
INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY

Nanotechnology 14 (2003) 224–230 PII: S0957-4484(03)53255-X

A defect- and fault-tolerant architecture
for nanocomputers
Jie Han and Pieter Jonker

Pattern Recognition Group, Faculty of Applied Sciences, Delft University of Technology,
The Netherlands

E-mail: jie@ph.tn.tudelft.nl and pieter@ph.tn.tudelft.nl

Received 6 September 2002, in final form 17 December 2002
Published 16 January 2003
Online at stacks.iop.org/Nano/14/224

Abstract
Both von Neumann’s NAND multiplexing, based on a massive duplication
of imperfect devices and randomized imperfect interconnects, and
reconfigurable architectures have been investigated to come up with
solutions for integrations of highly unreliable nanometre-scale devices. In
this paper, we review these two techniques, and present a defect- and
fault-tolerant architecture in which von Neumann’s NAND multiplexing is
combined with a massively reconfigurable architecture. The system
performance of this architecture is evaluated by studying its reliability,
i.e. the probability of system survival. Our evaluation shows that the
suggested architecture can tolerate a device error rate of up to 10−2, with
multiple redundant components; the structure is efficiently robust against
both permanent and transient faults for an ultra-large integration of highly
unreliable nanometre-scale devices.

1. Introduction

Nanometre-scale electronics have been greatly developed in
recent years. Besides the developments of various sin-
gle nanoelectronic devices some research has advanced to
the logic circuit level, such as single-electron tunnelling
(SET) technology [1, 2], carbon nanotubes [3], semiconductor
nanowires [4], chemically assembled electronic nanocomput-
ers (CAENs) [5, 6] etc. The very small sizes of nanometre-
scale devices make it possible to build a trillion (1012) devices
in a square centimetre [7]. However, for such a densely inte-
grated circuit to perform a useful computation, it has to deal
with the inaccuracies and instabilities introduced by fabrication
processes and the tiny devices themselves. Permanent faults
may emerge during the manufacturing process, while transient
ones may spontaneously occur during computers’ lifetimes.
Future nanoelectronic architectures have to be able to tolerate
an extremely large number of defects and faults. The design
of fault-tolerant architectures for the ultra-large integration of
highly unreliable nanometre devices is therefore inevitable.

In 1952, von Neumann initiated the study of using redun-
dant components to obtain reliable synthesis from unreliable
components, namely, the multiplexing technique [8]. It was
then theoretically demonstrated that with an extremely high
degree of redundancy, the integration of unreliable logic units

could be made reliable. In his construction, von Neumann
considered two sets of basic logic circuits, the majority voting
and NAND logic, and assumed that they are not completely
reliable, i.e., each of them fails with constant probability. By
using a bundle of unreliable gates functioning as an ideally
reliable one, von Neumann proved that if the failure proba-
bilities of the gates are sufficiently small and the failures are
statistically independent, computations may be done reliably
with a high probability. However, the construction requires a
large number of redundant components, which was seen as a
major shortcoming of this method.

In 1965, the work by von Neumann and his contemporaries
on fault tolerant logic was generalized by Pierce to a theory
termed interwoven redundant logic [9]. In 1977 Dobrushin and
Ortyukov theoretically improved von Neumann’s result [10],
showing that logarithmic redundancy is actually sufficient for
any Boolean functions [10] and, at least for certain Boolean
functions, necessary [11]. In the 1980s, it was proven
by Pippenger that a variety of Boolean functions may be
computed reliably by noisy networks requiring only constant
multiplicative redundancy [12, 13]. Hence, it is theoretically
demonstrated that the multiplexing technique may work
effectively with a practically acceptable redundancy overhead.
More recently, von Neumann’s NAND multiplexing has been
studied as an effective fault-tolerant technique for protection

0957-4484/03/020224+07$30.00 © 2003 IOP Publishing Ltd Printed in the UK 224

http:// stacks.iop.org/Nano/14/224

A defect- and fault-tolerant architecture for nanocomputers

against the increasing transient faults in nanoelectronic
circuits [14, 15], while it is believed to be less efficient against
manufacturing defects or permanent faults.

A reconfigurable architecture is a computer architecture
which can be configured or programmed after fabrication
to implement desired computations. Faulty components are
detected during testing and excluded during reconfiguration.
Reconfigurable architectures have been investigated as well for
the solution of integration of highly unreliable nanometre-scale
devices, in particular as defect-tolerant architectures against
manufacturing errors. Teramac [16], built in HP laboratories,
is such an extremely defect-tolerant reconfigurable machine.
The basic components in Teramac are programmable
switches (memory) and redundant interconnections. The
high communication bandwidth is critical for both parallel
computation and defect tolerance. With about 10% of
logic cells and 3% of total resources defective, Teramac
could still operate 100 times faster than a high-end single-
processor workstation for some of its configurations. The
embryonics architecture [17] is inspired by the biological
growth and operation of all living beings. It is based on
four hierarchical levels: a molecule (a multiplexer-based
element of a programmable circuit), a cell (a small processor
with an associated memory), an organism (an application-
specific multiprocessor system) and the population of identical
organisms. Each cell contains complete sets of instructions,
the genomes, which make each cell universal and potentially
apt for self-repair and self-replication. The objective of
developing highly robust integrated circuits capable of self-
repair and self-replication makes the embryonics architecture
a potential paradigm for future nanometre-scale computation
systems.

In this paper we seek fault-tolerant architectures for
unreliable nanoelectronic devices, by extending the study of
NAND multiplexing to a rather low degree of redundancy and
implementing it into a massively reconfigurable architecture.
The system performance of the architecture is evaluated
by studying its reliability, which can be defined as the
probability of system survival. Our evaluation shows that the
suggested system is efficiently robust against both permanent
and transient faults for an ultra-large integration of highly
unreliable nanometre-scale devices.

The paper is organized as follows. In section 2
von Neumann’s NAND multiplexing technique is briefly
reviewed and developed. Section 3 gives the reliability
analysis of reconfigurable architectures. In section 4 we
present the implementation of a defect- and fault-tolerant
architecture based on NAND multiplexing and reconfigurable
architectures. Section 5 concludes the paper.

2. The NAND multiplexing technique

2.1. von Neumann’s theory

Consider a NAND gate. Replace each input of the NAND
gate as well as its output by a bundle of N lines, and duplicate
the NAND N times, as shown in figure 1. The rectangle U
is supposed to perform a ‘random permutation’ of the input
signals in the sense that each signal from the first input bundle
is randomly paired with a signal from the second input bundle
to form the input pair of one of the duplicated NANDs.

N

X

Y

ZU

NAND

Figure 1. A NAND multiplexing unit.

Let X be the set of lines in the first input bundle being
stimulated (a logic TRUE or ‘1’). Consequently, (N − X)

lines are not stimulated (they have the value FALSE or ‘0’).
Let Y be the corresponding set for the second input bundle;
and let Z be the corresponding set for the output bundle.

Assume that the failure probability of a NAND gate is
a constant ε and assume that the type of fault the NAND
makes is that it inverts its output; i.e. acts as an AND gate
(a von Neumann fault). Let (X, Y, Z) have (x̄ N, ȳ N, z̄ N)

elements. Clearly (x̄, ȳ, z̄) are relative levels of excitation of
the two input bundles and of the output bundle, respectively.
The question is then: what is the distribution of the stochastic
variable z̄ in terms of the given x̄ and ȳ? With a large N ,
von Neumann had concluded that z̄ is a stochastic variable,
approximately normally distributed [8].

2.2. Error distributions in a multiplexing unit

The NAND multiplexing unit was constructed as in figure 1.
Von Neumann’s theory applies when the bundle size N is large.
If N is large, however, the theory is unrealistic in practice
because of the huge amount of redundancy. In this section we
study the error distributions in a multiplexing unit with a fairly
low degree of redundancy.

Let us consider a single NAND gate in the multiplexing
scheme. We still assume that there are x̄ N and ȳN input lines
stimulated. If the two inputs are independent, the probability
of the output of the NAND gate that was found to be non-
stimulated (by both stimulated inputs) is r̄ ′ = x̄ ȳ (assuming
that the NAND gate is fault free). If each NAND gate has a
probability ε of making a von Neumann error, the probability
of its output being non-stimulated is

r̄v = x̄ ȳ + ε(1 − 2x̄ ȳ); (1)

for more common fault models stuck-at-0 and stuck-at-1, the
probabilities become

r̄0 = ε + (1 − ε)x̄ ȳ (2)

and
r̄1 = (1 − ε)x̄ ȳ. (3)

For each single NAND gate, thus, the probability of the
output being non-stimulated (event 0) is r̄ , r̄ ∈ [r̄v, r̄0, r̄1],
and the probability of being stimulated (event 1) is 1 − r̄ . If
the N NAND gates function independently, the probability of
exactly k outputs being non-stimulated is given by the binomial
distribution

R(k) =
(

N
k

)
r̄ k(1 − r̄)N−k . (4)

225

J Han and P Jonker

Unit 1 Unit Unit n

UUU

0k 1k
nk

llllllllllllllllllll

1−nk

……

Figure 2. The multi-stage NAND multiplexing system.

If both inputs of the NAND gates are expected to
be in stimulated states, the non-stimulated outputs are
then considered as reliable ones. If the faulty devices
in the multiplexing circuits are independent and uniformly
distributed, the formula (4) could be easily used to calculate
the output reliability. This may be reasonable when the
dominant faults are transient ones. For manufacturing defects
and permanent faults, however, the binomial distribution
model is not sufficient to describe the actual manufacturing
imperfections. The device components are not statistically
independent but rather correlated since defects tend to cluster
on a chip [18]. The formula (4) is therefore not appropriate for
reliability calculation. (Although it is not yet clear what the
future nanocomputers will be based on and how they will be
built, it might be helpful to learn from present manufacturing
processes.)

Variability of the manufacturing defects can be modelled
with a continuous probability distribution function f (r)

of estimated component reliability r . Compounding the
formula (4) with respect to this distribution function results in

R(k) =
∫ 1

0

(
N
k

)
r̄ k(1 − r̄)N−k f (r) dr. (5)

The success of the approach depends on finding appropriate
parameters for the formula. Here we follow Stapper’s beta
distribution model [19], which gives

R(k) =
(

N
k

)
r̄ k

(k−1∏
i=0

µ + i

µ + ir̄

)
(1 − r̄)N−k

×
(N−k−1∏

j=0

µ + jr̄/(1 − r̄)

µ + kr̄ + jr̄

)
, (6)

where µ is a variable parameter and r̄ is the average or
expected single output reliability. The formula calculates the
probability that exactly k out of N identical NANDs give
reliable outputs. The parameter µ is a measure of the amount
of fault clustering. Small values of µ indicate high levels of
clustering. As µ approaches infinity the formula becomes the
case of independently distributed faults.

2.3. Error distributions in a multi-stage system

If the outputs of a NAND multiplexing unit are duplicated
as the inputs of the succeeding one, a multi-stage system
can be built as depicted in figure 2. In such a system the
number of stimulated (or non-stimulated) outputs of each
NAND multiplexing stage is actually a stochastic variable; it
evolves as a Markov process (chain) because the outputs of

one stage are totally determined by the inputs and device error
distribution of the same stage. The characteristic of a Markov
chain can be described by an initial probability distribution and
transition probabilities.

If there are kl−1 of the N incoming lines stimulated for
both inputs of the lth unit and each NAND gate has a fixed
probability ε of making an error, according to formula (6), the
probability of having k ′

l non-stimulated outputs in the case of
the corresponding kl−1 stimulated inputs is given by

R(k ′
l |kl−1) =

(
N
k ′

l

)
r̄ k′

l (kl−1)

(k′
l −1∏
i=0

µ + i

µ + ir̄(kl−1)

)

× (1 − r̄(kl−1))
N−k′

l

(N−k′
l −1∏

j=0

µ + jr̄(kl−1)/(1 − r̄(kl−1))

µ + k ′
l r̄(kl−1) + jr̄(kl−1)

)

(7)

where r̄(kl−1) is a variation of equation (1), (2) or (3) with
x̄ = ȳ = kl−1

N .
If we are interested in the outputs which give faulty

signals, then the probability of having kl stimulated outputs,
i.e., kl = N − k ′

l , is given by

P(kl|kl−1) = R((N − kl)|kl−1). (8)

Noting the stochastic nature of kl−1, the probability of kl

outputs being stimulated in all cases is obtained by

P(kl) =
N∑

kl−1=0

P(kl|kl−1)P(kl−1). (9)

Formula (9) is inductive in the sense that, given an
initial probability distribution and conditional probabilities, the
output probability at any stage can be obtained. In the Markov
chain an (N + 1) × (N + 1) transition probability matrix Ψ,
whose elements are P(kl |kl−1), kl, kl−1 ∈ [0, 1, 2, . . . , N], can
be made as (10), so that all conditional probabilities for any
set of (kl , kl−1) are included.

Ψ =




P(0|0) P(1|0) P(2|0) · · · P(N |0)

P(0|1) P(1|1) P(2|1) · · · P(N |1)

P(0|2) P(1|2) P(2|2) · · · P(N |2)

· · · · · · · · · · · · · · ·
P(0|N) P(1|N) P(2|N) · · · P(N |N)


 .

(10)
Since the transition probability matrix Ψ for each stage is

identical and irrelevant with regard to l , this is a homogeneous
Markov chain. With the transition probability matrix and a
fixed input distribution,

P0 = [p0, p1, p2 . . . pN] (11)

where pi is the probability of i inputs being stimulated, the
stimulated output distribution of a NAND multiplexing system
with n stages is

Pn = P0Ψn. (12)

When n gets large, Ψn approaches a constant matrix π,
i.e.,

lim
n→∞ Ψn = π. (13)

This indicates that, as n becomes extremely large, the system
output distribution will become stable and independent of the
number of multiplexing stages.

226

A defect- and fault-tolerant architecture for nanocomputers

3. Reliability analysis of reconfigurable architecture

The key idea behind reconfigurable architectures is that
the defects due to manufacture can be detected, located
and then avoided. The reconfigurable computer concept is
greatly assisted by the use of field programmable gate arrays
(FPGAs) [20]. Fundamentally an FPGA contains a regular
array of logic units, which are called configurable logic blocks
(CLBs). Each CLB can communicate with its neighbours, and
the CLBs are further grouped in blocks, then clusters of blocks.
The CLBs can be individually reprogrammed so that a wide
variety of logic or memory structures can be mapped onto the
array of CLBs. When a part (or all) of a CLB is not working,
the defective components are easy to locate and exclude from
the working components. The Teramac machine [16], as a
successful example of the reconfiguration concept, uses 864
identical FPGA chips, among which 75% (647) are partially
defective. The first task of Teramac after it was built was
to run self-diagnostic software, by which the defects were
detected and located, and a defect database was generated.
By reading the database, user applications are mapped onto
good resources. Teramac ‘has been successfully configured
into a number of parallel architectures and used for extremely
demanding computations’.

In processor arrays, the basic logic circuit blocks are
referred to as processing elements (PEs), which are sometimes
associated with local memories. In very large chips, the
reliability can be improved by adding spare PEs to the design.
Clearly, the more spares are added, the higher the resulting
reliability will be. Instead of trying to achieve complete fault
tolerance, defined as survival of a number of faults equal to the
number of spares, most research aims at optimizing probability
of survival, defined as the percentage of fault configurations
that can be successfully overcome by the reconfiguration
approach [21]. Reconfiguration approaches may be local or
global. In local approaches, arrays are divided into subarrays.
Spare elements are added to each individual subarray and
reconfiguration is performed internally to each subarray. In
global approaches, a set of spare elements is added to the whole
array (usually as spare rows and columns along the edges of the
array). Global approaches usually involve far more complex
reconfiguration algorithms than local solutions [21].

For simplicity, we refer to logic blocks, clusters or PEs as
modules and assume that all modules in the array are identical,
so that any spare module can substitute any failed one, provided
there exists a sufficient number of interconnection paths. If in
an array there are n identical modules, out of which r are spares,
then at least n − r must be fault free for proper operation. We
define Rmn as the probability of exactly m out of the n modules
being fault free; then the reliability of the array is given by

Rn =
n∑

m=n−r

Rmn . (14)

If each module has the same failure rate, or the same
reliability R0, and modules are statistically independent, we
obtain the following binomial probability for the number of
fault-free modules m:

Rmn =
(

n
m

)
Rm

0 (1 − R0)
n−m . (15)

Once again the defective modules in an array are
not uniformly distributed but rather correlated, therefore
the binomial distribution formula (15) is not sufficient for
reliability evaluation. Stapper’s model can be used to improve
the reliability calculation of correlated modules [19]:

R̄mn =
(

n
m

)
R̄n

0

(m−1∏
i=0

µ + i

µ + iR̄0

)

× (1 − R̄0)
n−m

(n−m−1∏
j=0

µ + jR̄0/(1 − R̄0)

µ + m R̄0 + jR̄0

)
, (16)

where µ is a variable parameter indicating the amount of fault
clustering and R̄0 is the average or expected single-module
reliability.

The formula calculates the probability that exactly m out
of n identical modules operate correctly. It can be applied to
the reliability analysis of parallel processors with redundancy
and fault-tolerant very large scale integration (VLSI) systems.

4. The defect- and fault-tolerant architecture

4.1. The basic circuits implemented with NAND multiplexing

Within a digital computer, the bulk of the logic gates is spent
on memory and caches. The processor itself is made from a
number of functional units, each of which can be separated
into function blocks. Let us assume that the function block
on the most refined level evaluates its inputs and produces a
stable output within one clock cycle. Within this function
block, many logic circuits may be cascaded; however, to
avoid timing problems (hazard) usually the number of circuits
cascaded and hence the possible paths from inputs to outputs
through the various logic circuits is kept within bounds, and
hence their path lengths are similar. Such function blocks
are found everywhere in the processor and in memory. The
function blocks or processors can be composed of arithmetic
and logic units (ALUs), look-up tables (memories) or simply
multiplexers. The fact that a NAND gate is a universal
logic device makes it possible to use the NAND multiplexing
technique on any logic operations, even though the NAND
multiplexing can be easily extended to other specific logics.
In this section we make an abstraction of such a function block
and assume, to be able to make a statistical analysis, that it is
made entirely out of stages of parallel NAND gates.

If the processors are implemented with the NAND
multiplexing, then the obtained structure will be a NAND
multiplexing system with a redundancy factor of N , as all
the components are duplicated N times. The performance
of a multiplexing system can be evaluated by investigating
the probability that the number of faulty outputs is or is not
beyond a threshold level. In other words those outputs with
errors less than this threshold will be seen as reliable and
their complementaries will be unreliable. The threshold level,
together with N , may have an impact on the maximum tolerable
value of the device failure rate ε. Since we are concerned with
the minimum redundancy required to achieve fault tolerance,
we take N = 3 and then the threshold 1

3 .
If the redundancy is as small as N = 3, the random

interconnections of logic layers can be substituted in practical
implementations by systematic ones which have specific

227

J Han and P Jonker

routes. Systematic interconnections are even likely to be
superior in terms of error correction to random ones [9]. Since
the NAND multiplexing uses redundant components to mask
the effect of defective ones (no error detection is needed), the
system is actually capable of tolerating both permanent and
transient faults upon their occurrences.

If each processor has a logical depth of 11, which is
sufficient for general computation tasks, then the reliability
of the one-bit NAND multiplexing output after 11 stages
can be studied with various device error rates ε, using the
NAND multiplexing theory. With perfectly fault-free inputs,
the probability distributions of output errors (unreliability
distribution) are computed against the error rate of individual
NANDs with µ = 1, 2, 5, 20 and infinity, shown in tables 1, 2
and 3 for different fault models.

From the tables we can see that the von Neumann fault
model brings the largest system performance degradation
while the influence from µ, i.e., the amount of fault clustering,
is insignificant. Since we are interested in the maximum device
error rate that can be tolerated in general, we will take ε = 10−2

and µ = 5; then the reliability of the one-bit output can be
obtained from table 1 as R0 = 0.9012. In the following section
we will take R0 = 0.9012 as the average reliability of a one-bit
multiplexing circuit.

4.2. The reconfigurable structures on bit, processor and
cluster levels

We further assume that each processor has 32-bit processing
capacity. For a 32-bit processor, if no redundant circuits are
applied, it is only reliable when all of the output bits are
reliable. Instead of exactly making a 32-bit circuit we build in
the processor some redundant processing circuits, so that the
spares can be configured to replace defective ones (figure 3(c)).
If each one-bit circuit has a similar structure, the reliability of
the 32-bit processor with redundant circuits can be evaluated
against the number of spare bit circuits, using formulae (14)
and (16), as plotted in figure 4. The left-most data in the figure
indicate the reliability of a processor with no redundancy. The
effect of the variability parameter µ here is rather significant.
The improvement of reliability by using redundancy is explicit,
in particular when µ is large. Assuming that errors are not
strongly correlated in processor and upper levels, we take
µ = 20 for further evaluations. Thus a processor with 16
redundant bit circuits will have a reliability of 0.9927.

The development of nanotechnology makes it eventually
possible to realize extremely large scales of integration, of the
order of 1012 devices per chip. If on such a chip each processor
has about 106 devices (logic, memory, communications etc),
the number of processors on the chip will be about 106 (210 ×
210). Instead of being connected globally, the processors can be
assembled into 1024 (210) processing clusters, each containing
1024 (210) processors and calculating tasks independently.
The clusters further compose the chip. Both clusters and
processors can be connected in a two-dimensional (32 ×
32) array, in which some columns are redundant, as in
figures 3(a) and (b). The reconfigurable strategy therefore can
be implemented on both cluster and processor levels.

Similarly, the performance of a cluster (chip) with
redundant processors (clusters) can be evaluated using the

(c)

module
(i,j)

bit
circuit

(0)

bit
circuit

(1)

bit
circuit

(47)

bit
circuit

(2)

processor

(0,0)
processor

(0,1)

processor

(31,1)

processor

(1,0)

processor

(31,0)

processor

(1,1)

processor

(31,31)

processor

(1,31)

processor

(0,31)

cluster
(0,0)

cluster
(0,1)

cluster
(31,1)

cluster
(1,0)

cluster
(31,0)

cluster
(1,1)

cluster
(31,31)

cluster
(1,)

cluster
(0,)

active module
(i,j)

spare

(a)

(b)

31

31

Figure 3. The architecture: (a) chip, (b) cluster, (c) processor, all
with columns of spares.

formulae (14) and (16). The reliability of a cluster against the
number of spare columns is plotted as figure 5, with µ = 20.
The left-most point indicates the reliability of a cluster with
no spares. By using four columns of processors as redundant,
the reliability of the cluster is elevated from 0.5589 to 0.9959,
i.e., a cluster having 128 (4 × 32) redundant processors has
a reliability of 0.9959. Further, the reliability of a chip with
1024 clusters is plotted against the number of spare columns
of clusters with µ = 20 as figure 6. It is shown that the
reliability of a chip will be greatly improved by using redundant
components. If 128 of the 1024 total clusters (four out of 32

228

A defect- and fault-tolerant architecture for nanocomputers

Table 1. Output unreliabilities of a one-bit NAND multiplexing circuit (von Neumann fault).

ε µ = 1 µ = 2 µ = 5 µ = 20 µ = ∞
10−6 1.207 × 10−5 1.144 × 10−5 1.070 × 10−5 1.004 × 10−5 9.735 × 10−6

10−5 1.207 × 10−4 1.144 × 10−4 1.070 × 10−4 1.004 × 10−4 9.734 × 10−5

10−4 1.206 × 10−3 1.143 × 10−3 1.069 × 10−3 1.003 × 10−3 9.728 × 10−4

10−3 1.196 × 10−2 1.134 × 10−2 1.061 × 10−2 9.970 × 10−3 9.669 × 10−3

10−2 0.1096 0.1047 0.09879 0.09346 0.09096
0.05 0.3797 0.3724 0.3616 0.3510 0.3459

Table 2. Output unreliabilities of a one-bit NAND multiplexing circuit (stuck-at-0 fault).

ε µ = 1 µ = 2 µ = 5 µ = 20 µ = ∞
10−6 7.447 × 10−6 7.374 × 10−6 7.344 × 10−6 7.341 × 10−6 7.343 × 10−6

10−5 7.447 × 10−5 7.374 × 10−5 7.344 × 10−5 7.341 × 10−5 7.343 × 10−5

10−4 7.442 × 10−4 7.369 × 10−4 7.340 × 10−4 7.337 × 10−4 7.340 × 10−4

10−3 7.400 × 10−3 7.329 × 10−3 7.300 × 10−3 7.298 × 10−3 7.300 × 10−3

10−2 6.992 × 10−2 6.938 × 10−2 6.917 × 10−2 6.918 × 10−2 6.921 × 10−2

0.05 0.2728 0.2730 0.2735 0.2741 0.2744

Table 3. Output unreliabilities of a one-bit NAND multiplexing circuit (stuck-at-1 fault).

ε µ = 1 µ = 2 µ = 5 µ = 20 µ = ∞
10−6 4.627 × 10−6 4.071 × 10−6 3.352 × 10−6 2.697 × 10−6 2.391 × 10−6

10−5 4.628 × 10−5 4.069 × 10−5 3.355 × 10−5 2.700 × 10−5 2.391 × 10−5

10−4 4.627 × 10−4 4.068 × 10−4 3.355 × 10−4 2.700 × 10−4 2.391 × 10−4

10−3 4.613 × 10−3 4.058 × 10−3 3.350 × 10−3 2.700 × 10−3 2.393 × 10−3

10−2 4.472 × 10−2 3.960 × 10−2 3.302 × 10−2 2.696 × 10−2 2.409 × 10−2

0.05 0.1956 0.1778 0.1544 0.1325 0.1221

-2 0 2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0

R
el

ia
bi

lit
y

of
th

e
pr

oc
es

so
r

The number of spare bit circuits in a processor

µ=1
µ=2
µ=5
µ=20
µ=infinity

Figure 4. The reliability of a processor with spare bits.

columns) are used as spare ones, then the reliability of the chip
will be better than 99% (with a failure rate of 0.2%), provided
that faulty components can be effectively substituted by spare
ones.

In summary, we have discussed a set-up of a massively
parallel fault-tolerant computer architecture. The NAND
multiplexing technique is implemented in the fundamental
circuits and reconfigurable structures are mapped to the bit,
processor and cluster level. Containing up to 1012 devices, the
conceived chip can have about 106 medium-sized processors
and tolerate a device error rate up to 10−2, which is generally
unacceptable for any current VLSI systems. Redundant

0.5

0.6

0.7

0.8

0.9

1.0

T
he

re
lia

bi
lit

y
of

th
e

cl
us

te
r

The number of spare columns in a cluster

Figure 5. The reliability of a cluster with spare processors.

components are used at various levels and, as our evaluation
shows, they are critical for the survival of the architecture.
In contrast with [15], where plain NAND multiplexing was
used to recover from transient errors, resulting in a massive
redundancy, we now accept a higher error rate on the lowest
level with considerably less redundancy, but compensate
for this using a hierarchical reconfigurability. This leads
to an acceptable failure rate for transient errors for the
entire system (online error detection might be needed), and
simultaneously forms a protection against permanent defects.
The error detection problem remains open for further research.
The system is expected to have a total redundancy factor

229

J Han and P Jonker

0.70

0.75

0.80

0.85

0.90

0.95

1.00

T
he

re
lia

bi
lit

y
of

th
e

ch
ip

The number of spare columns in a chip

Figure 6. The reliability of a chip with spare clusters.

of (3 × 3
2 × 8

7 × 8
7× (the fraction of other necessary spare

components)) <10. This indicates that future nanochips with
1012 devices might be working at an acceptable reliability level,
virtually having about 1011 effective devices.

5. Conclusions

Due to the manufacturing process, the shrinking of electronic
devices will inevitably introduce a growing number of
defects and even make these devices more sensitive to
external influences such as cosmic radiation, electromagnetic
interference, thermal fluctuations etc. It is therefore likely that
the emerging nanometre-scale devices will eventually suffer
from more errors than classical silicon devices in large scale
integrated circuits. In order to make future systems based on
nanometre-scale devices reliable, the design of fault-tolerant
architectures will be necessary. This paper can be seen as a
part of the endeavour devoted to this work.

We have presented a defect- and fault-tolerant architec-
ture, in which von Neumann’s NAND multiplexing is imple-
mented in basic circuits and reconfigurable architectures are
mapped to the overall system. The system is expected to
be working at an acceptable reliability level at the expense
of having multiple redundant components. The architecture
is potentially effective in protection against both permanent
defects and transient faults for systems based on unreliable
nanometre-scale devices.

Acknowledgments

We would like to thank Mike Forshaw of University College
London, UK, for fruitful discussions. This work is supported
by Delft University of Technology in its DIRC project
‘Novel computation structures based on quantum devices’.

References

[1] Likharev K K 1999 Single-electron devices and their
applications Proc. IEEE 87 606–32

[2] Heij C P, Hadley P and Mooij J E 2001 Single-electron
inverter Appl. Phys. Lett. 78 1140–2

[3] Bachtold A, Hadley P, Nakanishi T and Dekker C 2001 Logic
circuits with carbon nanotube transistors Science 294
1317–20

[4] Huang Y, Duan X, Cui Y, Lauhon L J, Kim K and Lieber C M
2001 Logic gates and computation from assembled
nanowire building blocks Science 294 1313–17

[5] Collier C P, Wong E W, Belohradsky M, Raymo F M,
Stoddart J F, Kuekes P J, Williams R S and Heath J R 1999
Electronically configurable molecular-based logic gates
Science 285 391–4

[6] Collier C P, Mattersteig G, Wong E W, Luo Y, Beverly K,
Sampaio J, Raymo F M, Stoddart J F and Heath J R 2000
A [2]catenane-based solid state electronically
reconfigurable switch Science 280 1172–5

[7] Tseng G Y and Ellenbogen J C 2001 Toward nanocomputers
Science 294 1293–4

[8] von Neumann J 1956 Probabilistic logics and the synthesis of
reliable organisms from unreliable components Automata
Studies ed C E Shannon and J McCarthy (Princeton, NJ:
Princeton University Press) pp 43–98

[9] Pierce W H 1965 Failure-Tolerant Computer Design (New
York: Academic)

[10] Dobrushin R L and Ortyukov S I 1977 Upper bound on the
redundancy of self-correcting arrangements of unreliable
functional elements Prob. Inf. Trans. 13 203–18

[11] Dobrushin R L and Ortyukov S I 1977 Lower bound for the
redundancy of self-correcting arrangements of unreliable
functional elements Prob. Inf. Trans. 13 59–65

[12] Pippenger N 1985 On networks of noisy gates Proc. 26th
Annu. Symp. on Foundations Comput. Sci. (Los Alamitos,
CA, USA: IEEE Computer Society Press) pp 30–8

[13] Pippenger N 1989 Invariance of complexity measures for
networks with unreliable gates J. ACM 36 531–9

[14] Nikolic K, Sadek A and Forshaw M 2002 Fault-tolerant
techniques for nanocomputers Nanotechnology 13 357–62

[15] Han J and Jonker P 2002 A system architecture solution for
unreliable nanoelectronic devices IEEE Trans. Nano. 1 (4)

[16] Heath J R, Kuekes P J, Snider G S and Williams R S 1998 A
defect-tolerant computer architecture: opportunities for
nanotechnology Science 280 1716–21

[17] Mange D, Sipper M, Stauffer A and Tempesti G 2000 Toward
robust integrated circuits: the embryonics approach Proc.
IEEE 88 516–41

[18] Koren I and Koren Z 1998 Defect tolerance in VLSI circuits:
techniques and yield analysis Proc. IEEE 86 1819–36

[19] Stapper C H 1992 A new statistical approach for fault-tolerant
VLSI systems Proc. 22nd Int. Symp. on Fault-Tolerant
Computing (Los Alamitos, CA, USA: IEEE Computer
Society Press) pp 356–65

[20] Lach J, Mangione-Smith W H and Potkonjak M 1998 Low
overhead fault-tolerant FPGA systems IEEE Trans. Very
Large Scale Integr. Syst. 6 212–21

[21] Distante F, Sami M G and Stefanelli R 1995 Fault-tolerance
and reconfigurability issues in massively parallel
architectures Proc. CAMP, Computer Architecture for
Machine Perception (1995) (Los Alamitos, CA, USA: IEEE
Computer Society Press) pp 340–9

230

