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Abstract

This paper presents methods to add efficient crypto-
graphic support to low-performance embedded processors
with embedded networks (e.g. sensor networks). Software
thread integration (STI) is used to create efficient threads
which can perform cryptographic operations during time-
slice (TDMA) communication, eliminating most context-
switching overhead. The AvrX kernel is enhanced to auto-
matically select the most efficient threads based upon avail-
able work, saving processor cycles and power.

The results show that an STI-based implementation en-
ables communication at higher rates while also perform-
ing more cryptographic work compared with traditional ISR
(interrupt service routine) or busy-wait schemes. Significant
performance improvements are found for both the RC4 and
RC5 ciphers. First, STI enables cryptographic processing to
occur during communication at a bit rate offcpu/8, which
is not possible with an ISR approach. Second, cryptographic
throughput at lower communication rates increases by up to
200% for both RC4 and RC5.

1. Introduction

Increasing numbers of embedded systems rely upon em-
bedded communication networks to improve performance,
flexibility and reliability as well as reduce costs, weight,
size and installation effort. Sensor networks and other low-
end systems often have tight cost constraints and meager
power budgets, and both of these factors complicate the
use of communication networks. As a result, system design-
ers often move the protocol functions to software to imple-
ment custom-fit protocols. In addition, network controller

∗ This work was supported by NSF CAREER award CCR-0133690
† Now at Symantec: prasanthganesan@symantec.com

chips are typically expensive in comparison with generic
8- or 16-bit microcontrollers, so software implementations
can cut costs. Traditional methods for implementing a pro-
tocol’s lowest layers (sending and receiving bits and bytes)
in software incur execution time overhead, which limits sys-
tem efficiency and peak performance as well as increasing
power consumption.

Secure communication is growing more important as
embedded networks grow more common. Wireless net-
works are popular due to their ease of installation, discreet
operation, and support for mobility. But these networks can
be compromised due to the open nature of the RF medium.
Security requirements and mechanisms vary depending on
the nature of the embedded network. The computing power
of the embedded system, the purpose for which the embed-
ded network is used (strength of the threat), and the commu-
nication mechanism (communication medium, MAC layer
protocols, etc.) determine the kind of security scheme that
should be put in place. All security protocols have crypto-
graphic schemes as a prime component. The cryptographic
algorithms convert plain text to cipher text and vice versa.
Conversion from cipher⇒ plain and plain⇒ cipher text are
added to message transmission and reception times, so slow
implementations of these schemes may delay communica-
tion, thus reducing throughput.

The medium access control (MAC) layer of any wire-
less protocol dictates exact transmission guidelines. Simi-
larly, low level communication protocol layers need to meet
specific timing requirements for synchronizing the trans-
mission and reception of data. Software implementations
have to match these precise timing needs. They are currently
met either with methods which share the processor (by the
use of interrupts or some other dynamic control-flow trans-
fer mechanism) or methods which monopolize the proces-
sor (e.g. busy-waiting). Both methods waste cycles to meet
timing requirements. The context switch overhead of ISRs
become increasingly costly as communication protocol bit
rate rises relative to processor speeds. This overhead makes



higher data rates impossible. To solve this problem, imple-
mentations use the busy-wait scheme, where registers are
polled until a change in state takes place. This in turn leads
to many cycles where the processor does no work. These
techniques also cause inter-byte delays in transmission as
context switches or status checks use up important proces-
sor cycles before data is placed on the bus. This causes a
fall in the effective throughput of the system.

Software thread integration [1, 2, 3, 4, 5] is a back-end
compiler technique that merges multiple program threads
of control into one. The integration uses code transfor-
mations to create interleaved code that runs efficiently on
general purpose uniprocessors. This technique enables sys-
tem resources to be used efficiently and eliminates context
switch overhead. The timing constraints imposed by real-
time threads are met by this method.

As indicated above, cryptographic schemes of security
protocols may be bottle-necks in attaining maximum trans-
mission throughput. The implementations of many proto-
cols attempt to offset this, by using hardware accelera-
tors for encryption or decryption. Wired Equivalent Privacy
(WEP) of 802.11 [6] is in most cases implemented in hard-
ware, although most of the MAC layer functions are imple-
mented in software. Even with this hardware implementa-
tion, the throughput of 802.11 networks do not attain their
maximum when WEP is turned on. The extra component
consumes power and adds extra cost to the chip. The se-
curity protocol for sensor networks such as SPINS [7] at-
tempts to conserve energy and power by adjusting the length
of transmission data by using a counter mode. The encryp-
tion function is applied to a predetermined text sequence to
generate a one time pad. This pad is then XORed with the
plaintext. The decryption operation is identical. The advan-
tage of such a scheme is that the computationally intensive
encryption part can be performed earlier while the XOR can
be performed at run-time.

This paper reveals the benefits of using software thread
integration for the purpose of secure communication. The
constraints that are imposed by current software implemen-
tations can be eased by the use of STI. The much needed
concurrency while using encryption schemes with com-
munication is easily achieved, enabling better throughput.
Throughput is increased by more efficient use of the com-
munication channel and processor cycles can be saved con-
serving power in low-level embedded devices and sensor
networks. The second contribution of this paper is to pro-
pose a software architecture to use the integrated threads
generated by STI more efficiently in a system design. Fur-
ther, a proposal is made on a generic scheduling scheme, for
an operating system to use integrated threads.

The organization of the paper is as follows. Section 2 dis-
cusses how software thread integration improves upon ex-
isting methods for sharing a uniprocessor efficiently. Sec-

tion 3 shows how to use the integrated threads by modify-
ing the software architecture of an embedded system with
a real-time operating system and secure network commu-
nications. Section 4 presents the experimental methods and
modifications made to AvrX. Section 5 presents results with
analysis.

2. Cutting context switches

Traditional methods for sharing a uniprocessor break
down for software implementing communication protocol
controllers because processing is required very frequently
(at least once per bit or once per byte). Control must be
passed between threads extremely often, even when com-
pared with typical fast context switch times (e.g. coroutines,
interrupt service routines). This limits the idle time which
can be shared by other threads. Without a mechanism for re-
covering this idle time, other work in the system will make
no progress when the communication bus is active.

Software thread integration (STI) provides low-cost
thread concurrency on general-purpose processors by au-
tomatically interleaving multiple (potentially real-time)
threads of control into one. STI recovers fine-grain idle
time efficiently for use by other threads in the proces-
sor.

Communication protocols implemented in software re-
quire support from the microcontroller to access the physi-
cal medium for transmitting and receiving bits. Depending
on the protocol constraints and available hardware in the mi-
crocontroller, the software implementation maintains bit or
byte level control on transmission.

Bit-bangingschemes require software to operate on each
bit individually and sequentially. This is seen in software
implementations of many communication protocols where
rather than an on-chip interface the software works with
general purpose I/O ports. The control and data are sent or
received by toggling or sampling a specific port bit.

Byte-bangingschemes use some hardware to serialize
bytes or words onto the bus and deserialize bus bits back
into bytes or words. This reduces the software processing
overhead and also the frequency of context switches. The
software controls low-level communication through con-
trol and data registers. A shift register is used to serialize
the bytes while the formatting (e.g framing, parity bits) is
performed in software or special hardware. The software
acts byte-wise by interacting with a data register. Other
software work is possible while the transmission/reception
completes.

Most microcontrollers support serial communi-
cation with a UART (Universal Asynchronous Re-
ceiver/Transmitter). This peripheral is byte-oriented (fram-
ing each byte with start and stop bits, as well as an optional
parity bit), so it cannot support arbitrary communica-



tion protocols with non-byte message. A more useful pe-
ripheral is theSerial Peripheral Interface (SPI), which
serializes and deserializes bytes but adds no framing or par-
ity information. SPI status flags which indicate completion
of byte transmission or reception; these flags can trigger in-
terrupts.In this paper we use the SPI peripheral for commu-
nication because simplifies STI, as it reduces real-time I/O
event rates by a factor of eight.

2.1. Traditional implementations

Two common methods for scheduling the processintg
needed for communication are an interrupt based scheme
and a busy-wait scheme. Details of both these methods and
how they perform are discussed below.

2.1.1. ISR-based implementationThe timeline shown in
figure 1 shows the activity on the microcontroller as well
as the peripheral device (SPI bus) for an interrupt-based ap-
proach. The main thread initializes the SPI data transfer and
enables the interrupt. Then it continues to perform other
tasks (e.g. encryption or decryption). The ISR runs period-
ically to interact with the SPI data register for transmission
or reception.

Figure 1. Timeline for ISR approach

We define the times for several activities associated with
SPI communication:

Tbyte Time taken for data to be transferred in/out of the
SPDR register

TISR Total time taken for an ISR to execute

Tcrypt Time spent performing work in the main routine

Tload Time taken for the ISR to load

Tpush Time taken for the registers to be pushed onto the
stack

Tpop Time taken for the registers to be popped off the stack

Tret Time taken for the ISR to return to the main context

Ttrans Actual Time taken for the transmission of a byte

Tidle Inter byte delay on the bus when no data is transmit-
ted

Depending on overall context switch overhead and the
latency between SPI transmission completion and SPI
reloading, there can be a substantial drop in through-
put. The detrimental effect on the throughput increases as
the bus is driven at a higher speed for a given clock. This
problem artificially limits processor and network perfor-
mance.

2.1.2. Busy-wait implementation In a busy-wait imple-
mentation the main thread places the data to be transferred
in the SPI data register. Once the data is transmitted, the
SPIF flag is set in the status register. This flag is tested in a
busy-wait loop and new data is placed on the SPI data reg-
ister once this flag is set. The timeline shown in figure 2
shows activity on the microcontroller and the SPI bus. No
other thread can run while the data transmission is occur-
ing. Additional timing terms must be considered:

Tcode Total time taken for reading buffer and placing data
on the SPI Data register

Tbusy−wait Time spent waiting for the transmission to
complete

Figure 2. Timeline for busy-wait approach

2.2. Software thread integration

Software thread integration is a back-end compiler tech-
nique that provides fine-grain concurrency on generic pro-
cessors by eliminating many context switches [2, 3, 4, 5,



8, 9]. By eliminating the need for special architectural fea-
tures it allows generic, low-cost processors to replace more
expensive specialized devices. STI reduces the clock speed
needed to implement given functionality on a generic pro-
cessor, saving money, power, and energy and simplifying
design efforts.

STI increases instruction level parallelism and increasing
concurrency. The latter is useful for implementing real-time
applications which require frequent context switches.When
a thread with internal, fine-grain real-time requirements (re-
lease times and deadlines on specific I/O instructions) are
scheduled for execution on a sufficiently fast CPU, gaps
will appear in the schedule of primary instructions, as il-
lustrated by the white gaps in the black bar. These gaps are
pieces of idle time which can be reclaimed to perform use-
ful secondary work. STI recovers fine-grain idle time effi-
ciently and automatically.

STI uses a control dependence graph (CDG, a subset of
the program dependence graph [10]) to represent each func-
tion in a program. In this hierarchical graph, control de-
pendence regions such as conditionals and loops are rep-
resented as non-leaf nodes, and assembly language instruc-
tions are stored in leaf nodes. Conditional nesting is rep-
resented vertically while execution order is horizontal. The
CDG is well-suited for holding a program for STI because
this structure simplifies analysis and transformation through
its hierarchy.

STI involves moving primary code into the correct posi-
tion within the secondary code for execution at the correct
time. A tight target time range may fall completely within a
secondary node, forcing movement down into that node or
its subgraph. Before code motion the secondary and primary
threads are statically analyzed for timing behavior, with best
and worst cases predicted. During integration, programmer-
supplied timing directives guide integration. Conditionals
are padded to equalize their duration regardless of the path
followed. Code is placed within a loop through splitting and
peeling or guarded execution. Portions of primary and sec-
ondary loops which overlap are handled through loop fu-
sion. Loop unrolling matches the idle time in the primary
function loop iteration with the work in the secondary func-
tion loop iteration. Remaining loop iterations are executed
by clean-up loops.

Modern high-performance CPUs and memory hierar-
chies have features such as branch prediction, out-of-order
execution, prefetching and caching which greatly reduce the
temporal determinism which STI requires when used for
real-time applications. However, this is a non-issue. STI tar-
gets the large number of applications which neither need nor
can afford these CPUs and memory systems. For perspec-
tive, in 2001 75% of the 8 billion microprocessors sold were
four- and eight-bit units [11]. These microcontrollers run
applications which are not computationally intensive (typ-

ically needing no more than 30 MHz clock rates), and do
not need more parallelism or faster clock rates. They lack
sophisticated microarchitectures and memory systems, and
typically cannot afford them. However, reducing the execu-
tion cycles needed for an application is still important as
that enables the use of simpler, less expensive processors
which run at lower clock speeds, reducing power consump-
tion and simplifying hardware development.

We have developed our optimizing post-pass compiler
Thrint in C++ over the past five years. Thrint targets the
AVR architecture, an 8-bit load/store architecture from At-
mel. Thrint parses AVR assembly code, builds control flow
and dependence graphs, measures idle time and timing jit-
ter, evaluates register data flow, attempts to predict loop it-
eration counts, plans integration, pads timing variations in
conditionals, moves and replicates code regions, unrolls,
splits and peels loops, verifies timing correctness of inte-
grated code and finally regenerates a file with flat assembly
code.

2.2.1. Benefits with STI-based schemeThe STI tech-
nique removes the need for using interrupts or checking bits
on the status registers as indicated in sections 2.1.1 or 2.1.2.
The timeline for the STI based scheme is shown in fig-
ure 3. The SPI code is reduced to interacting with the data
register; the ISR overhead is removed, improving perfor-
mance. The timing constraints are all pre-determined stati-
cally while performing thread integration. Furthermore, SPI
activity can be scheduled back-to-back as there is no longer
any interrupt latency to delay the transmission of the next
character.

The time for transmission on the SPI bus is fixed.Ttrans

is constant for a selected SPI clock rate and does not de-
pend on the instructions being executed. The context switch
instructions or the busy-wait cycles are freed up. These ex-
tra cycles can be used efficiently to perform useful work.
For example, of the 128 cycles needed for transmission with
a bus speed offclk/16, almost 120 cycles can be reaped
by STI to perform cryptographic work. This reduces secu-
rity scheme overheads as they are now performed at the ex-
pense of reaped clock cycles. A major benefit depending on
the amount of cycles freed is that it allows the processor to
sleep longer, increasing battery life. Second, the relaxed se-
curity bottle-neck enables better data rates. Faster data rates
have the biggest benefit in sensor networks as it makes effi-
cient use of the transmitter and saves power.

To summarize, STI enables longer sleep times for the mi-
crocontroller and faster data throughput rates at the same
clock speed. In addition, there is a region where interrupt
service routines fail. The context switch overhead makes it
impossible for an ISR to put data onto the SPI bus greater
than a specific speed. This region of higher throughput can
only be addressed by busy-wait and STI schemes. STI al-
lows better performance in this region too, due to better



synchronization with no interbyte idle times and extra work
performed.

2.2.2. Costs of STI implementationThere are sev-
eral costs associated with the integrated code. First, all
conditionals are padded to the worst-case duration, poten-
tially slowing down the code. Second, code size increases
due to replicated into conditionals and loop transforma-
tions(splitting, peeling, fusion and copying). In general,
the total impact of code expansion is minor, consid-
ering the savings in clock speed or increased throug-
put. Third, the code is tailored specifically for a fixed
clock speed and the timing of an instruction set architec-
ture implementation. Changes in either of these requires
re-integration.

Figure 3. Timeline for STI approach

3. Software architecture

With the adoption of the integrated thread model, new
scheduling variables enter the fray. An integrated thread
runs depending on which tasks require work to be per-
formed simultaneously. Furthermore, the work of one task
may be postponed to occur interleaved (integrated) with
another. With concurrency considerations being affected,
there is the need to modify the software architecture to meet
this demand.

3.1. Basic architecture

The software architecture is a conjunction of pipe-filter
and layered styles. A pipe filter style [12, 13, 14, 15] fo-
cuses on the data flow in the system. There are a number of

computational components where output from one compo-
nent becomes the input for the next. Many implementations
of communication protocols follow this style where pro-
cessing is divided into components (filters) and communi-
cation between the components is through message passing
or intermediate buffers (pipes). Most communication pro-
tocols are implemented in a layered fashion, in adherence
to the OSI model. Different layers perform different func-
tions and communication between the layers is in the form
of protocol data units (PDUs). A software architecture can
have multiple views [15, 16, 17]. Thus the layered architec-
ture may have a different view when seen with the aim of
design [18]. This could very well be the pipe filter style.

The software architecture model for implementing the
low level communication functionality is layered along with
other functionality. It can be seen as forming the lower lay-
ers protocol stack. Figure 4 provides an overview of the gen-
eral architecture.

3.2. Modifications to software architecture

The medium access control/communication proto-
col (MAC/CP) controller takes the data/packet from the
higher layers and encapsulates it with its headers, and
byte or bit bangs the data to be transmitted by the physi-
cal layer. Additional control data may also be sent.

The security block depicts the security mechanism in-
cluding the encryption scheme. The MAC/CP layer are
composed of an input pipe which holds the PDU from the
higher layers that it receives for transmission. The output
pipe is the control information for transmission or plain text
to the encryption block. Similarly the security mechanism
has 2 input pipes: The plain text for encryption and the ci-
pher text for decryption. There are also 2 output pipes from
the security mechanism: The plain text from decryption and
the cipher text from encryption. The MAC/CP protocol con-
trols and the security functions are the filters. The transmis-
sion and reception threads are responsible for bit or byte
banging the data in the cipher text pipes.

Figure 4. Original and modified architectures



Depending on the indication from the Mac/CP controller
and the data present in the pipe, a decision block determines
which specific filters are active. Although the MAC/CP con-
troller determines when the transmission or reception has to
begin, the actual thread to be run is determined by a thread
controller filter. This is called the pre-filter and post-filter
block depending on when this control function is invoked.

Figure 4 shows where the thread control functionality re-
sides in a layered architecture. This is not a requirement of
any layer, but with integrated threads running, there needs
to be information sharing between layers. Data transmis-
sion is not totally independent in this system, but needs to
maintain status information regarding the interaction of the
MAC/CP layer with the higher layers. This enables the right
thread to be picked for execution.

3.3. Thread controller

The security and MAC/CP layers contain multiple fil-
ters and pipes. Eight filters connect four pipes. The four
pipes transfer data to and from the application (higher layer)
and network (physical layer). The filters fall into two cat-
egories: discrete (encryption, decryption, transmission and
reception) and integrated (encryption with transmission, en-
cryption with reception, decryption with transmission, and
decryption with reception).

The thread controller functionality is split into two fil-
ter control blocks, as there are specific timing constraints
on when the transmission and reception threads have to run.
These blocks run before and after the execution of a hard
real-time thread which in this case is the communication
thread. These blocks identify when and which integrated
thread has to run and maintain state information for mak-
ing this decision. A look into the decision making hints in
these blocks is indicated below. The filter control blocks are
named pre and post control blocks to indicate the time that
they execute and make the decision.

3.3.1. Pre filter control block This block decides which
thread (filter) has to run based on various criteria: the
amount of data to be encrypted or decrypted, whether the
Mac/CP controller has determined if it is going to be trans-
mission or reception, priority assigned to the specific queue,
and how long the work can be postponed or advanced. Spe-
cific applications may have other implementation-specific
decisions which must be considered.

3.3.2. Post filter control block Depending on the thread
that has run, the hints or state information on running in-
tegrated threads may have to be updated. Certain variables
that help the next run of the filter control block may have
to be set. Also this block may have to make a decision as
to service certain pipes that cannot wait to be handled un-
til the next transmission/reception phase. Some hints that

may be set or needed are if the data is needed urgently, run
the encryption or decryption thread that clears the pipes;
determine if the higher layers filters can use unencrypted
data, and determine if work can be postponed so that an in-
tegrated thread can run the next time.

Figure 5. Filter scheme

Figure 5 shows a block diagram of the thread controller
system interacting with the pipes and filters. Another view
as a processor timeline can be seen in Figure 6. Whenever
there is work for both the MAC/CP and security to be per-
formed, a trigger enables the pre filter control block to exe-
cute. The control flow shows that the pre filter control block
looks at hints from the message queues. Based on the hints a
decision for a specific integrated filter is run. After the inte-
grated filter runs, the post filter control block makes a deci-
sion for an encryption or decryption thread to run. The con-
trol then switches back to the other system tasks. To be scal-
able a system architecture would also require that these fil-
ters can be registered before the system is initialized. These
filters share state information with each other along with
the message queues and this execution model would be in-
dependent of the other threads in the system.

4. Experiments

We implement a simple time slice (TDMA) network
communication scheme. There are transmission and recep-
tion threads that interact with transmit and receive buffers.
These threads operate by byte banging. TDMA control
functions are not considered. Encrypt and decrypt func-
tions operate on both encrypt/decrypt and transmit/receive
buffers. Integrated threads form the filters which are se-
lected depending on which of the buffers has data for con-
sumption. The transmit and receive threads have exact tim-
ing requirements for their execution instance.



Figure 6. Sample processor timeline

4.1. Cryptographic algorithms

The algorithms chosen for the experiment are widely
used algorithms, which are used in many security proto-
cols and products. RC4 is used in WEP [6] and RC5 has
been suggested as a good algorithm for sensor networks [7].
The algorithms have been chosen because of their popular-
ity and applicability to embedded systems. The cryptana-
lytic strength of the algorithms is not a focus of this experi-
ment or analysis.

4.1.1. RC4 RC4 [19] is a stream cipher symmetric key al-
gorithm. This algorithm is quite simple and operations in-
volve the addition of 8 bit elements or swapping variables.
RC4 uses a variable length key between 1 and 256 bytes to
initialize a 256-byte state table. The state table is used for
subsequent generation of pseudo-random bytes and then to
generate a pseudo-random stream, which is XORed with the
plaintext to give the ciphertext. Each element in the state ta-
ble is swapped at least once. A 128-bit key is used for our
experiments.

The RC4 algorithm has an initialization and cipher rou-
tine. Only the cipher part is considered as it is the only work
to be done in real-time. The cipher part is integrated with
a transmission thread. The transmission thread checks the
buffer for data and writes it into the SPDR register. This
write into the SPDR register is constrained temporally. STI
makes this write occur at exact instants by its code transfor-
mations.

4.1.2. RC5 RC5 [19] is a fast symmetric block cipher with
a variety of parameters: block size, key size and number of
rounds. It primarily consists of three operations: XOR, ad-
dition and rotations. These operations are bounded on most
embedded processors. We select an RC5 implementation
with a 64-bit data block and 64-bit key. The key is used
to generate (2r + 2) 32-bit words (S[2r+1] )that are used
in the encryption and decryption algorithms (r is the num-
ber of rounds). During encryption the plaintext is split into
two 32-bit words and a series of XOR, rotation and addi-
tion operations are performed on these words in conjunc-
tion with the above array S to generate the ciphertext. The
decryption process is similar and involves the above opera-
tions in a different order.

The RC5 algorithm has an initialize, encrypt and decrypt
routine. Only the encrypt and decrypt part are considered

for integration as they are executed in real-time while the
initialize part would be executed only once at the start of a
session. The transmission thread is integrated as indicated
for the RC4 thread.

4.2. AVR processor

The target architecture is AVR from Atmel, and features
8 bit native word size, 32 general-purpose registers, and lim-
ited support for 16 bit operations. The Atmega 128 proces-
sor [20] is inexpensive (about $3 in volume) and provides
128 kilobytes of Flash program memory, 4 kilobytes of on-
board data SRAM, no caches, up to 64 kilobytes of off-chip
SRAM and numerous peripherals. The CPU core features
a two-stage pipeline; most instructions take one cycle, but
some take more (branches, multiplies, calls, returns, loads
and stores). The C compiler used is GCC 3.2 [21].

AVR microcontrollers feature a SPI peripheral on-chip.
The SPI bus can operate at different data rates, which are a
fraction of the CPU clock. With a CPU clock speed offcpu,
the SPI bus operates at a frequency offcpu/2n where n can
be set to integers from 1 to 7, resulting in SPI speeds of
fcpu/2 to fcpu/128.

The SPI speed offcpu/16 is studied as a break even point
between the STI and ISR-based schemes. Above this bus
speed, ISRs become ineffective, as the context switch over-
head is much higher than the period within which data has
to be placed onto the SPI bus. An STI based scheme still
provides high data throughput and good cryptographic per-
formance at this bus speed. As the data rates rise or clock
speeds increase and when the data rates get very slow or
clock speeds fall, the benefits of STI fall.

4.3. AvrX kernel

AvrX is a fully pre-emptive, priority driven scheduler
[22]. AvrX provides APIs for control of tasks, semaphores,
message queues and timer management. The kernel, written
in assembly, is available as a library of functions. The mod-
ifications to support the above architecture are made partly
in the library and partly in the system implementation us-
ing the APIs.

Tasks with the same priority execute on a cooperative ba-
sis using round robin scheduling. There is no time slice for a
task. Task switching can occur when a semaphore is blocked
or released, the message queue is accessed, a timer expires,
or a task voluntarily relinquishes control or sleeps. Task
switching control exists primarily in two functionsProlog
and Epilog. Prolog saves the process stack and updates
task control information. The control now switches from the
running task to the kernel. Based on which of the above sce-
narios made the call for scheduling, the respective OS level
actions are performed. A final call toEpilog picks the first



task off the ready queue and restores its stack. The control
now switches back to the application thread.

The semaphore, message queue and timer control oper-
ate in a sandwich mode between aProlog and Epilog call.
These control functions add or delete tasks in the run and
wait queue which is later picked by theEpilog call.

A task typically is a routine with an entry, some initial-
ization and then an endless loop. The endless loop typically
involves blocking, or waiting, on a semaphore. That might
be explicit when a call to block on a semaphore is made
(AvrXWaitSemaphore), or it might be implicit in the case of
when a call is made to the kernel when waiting on timers or
message queues (AvrXWaitTimer or AvrXWaitMessage).
These last two items actually block on a semaphore embed-
ded in the timer or message data structure.

4.4. Modifications to AvrX

Figure 7. OS level view of the architecture

Figure 7 indicates how the scheduler coordinates infor-
mation to run the integrated threads. The scheduler, indi-
cated by the circle in the diagram, uses hints based on in-
formation in the message queue to determine whether to re-
place a thread in the ready queue with an integrated thread.
It then decides which thread from the ready queue to run.

The implementation allows the user to register the func-
tions, in this case the integrated and encryption/decryption
threads. Registration consists of filling up an array of func-
tion pointers that now point to functions that act as fil-
ters. These registered user functions send messages on the
same message queue. However the message control block
has been enhanced to indicate the identity of the function
that sent the message. The buffers are distinguished in this
fashion. The previous implementation of the message queue
blocked the calling function on a semaphore and passed the
message to the function waiting for the specific message.
The scheduler now intervenes and makes a decision on han-

dling this message based on whether a transmission or re-
ception is about to take place. Based on the decision that
this message which needs to be encrypted or decrypted can
be handled in conjunction with the transmission/reception
thread, an update is sent to the application to run the inte-
grated thread instead of the original transmission/reception
thread. This is an index to the array of function pointers.
This function/integrated thread runs based on the specified
timing constraint of the transmit/receive threads.

The application now has the complete control on what
work needs to be integrated with the transmission and re-
ception threads. It accordingly registers functions using the
array of function pointers provided to it by the OS.

The application has a high priority task that now receives
each message that was posted, but the actual function that
receives the message has now been determined by the OS.
The application just calls the function pointer provided to it
by the OS and the appropriate job is performed.

Here it must be noted that the message buffers that
are used by the transmission and reception threads are
global while the message buffers used by the other threads
(eg: encrypt/decrypt) are part of the message queues.
Hence the user functions have to perform their task
(eg:encrypt/decrypt) and save the resultant array in the
global buffers.

5. Results and analysis

Figure 8. Speed ratios for RC4 + SPI commu-
nication implementations

This section examines the performance of the integrated
threads. We evaluate the ratio between the time for encrypt-
ing (or decrypting) a byte and the speed of communicat-
ing a byte on the SPI bus. A ratio of less than 100% in-
dicates the cryptography cannot keep up with the commu-
nication, so some work must be done before transmission



Figure 9. Speed ratios for RC5 + SPI commu-
nication implementations

Figure 10. Code memory expansion for RC4
+ SPI communication implementions

Figure 11. Code memory expansion for RC5
+ SPI communication implementations

or after reception. Figure 8 shows the increase in perfor-
mance of the RC4 algorithm with an STI scheme in com-
parison with the other schemes. As there is no interleaved
work in a busy-wait scheme, any extra work enabled by
STI is a benefit. The throughput of the RC4 algorithm with
STI is 50% and 200% higher than an ISR scheme at bus
speeds offcpu/32 andfcpu/16, respectively. For lower data
rates (fcpu/64 and below), both the ISR and STI schemes
have enough cycles for the RC4 algorithm to keep up with
the SPI communication. At this point the extra free cycles
freed by an STI based scheme can be used for handling
other MAC/Communication Protocol Controller function-
alities. At higher data rates (fcpu/8), the STI implementa-
tion is able to encrypt at 16% of the communication rate,
while the ISR approach is unable to do any such work.

RC5 requires almost 1600 cycles to encrypt a byte, while
RC4 takes only 350 cycles. As a result, none of the ap-
proaches allow encryption or decryption to keep up with
communication at the speeds examined. However, as shown
in figure 9, STI still improves cryptographic performance
over using ISRs, with improvements of 25% atfcpu/64,
75% atfcpu/32 and 200% atfcpu/16. At fcpu/8 the ISR-
based method will not work, as the overhead of interrupt
response fully loads the processor, while STI-based encryp-
tion is able to run at 3% of the communication speed.

Figures 10 and 11 show the comparative increase in code
sizes when using STI, busy-wait and STI based schemes for
the RC4 algorithm. The overhead in a busy-wait scheme is
due to the check performed on the status register in a loop.
The ISR code size overhead is due to context switch work of
saving, re-initialization and restoration of registers. The STI
code size increase is due to padding and multiple copies of
the transmission code placed to meet the exact timing con-
straints.

We now consider the impact of STI on variations of
these experiments and other applications. First, the benefit
of STI comes from eliminating interrupt overhead. If the en-
cryption and decryption times are large compared with the
communication time, there will be a significant amount of
this overhead. The larger the relative overhead, the greater
the impact of STI will be. Modifications to the crypto-
graphic parameters (e.g. rounds, key length) or algorithm
will change STI’s impact according to the relative overhead.
Second, STI pads away timing uncertainty in conditionals,
increasing average execution time toward the worst-case.
Loops of unknown duration in the cryptographic code will
require the use of less efficient integration techniques, re-
ducing the performance enhancement and increasing code
size further. Finally, as the communication thread is hard
real-time, the processor used must have fully predictable
timing. This requirement is not much of an issue for low-
end processors such as the AVR, but becomes a problem
when instruction processing throughput requirements lead



to caches, deep pipelines, speculative and out-of-order exe-
cution and branch prediction.

6. Conclusions

This paper proposes a set of methods to secure com-
munication in low level embedded devices using software
thread integration. STI is used to replace traditional meth-
ods of communication protocol implementations like inter-
rupts and busy-wait schemes. STI frees up processor cycles
which enables work to be performed concurrently. These
free cycles can be reaped to perform cryptographic work
and improve throughput of security schemes. A software
architecture is proposed that provides a structure for using
integrated threads in a system. OS support for integrated
threads is also discussed.
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