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Abstract

This paper considers the problem of choosing between an existing component whose
reliability is well established and a new component that has an unknown reliability. In
some scenarios, the designer may have some initial beliefs about the new component’s
reliability. The designer may also have the opportunity to obtain more information
and to update these beliefs. Then, based on these updated beliefs, the designer must
make a decision between the two components. This paper examines the statistical ap-
proaches for updating reliability assessments and the decision policy that the designer
uses. We consider four statistical approaches for modeling the uncertainty about the
new component and updating assessments of its reliability: a classical approach, a
precise Bayesian approach, a robust Bayesian approach, and an imprecise probability
approach. The paper investigates the impact of different approaches on the decision
between the components and compares them. In particular, given that the test results
are random, the paper considers the likelihood of making a correct decision with each
statistical approach under different scenarios of available information and true reliabil-
ity. In this way, the emphasis is on practical comparisons of the policies rather than on
philosophical arguments.
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1 Introduction

Engineers make decisions based on their beliefs. These beliefs depend upon the infor-
mation that the engineer has gathered, and they can change based on new information
(e.g. from experts, experiments, and experience). Statistical reasoning includes a va-
riety of approaches for updating beliefs based on new information. From a practical
perspective, it can be argued that engineers would like a procedure for reliability as-
sessment that can use existing information, incorporate new information, and help de-
termine what additional information, if any, is needed. Previous work (Aughenbaugh
and Herrmann, 2007) has considered the parameter estimation problem. However, it is
ultimately the quality of the final decision that matters.

The goal of this article is to explore how different statistical methods for updat-
ing the designer’s beliefs lead to correct, incorrect, or inconclusive decisions under
different scenarios of available information and actual reliability. Naturally, this also
involves comparing the use of different decision policies. We consider a specific de-
sign decision-making problem under a number of different information scenarios. The
emphasis in the paper is on a practical, rather than a philosophical, comparison of the
approaches in a defined context.

The paper begins by stating the problem and introducing three scenarios that corre-
spond to situations in which the designer initially has different amounts of information.
After briefly describing the statistical approaches that will be considered, the paper then
discusses how they and the decision policy affect the accuracy of the decision in the
different scenarios.

2 Reliability assessment problem

The performance of a product is unpredictable and often involves random behavior.
Multiple items (i.e. instances of the product being designed) will be manufactured,
sold, and used. Ideally, these items are identical. In practice, however, differences in
materials, manufacturing, and usage exist, and consequently, the possibility of failures,
though disagreeable to the designer, is unavoidable. Here, “failure” is taken very gen-
erally, but we assume it is a one-time event in the lifetime of an item in which at least
one performance requirement is not met.

2.1 Problem statement

We consider the following example. A design team wishes to reduce the cost of a
product by replacing one expensive component of the system with a new, lower cost
component. Cost is a typical motivation, but other issues could motivate the replace-
ment. Regulations require that the new component must be at least as reliable as the
existing component. Consequently, the decision of whether to replace the component
depends upon this criterion.

It will be convenient to frame things in terms of failure probability instead of relia-
bility. The current component is assumed to have a failure probability of 6.,;; = 0.05.
Let 0 be the failure probability of the new component. In order to replace the old
component with the new component, the designer requires that < 6..;;. We will



consider two cases for the new component’s true failure probability: 0 = 0.04 < 0.5
(so the new component is preferred), and § = 0.06 > 6.,.;+ (so the old component is
preferred).

However, the designer does not know the true value of . He or she does have the
opportunity to obtain additional data from testing in order to update his assessment of
0. The designer can perform n tests in which the performance—actual or an acceptable
surrogate—of the new component is observed. Let x; = 1 if trial ¢ is a failure, and
z; = 0 otherwise. Then the number of failures observed is m = Y .- | x;. We assume
that each test is an independent Bernoulli trial, so m is a binomial random variable.

2.2 Information scenario descriptions

The feasibility and desirability of a given statistical approach for updating beliefs de-
pend upon the scenario, including the amount of data currently available and the beliefs
that are currently held. In this paper, we consider the following three scenarios.

Scenario 1: no prior information. In this scenario, the designer has concluded
that no relevant information is available. For example, the new component may be
completely new, or the environment may be so different that the designer believes that
existing data have little value in predicting the performance of the new component. Es-
sentially, the designer needs to construct an estimate of the reliability from scratch. All
inferences about the component’s reliability will be made using only the data received
from the planned experiments.

Scenario 2: substantial prior information. In this scenario, there exists substan-
tial information that the designer believes is relevant to the desired reliability analysis.
The designer is considering testing as a way of verifying this information. For ex-
ample, the new component may be a minor modification of the existing component.
Alternatively, the new component may have been used in other similar settings, so its
past performance is a good indication of its performance in this new setting.

Scenario 3: partial prior information. In this scenario, the designer believes
that information relevant to the desired analysis is available, but the designer is con-
sidering testing in order to augment and verify this partial information. For example,
perhaps the new component was used previously in another setting that did not stress
the component as it will be stressed in the future, or the new component is a significant
modification from existing designs so existing data is only partially relevant. Coolen
(2004) discusses various scenarios in which only partial information may be available
in more general reliability assessment problems.

3 Statistical approaches for updating reliability estimates

This paper considers four approaches for analyzing data and updating beliefs: classi-
cal sampling theory; precise Bayesian theory; robust Bayesian theory; and imprecise
probability theory. The following subsections discuss these approaches.



3.1 Classical sampling theory approach

The classical, sampling theory approaches to statistical analyses, which are generally
emphasized in introductory texts, focus entirely on the observed data—in this case
the {x;}7 ;. Because the prior information plays no role in the analysis, the classical
approach is the same in all three information scenarios.

The ratio § = >, xi/n = m/n, which is the relative frequency of failures to
trials in the sample, is an unbiased point estimate of 6. Let z, be the 100(1 — «)
percentile of the standard normal distribution. Then, a commonly used, approximate
one-sided 100(1 — a))% confidence interval on 6 is given by Eq. (3.1):

lo, % ¥ 2 % (1 - T) 1] 3.1)
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The actual coverage probability of this approximation fluctuates as n varies, an
effect that is accentuated for small 6 (Brown et al., 2001). We use the one-sided, upper
bound for this problem because the designer would like the failure probability to be
below the threshold, and only the upper limit of the interval matters for this decision.
If this interval includes 6.,.;;, then one cannot reliably conclude that § < 6.,.;; based
on the test results. Other confidence intervals for estimating this parameter have been
proposed, as discussed in Brown et al. (2001).

3.2 Precise Bayesian approach

The Bayesian approach (cf. Berger, 1985) provides a way to combine existing knowl-
edge and new knowledge into a single estimate by using Bayes’s Theorem. One of
the requirements of Bayesian analysis is a prior distribution that will be updated. This
prior enables designers to include existing information into the analysis.

To support analytical solutions, the form of the prior is often restricted to conjugate
distributions with respect to the measurement model, in which case the posterior dis-
tribution that results from the update has the same type as the prior (e.g., if the prior is
Gaussian, so is the posterior). For the problem considered in this paper, in which the
number of failures in a given number of tests is a binomial random variable, it is con-
venient to model the prior as a beta distribution with parameters « and 3. Specifically,
when one starts with the prior distribution Beta(ayg, 5p) and observes m failures out of
n trials, the posterior distribution is Beta(ag +m, 8o +n —m). Consequently, the up-
date involves simple addition and subtraction, an enormous improvement in efficiency
over the general case. Prior selection for the example is discussed in Section 3.6.

3.3 Robust Bayesian approach

The robust Bayesian approach, or Bayesian sensitivity analysis, addresses the problem
of lack of confidence in the prior (Berger, 1985, 1993; Insua and Ruggeri, 2000; Berger,
1984). The core idea of the approach is to perform a “what-if” analysis: the analyst
considers several reasonable prior distributions and performs the update on each to get
a set of posterior distributions. This set of posteriors yields a range of point estimates



and a set of credible intervals. If there is no significant change in the conclusion across
this set of posteriors, then the conclusion is robust to the selection of the prior.

3.4 Imprecise probabilities approach

In traditional probability theory, the probability of an event is defined by a single num-
ber. However, various researchers have found this definition to be too limited when
there exists incomplete or conflicting information. They have proposed theories of im-
precise probabilities to generalize this to a concept in which probabilities can be inter-
vals or sets, rather than precise numbers (Walley, 1991; Weichselberger, 2000; Demp-
ster, 1967). Other researchers have proposed alternative uncertainty models (Shafer,
1976; Dubois and Prade, 1988).

In this paper, we consider the theory of imprecise probabilities as formalized by
Walley (1991) and others. In this theory, uncertainty is still captured by probability,
but rather than probabilities being single scalar numbers, a range of indeterminacy is
allowed: in a subjective framework, these are prices at which a decision-maker will
not enter a gamble as either a buyer or a seller. These in turn correspond to ranges
of probabilities. For the problem of updating beliefs, imprecise probability theory es-
sentially allows prior and posterior beliefs to be expressed as sets of density functions,
compared to the precise Bayesian requirement that exactly one distribution must be
used to describe an individual’s beliefs. Imprecise probabilities have previously been
considered in reliability analysis (cf. Coolen, 2004; Utkin, 2004a,b; Coolen-Schrijner
and Coolen, 2007), but a direct comparison to other methods that considers the qual-
ity of reliability-based design decisions, rather than philosophical or inference-based
arguments, is not apparent in the literature.

For our example, it is convenient to use the imprecise beta model (IBM), described
by Walley (Walley, 1991; Walley et al., 1996). The IBM is one special case of the more
general imprecise probabilities. The motivation for its use is analogous to the pre-
cise Bayesian practice of using a conjugate distribution to simplify computations, even
though some expressivity is lost. The IBM allows for simple updating when consider-
ing a Bernoulli process and prior information. Improvement to the IBM have been sug-
gested (Coolen, 1994), and non-parametric methods are also available (Coolen, 1998;
Coolen-Schrijner and Coolen, 2007).

For the IBM, the beta model is reparameterized so that the density of beta(s, t) is
as given in Eq. (3.2).

7o +(0) oc 051711 — g)s (=D (3.2)

Compared to the standard parameterization of Beta(c, (3), this means that w = s-¢
and § = s - (1 —t), or equivalently that s = a + S and t = /(o + (). The
convenience of this parameterization is that ¢ is the mean of the distribution and s
reflects the quantity of information available.

If the prior parameters are sg and g, then, after n trials with m failures, the poste-
rior parameters are s, = so + n and t,, = (soto + m)/(so + n). Since s,, = sp + n,
so can be interpreted to be a virtual sample size of the prior information; it captures
how much weight to place on the prior compared to the observed data. Selecting this
parameter therefore depends on the available information. Following Walley Walley



(1991), the parameters can be imprecise. That is, the priors are the set of beta distri-
butions (Oéo,ﬁo) € Fy = {(Soto,SQ (1 —to)) 1ty < tp < Eo,§0 < 59 < 50}. The
posteriors are the set of beta distributions with o, = a9 + mand 3, = By +n —m
V (a0, Bo) € Fo.

3.5 Connection between robust Bayesian and imprecise probability approaches

There are at least two arguments as to why a designer should not consider a single prior
distribution: one practical, and one philosophical. First, because eliciting and assess-
ing an individual’s beliefs is a resource intensive process, it will often be impractical to
fully characterize them (Walley, 1991; Weber, 1987; Groen and Mosleh, 2005). Con-
sequently, only a partial (imprecise) characterization will be available. This is the view
held by advocates of the robust Bayesian approaches. The second argument claims
that true beliefs need not be precise. A person may be unwilling to commit to either
side of a gamble when he has no information about it. It is possible that one would be
satisfied with some price, but this is not a condition for rationality. This view is held
by advocates of imprecise probabilities (Walley, 1991, 1996).

Although the motivations differ between the robust Bayesian and the imprecise
probabilities approaches, they have some similarities. Both use a set of distributions
to analyze a problem. In our reliability assessment problem, it is consistent to use the
IBM to represent both imprecise probability distributions and a set of prior distributions
and to apply Bayes’s Theorem to update the IBM to determine the set of posterior
distributions. However, not all methods for imprecise probabilities are compatible with
robust Bayesian techniques.

3.6 Prior selection

Selecting priors is an important step. Lindley and Phillips (1976) discuss the process of
choosing priors and give some relevant, practical examples. For our reliability assess-
ment problem, we chose different sets of priors (shown in Tables 1 and 2) to illustrate
the impact of different amounts of information of varying quality. Naturally, the priors
selected affect the results of the comparison of methods. This is even part of the point;
the selection of a single precise prior can affect the outcome of the decision problem,
and thus one might want to consider a range of priors or at least the sensitivity of the
decision to the prior.

With no prior information (Scenario 1), one natural choice for the precise prior is
the uniform [0, 1] distribution, which is a special case of the beta distribution (o = 1
and By = 1). This prior is non-informative in that it maximizes the entropy. Others
researchers may argue for the invariant prior (o = 0.5 and Gy = 0.5), which mini-
mizes the Fisher information and has the additional advantage that it is in variant under
re-parameterization. Again, this lack of agreement is one motivation for considering
sets of priors.

For the IBM, the appropriate starting point is a vacuous prior (so-called because it
contains the least information). This prior has ¢, = 0 and ¢, = 1, meaning that the
probability is somewhere between 0 and 1, the least specific statement that is possible.
We must also choose an initial sg. Because it reflects how much “importance” to assign



Table 1:

Bayesian priors for # = 0.06 case

Partial Partial Substantial Substantial
No . . Lo L
Approach sior info prior info. prior info. prior info. prior info.
P ’ (good) (bad) (good) (bad)
Precise a=1 a=17 a=1.0 a=06 a=4
Bayesian B=1 B =23 B =26 B =94 B8 =96
to =0 ty = 0.05 ty = 0.00 ty = 0.055 ty = 0.035
Imgretme fo=1 fo = 0.10 to = 0.05 fo = 0.065 fo = 0.045
eta
Model s9=0 59 =20 sp =120 S5 =80 sy = 80
S0 =2 S0 = 30 S0 = 30 S0 = 120 S0 = 120
Table 2: Bayesian priors for § = 0.04 case
Partial Partial Substantial Substantial
No . . S Lo
Approach sior info prior info. prior info. prior info. prior info.
P ’ (good) (bad) (good) (bad)
Precise a=1 a=1.1 a=1.8 a=4 a=06
Bayesian B=1 B=25 B=22 B =96 B =94
to =0 ty = 0.00 ty = 0.05 ty = 0.035 ty = 0.055
Imgri“se to=1 to = 0.05 o = 0.10 o = 0.045 o = 0.065
eta
Model 50 =0 59 = 20 89 = 20 59 = 80 59 =80
50 =2 50 = 30 50 = 30 50 = 120 50 = 120

to the prior data and there is no prior data, one should select a small learning parame-
ter. However, too small a parameter may cause the posterior to react too quickly to the
data. As described by Walley (1991), sy = 2 has a number of good properties. One
can also allow for a range of learning parameters, such as s, = 0 and 50 = 2. Note
that ty = 0.5 and sy = 2 corresponds to the uniform distribution and that £, = 0.5 and
so = 1 corresponds to the invariant prior distribution. Thus, this set of priors includes
the single uniform prior considered in the precise Bayesian approach with no informa-
tion and an alternative non-informative prior. This highlights the difference between a
non-informative (precise) prior and a vacuous prior. The vacuous prior is a set of prior
distributions, and this set contains multiple non-informative priors, including the uni-
form prior and the invariant prior; the vacuous prior is less specific (i.e. more general)
than any one non-informative prior.

In Scenario 2 (substantial information), we consider priors that represent the sub-
stantial, relevant information. Larger values of o and 3y generally yield a prior distri-
bution with less variance. We use both “good” priors that are good estimates of the true
failure probability (the mean «/ (g + (o) is close to the true value of 6 ) and “bad”
priors that are not. The terms “good” and “bad” are relative in nature; the means of the
“bad” priors are not as accurate as the means of the “good” priors. For the IBM, we
choose ?( and &, to be relatively close to each other (reflecting substantial knowledge
and a well defined estimate of the mean) and 5 and s, to be close to the sum « + By,
which is 100 in this case. The priors for the IBM include the corresponding precise
priors for each case.

In Scenario 3 (partial information), we use smaller parameter values to reflect the



smaller amount of information, as these values lead to a larger variance. For the IBM,
the range for ¢y will be larger since there is more uncertainty in the estimates when
there is less information, and the values of sq (like the values of o and (3y) are smaller,
indicating a smaller “pseudo” sample size for the prior. Again, the priors for the IBM
include the corresponding precise priors for each case.

4 Decision accuracy within each scenario

To study the component selection decision, we must explicitly state the policies that
the designer will use to make the decision. For convenience, let “accept” mean that the
designer accepts the new component because its failure probability appears to be suffi-
ciently small (6 < 6. Let “reject” mean that the designer rejects the new component
because its failure probability appears to be too large. Let “no decision” mean that
the designer does not decide on the acceptability of the new component immediately,
instead preferring to continue collecting information or to apply an additional decision
criteria (see Section 4.3). When the true failure probability is 0 < 6., a correct deci-
sion accepts the new component, and a wrong decision rejects it. When the true failure
probability is 8 > 0., a correct decision rejects the new component, and a wrong
decision accepts it.

The designer’s decision depends upon the test results, which are random. For a
given policy, we can determine which test results lead to which decision (accept or
reject). The probability of a decision is the sum of the probabilities of the test results
that lead to that decision. We will explore how the probability of a correct decision
depends upon the quality and magnitude of the priors, the number of trials conducted,
and the decision policy used.

4.1 Classical approach results

In the classical sampling approach, suppose that the designer will accept the new com-
ponent if the upper bound of the 95% one-sided confidence interval (Eq. 3.1) on 6 is
less than or equal to 6. Otherwise, he rejects it. This is analogous to a one-sided
hypothesis test. Figure 1 shows the probability of a correct decision for each value of
n in two cases: in the first, 8 = 0.06 > 6,; in the second, 6 = 0.04 < 0.;. The prob-
ability of a wrong decision (not shown) equals one minus the probability of a correct
decision.

There are several interesting behaviors apparent in Figure 1. First, the classical
method performs better when 6 > 6, than it does when 6 < 0. This occurs because
the upper bound of the confidence interval is sensitive to the observed test results. Only
a limited number of results (those with few observed failures) yield an upper bound that
is less than or equal to 6., whereas there are many more results that lead to an upper
bound that is greater than 6. This, combined with the variability of the binomial
distribution, make a correct decision (accepting the new component) unlikely when 6
is slightly less than 6. However, when 6 is slightly greater than 6, the large number
of results that lead to a large upper bound makes the correct decision (rejecting the new
component) highly likely.
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Figure 1: Probability of a correct decision for the classical approach.

A second note is the nature of the curves in Figure 1. They are not smooth, as one
initially might expect. Instead, they have a saw-tooth aspect. This leads to non-intuitive
results. For example, in the case with 6§ = 0.04, the probability of a correct decision
is larger when n = 54 than when n = 278. How can more information lead to worse
performance? It is due primarily to the discrete nature of the binomial distribution, and
it is seen for the other approaches, too. Brown et al. (2001) discuss this further.

4.2 Precise Bayesian approach results

In the precise Bayesian approach, the designer will conclude that § < 6. and accept
the new component if the posterior probability that 6 < 6 is at least 0.8. Otherwise,
he will conclude that § > 6 and reject the new component. The selection 0.8 is
somewhat arbitrary; some analysts may consider 0.5 sufficient, while others would
require a higher value such as 0.95. This issue is addressed further in Section 5. The
plots in Figure 2 show the probability of a correct decision for each value of n in two
cases: in the first, # = 0.06 > 6.; in the second, 6 = 0.04 < 6. The different plots
in each graph correspond to the different priors from Tables 1 and 2.

The upper plot shows the probability of making a correct decision when 6 = 0.06.
This probability is highest when the designer starts with a good prior that is based on
substantial information. Starting with a good prior that is based on partial information
and starting with non-informative prior yield similar results. For small n, the probabil-
ity of a correct decision is lowest when the designer starts with a bad prior that is based
on partial information. For larger n, the probability of a correct decision is lowest when
the designer starts with a bad prior that is based on substantial information. The partial,
bad prior is more easily influenced and therefore requires less information to push the
probabilities over the decision threshold of 0.80. As n increases, this responsiveness
causes its posterior to move away from the bad prior faster than in the substantial prior
information case.

The lower plot shows the probability of making a correct decision when 6 = 0.04.
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Figure 2: Probability of a correct decision for the precise Bayesian approach.

In general, the results are as expected: having substantial, good prior information leads
to the best performance, followed by having partial good information; having substan-
tial, bad prior information leads to the worst performance. Interestingly, the partial, bad
prior scenario performs slightly better than the no information, uniform [0, 1] prior. The
mean of the partial, bad prior is inaccurate (0.076 is greater than the true value of 0.04),
but it is more accurate than the mean (0.50) of uniform [0, 1] prior. Essentially, the par-
tial information, while not accurate, has helped to eliminate very large probabilities of
failure from consideration. Thus, one can see that the “noninformative” uniform prior
actually provides a substantial amount of “bad” information.

4.3 Imprecise beta model results

With the IBM, the designer will accept the new component if (over the set of posteriors)
the minimum probability that 6 < € is at least 0.80. The designer will reject the new
component if (over the set of posteriors) the maximum probability that 6 < 6 is less
than 0.80. Otherwise, he or she makes no decision on the acceptability of the new
component, essentially concluding that the information is still insufficient information
to make this decision. In this case, the decision maker may choose to delay the decision
(about component acceptability) and collect additional information with the goal of
reducing the indeterminacy in the existing information, or he or she may choose to
apply an additional decision criterion, such as a mean, an upper bound, or something
more formal (cf. Rekuc et al., 2006). In a sense, this is still a decision, but it is not
a direct decision in the original context. It involves either extending the problem to
allow for additional information collection as an option or refining the decision criteria
to allow new methods.

10
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Figure 3: Decision probabilities for the imprecise beta model.

Figure 3 shows the decision probabilities for each value of n in two cases: in the
first, # = 0.06 > 6 ; in the second, § = 0.04 < 0. The probability of no decision
is not shown due to space constraints, but it can be deduced from the other two

4.3.1 Results for the & = 0.04 scenario

We begin by considering the bottom row of charts in Figure 3, which are for the § =
0.04 scenario. The probability of making a correct decision (i.e. accepting the new
design) is lowest when the designer starts with a bad prior that is based on substantial
information. The probability of making a correct decision is higher when starting with
a bad prior that is based on partial information because there is less incorrect prior
information to overcome. The probability of making a correct decision is highest when
the designer starts with a good prior that is based on substantial information or a good
prior that is based on partial information.

The partial, bad prior and the vacuous prior lead to similar performance; starting
with a small amount of bad information and starting with no information are similar.
With the partial, bad prior, one needs enough additional information to counter that
prior’s inaccuracies. In the no information scenario, one requires enough additional
information to lower the upper bound of the point estimate from 1.0 to something less
than 0.05.

The performance of the partial, good prior actually exceeds that of the substantial,

11



good prior for small n, with the performance shifting to favor the substantial, good prior
as n approaches 400. This is related to the quality and responsiveness of the priors.
With the priors listed in Table 1, the initial bounds on the probability that 6 < 6. are
[0.60,1.00] for the partial, good prior case and [0.64, 0.83] for the substantial, good
prior case, so both lead to no decision initially. If n = 20 trials are performed, the
probability of observing m = 0 failures equals 0.44 when § = 0.04. In this case,
for the partial, good prior, the posterior bounds on the probability that § < 6. are
[0.82,1.00], so the designer accepts the new component. For the substantial, good prior,
the posterior bounds are [0.76,0.93], so no conclusion can be reached. As expected,
the partial prior is more sensitive to the data. Although this is advantageous in the
0 = 0.04 case, it is detrimental in the 6 = 0.06 case, as discussed next.

4.3.2 Results for the § = 0.06 scenario

The probability of making a correct decision when € = 0.06 is higher in general than it
is when 6 = 0.04. The probability is highest when the designer starts with a good prior
that is based on substantial information. Starting with a good prior that is based on
partial information and starting with a vacuous prior perform similarly to each other.

It is interesting that having partial, bad prior information is actually worse than
having substantial, bad prior information over the region of n shown. To some extent,
this is an artifact of the particular priors that were chosen. For example, the partial,
bad prior gives a point estimate of [0.00, 0.05] for 6, whereas the substantial, bad prior
gives the interval of [0.035,0.045]. Here, the substantial information estimate is more
narrowly focused on a value that is closer to the truth than the broad estimate based on
partial information. The partial information scenarios includes the possibility that 6 is
near zero, which tends to lead to incorrect conclusions in this scenario. For example,
the probability that 6 < 6, is the interval [0.18, 0.62] for the partial, bad information
scenario, whereas the substantial, bad prior gives the interval [0.27,0.48]. The upper
bound for the partial information case (0.62), is much closer to the threshold (0.80) for
making a bad decision than the upper bound for the substantial information case (0.48).

Since the partial information prior is also more sensitive to the data, more of the
possible random results of an experiment will lead to accepting the new component,
which is the wrong decision. A more substantial, yet also incorrect, prior will be more
robust to the variation in additional samples. These results reflect the complicated
trade-offs between the quality and quantity of available information. While the dis-
tinctions are sometimes difficult to discern even in the imprecise models, these details
are lost completely in a precise analysis. Note that after 200 trials, the probability of a
wrong decision is equal for both bad priors. This is because the acquired data is mov-
ing the estimate based on the partial, bad prior information through the “no decision”
region, as described in the following.

4.3.3 The option of indecision

A major difference between these results and those for the precise Bayesian approach
is the option of making no decision when the available information is incomplete or
otherwise imprecise. The probability of reaching no conclusion depends greatly upon

12



the quality and amount of information available. When the prior is a vacuous prior or a
bad prior, then there is a larger probability of reaching no conclusion. In the # = 0.06
scenario, the probability of not reaching a conclusion is highest for the partial, bad
prior and the substantial, bad prior. This is desirable; when the prior and data conflict,
something is amiss and more data are needed to resolve the conflict.

When there is substantial, good prior information, there is a much smaller proba-
bility of reaching no conclusion because on average the prior and data agree with each
other. In particular, for the substantial, good prior case, there is initially no chance
of reaching no conclusion because the prior always would lead to a correct decision.
Even as more data is collected, the probability of getting test results that cancel out the
influence of the substantial, good prior is very small, so the probability of making a
correct decision remains high.

As the number of samples increases, the probability of no decision will eventually
tend to zero, regardless of the prior. However, the probability of no decision may
increase initially, a situation that reflects conflict between the prior and the data. The
ability of the IBM to reflect both the overall quality and consistency of the combined
prior and data evidence appears to be an advantage over the other methods.

5 Comparing decision accuracy across policies in the no prior information sce-
nario

All of the results about the decision probabilities depend upon the policies used to
make decisions. Therefore, it is also important to consider two different sets of policies
and compare their performance in a specific scenario (we will use Scenario 1, the no
information scenario).

The first set uses “generous” policies. For the classical approach, an 80% con-
fidence interval based on Eq. 3.1 is used. For the precise Bayesian approach, the
designer accepts the new component if the probability that < 6 is at least 0.80.
When using the IBM, the minimum probability must be at least 0.80 to accept, and
the maximum probability must be less than 0.80 to reject. The results of these policies
are shown in Figure 4. The second set uses “strict” policies. The classical approach
uses a 95% confidence interval based on Eq. 3.1, and the Bayesian approaches uses a
probability of 0.95 instead of the 0.80 of the “generous” policies. The results of these
policies are shown in Figure 4.

In the § = 0.04 scenario, the primary difference between the approaches is most
obvious; this difference is their relative caution in concluding that the new component
is acceptable. The classical approach is the least conservative approach, while the IBM
is the most conservative. Hence, when the new component is acceptable, the classical
approach has the highest probability of a correct decision, while the IBM has the lowest
probability of a correct decision. The bias towards the “safe” decision (reject the new
component) is also apparent in the = 0.06 scenario, because all methods perform well
when the correct decision is the “safe” decision. This trade-off shares some aspects of
the trade-off between type I and type II errors in traditional hypothesis testing, and it
confirms some of the interactions discussed in Section 4.

The conservativeness of the approaches is more pronounced when using the stricter

13



Generous (0.80) Policies Strict (0.95) Policies

- - __,_,—,,",-, AP S B gt
09 Al / t
g /
@ += f
© 3
8 g —— imprecise Beta
XL classical
‘u (@] H‘ | - - . .
T o | precise Bayesian
S0 0.2 ‘
o |
ot
1} f
3}
2308
@
O O
s £
=]
o o
RS
g
£ 0o
=e} 1
0 100 200 300 0 100 200 300
# of trials n # of trials n

Figure 4: Comparing probabilities of correct decisions across policies.

decision policies. This also reveals a tradeoff between decision policy and statistical
approach. For a small number of trials, the classical, strict approach yields a higher
probability of a correct decision than the IBM, generous approach yields. However, as
the number of trials increases, the IBM, generous approach gains the advantage.

Figure 4 reveals that the IBM yields a lower probability of making a correct de-
cision, but the IBM also yields a very low probability of making wrong decision (not
shown), equaling or exceeding the performance of the other approaches. Instead of
reaching a concrete decision based on little or conflicting information (as the precise
Bayesian approach might do), the IBM acknowledges the inability to reach a conclu-
sion. For these values of 6, if avoiding an incorrect decision is the primary goal, then
using the IBM is preferable. However, if making a correct decision with as little in-
formation as possible is the goal, then either the strict or generous classical approach
performs better, with the correct choice depending on the underlying truth, which is
not known a priori.

6 Summary

A variety of statistical approaches are available for updating assessments of the re-
liability based on test results. This paper has compared the classical sampling theory
approach, the precise Bayesian approach, and the imprecise beta model, which is a sub-
set of imprecise probabilities and is equivalent to the robust Bayesian approach when
considering conjugate beta distributions for a Bernoulli testing problem. We have fo-
cused on the quality of the decisions reached as more information is collected. Of
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course, the decision quality also depends upon the priors chosen, as the results show.
We use those results to illustrate the strengths and weaknesses of each approach.

The example considered in this paper was very amenable to the use of conjugate
prior distributions for the precise Bayesian and robust Bayesian (imprecise probabil-
ity) approaches. The computational expense of these methods increases greatly when
conjugate distributions cannot be used, especially for the robust Bayesian approaches.
This adds another layer of trade-offs that was not considered in this study.

Given an existing component with a failure probability that should not be exceeded,
accepting the new component when its failure probability is truly lower is a challenge
because the failure probability is close to zero and there is a significant probability of
test results that lead to a wrong decision. This indicates that the designer should use
generous policies for making the acceptance decision. However, such policies increase
the probability of wrongly accepting the new product. The use of the IBM allows the
designer to avoid making incorrect decisions more often than the other approaches, but
it can also significantly delay correct decisions. The IBM better reflects the trade-offs
between the quantity and quality of available information, a distinction that can be
important when communicating about uncertainty and managing information.

These conclusions have been illustrated using a specific example decision. More
generally, a designer can use the results presented here to get insight into the trade-offs
that exist in a specific domain. Each method has particular advantages and disadvan-
tages, and the appropriate choice depends not only on the unknown underlying truth
and available information but also on the designer’s preferences for the quality and
speed of decisions.
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