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Abstract—Due to increasing threats of global warming and S 0
climate change concerns, green wireless communications ‘e =
recently drawn intense attention towards reducing carbon enis- = 301
sions. Aligned with this goal, the present paper deals with g g 20l
namic energy management for smart-grid powered coordinate S
multi-point (CoMP) transmissions. To address the intrinsc vari- - 10F
ability of renewable energy sources, a novel energy transton £ ‘
mechanism is introduced for grid-connected base station$at are s 00 12 24 36 48 60 72
also equipped with an energy storage unit. Aiming to minimiz Time (hour)
the expected energy transaction cost while guaranteeing ¢h S 500
worst-case users’ quality of service, an infinite-horizon pti- s
mization problem is formulated to obtain the optimal downlink < 4001 1
transmit beamformers that are robust to channel uncertainies. g 300F 1
Capitalizing on the virtual-queue based relaxation techmjue S 200t i
and the stochastic dual-subgradient method, an efficient dime = 1000 |
algorithm is developed yielding a feasible and asymptotidly °
optimal solution. Numerical tests with synthetic and real dita » 0 12 24 36 28 60 72
corroborate the analytical performance claims and highlidt the Time (hour)
merits of the novel approach.

Index Terms—CoMP systems, downlink beamforming, smart rig. 1. Hourly wind power generation of a farm near the cityBafulder,

grids, high-penetration renewables, stochastic optimiz#on, Lya-
punov optimization.

|. INTRODUCTION

Colorado during Jan01-03, 2006 [5]; and solar PV generation of the
California 1ISO during Feb26-28, 2015 [6].

N future 5G wireless standards, current cellular sy the growing number of BSs in HetNets, the electricity
I tems are envisioned to evolve into the so-termed héill becomes a major part of the operational expenditure of
erogeneous networks (HetNets), which consist of distithut® cellul_ar operator. Meanwhne, cellular networks _conmab
macro/micro/pico base stations (BSs) to cover overIappiggFlcons'derab_Ie portion of the globakrbon footprint [7].
areas of different sizes. To deal with the severe inter-cdl'® &conomic and ecological concerns advocatgreen
interference introduced by close proximity of many such-Hegommunicatiorsolution, where cellular BSs are powered by
Net BSs, coordinated multi-point (COMP) processing hasibel'® electricity grid [2]-[4], [7]-{9]. However, the curregrid
proposed as a promising technique for efficient interfegent?frastructure is on the verge of a major paradigm shift,
management [1]. In COMP systems, BSs team up (possim;gratmg from the aging grid to a “smart” one. T_h_e_ sm_artgn_d
adaptively) to form clusters, where per-cluster BSs penforhas many new fe{;\tures gnd_ advanced capabilities including
coordinated beamforming to serve the cell end users [2]-[4-9- high penetration of distributed renewable energycssu

The increasing demand for energy-efficient transmissiofRES), and dynamic pricing based demand-side management

is one of the main driving factors for CoMP systems. Dué?SM) [10]-{13]. Full benefits of the RES (e.g., wind and
solar energy) can only be harnessed by properly mitigating
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its intrinsically stochastic nature, which however is ayer
challenging task. For instance, Fig. 1 exhibits the reahdat
of hourly wind and solar power generation that depend on
various meteorological factors including e.g., wind speed
and direction, air density and pressure, sunlight, as well a
temperature. In addition, annual, seasonal, diurnal andiyho
patterns may change dramatically across regions.

A few recent works have considered the smart-grid powered
CoMP transmissions [14]—-[17]. A simplified smart grid level

Y. Zhang, T. Chen and G. B. Giannakis are with the Departmdnt «game was formulated in [14] for dynamic pricing; while [15]
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University of Minnesota, Minneapolis, MN 55455 USA. Emai{ghan1220,
chen3827, georgig®@umn.edu.

and [16] assumed that the energy harvested from RES is
accurately availabla priori through e.g., forecasting, which
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Fig. 2. A smart grid powered CoMP system. Two BSs with localereable energy harvesting and storage devices implementvay energy trading with
the main grid.

cannot be performed at the BSs. For a single BS supportdtaracteristics of the optimal schedules, we formallyldistia

by a combination of a renewable source and a storage unit,that the proposed algorithm yields a feasible and asymptoti
adaptive energy management problem was cast as a stochastily optimal resource management strategy for the origina
program, and was further approximated with finite discref@oblem.

scenarios, in [17]. The case of multiple BSs with transmit The rest of the paper is organized as follows. The system
beamforming designs has not been considered therein.-Buildodels are described in Section Il. The proposed dynamic
ing on realistic models, our recent work [18] addressed sbbuesource management scheme is developed in Section Il
energy management and transmit-beamforming designs tAatlysis of the guaranteed performance is the subject of Sec
minimize the worst-case energy transaction cost subjecttion IV. Numerical tests are presented in Section V, folldwe
the worst-case user quality-of-service (QoS) guarantees by concluding remarks in Section VI.

the CoMP downlink with RES and DSM. Leveraging novelNotation Boldface lower (upper) case letters represent vectors
optimization tools, the resultant problem became a convéxatrices); CV*M, RNXM = and CV stand for spaces of
program. A Lagrange dual based subgradient solver was th€nx M complex, real matrices, any x 1 complex vectors,
proposed to find the optimal energy-management strategy amdpectively[a]* := max{a, 0}, and||a|| denotes thé>-norm
transmit-beamforming vectors. of a. (-) denotes transpose, arfe)”! conjugate transpose;

Assuming that the generated random RES lies in a certdifA) and rankA) the trace and rank operators for matfix
known region, [18] dealt withoffline robust, ahead-of-time respectively; diagui, ..., axs) denotes a diagonal matrix with
resource management over a given finite horizon. Howevei@gonal elements, ..., a; |-| the magnitude of a complex
the computational complexity of the algorithm proposed bjcalar; A = 0 signifies thatA is positive semi-definite; and
[18] becomes prohibitively high as the scheduling time homi £ denotes the expectation.
grows large. In the present paper, we pursu@mlime control
approach, which dynamically makésstantaneouslecisions Il. SYSTEM MODELS
without prior knowledge of the probability density funatio  With reference to Fig. 2, consider a cluster-based CoMP
(pdf) of the underlying (generally correlated) random pradownlink system, where a set @ := {1,...,1} BSs (e.g.,
cesses. The resource allocation task is formulated as aiténfi macro/micro/pico BSs) serves a set &f := {1,...,K}
time horizon problem with the goal of minimizing the time-mobile end users. Each BS is equipped with transmit
average energy transaction cost. To obtain low-compl@pty antennas, while each user has a single receive antennan@ssu
erating points, we first adopt a virtual-queue based relaxat that BSs can harvest RES using wind turbines and solar panels
technique [19], [20], to decouple the decision variable®s& to support their transmission services. Furthermore, &&h
time. The resulting transaction cost minimization probleman also buy energy from or sell energy to the main grid at
is then convexified using semidefinite relaxation to faait dynamically changing market prices via a two-way energy
the development of an efficient stochastic solver. Levaggitrading mechanism. As energy consumption of future com-
the stochastic dual-subgradient method, we develop aalirtumunication systems becomes a major concern, uninterrupted
gueue based online control algorithm. Relying on the spewer supply type storage units can be installed at BSs not
called Lyapunov optimization technique [21], and the rés@a only to prevent power outage, but also provide opportusitie
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to optimize the BS electricity bills. Specifically, in ord&y channel known at the BSs. The uncertainty of this estimate is
take advantage of energy price fluctuations, storage-edahbbounded by a spherical region [22]
BSs do not have to consume or sell all their harvested energy .
on the spot, but can save it for later use. HE = {h‘}C + 4t
Per CoMP cluster, all BSs are connected to a central
controller through a low-latency backhaul network [3]. Fhiwheree!, > 0 specifies the radius ¢{}.. The worst-case SINR
controller collects not only the communication data frorolea of userk can be expressed as [cf. (2)]
BS, but also the energy trading prices via locally installed H
. . . o~ |ht Wt|2
smart meters, and the grid-deployed communication/cbntro SINR;,({w.}) := min k_Tk .
. k ht eH? ht H_t)2 2
links. o _ N REHL D0 (h " wi?) + o
q Suna_piser;che sltl)t-bazgdhtransm;;smor(\js Fxpenence qaas"lsbvith v, denoting usek’s target SINR, QoS per end user can
ownlink channels, which are allowed to vary across slofg, guaranteed by the constraint
but remain invariant within each slot. This is a legitimate o
assumption when the slot length is selected smaller than the SINR,({w}}) > vk, Vk. (6)
channel coherence time. For convenience, the slot duration
al_so normall_zed to unity, so the terms “energy” and POWER  Smart Grid Operations
will thus be interchangeably used throughout the paper.

A k} vkt @)

®)

Featuring smart grid operations, each BS can exploit RES
with harvesting facilities, and store the energy for futuse
. _ . _ using onsite storage units. Let := [E}, ..., Et)’ collect the

Consider a scheduling horizon indexed by the $et= harvested renewables in slo@cross all BSs. For simplicity,
{0,...,T — 1}. Per slott, let h{, € C" denote the vector we assume that! evolves as an independent and identically
channel from BS; to userk, for all i € 7 andk € K. Let distributed (i.i.d.) random process.

!/ !/

hj = [hj,",...,h7,’]" collect the channels from all BSs to et ¢ denote the initial amount of stored energy, afid
userk. With linear transmit beamformers across all BSs, th@ie state of charge (SoC) of BSat the beginning of slot.
vector signal transmitted to uséris qj, = wisj, forall k €  Each storage unit (e.g., battery) has a finite capaCty>.
K, wheres!, denotes the information-bearing symbol with unif minimum level C™min s also required at any time for the
energy, andwj, € C"' represents the beamforming vectosake of the battery healtA. With P}, denoting the battery
across the BSs linked with usér Thus, the received signalcharging @}, > 0) or discharging Pz;ti < 0) amount at slot
at userk in slott is t, the battery dynamics are described by the recursion

H H
vk =hi g+ > hidq +nj (1) CHl = Cl+ P, Vit 7)
1#k

A. CoMP Transmissions

= = Due to physical constraints, the amount of power (dis-)gbdr
wherehj " qj, is the desired signal of usdr, -, hi."a] is bounded by

captures the inter-user interference in the same clustat; a Ppin < pto< ppax (8)

n} models the additive noise, as well as the possible downlink , ' ' '

interference from other BSs outside this cluster. For sigity) Where 7™ < 0, and B > 0. . .

nt is assumed to be a circularly symmetric complex GaussianP€r BS i, the total energy consumptiofi ; consists of

(CSCG) random variable with zero mean and variange  the beamformers’ transmitting powef; ;, and a constant
The signal-to-interference-plus-noise-ratio (SINR) sétk  Power F; > 0 consumed by other components such as air

can be written as conditioning, data processor, and circuits [9], [16]. Téfere,
h! H_, 2 it holds that
Ly kWi "
SINR, ({w}.}) Zz¢k(|h2HWf|2) T ) Pli=Pei+PLi/6=Pit+ > wh Biwh/¢
kek

The transmit power of BS is given by where¢ > 0 denotes the power amplifier efficiency, which

P!, = ZW};HBiW}; (3) can be set to¢ = 1 without loss of generality. The total
R consumptionP; ; is bounded byP;"*.

The main grid can supply the heedPgﬂ- if the harvested

where theM I x M1 matrix . - < )
renewables are insufficient. In order to reduce operational

B, = diag(O,...70,1,...,1,0,...,0) costs, each BS can also sell its surplus energy (whenever
(-O)M M (I-DM the renewables are abundant) back to the grid via the two-

way trading mechanism. To this end, it is clear that the

i t
selects the corresponding rows out{of }rex to form the  ghortage energy for BS that needs to be purchased from
i-th BS’s transmit-beamforming vector.
The channel state informatioh) is always imperfectly  !Batteries become unreliable with high depth-of-disch4f@eD), which is
known a priori in practice. Relying on past channel meathe percentage of maximum charge removed during a discleyge. High
d/ liable ch | dicti aka DoD can be avoided by maintaining a minimum levg™'". Such a level
surements and/or reliable channel predictions, we past could be also required to support the BS operation in thetevéra grid

additive error modeh!, = hi, + %, whereh!, is the estimated outage. Hence, we haein < Ct < C™ax for all i € T andt € 7.
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the grid is [P;_’i — E! + Pbt_’i]ﬁ while the surplus energy is program (SDP) relaxation technique to convexify these con-

[Ef — P, — PLIT straints. Using the definitions of/} and SINR,({w}), the
With of and 3 denoting the buying and selling pricesconstraint (10g) can be rewritten as

respectively, the conditiom! > 3! is imposed to avoid

H 2
meaningless buy-and-sell activities. Per slothe transaction Fi(6}) > 0 for all &), such thatd, ™ d;. < (c}) (11)
cost of BSi is therefore given by where
G(P;,m Plf,i) = Oét[P;,z' - Ef + Plf,i]+ - ﬁt[Ef - P;,i - Plf,i]+' Fk(éi) =

. . S H [ wtwt H H .
Note that at any time slot each BS can either buy electricity( h{, + 5};) bk wawf (h‘}c + 6};) — o}
at priceat, or sell surplus to the grid at the prigg. Tk 12k

To simplify performance analysis, suppose that the prices . .
{at, Bt} a?reyi.ir.)d. across time. Iioweve?pboth the haer(;stedSlng (11) and upon applying the well-known S-procedure

renewable energye’} and the pricesiat, 3’} can be non- In robust optimization [24],_the original prqblem (10) cae b
i.i.d., and even negatively correlated with each other imcpr reformu_lgted as an SPP W'trl ratnflf CO”SJE"}"X”LS,' .

tice [23]. For such a case, it is worth stressing that o rﬁjpe(;]'f'cagy’ W'th)gk - Wtkwk < C h It clea(ljrly
proposed algorithm in the sequel can be applied without a(]\?l) i;nagiktér?ss)?m;%nﬁﬁk) = 1. Using the S-procedure,
modification. Yet, performance guarantees in the non-cade

must be obtained by utilizing the more sophisticated delaye _, (Yi + 71 Yih,

Lyapunov drift techniques along the lines of e.g. [21]. kT hiFY!H  hiFY!h! — o2 — 7,2(62)2) =0 (12)
wherer >0 and Y}, := X} — >, X].

Introduce auxiliary variables; and drop the rank con-

Based on the models of Section I, we consider the optimg}ints rankXt) = 1, Vk,¢; further, remove the variables
energy management for transmit beamforming in a CoM f ’

, \ ﬁDbtl} by combining constraints (10b) with (10d). We can
cluster. Over the scheduling horizdh the central controller ,an transform (10) to

of the CoMP cluster seeks an optimal schedule for cooperativ
transmit beamforming vectorgw} } ; and battery charging

. . . t
energy {P/,;};+, in order to minimize the total network T xp POty Jm e > DGR (13a)

IIl. DYNAMIC MANAGEMENT ALGORITHM

cost - G(Pt,, Pt.), while satisfying the user QoS : (=0 iel
e iz O . ba) e . st P < O < Om vt (13b)
guaranteeSINR, ({w}.}) > v, Vk,t. For notational brevity, ¢ ¢ !
we introduce the auxiliary variableB! := P!, + P{,, and Cit' =Cl+ P/ —P.; = ) _t(B;X}), Vi,t (13c)
formulate the problem of interest as kek
L T Pt < Pl = Py — Y tr(BiX}) < P, Vit (13d)
minimize ~ lim - % % G(P) (10a) kex
{wi By CLPEY Tooe L0 5T — Py < tr(B;X}) < Py — Py, Vit (13e)
S. t. ke
t t t
Pl=P.;+ Y wi'Biwl + P, Vit (1ob)y  Tk=0, X} =0, 7 >0, Vkt (13f)
kek . The constraints (13a)—(13e) are all linear, and SINR con-
0<P.;+ sz Biwj, < PP, Vit (10c) straints (10g) become a set of convex SDP constraints in
ke (13f). As the objective function is already convex, the peof
Cf“ =Cl+ P, Vit (10d) (13) is a convex problem. Note that a solution to (13) is a
Cmin < Cf < Omax Vit (10e) control policy that determines the sequence of feasiblérobn

in . _— _ decisions{X!, P},C!} to be used. LeG* denote the value
Pt < By < P, Vit (10f)  of the objective in (13) under an optimal control policy.
S/IT\I/R;C({wZ}) >y, Vk,t. (109) Although (13) becomes convex after judicious reformula-
tion, it is still difficult to solve since we aim to minimize ¢h
average total cost over an infinite time horizon. In partacul
the battery energy level relations in (13c) couple the ojatm

With 9 == (o' — f*)/2 and¢' := (a' + B')/2, it follows  tjon variables over the infinite time horizon. This renddrs t
readily from (9) that: problem intractable for traditional solvers such as dymami

ty _ gty pt _ ot tipt _ gt programming.
GUP) = y'IP = Bi| + $(F = By). By recognizing that (13c) can be viewed as an energy

Sincea! > 3 > 0, we havegp! > ' > 0. It is then clear that queue recursion, we next apply the time decoupling tech-
G(P!) is a convex function of’!. nique to turn (13) into a tractable form [19], [20]. For

Except for (10b), (10c), and (10g), all other constraints athe queue ofC!, the arrival and departure ar®’ and
convex per slot. We next rely on the popular semidefiniteP. ; + >, . tr(B;X},), respectively, per slot. Over the

A. Reformulation and Relaxation
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infinite time horizon, the time-averaging rate of arrivaldanpartial Lagrangian function of (17) is
departure are given byimTﬁoo%ZtT;Ol P! and P.; +

im0 %ZtT:’Ol D okek tr(B,X},), respectively. Define the L(Z, ) :=
following expected values: " " t
E|Y GPH+> A\ (IE [Pl] = Poi—E | Y tr(B;X}) ) .
1 T—1 7 7 ke
E|Y G| = lim T >N awr) (14) (18)
i€z o b 0 ez while the Lagrange dual function is given by
T-1
. 1 = i
E[P!] = T@;OT ZPit (15) D(A): {denjg}t L(Z,N), (19)
t=0
= and the dual problem of (17) isnaxy D(A).
E Z tr(B;X,)| := lim — Z Z tr(B;X%) (16) For the dual problem, we can resort to a standard subgradi-
e T—oo T =0 kel ent method to obtain the optimal. This amounts to running

the iterations
where the expectations are taken over all sources of ran-

domness. These expectations exist due to the stationdrity o Ai(f+1) =X(G) +pox (), i=1,....1  (20)
{e,a’, 8}, _ _ where j is the iteration index ang: > 0 is an appropriate
Now consider the following problem stepsize. The subgradiegtj) := [g»,(4),Vi] can then be

expressed as
T A7) g, () = E[P}()] = Poa —E [}, 4(BXL())| (D)

> G(r)

i i€
whereX! (j) and P!(j) are given by
s.t. E[F] =P +E|Y tuBX,)|.vi (17b) §
= {XL0), PHG)Y € argmin S [G(P)
(13d)— (13f). (X PiYeFt e
FAi() (P} = Pei — Z tr(Bz‘X};))] (22)
It can be shown that (17) is a relaxed version of (13). kEX

Specifically, any feasible solution of (13) also satisfies thS
constraints in (17). To see this, consider any policy th
satisfies (13b) and (13c). Then summing equations in (1 19
over allt € T under such a policy yieldsC! — C? =
S PE = Pey — Y pex tr(BiX4)]. Since bothC” and C°

ince 7' is a convex set while the objective is a convex
nction of {X}, P!}, the minimization problem in (22) is
convex program that is efficiently solvable to obtain the
optimal {X (), P/ (j)}-

o . . When a constant stepsize is adopted, the subgradient
are bounded due to (13b), dividing both sides/bgnd taking iterations (20) are guaranteed to converge to a neighbdrhoo

I|r‘r_1|ts asT — oo, yieldsE [Pit_] - Pc’i_—HE [ZkGK_tr(BiXm' of the optimal\* for the dual problem from any initiak(0).

It is then clear that any feasible policy for (13) is also fales The size of the neighborhood is proportional to the stepsize

for (17). As a res.ultl the optimal value of (17) cannot exceqd"fact’ if we adopt a sequence of non-summable diminishing

that of (13); that 'S_G* =G . . stepsizes satisfyingm; .. u(j) = 0 and >-27 ) u(j) = oo,
Note that the time coupling constraint (13c) has begfien the iterations (20) converge to the exactasj — oo

relaxed in problem (17), which then becomes easier to sol 85]. Since (17) is convex, the duality gap is zero, and

Specifically, it can be shown that the optimal solution to)(1 Convergence to\* can also yield the optimal solution to the
can be achieved Bya stationary, randomized control poIicyprima| problem (17).

that chooses control actior&X;, P} every slot eurily as & A challenge associated with the subgradient iteration§ (20
_functlon (possibly randomized) of the curreft’, o, 3'} and g computing E[P!(j)] and [, tr(B,X.(j))] per iterate.
independent of the battery energy levefs We next develop a This amounts to performing high-dimensional integratigero
stochastic dual subgradient solver for (17), which undeper nknown (or known) joint distribution function; or apprexi
initialization can provide an asymptotically optimal stdun to mately, computing the corresponding time-averages over-an

(13). finite time horizon. Such a requirement is impractical sitiee
associated computational complexity could be prohibigive
high. To bypass this impasse, we will rely on a stochastic

B. Stochastic Dual Subgradient Approach subgradient approach. Specifically, droppidrom (20), we

Let F* denote the set of X!, 7/, P!} satisfying constraints PrOPOse the following iteration

(13d)—(1_3f) per. Let)\i,_denote the L_agrange multipliers_ asso- 5\;&1 _ 5\5 Ty Pit(}‘\t) — P Z tr(Bin(;\t)) (23)
ciated with the constraints (17b). With the convenient tiota k
Z' = {X}, 7, Pt} Z = {Z',Vt}, and X := {\;,Vi}, the where{\!}, indicate the stochastic estimates of those in (20),
and P}(\'), Xt (\") are obtained by solving (22) with; ()
2The proof follows from the framework in [21] and is omitted forevity.  replaced bij’?, Vi.

K2
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AIgorithm 1 Virtual-Queue based Online Control (VQOC) V. PERFORMANCE GUARANTEES

1: Initialize with a properQ® = {Q?,Vi}

2: Repeat onling =1,2,...
With Q?, {et,at,ﬂt} available per slott, solve the
problem in (22) with \;, = pQ!, Vi, to obtain
{P}(Q"), X% (Q")}, and then perform the correspondA. Asymptotic Optimality
ing online beamforming and battery-charging, power-
buying/selling operations

3: Update the virtual queu@'*! via (24) for all

To arrive at our main claim, we first establish the asymptotic
optimality of the proposed VQOC algorithm.

Relying on the so-called Lyapunov optimization technique
in [19]-[21], we can formally establish that:
Lemma 1: If {e!,at, 3!} are i.i.d. over slots, then the time-

averaging cost under the proposed VQOC algorithm satisfies
words, the update (23) is amnline approximation algorithm lim — Z E

2_GPQY)
- ~ T—oo T
based on thenstantaneouslecisions{ P} (A\"), X% (\")} per

slot ¢. This stochastic approach is made possible due \{ghere the constant/ : 1 Z (maX{PmeaX,—Pmm}) . and
the decoupling of optimization variables across time in)(17G* is the optimal value of (13) under any feasible control

Convergence of online iterations (23) to the optimalcan be a|gorithm, even if that relies on knowing future random
established in different senses; see [21], [26]-[29]. Duthe (ealizations.

Note thatt denotes both iteration and slot indices. In other
<G"+uM

zero-duality gap, the companigfP!(\), X} (A")} will also Proof: From the evolutions in (24), we have
converge to the optimal policy of (17).
(QFH)? = [Qi + PH(Q") = Py — ) tr(BiX Q"))
C. Virtual-Queue based Control Algorithm — (QY)? +20'[PL(Q") — Py, — Z tr(BiXL(Q"))]
Based on the stochastic iterations (23), we next develop a 7 k
virtual-queue based online control (VQOC) algorithm for)1 +[P/(Q") - P.i - Zktf(BiX};(Qt))]Q
With Qf := {Qt = /A\’?/ﬂ, t=1,...,I}, it is clear that < (Q¢)2 T QQt[P»t(Qt) P Z tr(BiXZ(Qt))]
Qt+1 Qt + Pt(Qt) Zktr(BZX};(Qt)) (24) + (max{ pmax _Pbr,niin})Q k
where P/(Q') = P/(uQ') = P/(\), and X{(Q') = where the last inequality holds due to (13d).
X7 (AY). Considering now the Lyapunov functioV (Q?) :=

Note thatQ! in (24) obeys the same dynamical equation a5y~ (Q1)?, it readily follows that
the SoC in (13c); hence, it can be seen as a virtual energy
queue for thei-th BS. Unlike real queues, the value O AV(QY :=V(Q™) -V (QY
is allowed to be negative. Based on such virtual queues, tptioty _ p . _ ~t (Ot
we propose the following VQOC algorithm at the central = ;{QZ[PZ (Q) = Fe Zktr(lek(Q DI} + M.
scheduler.

For Algorithm 1, the information of harvested enerfry}  Taking expectations and addingE[>", G(P/(Q"))] to both
at the BSs can be collected by each cluster's central ufi€les, we arrive at
through cellular backhaul links. The energy pricing infasm 1
tion {a’, 3} is available via smart meters installed at BSs, EIAV(Q")] + —E[>_G(P}

. C ) ) [T

and the grid-deployed communication/control links cortimec
them. The channel estimat®&$ can be obtained by limited-
feedback channels spemﬂﬁ in the current and future cel- = sM+2 ( ZG (@) +Z{MQ§ (E[Pit(Qt)]
lular standards. In a nutshell, the communication overhead
associa?ed with the _proposed algorithm is affordable int-nex — P - ]E[Z tr(BiXZ(Qt))]) })
generation smart-grid power CoMP systems. The computa- k
tional complexity with the proposed VQOC algorithm is also 1 . .
low. Specifically, the interior-point method can be empkbye — M + ;L(Z(MQ ), nQ")
to solve the convex problem (22) yieldifd/ (Q"), X} (Q)} 1
with a complexityO((MI)35) per slott [30]. Update ofQ’*! =M+ -D(uQ")
in (24) incurs only linear complexitY (M I). ﬁL

The VQOC algorithm is essentially the stochastic subgra- < M + — —G
dient solver (23). In the next section, we will rigorously H
establish that the proposed algorithm can asymptoticadlily where we used the definition af(Z,\) in (18); Z(nQ?)
an optimal solution of (17). Interestingly, by exploitinget denotes the optimal primal variable set given by (22) for
connection betweerQ! and C?, we will also show that A = Q! (hence,L(Z(uQ!), nQ') = D(uQ?)); G* denotes
the VQOC approach with proper initialization also yields #he optimal value for problem (17); and the last inequaldy i
solution to (13), or, to the original problem (10). due to the weak dualityD(A) < G*, VA.
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Summing over alk, we then have P+ Y, tr(B;X4(QY)) — EY); and we similarly arrive

at

T-1 T-1 i H
1 prinif pQt 4 58 >0
E AV t 4= E G ‘Pzt t Pt_ t _ b,i ) 7
S v+ L S ey crt@)) e - { e pr e
1 Combining cases i) and ii), we deduce that per $|oif
=EV@Q]-V@)+ 2 > EDR GF(Q)) 4Q! > max{—af, —§} = —B', then P}, (Q") = P™". This
t=0 4 s ) - " * .
|- implies that if Q! > —=, we must haveP! (Q) = P,
ST(M+ 26 Similarly, if pQ! < min{—at, —3'} = —a’, then P, (Q') =

P2, which is guaranteed wheneve, < =2. [ |
Remark 1: Lemma 2 reveals partial characteristics of the
dynamic VQOC policy. Specifically, when the virtual energy
> queue is large enough, the battery must be discharged as
much as possible; i.eR/;(Q') = P3™. On the other hand,
when the virtual queue is small (negative) enough, the batte
) ‘ must be charged as much as possible; i,(Q°) = P
. . Alternatively, such results can be justified by the economic
The lemma follows by taking the limil” — occ. ~ ® interpretation of the Lagrange multipliers [cf. (23) an@)]L
Lemma 1 asserts that the proposed VQOC algorithm cogpecifically, At can be viewed as the stochastic instantaneous
verges to a region with an optimality gap smaller thaiv, charging price. For high price&‘? — uQt > —ft, the VQOC
which vanishes as the stepsige— 0. The proof follows the gictates the full discharg@gi(dt) _ sziin' Conversely, the
lines of the Lyapunov technique in e.g., [21]. Yet, slightly,a¢tery units can afford full charge if the price is low; j.e.
different from [21], here the Lagrange dual theory is uditiz 5\5 = uQ! < —a'. It is worth stressing that a closed-form so-

which leads to
T—1
1 V(Q°)
— E

SG*—l—u(M—i—%QO)

S GENQY) < G + <M+

%

to simplify the arguments.

B. Feasibility Guarantee

We have shown that the VQOC iteration can achieve a neggich

optimal objective value for (13). However, since the pragabs

algorithm is based on a solver for the relaxed (17), it i

not guaranteed that the resultant dynamic control policy

a feasible one for (13). In the sequel, we will establish th
the VQOC in fact can yield a feasible policy for (13) when i

is properly initialized. To this end, we first show the folliog
lemma.

Lemma 2: If @ := max{a’,Vt} and 3 := min{g',Vvt},
the battery (dis-)charging amoumBlf,i_under the VQOC
algorithm obey: i) P/ ,(Q") = B, if Qf > %é; and ii)
PL(QY) = Py, if QF < 2.

Proof: SincePb{i = P! —Pei—> e tr(B;X]), per slot
t we have

Xt t ,Pt* t c :
{X,(Q"), Fyi(Q")} € arg o BB

3 [G(Pbﬁi +P.;

+ 3 U(BX)) + HQiF-
kek
Consider the following two cases [cf. (9)]

) If PL(QY) + P.i + >, r(BiX}(Q")) > Ej, then
G(Py;(Q")+Pe,i+32, (B X (QY) = o (P} ;(Q")+
P.i+ >, tr(B;X1(Q")) — E!). Itis easy to see that we
must have

Plfliin7
P;;ax

if uQt+at >0

Pt_ ty
Q) { . if Q!+t <0,

i) If P(QY) + Pei + >, tr(B:X3(QY) < Ef, then
G(P};(Q")+Pei+ X, r(BiXE(Q")) = B (P ,(Q")+

lution of P}, is generally not available wheXf € [—a, — 1],
where one must resort to solving (22) numerically.

Leveraging this intuition, we will establish the
following lemma on the virtual queue bounds,
is useful for our main theorem. Suppose

= 1/ min{Cpex — o 4 PRin - PR vih > 0

Ils?mma 3. If the step size satisfieg, > p:=y(a — ),
the VQOC guarantees the virtual qued® €

=G+ B o — ot — & prin ) for all i andt.
Proof: The proof proceeds by induction. First, g}

— 0+ P OP - O — S bef’ii“}, and suppose that
this holds for all{Q!}, at slot¢t. We will show the bounds
hold for {Q!™'}; as well in subsequent instances.
cl) If Q! € (J2, O — omin — & 4 pmin] it follows from
Lemma 2 thaQ; ™! = QI+ P € (=% + P, O —
Cpim — o + P%™) holds provided that* < _;TE and
P < 0.

If Q¢ e [-2, 0], thenQ!t! = Q! + FY,(QY) € [QL +

min max a min 7& max a
P Qi+ P C [+ Byt o B S -5+
P, e — ot — S+ PR, which holds using that
2 ) S
If Qi € [ + B5™ —%), then by Lemma 2 we have
ngJrl _ Q;‘, + nglzax c [_% + ngliin + Pg,niax’ _% +
P C (—%+ng;i“, CmaX—C;“i“—%+Pg§i“), where

2

(e

c2)

c3)

the last step follows from the facg”;** > 0, _75‘ < _TE’
and case c2).
|
Consider now the linear mapping
Ct=Qt+ 2 4 omn _pmin j—1 ... . (25)
1 :
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. . TABLE |
¢
It can be readily seen f_rom Lemm? 3 thigt < Cz S (O GENERATING CAPACITIES, BATTERY INITIAL ENERGY AND CAPACITY,
holds for all + and ¢; i.e, (13b) is always satisfied under AND CHARGING LIMITS. ALL UNITS ARE KW.

the VQOC. In addition, the battery (dis)charging dynam-

. min max min O min max .
ics (13c) are met since they coincide with those of the virtue BSi | Fyat By G Ci P B Pes
. 1 0 55 5 5 -10 10 10
queues (24). Hence, the proposed VQOC scheme yields a 2 0 50 5 5 -0 10 10
feasible dynamic control policy for the problem (13). 3 0 45 5 5 -10 10 10
4 0 40 5 5 -10 10 10
C. Main Theorem
Based on Lemmas 1 and 3, it is now possible to arrive 300
. —— Proposed
our main result. NO-RES
. 0 _ 0 & i i :
Theorem 1: If we sgt Q;, = C} — w T Bt — o, v, 2 250 - - - Greedy algorithr
and select a stepsize > pu, then the proposed VQOC g
yields a feasible dynamic control scheme for (17), which  § 54 i
asymptotically optimal in the sense that i
1 T—1 % 1
: t t * =
Jim > B GRHQY)) < G 4 M 5
t=0 3 @
wherey: i= (a—f3)/ min { O — Cpin 4 ppin — P v, 2
and M := %Zi(max{Pbrf’iaX, —nglii“ )2. i
Clearly, the minimum optimality gap (regret) between th  jBems~cccmc e mccmmmc e e mmm == = -
VQOC and the offline scheduling is given by : : : :
0 100 200 300 400 500
1 . Ti lot
EM = 57(07_E)Z(maX{PITiaxv_Pbrjlim})Q- ime slo
g Fig. 3. Comparison of the average transaction cost (S1).

Asymptotically (sub)optimal solution can be attained if we
have very small price differencex — ), or v incurred by
e.g., very large battery capacitié€"*<},. This makes sense V. NUMERICAL TESTS
intuitively because when all BS batteries have large capaci |, this section, simulated tests are presented to demaoastra
the upper bounds in (13b) are loose. With proper initialer8t ¢ efficacy of the proposed approach and justify our areayti
the VQOC using any. will be feasible for (13). We can ¢jaims. The Matlab-based modeling packa®éX 2. 1 [30]
then reach the optimal:* as close as possible. In additiongng SppT3 [33] are used to solve the resulting optimization
let us consider a homogeneous setup, which is commonjpypiem (22). All numerical tests are implemented on a PC
practice: — P = P = nC* = nC and G = 0 yith eight 3.40 GHz Intel cores and 32 GB RAM.
for all i. Then it can be seen thatM = 51C(a — )12, Two configurations of the considered CoMP network are
which is an increasing function for € (0, %). Hence, a small tested: (S1) = 2 BSs each with)M/ = 2 transmit antennas,
(dis)charging efficiency; can also result in a near optimaland X' = 10 mobile users (small size); and (S2)= 4 BSs
scheduling under the VQOC. each with)M = 2 transmit antennas, anfd = 15 mobile users
Problem (13) is indeed an SDP relaxation of the originglarge size).
problem (10). If the obtained solution for (13) satisfies the Under (S1), the purchase priaé is generated from a folded
condition rankX:") = 1, Vk,t, then it clearly yields the normal distribution; that isp’ = |z| with z ~ N(3,3). The
optimal beamforming vectorsvi™ of (10) as the (scaled) selling price is set tg8 = ra! with » = 0.9. Samples of the
eigenvector with respect to the only positive eigenvalue bfrvested energyE!};, are generated from a Weibull dis-
Xt*. Fortunately, it was shown in [31, Them. 1] that the Sibuted wind speed and wind-speed-to-wind-power mapping
procedure based SDP in (13) always returns a rank-one oftire wind power capacity of each farm 8™#* = 10 kW,
mal solutionX!", Vk,t, when the uncertainty bound4 are unless stated otherwise [34]. For (S2), the purchase price
sufficiently small. Ife; is large, existence of rank-one optimais obtained from the hourly electricity prices in New York
solutions for (13) cannot be provably guaranteed. In thigcafrom Jan. 1 to Jan. 30, 2015 [35]. The harvested en¢rgy
a randomized rounding strategy [32] is often adopted toinbtas a scaled version of the hourly wind generation connected
vectorswt” from Xt " that nicely approximates the solution ofto the PJM grids during the same periods [36]. The limits of
the original problem (10). Even though no proof is availabl®, ;, C;, P,; and the initial SOCC? are listed in Table I.
to ensure a rank-one solution whep is large, it has been Following the Samsung energy storage solutions [37], batte
extensively observed in simulations that the SDP relaraticapacityC™#* is set to 50 kW in (S1), and 100 kW in (S2)
always yields a rank-one optimal solution [31]. This confirmfor all BSs. The estimated channel st:ftg is a zero-mean
the view that the asymptotically optimal beamforming vesto complex-Gaussian random variable with unit variance, evhil
for the original problem (10) will be obtained by our apprbacthe maximum prediction error i¢e;)?> = 0.1. Finally, the
with high probability. stepsize is chosen as= p [cf. Theorem 1].
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200,
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,\‘Peak of price No-RES
2 150¢ --- Gtreedy algorithm
o —
c o’ (scaled)
o
& 100 ‘ o i
g . ! \\ -
g Peak of price— | 3
& 50
]
(8]
>
<
0 10y ' —e— Proposed
—— Upper bound
— Lower bound

0 120 240 360 480 600 720 0 20 40 60 80 100

Time slot Time slot
Fig. 4. Comparison of the average transaction cost (S2). Fig. 6. VQOC based power schedule @f (S1,p = 1)-

Prices

—e— Proposed
10}, ’ —— Upper bound]
—— Lower bound
O 1 1 1 T
0 1 2 3 4 5_ 6 7 8 9 10 11 12 0 20 40 60 80 100
Time slot Time slot
Fig. 5. VQOC based power schedulijy1 (S1). Fig. 7. VQOC based power schedule@f (S1,u = 0.5p).

The proposed approach is compared with two baseline @lgorithm in Fig. 3. Intuitively, this is because the progds
gorithms including VQOC without RES (no-RES), and greedyQOC can intelligently leverage the energy storage to hedge
scheme that aims at minimizing tiestantaneousransaction adainst future large losses while the greedy scheme cannot.
cost per time slot. For the greedy algorithm, instantaneoli§® performance gain of the proposed approach is shown
decisions{X®, r{, P/} are obtained by solving the convexn Fig. 4 for the non i.i.d. case. When prices peak, consid-
problem (13) per slot with fixed {C?};c7. Feasibility of the erable cost savings are obtained by the proposed algorithm
solutions across horizons is guaranteed by simply updatifigt intelligently leverages stored energy in the batteith w
C!*! via (13c). Note that all surplus or shortage energy mugnsactions. Specifically, more locally stored energy
be traded per slot in order to minimize the instantaneot§lized to balance out the energy shortage when the puechas
cost. Therefore, storage units essentially do not play a r@iriceat is high. Likewise, additional excess energy can be sold
since there is no (dis)charging activity. This makes thedye 0 the main grid with a high selling pricé*. The introduced
scheme myopic and vulnerable to high future purchase pricE@nsaction mechanism essentially confirms the advantage o

In Figs. 3 and 4, the average transaction costs (13a) [pf battery-deployed communication system design to atiig
the proposed VQOC, the no-RES schedule, and the gred§ 9rid uncertainty. _ _ _ _
algorithm are compared for both (S1) and (S2). Note that the I € €nergy purchase prica$, selling prices3’, Lagrangian
VQOC approach incurs the same computational complexﬁ@}{'t'p“ers Al, as well as the_ real-time battery (dis)charging
as the greedy algorithm. Clearly, withis00 iterations (time actions are shown in Fig. 5. It can be seen that we
slots) VQOC converges to a transaction cost lower than thave Py, = Pj" when Af > —p* at¢ = 1,3,5,7,8,11,
ones resulting from the no-RES schedule, and the greedjile Pbt,1 = P when A< —al att = 2,4,6,9,10.
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Fig. 8. Average transaction cost versu&® (S1, = 0.9). Fig. 10. Average transaction cost versus- 8*/a! (S1, E™#* = 15).
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c
9
o 18r : : 1 ]
i w
S a
g 16 1 O
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E 14'
2
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10t —— Proposed

- = = Greedy algorithm
8 i i i 1 1 i
0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8
Bt/at SINR
Fig. 9. Average transaction cost versus= 8t/at (S1). Fig. 11. SINR cumulative distribution function (S1).

Such mapping relationships are also true for the slots12 depicted in Fig. 8. It can be seen that the VQOC's transaction
and P} ,, which corroborate the assertion of Lemma 2. It i§ost deceases monotonically@8*“* increases. This corrobo-
worth mentioning that the battery switching rate is in theates the result of Theorem 1 dictating that the optimaliyp g
time scale of the online scheduling, which can be in theM, as well as the optimal valug* is decreasing witlC™*.
order of (milli) seconds or even minutes depending on ti¢ote that as analyzed earlier, the greedy algorithm cannot
system design requirements. For the sake of battery headth &enefit from the increase of the storage capacity,
lifespan, it is desirable to control the charging and disgimay Figs. 9 and 10 show the average cost with respect to the
switch frequency. To achieve this goal, we can simply impoggice ratior = /o', wherea! is fixed. We studied two
a battery switching cost or constraint [10], or design angtenarios: i) small harvested wind powgf** = 10 kW, and
implement a two time scale scheduling approach where tliea large oneE™** = 15 kW. Clearly, for both scenarios,
battery can be operated in the slow time scale [38]. the average cost of the VQOC decreases awreases. This
Figs. 6 and 7 demonstrate how the SoC's feasibility is because the optimality ggp\/ and the optimal valué:*
affected by the stepsize In Fig. 6, the SoC is always feasibleare decreasing functions with respectrto
(Cin < CF < OaX) whenp = u- In contrast, if we choose  Moreover, it is interesting to see that the greedy algorithm
u = 0.5u that does not satisfy the stepsize condition in Lemnexhibits different performance in these two cases. When the
3, thenC! exceeds its upper bound very often as corroboratadnd power is small, most of the time greedy algorithm has
by Fig. 7. to purchase shortage energy in order to support the CoMP’s
The average transaction costs of the VQOC and greedperation. As shown in Fig. 9, the average transaction cost
approaches with respect to the storage capaCity** are is not affected by only increasing the selling priéein this
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gueue based online algorithm was thus developed to obtain

' —— SINR threshold feasible decisions ‘on-the-fly’ by relaxing the time-cadagl

. —— Proposed constraints arising due to the storage dynamics. Intexggti

! - = =Non-Robust the novel method was proved asymptotically optimal even
! without knowing the probability density function of the un-

) derlying stochastic processes. Extensive numerical jiestify
1

1

)

1l
d

0.6/ 7 the effectiveness and merits of the proposed approach far bo

i.i.d. and non-i.i.d. scenarios.

The present framework opens new directions for green wire-
less communications that aim at utilizing effectively ager
sources. Interesting future works include e.g., the inomap
0.2} 1 tion of DC/AC power flows, contingency constraints, battery
health conscious dynamic scheduling, as well as variousstyp
! of storage units. Moreover, probability SINR constraintsl a

0o 0.1 0.2 03 0.4 05 0.6 different uncertainty sets are worth investigating.
SINR

CDF

0.4r

Fig. 12. SINR cumulative distribution function (S2). REFERENCES
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