?’) we found

nine unique performance problems (OneBusAway #4 and OneBus-
Away #5 exposed the same problem), eight of which were previ-
ously unknown. One problem we reported was already confirmed
and fixed (OneBusAway #4/OneBusAway #5) [34], four problems
were confirmed (Conference #1, Conference #2, Conferen-
ce #3, Conference #4), one problem we found was a duplicate of
an older confirmed performance problem (OneBusAway #1) [35],
and three more problems we found developers labeled as cases
where performance could be improved but is not a high priority
(Pex4Phone #6, TouchDevelop #4, TouchDevelop #7).

We describe our experience in using SUNCAT to identify these
performance problems. Since Performance Summaries generated
by SUNCAT are a new type of information for understanding per-
formance, our presentation follows the style of papers that present
new information for profiling [6, 7, 17, 19, 41, 42, 47]. Namely,
we present key steps in the process of analyzing the summaries,
i.e., navigating among the grammar, terminals, non-terminals, call
stacks, strings, and code to understand the potential performance
problems. To make our presentation specific, we present for sev-
eral test scenarios (1) a concrete run, (2) sample key steps in the
process of using SUNCAT, and (3) the problem description.

4.3.1 OneBusAway #4
Concrete Run: We describe in more detail our experience with

the running example (Section 2), the OneBusAway #4 test scenario.
The number of events and the repetition counts in Figure 9 are
larger than in Figure 5 because the abstract trace in Figure 5 is
shortened for clarity. We first used SUNCAT to instrument the
OneBusAway application for logging and opened the instrumented
OneBusAway. We ran several other scenarios before navigating
to the AllStops screen (Figure 1(a)). In this run, the AllStops
screen showed bus stops NE 65TH ST & OSWEGO, NE 65TH ST & NE
RAVE, NE RAVENNA BLVD & I, NE 65TH ST & ROOSEVE, and sev-
eral more. For each bus stop, one can see detailed information
by tapping the respective stop and getting to the OneStop screen
(Figure 1(b)). We started the SUNCAT logging and tapped the first
bus stop. While OneBusAway is navigating to the OneStop screen,
SUNCAT logs concrete events. After the screen was displayed, we
stopped the SUNCAT logging and pushed the back button, which
brought us back to the AllStops screen. We next visited the other
three stops, repeating the same process: start the instrumentation,
tap the stop, wait for the OneStop screen to be displayed, stop
the instrumentation, and press the back button. After navigating
to these four OneStop screens, we obtained an event trace.

Inspection Step (Identify the Pattern to Explore): Figure 5 (Sec-
tion 3) shows the various pieces of information that SUNCAT gen-

7

erates for this trace. From Prioritized Patterns and Summarized
Grammar, several patterns stand out: a4|5|6|7, e3|4, and f3|4

are especially interesting, because their repetition counts increase,
suggesting that they may increase even further (e.g., 8, 9, 10... for
a, or 5, 6, 7... for e); C6|3|5|4 is interesting because its repetition
count varies (increases and decreases), suggesting that other values
may be possible (say, 20).

Inspection Step (Understand a Terminal Symbol from String Val-
ues): Since the pattern for a has both increasing and the largest
values, we wanted to understand what it represents and if growing
its repetition counts can lead to a performance problem. Looking
at the top of the call stack for a, we find OneBusAway.WP7.View-
Model.BusServiceDataStructures.Stop.get_name(), i.e., a
is a call to the string getter for a bus stop name. Hence, an repre-
sents an iteration over n bus stops. To understand what this iteration
represents, we inspect the strings corresponding to a (Figure 5).
One would expect these strings for bus stop names to be related in
some way, e.g., be part of the same bus route or be close to our
current location. However, we were surprised to see one an pattern
iterate n times over the same bus stop, i.e., one string (NE 65TH ST
& OSWEGO) repeated 4 times, another string (NE 65TH ST & NE RAVE)
repeated 5 times, the third string (NE RAVENNA BLVD & I) repeated
6 times, and the fourth string (NE 65TH ST & ROOSEVE) repeated 7
times. We immediately noticed these are the bus stops for which
we had opened the OneStop screens.

Inspection Step (Understand a Terminal Symbol from Call Stacks
and Code): Having inspected the string values for a, we look at its
full call stack. All the stack frames, except the get_name itself, are
from the Windows Phone runtime, some from the reflection classes.
We deduced that the runtime invoked get_name due to some data-
binding update (discussed in Section 2). The method names on
the call stack do not show the reason for the data-binding update:
where it is declared or what action triggered it. We used an auto-
matic search of all OneBusAway project files for references to the
OneBusAway.WP7.ViewModel.BusServiceDataStructures.-
Stop class and the name field, and we found the XAML declaration
shown in Figure 2.

Problem Description: Putting all this together, we concluded
that navigating to OneStop screens triggers more and more data-
binding updates for the current page to which the user navigates.
Since the number of these updates seems to grow without limit,
after enough time, there will be a very large number of updates.

Inspection Step (Run SUNCAT with Delays): It is not obvious
from the application source if these updates are on the critical path
for the user (or performed in some background thread). To deter-
mine how repeated updates affect the user-perceived performance,
we instructed SUNCAT to insert delays in get_name. We then reran
the same test scenario, navigating from the AllStops screen to
OneStop screen. We saw that AllStops indeed persists for some
time before OneStop is displayed.

4.3.2 OneBusAway #1
Concrete Run: The previous scenario navigates among screens

for bus stops, and this scenario navigates among screens for bus
routes. In our example run with SUNCAT, the AllRoutes screen
showed several routes, and we navigated to four OneRoute screens.

Inspection Step (Identify the Pattern to Explore): Figure 10 shows
the simplified Summarized Grammar for this run. C54|19|82|66

stands out with the largest maximum values (even larger than the
parts ignored in ...). For each non-terminal, such as C, we can
choose to explore the context in which it appears in the grammar
(on the right-hand side of another rule) or the sequence that it rep-
resents (what its right-hand side is). Indeed, as discussed in Sec-

�������

�������������������

������������������		���
�����	�
��

���
��������
��
�
�������
��	�

������������������������	����
����������������� �	���!�
���
�"#�����$��������%�	����
� ��
�&��'
(����� ���) ���'
(�����
�������) ���*	!� ���#+�,�#
��
-����� ��#�	�
�� 	��#���.

�	�$�#
/+0���1�21�3�21�456����
/+0���1�21�3�21�454����
/+0���1�21�3�21�4/7+���
-����� ��!	�$�#���.

�����
���������������

�������� ��!
!����) ���*	!� ���#+�,�#
�
�����%�#�8*	!� �����$�������������#��9
������
��::�#� �	��;��3�#	!����#����������
��#� �	��;� �) ���'
(��������<���#��=
>

Figure 10: Performance Summary for OneBusAway #1

tion 3.2, a key benefit of grammars is that they provide context and
hierarchical organization of symbols.

Inspection Step (Understand Where a Non-Terminal Appears):
We first looked in what context C appears and find it in the rule for
B. We then find B in the rule for A, with an increasing repetition
count. A itself repeats four times in the rule for S due to the Com-
parison Mode, corresponding to our navigation to four bus routes.
It appears that, inside A, B could continue increasing from 4 to 5, 6,
7, etc., and inside B, C varied seemingly randomly.

Inspection Step (Understand What a Non-Terminal Represents):
We next wanted to understand what C represents, and if it can grow
to large numbers. Since C maps to three terminals, we look at their
call stacks in the Cumulative Event Info. We find on top the getters
get_direction, get_id, and get_name from the structure One-
BusAway.WP7.ViewModel.BusServiceDataStructures.Stop,
i.e., these string getters correspond to a bus stop direction, ID, and
name. Since these getters are adjacent in C, we know that they are
always executed together, so we deduce that Cn represents an itera-
tion over n bus stops. To understand what this iteration represents,
we inspected the string values corresponding to the terminal c. We
chose to look at c rather than a or b because get_name promises to
give more information than get_direction or get_id. From the
strings for the bus stop names, it stands out they start with 5TH AVE
NE & NE followed by some different numbers, which suggests that
these bus stops are consecutive, like a bus route along the 5th Ave.
We infer that Cn represents a bus route.

Inspection Step (Understand a Terminal Symbol from Call Stacks
and Code): Having inspected the string values for c, we looked at
its full call stack. It has calls of methods from a .NET serialization
class and then a call of the method WriteFavoritesToDisk in
OneBusAway. From the code of that method (Figure 10), we see
it saves the favorite routes (and stops) to disk, and in the class for
routes we indeed find that fields have annotations for serialization.

Problem Description: Putting all this together, we concluded
that OneBusAway saves to disk entire routes with all their bus stops.
By itself, this serialization can become slow if a route has many
stops; from C54|19|82|66, we see that some routes have as few as
19 stops while others have as many as 82. Moreover, the number of
serializations grows over time, as shown by the B1|2|3|4 pattern,
so even if serializing any one given route is not slow, there is an
increasing number of routes to serialize. Looking at the code, we
confirm that OneBusAway keeps a list of the most recently viewed
bus routes; the B1|2|3|4 pattern comes from the fact that the code
saves the entire list for each navigation, and the list can grow with
each new navigation. Without a grammar, it would be much harder
to know there is a nesting of repetitions for B and C; the Count
Summary would only show a503 (or at best a54|73|155|221 in the
Comparison Mode), and likewise for b and c, so it would not be
clear there is a growing list that can create a performance problem.

8

�������

�������������������	�����������
�����	�
��
�������
��

���
��������
��
�

�������
��	��
���
�������
���
���	���	�
��
��
�����	�
�� ��	!"�	�
��
�#��
�$��
���"�%�&�'�
�	
�
�("�����
����
�����	�
� ��	!"�	�
�)���
�$��
��*"���+�,	"�
�	!"�	�
���
-������
���	�����	�
����.

/	�'
�
�
	�"
�
�
���'�����
�	
�
�	0	�����
-������
�!	�'
����.

�����
���������������

�������� ��!
�
�������
��1
�����2�
���11�/"
+���
���
�1�
�("���
������1��2��1��	�
�22�1
�����	�
�

Figure 11: Performance Summary for Conference #1

Inspection Step (Run SUNCAT with Delays):
We finally determined if this writing to disk
affects the user-perceived performance. We
instructed SUNCAT to insert delays in the
get_direction, get_id, and get_name get-
ters, and then reran the same test scenario,
navigating from the AllRoutes screen to an
OneRoute screen. We got the OneRoute screen shown to the right
of the text, which persists for some time before the route info is
fully displayed. Unlike in the previous scenario where the appli-
cation blocks on the current screen, in this scenario the applica-
tion proceeds to the next screen but shows some partial information
(route line, the location) that is inadequate for the user.

4.3.3 Conference #1
Concrete Run: We used the ICSE 2011 data to test Conference.

In the Conference #1 scenario, we first navigate to the Authors
screen that lists all paper authors. Tapping an author shows an
AuthorInfo screen with the details such as institution and the list
of papers in ICSE 2011. We used SUNCAT in the Comparison
Mode and visited four authors, randomly scrolling down the list
(ending up with Bae, Baysal, Brand, and Claessen).

Inspection: Figure 11 shows the simplified grammar for this run;
the patterns B46|75|136|203 and C5|3|4 stand out as their repeti-
tion counts vary, but B has larger variations. We inspected B by
looking at the call stacks and string values for the terminals a, b,
and c, similarly as described for OneBusAway #1. We found that B
represents an author, and the strings involved in the Bn repetition
showed it iterated over the author names, stopping at the author
that we navigated to. (While we randomly scrolled down the list,
we would find the same even if we scrolled up the list.)

Problem Description: We suspected that the model data struc-
tures did a linear search for the author. Indeed, looking at the code,
we found that this repetition is in a LINQ query1 that searched for
the name of the author in a list of objects (People). This repetition
grows as the index of author grows. The solution to this problem is
to use a dictionary instead of a list.

4.3.4 TouchDevelop #7
Concrete Run: We ran TouchDevelop instrumented for SUN-

CAT logging and first navigated to the Scripts list. We pushed
the NewScript button and from a list of statement types selected
if/then/else. At this point, a wizard appears that displays all
the available options for constructing an if/then/else statement.
We simply stopped SUNCAT logging without selecting any infor-
mation for then and else branches.

1LINQ is a declarative SQL-like language integrated into C#. Fig-
ure 11 shows an example query that finds the first Person in the
list with the matching name.

����������������	���
�������

��
��������

����������

����	
��
���
	��	

�
����
���	�
�������������
������
�����
��
���������	 �!�������
 ����"
��
����	��������#� ����
 ����"
��
������	��������#� �����$
��
����	���������	 �!��������$
��
%�����
�&��	��� ��
&���'

(���
&
�)���� �
���*�����

�)���������	����&
%�����
�$���
&���'

�����	���
���
�������

���
������
��
� �&����+���
��	 �!�&�#�

�&�,��
��&������&-,�	 �!������&��
�
�
���
���
�
	��&�,��&��
 ����"
����

Figure 12: TouchDevelop #7 Performance Summary

Inspection Step (Identify the Pattern to Explore): Figure 12 shows
the simplified grammar for the above run: e48 stands out because
its repetition count is large. From the Cumulative Event Info, we
find that e corresponds to get_BaseScriptIdFileName in the
class ScriptInfo. From the method name, we see that the repe-
tition is over script files, although it is unclear what BaseScript-
Id stands for. Unfortunately, the string values for e do not help
as they are cryptic, e.g., 46e7d1ac-5b54-4c7b-9. However, the
call stack for e contains the method System.Diagnostics.Con-
tracts.Contract.ForAll(), which is used for .NET assertions
(such as post-conditions and object invariants) and was enabled in
our debug run. We stopped the investigation of this pattern, because
such assertions would be presumably disabled in production runs.

Inspection Step (Identify the Pattern to Explore): The patterns
that stand out next are a24, B24, and d24. We see from their
contexts—B24d24C6 and a24b7c7—that the former appears more
interesting because B and d seem correlated, as they are adjacent
and have the same repetition number.

Inspection Step (Understand What a Non-Terminal Represents):
The rule for B has three terminals, corresponding to get_Name,
get_LinkName, and get_Counter from the class Microsoft.-
TouchStudio.TileInfo. We focused on get_Name because we
were not sure what get_LinkName and get_Counter return. (It is
interesting that d, as g, corresponds to the get_LinkName from the
TileInfo class, but d and g differ because their call stacks differ.)
TouchDevelop has many buttons shaped like tiles, but it was not
clear to which tiles B refers. From the strings for f we immedi-
ately recognized the names of the 24 scripts that come preloaded
with TouchDevelop, because we saw these names while we used
TouchDevelop. We concluded that B corresponds to scripts.

Problem Description: Intuitively, displaying an if/then/else
statement should not iterate over all scripts in the system. More-
over, when there will be many scripts in the system, this action can
become slow. Looking at the full stack traces in the terminals of
B (Figure 12), it appeared from the method names that TouchDe-
velop serializes (and presumably saves to disk) all the scripts in
the system. Indeed, Figure 12 shows a code snippet with a LINQ
expression that serializes each script that is not deleted. While this
code is easy to understand after we explained the problem, it is not
obvious to detect before we understood the problem [37].

4.4 Other Scenarios and False Alarms
For the other 19 scenarios from Figure 9, we did not find any

performance problem. SUNCAT still reported some repetition pat-
terns, the same way that a traditional profiler reports a profile for
any program run, whether the run’s input is small or large, rep-
resentative or not. Developers do not consider that profilers give
“false alarms” [30]. Likewise, SUNCAT helped us to realize there
are no real performance problems in those scenarios. In partic-
ular, the string values and call stacks helped to understand indi-

9

vidual method calls, grammars helped to understand grouping of
method calls, and time delays helped to understand the effect on
user-perceived performance.

For example, for TouchDevelop #1 and the repetition patterns
B23, e24, and C5, we find that even with the delays the applica-
tion runs normally, without any noticeable slowdown. This means
that when these repetitions increase, the user will not necessarily
observe any performance problems. The reason is that the com-
putation is performed in a background thread, and the main thread
does not wait for the computation to finish (because the computa-
tion saves some state, which is not critical for the regular user ac-
tions). In contrast, delays in f46 show that this pattern may impact
user-perceived performance.

Note that some of these 19 scenarios could also create perfor-
mance problems, but they would affect the user-perceived perfor-
mance only in unusual or unrealistic cases with very large inputs.
For example, while a conference can have 1279 authors, it would
be highly unusual for a paper to have 1279 authors. Similarly, the
number of programming constructs in a scripting language such as
used in TouchDevelop cannot become very large. Hence, such
performance problems are unlikely to be fixed because the com-
plexity involved in modifying the code may not be warranted by
how frequently the end users experience performance problems.

4.5 Computing the Performance Summary
Figure 9 shows specific quantitative results for one sample trace

per each test scenario. We tabulate the number of events in the
trace, the number of terminals (with repetition counts larger than
two) in Count Summary, the number of repetition patterns in Sum-
marized Grammar computed using our lossy compression algo-
rithm, and the top three patterns in the Prioritized Patterns. On
average (geometric mean), a Count Summary has 43X fewer ele-
ments and a Summarized Grammar has 121X fewer patterns than
a trace has events, which illustrates the compression achieved by
encoding traces into patterns. For two scenarios (OneBusAway #1
and #5), our current SUNCAT implementation does not automati-
cally infer some patterns due to noise in the trace, but the patterns
are easily seen in the Full Grammar and Summarized Grammar.

The column T(s) shows the time that SUNCAT took to process
the traces. We ran the experiments on an Intel Xeon 2.8 GHz desk-
top with 6 GB of memory running Windows 7. Most experiments
finish in under 30 seconds, which means developers can easily run
SUNCAT interactively, during the development and testing process.

4.6 Using String Values
Figure 9 also shows for how many repetition patterns we found

the string values returned by getters easy to understand. Some
strings (e.g., bus stop names or author names) were quite clear to
us even though we did not develop the application and only used it,
but some other strings were fairly cryptic to us, although the appli-
cation developer would probably understand them much easier. For
example, it was initially not obvious to us what the string 1__23580
represents in OneBusAway, but we realized later that strings starting
with 1__ represent bus stop IDs. Similarly, strings such as 2ca1-
1659-7132-4297-b89d-da624ab72db2.ts-base in TouchDe-
velop would probably be recognized by developers as names for
scripts stored on disk. Subsonic has some URL strings, and when
we tried them in a browser, we got pictures of music album cov-
ers, which were easy to correlate with Subsonic #2. Some strings
would be difficult to understand even for the original developer,
e.g., just small numerals or empty strings. Overall, we found strings
easy to understand in 84% of the patterns, confirming our intuition
that logging string values helps in understanding applications.

5. RELATED WORK
There is a rich body of research on performance profiling. Much

of this work [6, 10, 13, 16, 17, 22, 29, 30, 43, 50] focuses on iden-
tifying execution subpaths that take a long time to execute dur-
ing an observed run. Several techniques [7, 39] focus on how to
easily manipulate and present these subpaths to the user. Other
techniques detect performance problems that manifest as anoma-
lous behavior [44,45], deviations in load tests [24], or performance
regressions [33]. For all these techniques, the performance prob-
lems need to manifest in the observed runs. In contrast, SUNCAT
provides information to the developer to help reason about perfor-
mance problems that would occur in unobserved runs.

Mantis [21] is a very recent technique that predicts performance
in smartphone applications. The predictions made by Mantis have
high accuracy. However, Mantis requires developers to provide
many training inputs for its machine learning algorithm. Further-
more, Mantis was evaluated on CPU-intensive applications that
have little to no user interaction. Unlike Mantis, SUNCAT analyzes
a single input, which makes using SUNCAT very easy. Further-
more, SUNCAT was evaluated on highly interactive applications.

Two projects [12,49] also propose specialized techniques for per-
formance problems that may occur in unobserved runs. These tech-
niques plot method execution cost by input size. These techniques
cannot find performance problems in code that cannot be instru-
mented, such as the example in Section 2. Smartphone applications
make heavy use of the runtime system and asynchronous events, so
SUNCAT complements these techniques. SUNCAT also helps de-
velopers assess the impact on user-perceived performance.

Several techniques [18,32,36,47] detect various code and execu-
tion patterns that may be indicative of performance problems. Like
SUNCAT, these techniques do not require the performance problem
to slow down the observed run. Unlike SUNCAT, these techniques
do not give information about how the execution cost may evolve
for larger inputs.

6. CONCLUSIONS
The use of smartphone applications is increasing, and the user

experience they create is determined by performance as much as by
functionality. Unfortunately, testing performance for smartphone
applications is difficult because it is hard to control the inputs as
code extensively interacts with the environment. We have pre-
sented SUNCAT, a novel technique that helps developers use com-
mon, small inputs to understand potential performance problems
that smartphone applications could have for larger inputs. The key
novelties include identifying string getters as important methods to
count, using lossy grammar-based compression to obtain succinct
repetition patterns to inspect, and providing a delay-based mecha-
nism to check the effect on user-perceived performance. Our anal-
ysis of 29 test scenarios in 5 Windows Phone applications showed
highly promising results as we found nine performance problems.

7. ACKNOWLEDGMENTS
We thank Madanlal Musuvathi and Thomas Ball for their invalu-

able help and support throughout this project. We thank Jonathan
de Halleux, Nikolai Tillmann, and Christian Bird for useful discus-
sions and help with the Windows Phone applications. We thank
Herman Venter and Mike Barnett for helping with the CCI infras-
tructure. We thank Peter Jipsen, Atanas Radenski, and Peiyi Zhao
for their feedback on this paper. We thank Guoqing (Harry) Xu,
Atanas (Nasko) Rountev, and Shan Lu for early feedback on this
paper. We thank Darko Marinov for feedback and useful discus-
sions. This work was partially done while the authors were in in-
ternship at Microsoft Research.

10

8. REFERENCES
[1] CodePlex. http://www.codeplex.com/.
[2] Common Compiler Infrastructure.

http://research.microsoft.com/en-us/projects/cci/.
[3] One Bus Away. http://onebusawaywp7.codeplex.com/.
[4] Subsonic. http://subsonic.codeplex.com/.
[5] TouchDevelop. http://www.touchdevelop.com/.
[6] E. A. Altman, M. Arnold, S. Fink, and N. Mitchell.

Performance analysis of idle programs. In OOPSLA, 2010.
[7] G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy. Finding

and removing performance bottlenecks in large systems. In
ECOOP, 2004.

[8] J. Belfiore. Scaling Windows Phone, evolving Windows 8.
http://blogs.windows.com/windows_phone/b/windows-
phone/archive/2014/02/23/scaling-windows-phone-evolving-
windows-8.aspx.

[9] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and
M. Mezini. Taming reflection: Aiding static analysis in the
presence of reflection and custom class loaders. In ICSE,
2011.

[10] M. D. Bond and K. S. McKinley. Continuous path and edge
profiling. In MICRO, 2005.

[11] E. Chan. Smartphones for data, not for calling.
http://www.businessweek.com/technology/content/mar-
2011/tc20110316_121017.htm/.

[12] E. Coppa, C. Demetrescu, and I. Finocchi. Input-sensitive
profiling. In PLDI, 2012.

[13] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining hot
calling contexts in small space. In PLDI, 2011.

[14] D. Diaz and M. Zilberman. Build data-driven apps with
Windows Azure and Windows Phone 7.
http://msdn.microsoft.com/en-us/magazine/gg490344.aspx.

[15] D. Graziano. Smartphone, tablet and PC shipments to
surpass 1.7 billion in 2014.
http://bgr.com/2013/06/11/smartphone-tablet-pc-shipments/.

[16] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance
debugging in the large via mining millions of stack traces. In
ICSE, 2012.

[17] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind.
Vertical profiling: Understanding the behavior of
object-oriented applications. In OOPSLA, 2004.

[18] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu.
Understanding and detecting real-world performance bugs.
In PLDI, 2012.

[19] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if you
can: Performance bug detection in the wild. In OOPSLA,
2011.

[20] J. C. Kieffer and E.-H. Yang. Grammar-based codes: A new
class of universal lossless source codes. IEEE Transactions
on Information Theory, 46(3):737–754, 2000.

[21] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun,
L. Huang, P. Maniatis, M. Naik, and Y. Paek. Mantis:
Automatic performance prediction for smartphone
applications. In ATC, 2013.

[22] J. R. Larus. Whole program paths. In PLDI, 1999.
[23] E. Lehman and A. Shelat. Approximation algorithms for

grammar-based compression. In SODA, 2002.
[24] H. Malik, H. Hemmati, and A. E. Hassan. Automatic

detection of performance deviations in the load testing of
large scale systems. In ICSE, 2013.

[25] Microsoft Corp. Conference App.
http://research.microsoft.com/en-us/projects/confapp/.

[26] Microsoft Corp. How do I use the profiler in Windows Phone
Mango? http://msdn.microsoft.com/en-us/windowsmobile/-
Video/hh335849.

[27] Microsoft Corp. Pex4phone. http://www.pexforfun.com/.
[28] Microsoft Corp. XAML Overview (WPF).

http://msdn.microsoft.com/en-us/library/ms752059.aspx.
[29] T. Mytkowicz, D. Coughlin, and A. Diwan. Inferred call path

profiling. In OOPSLA, 2009.
[30] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.

Evaluating the accuracy of Java profilers. In PLDI, 2010.
[31] C. G. Nevill-Manning and I. H. Witten. Linear-time,

incremental hierarchy inference for compression. In DCC,
1997.

[32] K. Nguyen and G. H. Xu. Cachetor: Detecting cacheable
data to remove bloat. In FSE, 2013.

[33] T. H. D. Nguyen, M. Nagappan, A. E. Hassan, M. N. Nasser,
and P. Flora. An industrial case study of automatically
identifying performance regression-causes. In MSR, 2014.

[34] A. Nistor. Performance. Data binding updates to DetailsPage.
http://onebusawaywp7.codeplex.com/workitem/16297.

[35] A. Nistor. Performance. Disk writes when navigating to the
details page.
http://onebusawaywp7.codeplex.com/workitem/16299/.

[36] A. Nistor, L. Song, D. Marinov, and S. Lu. Toddler:
Detecting performance problems via similar memory-access
patterns. In ICSE, 2013.

[37] C. Parnin and A. Orso. Are automated debugging techniques
actually helping programmers? In ISSTA, 2011.

[38] S. Perez. iTunes app store now has 1.2 million apps, has seen
75 billion downloads to date.
http://techcrunch.com/2014/06/02/itunes-app-store-now-has-
1-2-million-apps-has-seen-75-billion-downloads-to-date/.

[39] K. Srinivas and H. Srinivasan. Summarizing application
performance from a components perspective. In FSE, 2005.

[40] Sun Microsystems. HPROF JVM profiler. http://java.sun.-
com/developer/technicalArticles/Programming/HPROF.html.

[41] N. R. Tallent and J. M. Mellor-Crummey. Effective
performance measurement and analysis of multithreaded
applications. In PPOPP, 2009.

[42] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield.
Analyzing lock contention in multithreaded applications. In
PPOPP, 2010.

[43] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential path
profiling: Compactly numbering interesting paths. In POPL,
2007.

[44] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with
PeerPressure. In OSDI, 2004.

[45] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J.
Wang, C. Yuan, and Z. Zhang. STRIDER: A black-box,
state-based approach to change and configuration
management and support. In LISA, 2003.

[46] Q. Xu and J. Subhlok. Efficient discovery of loop nests in
communication traces of parallel programs. Technical report,
University of Houston, UH-CS-08-08, 2008.

[47] D. Yan, G. Xu, and A. Rountev. Uncovering performance
problems in Java applications with reference propagation
profiling. In ICSE, 2012.

[48] Yourkit LLC. Yourkit profiler. http://www.yourkit.com.
[49] D. Zaparanuks and M. Hauswirth. Algorithmic profiling. In

PLDI, 2012.
[50] X. Zhang and R. Gupta. Whole execution traces. In MICRO,

2004.

11

