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Modeling environment effects on spectroscopies
through QM/classical models

Benedetta Mennucci*

In this perspective, an overview of the recent progress in the combination of quantum mechanical (QM)

simulations of spectroscopies with classical models to include environment effects is presented. Both

atomistic and continuum formulations of the classical models are reviewed together with a critical

analysis of their respective pros and cons. In particular, the different strategies developed within the

two families of methods to include mutual polarization effects between the QM and the classical part

or to properly treat the statistical sampling are presented and discussed. Examples of applications to

different types of environment are also presented to show how these hybrid approaches can be used to

obtain an accurate description of electronic, vibrational and magnetic spectroscopies even when

nonequilibrium, heterogeneities, and/or specific and bulk effects are in play.

1. Introduction

Historically, spectroscopies have represented one of the most
important tools to identify chemical compounds and to study
their electronic, vibrational, magnetic or chiral properties.
In the last few decades, however, their applications have
enormously extended beyond this ‘‘analytical’’ field towards
completely new areas. All these new applications of spectro-
scopic approaches have been made possible by the astonishing
improvements achieved in terms of length and time scales. It is
now possible to study molecular systems with an atomistic
definition as well as to follow time-dependent molecular
processes with a femtosecond resolution. However, this new
richness of information that we can obtain with spectroscopic
measurements has been accompanied by an increased com-
plexity in the interpretation of the data. Now the spectroscopic
experiment has become so sensitive and precise not only to
detect the response of the molecular system to the applied
perturbation but also to ‘‘see’’ how this response is tuned by
subtle changes in the ‘‘surroundings’’ even when they happen
at a molecular scale and with an ultrafast dynamic. It is there-
fore extremely useful, if not compulsory, to accompany spectro-
scopic measurements with theoretical and computational
analyses. The latter however will need to accurately account
for as many details as possible of the short- and long-range
interactions of the molecular probe with its ‘‘environment’’.
Obviously, the two requirements, accuracy and completeness,

cannot be obtained using a homogeneous approach but instead
a multiscale strategy has to be introduced. In the last few years
the multiscale approach, which has shown to possess the most
suited characteristics in the fields where a molecular level
description is required, is that combining a quantum-mechanical
(QM) description of the molecular probe and a classical
description of the rest. For such a strategy the term hybrid
QM/classical approach has been coined even if, under this
name, many different formulations exist and many different
implementations are available in the most common softwares
for molecular modeling.

As a matter of fact the idea of combining a QM description
with a classical one is not new but it was proposed many years
ago.1–9 However, only later the accuracy and the extendibility of
these methods have increased so much to make them a real
useful computational tool to be applied to spectroscopies.10–29

The evolution of QM/classical methods from the realm of very
‘‘ad hoc’’ models for specific studies to that of a very general
and powerful approach to describe systems of increasing dimen-
sion and complexity has been made possible by the efforts of
many research groups in the world which have, sometimes
independently and other times in collaboration, developed and
implemented different versions of the same basic idea (see the
review articles30–40 for an exhaustive overview). This, in turn, has
generated methods that can be applied not only to a solute
dissolved in a given solvent but to many kinds of embedded
systems where the environment can be either a protein matrix,
a solid, a liquid–liquid or a liquid–solid interface, a membrane,
a composite system containing solid particles of nanoscopic
dimensions in solution, and many others.
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Due to this large spectrum of formulations and applications,
which cannot be properly reviewed in the present perspective,
here the attention will be focused only on those versions of
QM/classical approaches, which have been proposed to simu-
late properties and processes connected to spectroscopic ana-
lyses. These formulations of QM/classical approaches assume
that the QM part can be modified in its electronic and nuclear
characteristics by the presence of the classical part: only if this
coupling is present, in fact, the simulated spectroscopic prop-
erty can be tuned by the effects of the environment. Even if
limited to these coupled approaches, however, very different
formulations can still be found: it is therefore very useful to
collect them in two main families, namely those using an
atomistic description of the classical part of the system, and
those using instead a continuum-like description (see Fig. 1).
The methods belonging to the first family are generally indi-
cated as QM/MM methods as they make use of a molecular
mechanics (MM) formulation for the classical part, while the
members of the other family generally adopt an ‘‘apparent
surface charge’’ (ASC) formulation for the response of the
environment even if this is not the only possible approach
within a continuum description. Examples of non-ASC formu-
lations are well-known within the QM/continuum field, suffice
here to cite the Onsager model, and its multipolar extension
independently developed by Rivail and collaborators41 and by
Mikkelsen and collaborators,42 or the SMx approaches developed
by Cramer and Truhlar.43

More in detail, the perspective will be organized into two
main parts: a brief presentation of the main theoretical and
numerical aspects will be given for each of the selected
QM/classical approaches and some exemplificative applica-
tions will be reported and discussed.

2. Hybrid QM/classical approaches

The QM/classical strategy collects methods in which a target
subsystem, from now on defined as the ‘‘solute’’, is described at
the QM level and a secondary subsystem (‘‘the solvent’’) is, in
contrast, modeled at a classical level using either an MM force
field or a continuum medium with suitable macroscopic prop-
erties. In both versions of the same strategy, an important
common aspect is present; the QM part can be modified in its

electronic and nuclear characteristics by the presence of the
classical part. In a QM language this coupling between the
two parts is made possible by replacing the Hamiltonian
operator representing the solute alone with a new or effective
one including an additional solute–solvent interacting term,
namely:

Heff jCi ¼ H0 þHenvð ÞjCi ¼ EjCi (1)

where H0 is the Hamiltonian of the isolated solute and Henv is
the solvent-induced term.

As for isolated molecules, also the effective Schrödinger
equation (1) cannot be treated without further approximations.
What is important to stress, however, is that the addition of
the new operator Henv does not change the formal and the
numerical strategy to be used. As a result, the most commonly
used approximations for isolated systems, are still valid for the
‘‘solvated’’ systems. However, the form of Henv, which depends
on the specific version of the QM/classical formulation used,
introduces some important specificities. Here below the main
ones are briefly summarized for each of the two selected
families of methods.

2.1. QM/MM

The QM/MM formalism can accommodate almost any combi-
nation of QM and MM methods. Traditionally semi-empirical
QM methods have been most popular and they are still largely
used even if many current QM/MM applications use density-
functional theory (DFT) as the QM method owing to its favour-
able computational-effort/accuracy ratio. In the last few years,
however, various highly correlated methods have been coupled
with an MM description of the environment.44–52

As far as the choice of the MM method is concerned, all the
many force fields available in the literature can, in principle, be
coupled with a QM description. Therefore, the effects that the
classical part of the system exerts on the QM part are, in
general, of electrostatic (Coulomb) and non-bonded van der
Waals nature. Here we do not explicitly take into account cases
in which the QM part is covalently bound to the classical part:
the interested reader can find an exhaustive overview of the
methods developed so far to treat the QM/MM boundary in
ref. 36 and 37.

The nonelectrostatic terms are of short-range character and
in most combined QM/MM methods are described by empirical
potentials independent of the QM electronic degrees of free-
dom, thus not affecting the solute wavefunction. In contrast,
the electrostatic contribution will explicitly affect (or polarize)
the solute wavefunction. Its effects are introduced into Henv in
terms of a one-electron operator, which represents the electro-
static energy between a set of point charges generally placed
on the atoms of the solvent molecules and a solute charge
distribution generating an electrostatic potential at the same
points. This formulation of the QM/MM approach is generally
indicated as ‘‘electrostatic embedding’’. Different formulations
of partial atomic charges can be used but commonly they
are computed by constraining the charges to reproduce calcu-
lated physical observables, such as electrostatic potentials.

Fig. 1 A graphical comparison between atomistic and continuum formulations
of QM/classical approaches.
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Conventional electrostatic-potential-fitted charges do not
include charge penetration effects while the various procedures
which have been proposed to include this effect have shown
that the description of the electrostatics for points within or
close to the van der Waals surface can greatly improve.53,54

A further improvement can be obtained introducing a
mutual polarization contribution. Commonly, this is obtained by
including induced dipoles in addition to point charges:21,23,29,55,56

each solvent atom (or group of atoms) is described in terms of
an atomic charge and an atomic polarizability. As a result, not
only the solute will be polarized by the solvent but also the
solvent will respond to the solute so as to achieve a mutually
polarized system. Within this polarizable QM/MM formulation
we get:

Ĥenv ¼ ĤQM=MM þ ĤMM=MM (2)

Ĥenv ¼ ĤQM=MM þ ĤMM

ĤQM=MM ¼ Ĥ
el

QM=MM þ Ĥ
pol

QM=MM

¼
X
m

qmV̂ðrmÞ �
1

2

X
a

minda � Ê
solute

a ðraÞ

ĤMM ¼ Ĥ
el

MM þ Ĥ
pol

MM ¼
X
m

X
n4m

qmqn

rmn
� 1

2

X
a

minda �
X
m

qmðra � rmÞ
jra � rmj3

(3)

where V(rm) and Êsolute
a represent the electrostatic potential and

the electric field operators due to the solute electrons and
nuclei calculated at the MM sites. On the other hand, in
eqn (3) Ĥel

MM describes the electrostatic self-energy of the MM
charges, while Ĥpol

MM represents the polarization interaction
between such charges and the induced dipoles. We recall that
the former term enters in the effective Hamiltonian only as a
constant energetic quantity, while the latter depends on the QM
wavefunction through the induced dipoles.

The dipoles induced on each MM polarizable site can be
obtained assuming a linear approximation, neglecting any
contribution of magnetic character, and using an isotropic
polarizability for each selected point in the MM part of the
system. The electric field that determines such dipoles contains
a sum of contributions from the solute, from the solvent point
charges and from the induced dipole moments themselves.
This mutual polarization between the dipoles can be solved
through a matrix inversion approach, by introducing a matrix
equation

Kmind = E (4)

where the matrix K is of dimension 3N � 3N, N being the
number of polarizable sites, and the vector E collects the
electric field from the solute and the solvent permanent charge
distribution. The form of matrix K will be determined uniquely
by the position of the polarizable sites and the polarizability
values.

This formulation is an example of the so-called
‘‘polarized embedding’’ QM/MM approaches but it is not the

only possible choice. There are in fact various alternatives to
induced dipoles to simulate the polarizability of MM atoms, such
as the fluctuating charges57,58 or the classical Drude oscillators.59

QM/continuum. The analysis of QM/classical methods is
less straightforward if we adopt a continuum description.
The basic formulation of continuum models requires in fact
the solution for a classical electrostatic problem (the Poisson
problem)

�r�[e(r)rV(r)] = 4prM(r) (5)

where rM is the solute charge distribution and e is the general
(position-dependent) permittivity. If we assume that rM is
contained in a molecular cavity C of proper shape and dimen-
sion built within a homogeneous and isotropic solvent, the
permittivity is equal to one inside the cavity and equal to the
bulk dielectric constant (e) of the solvent outside.

Within this framework, by introducing the appropriate
boundary conditions, the electrostatic problem (5) can be
solved in terms of an electrostatic potential V which is
the sum of the solute potential plus the contribution due to
the reaction of the solvent (e.g. the polarization of the dielectric),
namely

V(r) = VM(r) + Vs(r) (6)

Under the assumption that the charge distribution is
entirely supported inside the cavity C, an integral representa-
tion of the reaction potential can be derived which introduces a
fictitious (or apparent) charge distribution s on the boundary
between the solute and the solvent, i.e. the surface G of the
cavity C, namely:

VsðrÞ ¼
Z

G

sðsÞ
jr� sjds (7)

The surface charge s is solution for an integral equation on
G that is of an equation of the form:

ðAsÞðsÞ ¼
Z
G
kAðs; s0Þsðs0Þds0 ¼ brMðsÞ 8s 2 G (8)

where kA is the Green kernel of some integral operator A and br
depends linearly on the charge distribution rM. This formula-
tion has been adopted in different continuum solvation
models, the most famous ones being the Polarizable Conti-
nuum Model (PCM) (in its different DPCM,4 IEFPCM,60 CPCM61

versions), the surface and simulation of volume polarization for
electrostatics (SS(V)PE)62 and the Conductor-like Screening
Model (COSMO).63 Each different version corresponds to
different choices for A and br but in all cases, a specific
combination of the following kernels is used for A:

kAðs; s0Þ ¼

1

js� s0j

@

@n̂s

1

js� s0j

@

@n̂s0

1

js� s0j

8>>>>>>>>><
>>>>>>>>>:

(9)
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where n̂s represents the unit vector normal to the surface at s
and pointing toward the dielectric. As regards br both electric
fields and electrostatic potential operators have been used.

The reduction of the source of the solvent reaction potential
to a charge distribution limited to a closed surface greatly
simplifies the electrostatic problem with respect to other for-
mulations in which the whole dielectric medium is considered
as source of the reaction potential. In spite of this remarkable
simplification the integration of eqn (8) over a surface of
complex shape is computationally challenging. The solutions
are generally based on a discretization of the integral into a
finite number of elements. This discretization of G automati-
cally leads to a discretization of s in terms of point-like charges,
namely if we assume that on each surface element s does not
significantly change, its effect can be simulated with that of a
point charge of value q(si) = s(si)ai where ai is the area of the
surface element i and si its representative point. The necessary
preliminary step in this strategy is the generation of the surface
elements (i.e. the surface mesh) as, once the mesh has been
defined, the apparent charges q are obtained by solving a
matrix equation of the type:

Tq = �RfM (10)

where q and fM are the vectors containing the N charges and the
solute electrostatic potential or the normal component of
the solute field at the surface points, respectively. T and R are
the matrix analogues of the integral operators introduced into
eqn (8). We note that more recently the strategy to obtain the
apparent charges within the PCM formalism has been largely
reformulated by introducing an expansion of the surface charge
in terms of Gaussian functions64 and by adopting a fully varia-
tional approach.65

If we now reintroduce a QM description of the charge
distribution rM in terms of the wavefunction which is solution
for the eqn (1), we can rewrite the solvent induced term as

Ĥenv ¼ ĤQM=cont ¼
X
m

qðsiÞV̂ðsiÞ (11)

where q are the solvent apparent charges and V̂ is the solute
electrostatic potential operator at the positions of the charges.

By comparing eqn (11) with eqn (3), it might seem that there
is a perfect equivalence between the nonpolarizable part of the
QM/MM Hamiltonian (Hel

QM/MM) and the QM/continuum one.
As a matter of fact this equivalence is only apparent as the
charges entering in eqn (11) are not external parameters as for
the MM approach but they are obtained solving a matrix
equation which depends on the solute charge distribution.
A more similar term in eqn (3) is instead that related to the
induced dipoles which in fact depend on the solute charge
distribution exactly as the apparent charges. As a result, both
the operator Hpol

QM/MM and HQM/cont introduce nonlinear char-
acter in the effective Hamiltonian which can lead to additional
difficulties with respect to the same calculation for an isolated
system.66–70 However, if we remain within the standard
Self-Consistent Field (SCF) approach (either in its Hartree–Fock
or DFT formulation) no changes are required in the computational

implementation as the common way the SCF equations are
solved implies an iterative procedure in which the determina-
tion of the MM induced dipoles or the apparent charges is
easily nested. The resulting effective SCF scheme is generally
known as the Self-Consistent Reaction Field (SCRF), which
emphasizes the mutually polarized solute–solvent system
obtained at the end of the SCF. Historically, the term SCRF
has been coined for the QM/continuum approach but it can be
used also for a polarizable QM/MM approach due to the
parallelism between the two schemes. It has also to be noted
that this nonlinear character becomes of fundamental impor-
tance in the simulation of spectroscopic responses as we shall
explain later.

The analogies and differences between QM/continuum and
QM/MM approaches are not only on the methodological
aspects of their formulation and implementation. We cannot
in fact forget that the two approaches start from a completely
different physical formulation. By definition, continuum
models introduce an average (bulk) description of the environ-
ment effects. This is necessarily reflected in the results that can
be obtained with these methods. While continuum models can
be successfully applied in all cases in which the environment
acts as a mean-field perturbation, solvent-specific effects such
as hydrogen bonding are not well reproduced. By contrast,
QM/MM methods have the clear advantage to keep intact all
the atomistic features of the environment, however they
become more computationally demanding as an explicit
sampling of the configurational space of the solute–solvent
system is required. To this aim, a preliminary molecular
dynamics (MD) or Monte Carlo (MC) simulation is usually
performed from which many different solute–solvent configu-
rations are generated and used within the QM/MM scheme to
obtain the final averaged picture. In principle, the main advan-
tages of two approaches could be combined in a three-level
approach, QM/MM/Cont, in which the atomistic description is
limited to the first solvation shells while the rest of the
environment is described as a continuum. Various research
groups have already proposed this further formulation of
QM/classical approaches by combining different versions of
the MM and the continuum models.23a,29b,58,59,71,72

3. QM/classical approaches applied to
spectroscopies

The presentation of the main theoretical and numerical aspects
of the QM/MM and QM/continuum approaches reported in the
previous section has already indicated some advantages and
disadvantages of the two families of methods. However, here it
is important to better clarify their specificities when applied to
the simulation of spectroscopies. To have a more complete
view, the analysis will be divided according to different types of
spectroscopies, in particular we shall focus on the main ones,
electronic (such as absorption and emission), vibrational
(mainly IR and Raman) and magnetic (mainly NMR) spectro-
scopies. Moreover, as different theoretical formalisms can be
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used to simulate spectroscopies and response properties, here,
we shall limit the analysis to the derivative approach in which
the selected property is defined as the derivative of the energy
of the system with respect to some perturbations, either of
geometrical, magnetic or electric nature (or a combination of
them). Within this formalism, static properties are most com-
monly computed with the coupled perturbed Hartree–Fock
(CPHF) or Kohn–Sham (CPKS) methods, and frequency depen-
dent properties with a time dependent version of the same
coupled perturbed theory (TDHF and TDDFT); however,
generalization of the same derivative approach to other QM
methods, for example MP2 or CC, are available also for the
hybrid QM/classical methods.

3.1. Electronic spectroscopies

When an electronic process has to be simulated for an
embedded system, a new aspect of the model has to be properly
taken into account. This aspect refers to possible delays in the
response of the environment with respect to the ultrafast time
scale typical of electronic processes. The delays usually involve the
nuclear component of the environment response as the electronic
one is generally assumed to be sufficiently fast to immediately
follow any change in the solute electronic charge distribution. The
delay can therefore be modelled as the nuclear, or inertial, part of
the response of the solvent which remains frozen in the initial
solvation state: as a result the response of the environment will not
be complete and the term nonequilibrium solvation is usually
introduced. The importance of a correct treatment of the none-
quilibrium is larger for polar environments in which the inertial
polarization is the dominant one: in all other cases the differences
between equilibrium and nonequilibrium descriptions are negli-
gible. Both QM/MM and QM/continuum approaches can properly
treat this effect even if with very different computational strategies.

In QM/continuum models using an ASC formulation, the
nonequilibrium effects are easily introduced by splitting the
solvent charges into a dynamic (or fast) and an inertial (or slow)
component: this separation is obtained by extracting the optical
component (eN) from the static dielectric constant and using it
to determine the dynamic charges (see Fig. 2). By using these two

sets of charges we can equally describe situations in which both
sets of charges are equilibrated to the actual solute charge
distribution or instead just one (the fast one) can immediately
rearrange while the slow one remains frozen in the initial state.

In a QM/MM scheme the inclusion of the slow component of
the response is automatically taken into account if the spatial
distribution of the MM charges does not change, neither their
values, during the investigated electronic process. As far as it
concerns the fast component, a polarizable description is
instead necessary as we have to allow the fast part of the
environment response to change: this is automatically
obtained, for example, using induced dipoles which do not
change their position but instead they change their value.

A typical example where nonequilibrium effects are relevant is
given by electronic transitions of a molecular system embedded in
a very polar environment: an excitation in fact begins from a fully
equilibrated solute–environment system but it terminates in a
vertical state characterized by a Franck–Condon description both
as concerns the solute and the solvent nuclear degrees of freedom.
A similar but reverted situation is that of an emission process, in
that case in fact the emission starts from an excited solute fully
equilibrated with the environment and terminates into a non-
equilibrium ground state. We note that this picture is based on
the assumption that solvent relaxation times are shorter than the
excited state life time: this is usually a reasonable approximation
when we study fluorescences in simple solvents while it is surely
less valid if, for example, the solvent is extremely viscous.

Another specificity introduced by a polarizable solvent is
that already pointed out in the previous section: the nonlinear
character of the effective Hamiltonian reflects the fact that the
response of the solvent is determined by the charge density of
the solute. However in a transition process the involved charge
densities are two, that of the initial and of the final state. As a
result the change in the solvent polarization should depend on
the change in the charge density during the electronic transi-
tions. However, in many QM methods largely adopted to
simulate the transition process, such as the linear response
(LR) approaches known as CIS, ZINDO, TDDFT, EOCC and
others, the charge density of the final state is generally not
known as the transition properties, including the transition
energies are obtained as response functions of the initial charge
density. The coupling of polarizable QM/MM and QM/conti-
nuum models with such LR schemes is not univocal neither
straightforward.73 As a matter of fact many different formula-
tions have been proposed so far,74 but none of them can be
considered as exact. The most straightforward of these formu-
lations is the so called LR solvation; namely in this formulation
the response of the solvent to the transition process is calcu-
lated in terms of charges or dipoles induced by the solute
transition density. This formulation is the default one in
practically all the implementations of polarizable QM/MM
schemes21,23,29 and in most of the QM/continuum implementa-
tions.75,76 For QM/continuum models however alternative for-
mulations are available. One of the first proposals77 introduces
a perturbative correction to the LR transition energy by using
dynamic charges calculated with respect to the change in the

Fig. 2 Graphical representation of the nonequilibrium solvation in polarizable
QM/MM and QM/continuum approaches.
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solute electronic density (which can be recovered from LR
approaches generalizing them to the derivatives): in this
approach we still miss the complete coupling between the
change the solute-charge density and the parallel change in
the solvent response. Another approach, instead, introduces a
self-consistent scheme between the density of the final state and
the solvent polarization by recalculating the molecular orbitals
of the reference state and their response:78 in this approach a not
completely controllable mixing between what should act as
reference for the LR formulation and what should represent
the response can appear. More recently, extensions and general-
izations of the perturbative approach have been proposed79 but
still the problem remains open.

If instead a state-specific QM method is used to simulate the
electronic transitions, such as using a CASSCF or a standard CI
approach, no real difficulties are introduced by the addition of
a polarizable solvent, in those cases in fact we can properly
define the charge density of each state and consequently we can
calculate the correct solvent response. However, a disadvantage
of using a polarizable solvent is present also in these apparently
simpler formulations: as the effective Hamiltonian becomes
state dependent through the solvent term, hence we have to
solve separately for each electronic states and the solutions are
no more orthogonal.

3.2. Vibrational spectroscopies

Moving from electronic to vibrational spectroscopies the
picture apparently simplifies; in fact, nonequilibrium effects
are generally negligible and the solvent effects can be intro-
duced using the standard formulations of QM/classical meth-
ods. As a matter of fact, nonequilibrium formulations have
been proposed also for vibrational properties especially for
QM/continuum models.80 However, in that case a clear defini-
tion of what is fast and what is inertial is less straightforward;
in the large part of these applications the fast component is
kept equal to that formulated for electronic processes even if
now it is not clear why the vibrational components of the
solvent response should always be considered slower than the
solute vibrations.

By neglecting possible nonequilibrium effects, the applica-
tion of QM/continuum approaches to vibrational properties
and spectroscopies, follows exactly the same path followed for
an isolated system: the solute geometry is optimized in the
presence of the solvent and the vibrational properties are
calculated including the derivatives of the solute–solvent inter-
action energy. The only specificity is that in the calculation of
these derivatives with respect to nuclear displacements the
variation of the molecular cavity is to be taken into account
as it is generally anchored on the solute atoms. As a result, the
simulation of IR spectra is obtained with two calculations,
one to obtain the solvated equilibrium structure and one to
compute the vibrational frequencies and intensities at the
equilibrated geometry as required by the standard harmonic
approximation (HA).

When adopting a QM/MM approach the analysis becomes
much more delicate.11,81–85 For example, in order to apply

the same HA, we have to be in a minimum of the PES but,
generally, the solute–solvent configurations used in a QM/MM
description do not correspond to optimized structures but
instead are obtained from MD or MC simulations. A possible
strategy to recover the validity of the HA is to perform a partial
optimization of the solute in a frozen distribution of the
environment. Unfortunately this optimization has to be
repeated for each different solvent configuration: as a result
the final computational cost can largely increase.

3.3. Magnetic spectroscopies

With respect to electronic and vibrational spectroscopies, the
application of QM/classical methods to magnetic ones is
generally easier. For example if we are interested in simulating
the NMR nuclear shielding and the classical part is not polariz-
able, the solvent effects are automatically included in the
calculation of the unperturbed system as no explicit solvent-
dependent terms appear in the derivative equations which
define the specific property as the solute–solvent interaction
energy does not explicitly depend on the magnetic applied field
and on the nuclear magnetic dipole. In contrast if the classical
part is polarizable (such as in QM/continuum and in polariz-
able QM/MM approaches) a density-dependent response of the
solvent is present, and this dependence is also reflected in
the coupled perturbed equations which have to be solved to get
the derivative of the density matrix with respect to the
perturbation(s). Moreover, in most cases the magnetic proper-
ties are calculated within the GIAO framework so to properly
solve the gauge problem. In such a formalism a dependence of
the atomic basis functions on the magnetic field is introduced,
and this automatically generates a dependence of the solvent
operator on the magnetic field: now an additional explicit
solvent term appears in the derivative equations with respect
to the magnetic field.86,87

Besides these aspects, the application of QM/classical methods
to magnetic spectroscopies presents also other specificities. For
example, by definition, the nuclear shielding is a local property
which is significantly affected even by small changes in the
local chemical environment of the selected nucleus; we there-
fore have to expect that it is also extremely sensitive to the
solvation shells around the selected nucleus. As a matter of
fact, not all nuclei are equally sensitive to the effects of the
‘‘external’’ environment. In particular, hydrogen and carbon do
not present a large sensitiveness to the solvent while other
nuclei, such as N or O, show important solvent-induced effects
especially when the selected nucleus is exposed to the solvent
and it can strongly and specifically interact with the solvent
molecules in the first solvation shells. In all these cases a
purely QM/continuum approach is not sufficient and a
QM/MM description has to be preferred. Sometimes, even
this description is not sufficient as the solute–solvent inter-
actions can include some charge-transfer effects that even if
very small can affect the magnetic property. In this case a very
effective approach is represented by the so-called solvated
supermolecule; in this approach we extend the definition of the
QM solute to a cluster including also some solvent molecules
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(exactly those more strongly interacting with the nucleus of
interest) and we introduce the longer-range effects either using
a continuum or an MM description.88–94

4. Some selected examples

The main specificities of the application of QM/classical methods
to spectroscopies described in the previous section are here
exemplified in terms of few short summaries of studies we have
performed in the last few years using both QM/MM and
QM/continuum approaches. We stress that these selected
studies are not to be considered as more noteworthy or relevant
with respect to others but the reader should use them as a set of
notes to start with for a detailed analysis of the literature survey
reported in the previous sections.

4.1. Heterogeneity and solvatochromism

Solvatochromism is the change induced by different solvents,
in the position (and the shape) of an absorption (or emission)
band of a molecular probe. The phenomenon has been often
extended to more complex environments than isotropic and
homogeneous solvents; for example it has been largely used to
establish the polarity of lipid membranes and protein matrices.
Historically, solvatochromism was used in combination with
empirical polarity scales95,96 to relate the solvent-induced shift
on the absorption maxima with specific characteristics of the
environment. QM/classical approaches now can represent a
much more accurate and detailed tool to perform the same
type of investigation. Both QM/MM and QM/continuum models
have in fact shown to be able to accurately simulate the UV-VIS
spectra of very different molecular systems in various solvents.
Moreover, they can give additional insight into possible hetero-
geneities and anisotropies of the environment which can
differently tune the shift in dependence of the specific position
and orientation of the probe. This second aspect is easier to get
when an atomistic version of the QM/classical method is used
and in fact the large part of computational studies of solvato-
chromism in proteins and membranes adopt a QM/MM
approach. However, continuum models can be made sensitive
to large-scale heterogeneities and anisotropies of the environ-
ment, introducing a position dependent permittivity. This
extension has been made available within the IEFPCM formu-
lation of QM/continuum models97 (see Fig. 3) and recently used
to interpret the main features of the fluorescence spectra of two
typical fluorescent probes (Prodan and Laurdan) in relation to
their position and orientation in a DPPC lipid bilayer.98

Calculating the QM/PCM absorption and emission energy
profiles of the probes crossing the membrane, we found that
the environment polarity alone is not sufficient to explain the
large red shifts experimentally observed and that specific
effects due to hydrogen bonding must be considered. Finally,
by combining the QM/PCM results with a molecular field theory
analysis of the positional, orientational and conformational
distribution, we also showed that the orientation of the probe
is important in determining the accessibility to water of the
H-bond-acceptor group.

Unfortunately, when the heterogeneity of the environment
acts at a smaller scale, such as in a protein matrix where each
position/orientation of the probe feels a different local environ-
ment due to the different residues in contact with it, continuum
models necessarily fail. In all these cases the QM/MM formulation
has to be preferred but with careful attention to the conforma-
tional disorder which can generate fluctuations of the transi-
tion energies of the same order of that characterizing the
solvatochromic shift. To show such an effect, Fig. 4 reports
the excitation energies calculated by a polarizable QM/MM
approach for the eight bilin chromophores contained in the
phycoerythrin PE545 antenna protein.99 The two sets of data
have been obtained using (i) the crystal structure of the protein
and (ii) an average on the MD trajectory of the solvated protein.

As it can be seen from the graph, the eight bilin chromo-
phores, characterized by a linear tetrapyrrole structure covalently
linked to the protein scaffold, present a significantly different
energetic ordering in the two descriptions. In particular, the
crystal structure leads to unphysical differences in the energies
of the pseudosymmetric pairs (namely PEB5061C–PEB5061D and
PEB82C–PEB82D) which are instead largely smoothed by the
averaged description in which both the intramolecular and the
intermolecular fluctuations have been taken into account.

4.2. Specific vs. bulk effects on spectroscopies

As already discussed, most of the spectroscopic signals of
molecular systems are sensitive to both specific and bulk
effects due to the environment; however, the sensitivity is not
the same for all spectroscopies. Absorption and emission
energies, for example, are not largely affected by solute–solvent
specific interactions and generally they do not require an

Fig. 3 IEFPCM representation of a molecular probe moving through a lipid
bilayer modelled as a dielectric with permittivity changing from 2 (at the center
of the apolar region, z = 0) to 80 (at the exterior of the bilayer, z > 25 Å).
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atomistic description of the first solvation shells, with some
important exceptions. The exceptions are represented by excita-
tions mainly localized on molecular groups with can interact
through hydrogen-bonding with the solvent molecules: typical
examples are the anomalous shifts in the np* excitations
in carbonyl-containing molecules when solvated by protic
solvents.

In the case of magnetic and vibrational properties instead,
the role of the solvent molecules locally surrounding the
investigated molecule, is usually important. For magnetic prop-
erties the main reasons have been already explained in the
previous section but here we further analyse them using a
simple example extracted from a study of solvent effects on
various spectroscopic properties of N-methyl acetamide
(NMA):91 namely the nuclear magnetic shielding for nitrogen
and oxygen nuclei of NMA in water and in acetone. In Fig. 5 the
errors with respect to experiments obtained using three differ-
ent solvation models are reported. The three solvation methods
correspond to a simple QM/PCM approach, and two alternative
QM/QM/PCM approaches. The first one uses QM optimized
supermolecules formed by (i) NMA and three H-bonded water
molecules in the case of aqueous solution, and (ii) NMA with
two solvent molecules in acetone. The second approach uses
instead averages on QM clusters obtained from MD simulations
in the two solvents.

As expected the QM/PCM approach largely underestimates
the 17O signal in water as the oxygen atom is involved in strong
H-bonding interactions with the solvent. By explicitly introdu-
cing these effects in terms of QM water molecules, the error is

immediately reduced within the accuracy of the method. It has
also to be noted that the static picture in terms of a single QM
optimized supermolecule and the dynamic one using an aver-
age on QM clusters from MD trajectories give very similar
results. This similarity indicates that the NMA-water H-bonds
are so strong that they can properly be described without taking
into account fluctuations in the number, relative position and
orientation of the H-bonded molecules. When moving to
acetone, the picture becomes much more complex. In this
solvent in fact, the QM/PCM approach largely overestimates
the effect of the solvent on the oxygen. The reason for that can
be explained comparing the results obtained with the two
alternative QM/QM/PCM approaches. The one using a single
optimized supermolecule still maintains the overestimation
found with PCM alone while the average on MD clusters
correctly reproduces the experiments. In acetone, the struc-
turing of the solvent molecules around the NMA carbonyl group
is the result of the combination of weak H-bonds with the
methyl hydrogens and dipole–dipole interactions (see the SDF
reported in Fig. 5). In this case, a proper consideration of
fluctuations in the solvent shells becomes compulsory to obtain
the correct effect.

For vibrational properties, the dependence on the local
environment can be explained observing that now the solute–
solvent short-range interactions not only can induce an addi-
tional shift in the frequency as in the NMR property but they
can also modify the normal mode. This effect can accurately be
described only by including some specific solvent molecules
within the QM portion of the system, therefore neither
QM/continuum nor QM/MM approaches can be used in their
standard formulations but they have to be reformulated within
the supermolecular framework. This approach clearly introduces
some further difficulties such as the number of solvent mole-
cules to be included in the QM part but also some artificial
effects, as we have split the solvent into two parts, one acting

Fig. 4 Comparison of the QM/MMpol site energies obtained for the 8 bilins of
the LH complex in PE545 either using the crystal structure (blue histograms) or
averaging on many MD configurations (red histograms).99

Fig. 5 Errors with respect to experiments (ppm) for the 17O (red bars) and 15N
(blue bars) nuclear magnetic shieldings of NMA in water (upper graph) and in
acetone (lower graph). On the left the MD-derived spatial distribution functions
are also reported for both solvents: white points indicate hydrogen, red oxygen,
and green carbon distributions, respectively. For all the details of the calculations
we refer the reader to the reference paper.91
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through classical effects and the other entering as a QM
component. The same artificial effects can become of para-
mount importance when we are simulating chiral spectro-
scopies both of electronic or vibrational nature. In that cases
in fact, the use of solute–solvent QM clusters to account for
short-range effects introduces an additional chirality, which
depends on the dimension of the cluster and the configuration
of the solvent molecules.

As it comes out from this brief resume, the correct treatment
of short-range effects due to the environment is a delicate
problem, especially when applied to spectroscopies. Unfortu-
nately, it is not possible to define a unique strategy but each
case has to be analysed independently; however, some general
rules can be defined. The use of QM/MM approaches is gen-
erally sufficient but only if accompanied by a correct sampling
of the solvent distribution and a proper inclusion of longer-
range effects. While the latter aspect can be easily solved by
using an external continuum, the sampling issue introduces an
additional difficulty. In most cases in fact, the sampling is
obtained by using classical MD or MC configurations but it is
not always the case that classical force fields can properly
describe the correct positional and orientational distributions
of the solvent molecules more strongly interacting with the
solute. An ideal strategy would be that of using ab initio MD
simulations100,101 but the applicability of these techniques is
still limited both in the simulation times and in dimension of
the systems. However, in the next future, studies of this type
will become feasible for systems of real chemical interest, and
they will represent a fundamental benchmark for a better
understanding of the role of the first solvation shells.

5. Conclusions

In this perspective I have reviewed some of the most common
QM/classical approaches used to include environment effects
into the simulation of spectroscopic properties of molecular
probes. From this excursus, it should come out clearly that it is
not possible to identify the optimal protocol but that different
formulations have to be selected for different processes and
phenomena and, in some cases, only a combination of these
approaches can lead to the correct picture. Moreover, the
same methods are not yet definitive in their theoretical and
numerical formulation but they continuously improve. There-
fore, due to this still ‘‘fluid’’ situation, in the future we can
expect important developments. For sure, one of the possible
developments will involve the application of QM/classical
approaches in dynamic simulations. Some formulations have
been already presented102–116 even if they are not competitive
with the decoupled strategies using classical MD followed by
QM/classical calculations of the property or process of interest.
However, QM/classical MD simulations surely present the
required characteristics to become the optimal computational
approach to study fast phenomena in which the main role is
played by the coupling of electronic and vibrational motions
such as in charge and energy transfer processes. For this
kind of applications, the atomistic formulation of QM/classical

methods appears the best suited, however QM/continuum
models can represent a very interesting alternative strategy
due to some of their specificities, especially their easiness to
include nonequilibrium and memory effects.117,118 Another
possible direction of progress is represented by extensions of
these methods to a ‘‘nonelectrostatic embedding’’. Until now in
fact QM/MM approaches have almost exclusively been limited
to electrostatic (and polarized) embeddings while van der Waals
effects are introduced at the purely classical level. Only recently,
QM/MM approaches adopting a fragmentation framework,119

have been extended to include these effects into the effective
Hamiltonian. Within QM/continuum methods such an exten-
sion has a longer tradition,120 but the formulation is still open to
improvements.121 Finally, QM/classical methods are still mostly
limited to describe traditional environments (namely homo-
geneous solvents for QM/continuum and protein matrices for
QM/MM formulations) while their potentials are much more
general. In the last few years, applications of QM/classical methods
to less standard environments have started to appear122–126 but
still many important areas (such as those of the material and
biomedical sciences) are still too poorly covered. It is exactly in
these fields that we have to expect the major breakthroughs of
the hybrid methods in the next future.
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