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The Impact of Fading on the Outage Probability in
Cognitive Radio Networks

Yaobin Wen†, Sergey Loyka† and Abbas Yongacoglu†

Abstract—This paper analyzes the outage probability in cog-
nitive radio networks, based on the Poisson point process model
of node spatial distribution and the standard propagation path
loss model, including Rayleigh and log-normal fading. To make
the analysis tractable, all possible scenarios are classified into
three cases based on typical outage events. When the average
number of nodes in the forbidden region is much smaller than
unity, the aggregate interference can be well approximated by
the nearest node for both non-fading and fading scenarios (the
nearest node dominates the outage performance). When the
average number of nodes in the forbidden region is greater than
unity, the aggregate interference can be well approximated by a
Gaussian random variable for non-fading scenario (many nodes
contribute to outage events, rather than a single dominant one).
This approximation also applies to the fading scenario, but its
accuracy is a bit worse at the transition region. An alternative
approximation is proposed, which is accurate for any outage
probability. When the average number of nodes in the forbidden
region is slightly smaller than unity, neither the nearest node
approximation nor the Gaussian one is accurate for the non-
fading scenario (since only a few near-by nodes are dominant),
and finding an accurate approximation for the outage probability
in this case is an open problem. The alternative approximation
above is accurate for the fading scenario. All approximations are
validated via Monte-Carlo simulations.

I. INTRODUCTION

As higher data rate services are required in wireless com-
munications over a limited spectrum available, there is a need
for more spectrum efficiency. To overcome the overcrowded
spectrum problem and use spectrum more efficiently, Cog-
nitive Radio (CR) suggests allowing secondary users (SU)
to share the spectrum which is not currently used by the
primary user (PU)[1]. Due to the uncertainty of SU number
and locations, the PU performance may be seriously affected
by the aggregate interference generated by SUs, so its accurate
modeling is important to design cognitive radio networks and
also to estimate potential benefits.

To model the aggregate interference in a wireless network,
we have to properly choose node spatial distribution and prop-
agation path loss models. The most popular spatial distribution
model is a Poisson point process on a plane. Based on this
model and average propagation path loss model, Sousa and
Silvester [2] studied the aggregate interference power. They
obtained its characteristic function (CF) and concluded that the
aggregate interference power is an α−stable random variable.
Sousa [3] extended that model and studied the aggregate
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interference as a random vector at the output of receiver
correlators, and concluding that the aggregate interference is
a symmetric α− stable random vector. Using the multivariate
Lepage series representation, Ilow and Hatzinakos [4] obtained
the CF of the aggregate interference according to a Poisson
point process of node locations in the plane/volume, including
the log-normal and Rayleigh fading effects and concluding that
the aggregate interference is a spherically symmetric α−stable
random vector. Mordachev and Loyka [5] studied the tradeoff
of the outage probability and the node density in wireless
networks also based on the Poisson point process and the
average path loss, but including different fading models and
interference cancellation mechanisms as well. By studying
the tail of the aggregate interference distribution, they found
that, at the low outage region, the aggregate interference is
dominated by the nearest one. Based on this, compact, closed-
form expressions for outage probability were obtained and a
number of insights were pointed out. Ghasemi and Sousa [6]
studied the aggregate interference in cognitive radio networks
based on the Poisson point process, the average path loss and
different fading models. Using Campell’s theorem, the CF and
cumulants of the aggregate interference power was obtained,
and the an approximation of the outage probability is derived
based on the cumulants. The effect of cooperative sensing on
the distribution of the aggregate interference power for i.i.d.
fading channels has also been studied.

In a typical cognitive radio network, SUs inside of a forbid-
den region around the PU are not allowed to transmit (while
details of a typical CR protocol may vary, a forbidden region
is always present), so that the distribution of the aggregate
interference is not α − stable any more and the models of
[2]-[5] cannot be applied directly. On the other hand, the
approximation in [6] uses only first three cumulants so that
its accuracy is not high when the forbidden region is small
and the SU node density is low.

To overcome these limitations, we develop a new method
to study the distribution of aggregate interference and the
outage probability in cognitive radio networks. To make the
analysis tractable, all possible scenarios are classified into
three cases, based on typical (dominant) outage events (i.e.
when the aggregate interference at the PU receiver exceeds a
threshold):

• Case 1: when the average number of SU nodes in the
forbidden region is much smaller than unity, a dominant
outage event is when the nearest node interference exceeds
the threshold, and the aggregate interference can be well
approximated by the interference of the nearest node. We
derive a closed-form outage probability expression in terms
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of the threshold interference to noise ratio (INR).
• Case 2: when the average number of nodes in the

forbidden region is greater than unity, the combined interfer-
ence from many nodes exceeding the threshold is a typical
outage event. In this case, the aggregate interference can be
approximated by a Gaussian random variable, for which we
present a simple way to find its cumulants.
• Case 3: when the average number of nodes in the

forbidden region is only slightly smaller than unity, a typical
outage event is when the combination of a few nearest node
interference exceeds the threshold. Neither the nearest node
approximation nor Gaussian one is accurate in this case.
Finding an accurate approximation in this case is an open
problem.

The three cases above also apply to the Rayleigh and log-
normal fading scenarios with some minor modifications (some
approximations and cumulants are different - see Section IV
and V), so that this typical outage event classification is robust
to the model details and also suggests a way to reduce the
outage probability significantly.

The paper is organized as follows. In Section II, the node
spatial distribution model, the CR protocol and propagation
path loss model are introduced. Section III, IV and V analyze
the distribution of the aggregate interference and outage prob-
ability in terms of the INR in non-fading, Rayleigh fading
and log-normal fading scenarios respectively. Monte-Carlo
simulation results validate the analysis and approximations.

II. SYSTEM MODEL

We consider a cognitive radio network which contains a
primary user (PU) receiver and many secondary users’ (SU)
transmitters (nodes) on a plane. The PU is located at the origin.
The SUs are randomly located according to a Poisson point
process. The density of SUs is λ [nodes/m2]. Interference
from the SU nodes outside the circle of a certain radius Rmax

is assumed to be negligible (alternatively, no SUs are located
outside of this circle). The CR protocol is that all SUs which
are inside of a forbidden region, i.e. the circle of the radius
Rs centered on the PU, cease their transmissions so that some
protection to the PU is provided.

We assume the desired signal, interferences and noise are
independent of each other. The received power of the PU can
be expressed as:

PPU = Pd +

N∑
i=1

Ii + P0 (1)

where Pd is the desired signal power; Ii is the interference
signal power coming from the ith node; P0 is the noise power;
N is a Poisson random variable which denotes the number of
nodes in the ring between circles of the radii Rs and Rmax,
i.e. the potential interference zone. We follow the standard
propagation model, which was used in [5]. The power at the
receiver antenna output coming from a transmitter of power
Pt is Pr = PtGtGrg, where Gt and Gr are the transmitter
and receiver antenna gains; g is the propagation path loss,
g = gaglgs, where ga is the average path loss, gl is the large-
scale fading, and gs is the small-scale fading; ga = aνr

−ν ,

where ν is the path loss exponent, r is the distance between the
transmitter and receiver, and aν is a constant independent of r.
For simplicity, we assume the transmitter and receiver antennas
are isotropic with unity gain, so that Pr = Ptg, and that all
SUs transmit at the same constant power level Ps. In the non-
fading scenario, the ith SU generates the interference power
Iai = Psaνr

−ν
i at the PU receiver, where ri is the distance

between the ith SU and the PU. Without loss of generality,
we normalize Psaν = 1, so Iai = r−ν

i .
The non-fading scenario is considered in Section III, and

the effect of fading is included in Section IV and V.

III. OUTAGE PROBABILITY: THE NON-FADING SCENARIO

When signal to interference plus noise ratio (SINR) is less
than a certain threshold η, there is significant performance
degradation of a wireless link and it is considered to be in
outage. The probability of SINR being less than η is an outage
probability. When the signal and noise powers are fixed, the
outage probability is the probability of aggregate interference
Iag exceeding the threshold Ith = Pd/η − P0,

Pout = Pr{SINR < η} = Pr{Iag > Ith} (2)

Defining the interference to noise ratio (INR) as

γ =

∑N
i=1 Iai
P0

(3)

its threshold value is D = Ith/P0, so that the outage
probability is:

Pout = Pr{γ > D} = 1− F (D) (4)

where F (D) is the CDF of the INR. The interference from
a single SU in the disk of the radius R(D) = (DP0)

−1/ν

results in the INR greater than D, so that Pout is equivalently
a probability of having at least one SU in this disk.

When all SUs are allowed to transmit, Rs = 0, the scenario
is the same as in [5], so that from [[5] Theorem 1],

lim
x→∞

Pr
{∑N

i=1 Iai > x
}

Pr {Ia1 > x}
= 1, Ia1 ≥ · · · ≥ IaN , (5)

where Ia1 is the strongest (nearest node) interference, and, at
the low outage region (large x), the aggregate interference
is dominated by the nearest one, Pr

{∑N
i=1 Iai > x

}
≈

Pr {Ia1 > x}, so that the outage probability can be approxi-
mated as in [5],

Pout ≈
{

1, D ≤ D0

N0D
−2/ν , D > D0

(6)

where N0 = πλR2
0 is the average number of nodes in the

disk of radius R0 = P
−1/ν
0 (the interference level is below

the noise level outside the circle of the radius R0; this disk
was termed “potential interference zone” in [5]), D0 = N

ν/2

0

is a critical value which separates the high and low outage
probability regions. It corresponds to on average one SU being
in the disk of the radius R(D0), so that the outage probability
is high if D ≤ D0, since R(D) ≥ R(D0) and there is a high
probability of having at least one SU in the disk of radius
R(D).
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When the CR protocol is implemented, all SU nodes inside
the forbidden region Rs cease their transmissions. The interfer-
ence generated by a single node can not exceed Imax = R−ν

s ,
i.e. the value coming from an active node at the closest
possible distance, so that the maximum INR from a single
node is Dmax = Imax/P0. Thus, the results in (5) and (6) do
not apply anymore.

To obtain similar approximations for the CR network, we
classify all possible scenarios into three different cases based
on typical outage events, which are further linked to R(D0)
and Rs.

Case 1: When Rs ≪ R(D0), the aggregate interference
is dominated by the nearest node one for D < Dmax:
Pr

{∑N
i=1 Iai > DP0

}
≈ Pr {Ia1 > DP0}.

To demonstrate that the nearest interference is indeed dom-
inant in this case, we consider two subcases:
• Case 1.A: Rs ≪ R(D).
• Case 1.B: Rs < R(D) but not Rs ≪ R(D).
Let Ring(r1, r2) be a ring between the circles of the

radii r2 ≥ r1, and Ring(Rs, R(D)) be a first ring, and
Ring(R(D/(k − 1)), R(D/k)), k = 2, 3, . . . be the kth ring,
so that the combined interference to noise ratio from k nodes
in this ring exceeds D, i.e. causes an outage event.

For Case 1.A, πR2(D) >> πR2
s , so that π(R2(D)−R2

s) ≈
πR2(D), and hence the probability to have at least one
node in Ring(Rs, R(D)), which is the outage probability,
is roughly the same as that for Ring(0, R(D)), so that
Pr

{∑N
i=1 Iai > DP0

}
≈ Pr {Ia1 > DP0} and the corre-

sponding results in [5] can be used as long as D < Dmax.
For Case 1.B, it can be shown that the nearest interference is

still dominant, so that Pout ≈ 1−exp
(
N0(D

−2/ν
max −D−2/ν)

)
when D < Dmax.

When D > Dmax, i.e. Rs > R(D), the typical outage event
is n + 2 or more nodes being in Ring(Rs, R(D/(n + 2)),
where n = floor(D/Dmax), and the aggregate interference is
dominated by a few nearest nodes. However, since the outage
probability is very small and drops very fast in this region,
Pout ≈ 0 is a reasonable approximation (see Fig. 1).

Finally, the outage probability in Case 1 can be approxi-
mated as

Pout ≈

{
1− exp

[
N0(D

−2
ν

max −D
−2
ν )

]
D < Dmax

0 D ≥ Dmax

(7)

Note that it is determined by only three critical parameters: ν,
Dmax and N0. When D ≪ Dmax, the approximation in (6)
applies, and Pout ≈ 1 when D ≤ D0.

Fig. 1 validates the approximation above. Clearly, there are
3 different regions: (i) when D < D0, Pout is high; (ii) when
D0 < D < Dmax, the aggregate interference is dominated
by the nearest node one; (iii) when D > Dmax, Pout is
very small and drops very fast. On the other hand, Gaussian
approximation, which was used in [6], is not accurate in this
case.

Case 2: The aggregate interference is closely approximated
by a Gaussian random variable,

∑N
i=1 Iai ∼ N , when Rs >

R(D0).
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Fig. 1. Outage probability for Case 1. ν = 4, Rs = 10m, R(D0) =
56.4m, R0 = 200m, Rmax = 103m, λ = 10−4 [nodes/m2], D0 =
22dB, Dmax = 52dB, σ = 1.38. MC denotes Monte-carlo simulations.
Note that the nearest node approximation works well in the whole INR range
for all fading and non-fading scenarios. While fading has in general negative
effect on Pout, the impact of log-normal shadowing is more pronounced,
especially at D > Dmax.

Since Rs > R(D0), the average number of nodes in the
disk of radius Rs is larger than one. When R(D) ≥ Rs, the
average number of nodes in first few rings is not small, so
a typical outage event is when aggregate interference from
many nodes in these rings exceeds the threshold Ith. When
R(D) < Rs, many nodes in a few nearest rings are required
to produce an outage event since the single-node INR can not
exceed Dmax. Thus, the aggregate interference in Case 2 can
be well approximated by a Gaussian random variable based
on the central limit theorem.

From the system model, random variable Ii represents the
interference coming from i-th node without ordering. Poisson
point distribution has a property that points in any non-
overlapping regions of space are statistically independent, so
that, different Ii are independent of each other. The aggregate
interference Iag =

∑N
i=1 Ii so that its cumulants can be found

using the distribution of Ii. For sufficiently large Rmax, these
cumulants are:

κn =
2πλR2−nν

s

nν − 2
, ν > 2 (8)

Using the first two cumulants, the outage probability can be
approximated via the Gaussian distribution,

Pout = Pr{γ > D} ≈ Q

(
DP0 − κ1√

κ2

)
(9)

where Q(x) = 1/
√
2π

∫∞
x

exp
(
−u2/2

)
du is the Q function.

When higher order cumulants of Iag are used, more accurate
approximations, e.g. an Edgeworth expansion, may be derived
[6].

Monte-Carlo simulations show that the approximation in (9)
is sufficiently accurate in this case.

Case 3: Rs < R(D0) but not Rs ≪ R(D0); neither the
nearest node approximation nor Gaussian one is accurate.

In this case, a typical outage event is when the combination
of interference from a few nearest nodes exceeds the threshold.
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The nearest node approximation is not accurate (since several
nodes are involved), and gives us a lower bound for the
outage probability. On the other hand, the number of the nodes
involved in a typical outage is not large enough to apply the
central limit theorem, so that Gaussian approximation is not
accurate too. Obtaining an accurate approximation in this case
is an open problem.

IV. IMPACT OF RAYLEIGH FADING

In this section, we study the impact of Rayleigh fading
on the aggregate interference distribution. Let us consider the
ordered average interference power Ia1 ≥ Ia2 ≥ · · · ≥ IaN
which are further subjected to Rayleigh fading so that the
fading received powers are Isi = gsiIai, where gsi are the
Rayleigh fading factors, assumed to be i.i.d, with the standard
pdf fgs(x) = e−x. Here, we also consider three typical cases.

Case 1: Rs ≪ R(D0); the aggregate interference is
dominated by the nearest node: Pr

{∑N
i=1 Isi > DP0

}
≈

Pr {Is1 > DP0}.
When Rs ≪ R(D), this case reduces to the corresponding

no-CR scenario in [5], so that the nearest node is dominant,
Pr

{∑N
i=1 Isi > DP0

}
≈ Pr {Is1 > DP0}. When Rs is not

much smaller than R(D), on the other hand, numerical ex-
perimentation indicates that the nearest node is still dominant
and the distribution tail follows the fading distribution, see
Fig. 1 (this is also consistent with the large deviation theory).
Therefore, we proceed to find the CCDF of the nearest node
interference, which will serve as an approximation to the
outage probability.

The nearest INR is ds = Is1/P0 = gs1Ia1/P0, and its
CCDF is

Pr{ds > D} ≈
[
1− exp

(
N0

D
2/ν
max

)]
exp

(
− D

Dmax

)
+ exp

(
N0

D
2/ν
max

)
N0

D2/ν
Γ

(
2

ν
+ 1,

D

Dmax

)
(10)

where Γ (a, x) =
∫∞
x

ta−1e−tdt is incomplete Gamma func-
tion. The approximation in (10) holds at the low outage region
(see Appendix for the proof).

The outage probability can now be approximated as:

Pout ≈
{

1, D < D0

eq.(10), D ≥ D0
(11)

When D0 ≤ D ≪ Dmax, (10) can be approximated by
Γ (2/ν + 1)N0D

−2/ν , and it is same as (33) in [5]. When
D ≫ Dmax, (10) can be approximated by[
1−

(
1−N0/D

2/ν
max

)
exp

(
N0/D

2/ν
max

)]
exp (−D/Dmax) ,

and the outage probability is dominated by Rayleigh fading
and decreases as exp(−D/Dmax) in very low outage region.

Fig. 1 validates the approximation in (11). There are four
different regions: (i) when D ≤ D0, Pout is high; (ii) when
D0 < D ≪ Dmax, the effect of Rayleigh fading is the
multiplicative shift by a constant factor Γ (2/ν + 1) of the
non-fading case; (iii) when D ≫ Dmax, the outage probability
is dominated by the nearest node in a positive fading state

(gs > 1), and decreases as exp(−D/Dmax); (iv) the region
between D ≪ Dmax and D ≫ Dmax is the transitional region.
Clearly, the outage probability is well approximated by the
distribution in (10) when D > D0.

Case 2: When Rs > R(D0), the aggregate interference is
approximated by a Gaussian random variable,

∑N
i=1 Isi ∼ N ,

unless D ≫ Dmax.
When Rs > R(D0), a typical outage event in the Rayleigh

fading scenario is when the aggregate interference from many
nodes exceeds the threshold Ith, so that it can still be
approximated by a Gaussian random variable. The rationale
for this follows that of the non-fading Case 2. However,
while the Gaussian approximation is accurate when D is less
or slightly higher than Dmax and predicts well the sharp
threshold behavior of Pout (see Fig. 2), it is less accurate
when D ≫ Dmax.

To evaluate the cumulants of the aggregate interference
needed for the Gaussian approximation, we consider unordered
fading interference Is = I ·gs, where I is the average interfer-
ence coming from a randomly-selected node. Since the PDF of
gs is fgs(x) = e−x, and since I and gs are independent of each
other, the nth moment of If is µn = E[Inf ] = E [In]E [gns ].
Since E [gns ] = n! and κn = µn −

∑n−1
k=1

(
n−1
k−1

)
κkµn−k

(κ1 = µ1), the cumulants of Iag for large Rmax can be shown
to be:

κn = n!
2πλR2−nν

s

nν − 2
, ν > 2 (12)

and, using these cumulants, the outage probability can be
approximated as in (9).
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Fig. 2. Outage probability for Case 2; ν = 4, Rs = 32m, R(D0) = 18m,
R0 = 200m, Rmax = 103m, λ = 10−3 [nodes/m2], Dmax = 32 dB,
σ = 1.38. MC denotes Monte-Carlo simulations; the Gaussian approximation
is as in (9). While Rayleigh fading has a minor effect on Pout (the non-
fading curve is very close to the Rayleigh one and is not shown), log-normal
shadowing has a significant impact on Pout.

Fig. 2 shows Pout for Case 2. Clearly, the aggregate
interference can be approximated by Gaussian approximation,
but it is not very accurate when D is close or exceeds Dmax

because of the effect of Rayleigh fading (single node can still
cause an outage when it is in a positive fading state) and it
decreases as exp(−D/Dmax) in this region (the positive tail
of Rayleigh fading) according to (10). In fact, the nearest node
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approximation in (10) combined with the fact that Pout ≤ 1
provides an approximation which is surprisingly accurate over
the whole INR range,

Pout ≈ min{1, eq.(10)} (13)

We attribute this to the fact that, while many nodes contribute
to the typical outage event before the steep transition region
(so that Gaussian approximation is appropriate), it is a few
nearest nodes plus positive fading that is dominant in the steep
transition region.

Case 3: Rs < R(D0) but not Rs ≪ R(D0) The nearest
node approximation in (13) works well in this case as well,
and the reason is same as in the previous case.

V. IMPACT OF LOG-NORMAL FADING

The ordered average interference powers Iai are further
subjected to log-normal fading so that the received powers
are Ili = gliIai, where gli are the log-normal fading factors,
assumed to be i.i.d, with the pdf

fgl(x) =
1√
2πxσ

exp

[
− ln2 x

2σ2

]
,

where σ is the standard deviation of lnx in natural units. Here,
we also consider three typical cases based on typical outage
events.

Case 1: Rs ≪ R(D0); the aggregate interference is
dominated by the nearest node: Pr

{∑N
i=1 Ili > DP0

}
≈

Pr {Il1 > DP0}.
Similar as for the Rayleigh fading scenario, the nearest

node is still dominant, so that the outage probability can be
approximated by the CCDF of its received power,

Pr{ds > D} ≈ N0

D2/ν
exp

(
2σ2

ν2

)
Q

(
ln(D/Dmax)

σ
− 2σ

ν

)
− N0

D
2/ν
max

Q

(
ln(D/Dmax)

σ

)
(14)

The approximation in (14) holds at the low outage region (see
Appendix for the proof). The outage probability can now be
approximated as:

Pout ≈
{

1, D < D0

eq.(14), D ≥ D0
(15)

Fig. 1 validates the approximation in (15).
Case 2: When Rs > R(D0), the aggregate interference is

approximated by a Gaussian random variable,
∑N

i=1 Ili ∼ N ,
unless D ≫ Dmax.

When Rs > R(D0), similar as for the Rayleigh fading
scenario, the aggregate interference is dominated by many
nodes, not just the nearest one, so that Gaussian approximation
is appropriate. The cumulants of Iag for large Rmax can be
shown to be:

κn = exp

(
n2σ2

2

)
2πλR2−nν

s

nν − 2
, ν > 2 (16)

and, using these cumulants, the outage probability can be
approximated as in (9).

Fig. 2 shows Pout for Case 2. Clearly, Gaussian approxima-
tion is accurate unless D ≫ Dmax. In fact, the nearest node
approximation in (14) combined with the fact that Pout ≤ 1
is reasonably accurate over the whole INR range in this case,

Pout ≈ min{1, eq.(14)} (17)

Since the tail of the log-normal distribution is much heavier
than the Rayleigh one, there are a few dominant nodes at
the distribution tail in the former case unless Rs ≫ R(D0),
so that the Gaussian approximation is not accurate there, as
Fig. 2 demonstrates. On the other hand, when Rs ≫ R(D0),
the Gaussian approximation becomes accurate because the
probability of a few nodes causing an outage is very small,
and the typical outage event is due to the combination of many
nodes.

Case 3: Rs < R(D0) but not Rs ≪ R(D0)
The nearest node approximation in (17) works well in this

case as well.

VI. CONCLUSION

This paper analyzed the outage probability in cognitive radio
networks, by classifying the typical outage events into three
scenarios. When the average number of nodes in the forbidden
region is much smaller than unity, the nearest node dominates
the outage performance. When the average number of nodes
in the forbidden region is greater than unity, the aggregate
interference can be well approximated by a Gaussian random
variable. When the average number of nodes in the forbidden
region is slightly smaller than unity, neither the nearest node
approximation nor the Gaussian one is accurate for the non-
fading scenario, and the alternative approximation is accurate
for the fading scenario.

APPENDIX

Sketch of the proof of (10) and (14): For (10),
Pr{ds > D} =

∫∞
0

fgs(g)F d(D/g)dg, where F d(x) =
1 − Fd(x) is the CCDF of Ia1/P0. Let F d(D) ≈ 1 −
exp

(
N0D

−2
ν

max

)(
1−N0D

−2
ν

)
. Taking the integral and split-

ting it into three parts: [0, D/Dmax], [D/Dmax, D/D0], and
[D/D0,∞], evaluating and approximating integrals for each
interval, it can be shown that second integral is dominant and
equals to (10). For (14), we use same approach except for
F d(D) ≈ N0D

−2
ν −N0D

−2
ν

max.
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