
EUROGRAPHICS 2011 / M. Chen and O. Deussen

(Guest Editors)

Volume 30 (2011 ), Number 2

SQuad: Compact Representation for Triangle Meshes

Topraj Gurung1, Daniel Laney2, Peter Lindstrom2, Jarek Rossignac1

1Georgia Institute of Technology
2Lawrence Livermore National Laboratory

Abstract
The SQuad data structure represents the connectivity of a triangle mesh by its “S table” of about 2 rpt
(integer references per triangle). Yet it allows for a simple implementation of expected constant-time,
random-access operators for traversing the mesh, including in-order traversal of the triangles incident
upon a vertex. SQuad is more compact than the Corner Table (CT), which stores 6 rpt, and than the
recently proposed SOT, which stores 3 rpt. However, in-core access is generally faster in CT than in
SQuad, and SQuad requires rebuilding the S table if the connectivity is altered. The storage reduction
and memory coherence opportunities it offers may help to reduce the frequency of page faults and cache
misses when accessing elements of a mesh that does not fit in memory. We provide the details of a
simple algorithm that builds the S table and of an optimized implementation of the SQuad operators.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Data
structures—Triangle Meshes

1. Introduction

We propose the SQuad data structure for representing
and processing triangle meshes. It requires less storage
than previous practical solutions and supports efficient
operators for traversing the mesh that provide access
to boundary, adjacent, and incident elements for the
vertices, edges, and triangles of the mesh.

The need for space efficient mesh representations
has resulted in a series of compression methods and
lightweight mesh data structures. This previous work
was motivated in part by the fact that the complex-
ity (triangle count) of meshes grows continuously to
meet the accuracy needs of applications. While mod-
ern workstations have powerful processors and ample
memory for many tasks, research in compact mesh
representations is of perennial importance because of
two trends in compute hardware. The first is the rise
of the handheld device, and the second is the move
towards many-core architectures. In the former case,
we have returned to the regime of limited memory re-
sources; in the latter, the per-core memory size and
bandwidth are limiting factors. The bottleneck on fu-
ture massively multi-core architectures is shifting from
the processing cost to data access cost, which is sig-
nificantly increased by page faults and cache misses.

Figure 1: SQuad pairs most triangles (here 97.3%)
into quads and matches each vertex with a different
quad or single triangle. By sorting the quads and single
triangles to match the order of the vertices, one may
represent the connectivity of the mesh by storing only
2.05 references per triangle. The rare single triangles
are colored blue (unpaired) or red (unmatched).

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd. Published by Blackwell Publishing, 9600

Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street,

Malden, MA 02148, USA.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

In distributed applications, such as large-scale visu-
alization and data analysis, simple pointer-free mesh
representations are advantageous because they are
straightforward to communicate between processors
and to write to disk. Compact representations gain
further advantage by requiring less off-processor and
disk bandwidth for transfers.

Two complementary strategies may be used to
attack the problem of reduced memory resources:
(1) coherent data layout and access and (2) reduc-
tion of storage size. The former was explored else-
where [YLPM05]. We address the latter here, and
show that our solution meshes well with prior solu-
tions to the former.

1.1. Contributions

We propose the SQuad representation, which reduces
the storage requirements for the connectivity graph
to about 2 rpt (integer references per triangle). We
achieve this by matching pairs of adjacent triangles
with one of their shared vertices, and by reordering
the triangles (but not the vertices) so that part of
the connectivity graph can be inferred at run time.
We present a linear-cost construction algorithm and
describe an optimized implementation of the operators
that may be used to traverse the mesh efficiently using
only its SQuad representation.

The ability to preserve the vertex order is a signif-
icant strength of our representation. For instance, it
is important for stream processing, for enforcing data
locality, for matrix computations, for further compres-
sion, and for applications that for other reasons impose
a vertex order.

2. Background and overview

Most representation schemes for a triangle or polygo-
nal mesh store an array G of points representing the
location of its nV vertices, which are identified by in-
tegers between 0 and nV −1. Hence G[i] is the location
of the vertex with integer ID i. The array G captures
the “geometry” of the mesh. To specify how the sur-
face represented by a triangle mesh interpolates these
vertices, it suffices to store another array of 3nT inte-
ger entries that associates 3 vertex references (integer
IDs) with each one of the nT triangles of the mesh.
The vertex IDs of each triangle are listed in an or-
der that corresponds to a consistent orientation of the
mesh. This representation is sufficient for some appli-
cations, such as rendering or normal computation, but
is prohibitively expensive for applications that require
accessing neighboring elements in an orderly fashion,
which requires a linear search.

2.1. Connectivity graphs

One may build a complete connectivity graph with
nodes representing the vertices, edges, and faces of
the mesh and links representing incidence, adjacency,
and boundary relations. For example, each vertex may
have access to its incident edges and triangles. An
edge may have access to its two bounding vertices,
its incident triangles, and its adjacent edges (which
share a vertex with it). A triangle may have access to
its bounding vertices and edges and also to its adja-
cent (neighbor) triangles. These references are often
ordered to capture the arrangements of faces around
an edge, of vertices and edges around a face, and of
faces and edges around a vertex.

Such complete connectivity graphs require an exor-
bitant amount of storage. Hence, more compact rep-
resentations have been proposed that only store a set
of core links from which other links may be derived.

2.2. Half-edges

Half-edge data structures [Man88], also called “edge-
use” or “oriented edge” structures, are based on tuples
that associate each vertex in a mesh with one of its
incident edges, and with one of the triangles incident
upon that edge [Bri89]. A half-edge has a “starting”
and an “ending” vertex.

2.3. Corner operators

A “corner” is a “vertex-use,” i.e., the association of
a triangle with one of its bounding vertices. Corners
are equivalent to half-edges: each corner corresponds
to the half-edge it faces within the same triangle. We
use the corner terminology throughout the paper.

The following corner operators have been proposed
by Rossignac et al. [RSS01], and are shown in Fig. 2:

• v(c) returns the vertex of corner c.
• t(c) returns the triangle of c.
• s(c) returns the “swing” corner around v(c).
• n(c) returns the next corner in t(c).
• o(c) returns the opposite corner.
• c(v) returns one corner of v so that v(c(v)) = v.
• c(t) returns one corner of t so that t(c(t)) = t.

When the references v and t are represented as in-
tegers, we overload c(v) and c(t) and choose the ap-
propriate function based on context. Because s(c) =
n(o(n(c))) and o(c) = p(s(p(c))), only one of s(c) or
o(c) needs to be stored. The corner operators provide
access to corners in a clockwise order.

2.4. Corner Table

The Corner Table [RSS01] uses integers between 0 and
3nT − 1 to identify the corners of a mesh. It stores

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

s(c) r(c) 
c 

v(c) 

o(c) 

p(c) 

t(c) 

n(c) 

l(c) 

Figure 2: From corner c, we access its triangle t(c),
vertex v(c), next corner n(c) around t(c), swing corner
s(c) around v(c), and opposite corner o(c). Additional
operators derived from these are left, l(c) = o(n(c)),
right, r(c) = o(p(c)), and previous p(c) = n(n(c)).

v(c) as V [c] in the table (i.e. array) V and o(c) in the
parallel table O. The corners of a triangle are stored
as consecutive entries in these tables and are sorted
according to the orientation of the triangle. Fig. 2 de-
picts the full set of corner operators, which can be
implemented as follows:

v(c) = V [c] t(c) = c/3 o(c) = O[c]

n(c) = 3t(c) + ((c + 1) mod 3) p(c) = n(n(c))

l(c) = o(n(c)) r(c) = o(p(c)) s(c) = n(l(c))

c(v) = C[v] c(t) = 3t

The notation x/y denotes the quotient resulting from
integer division.

The storage cost for the basic corner table is 6nT

integers for the V and O tables, which we report as
6 rpt (references per triangle). If direct access to the
incident edges and triangles of a vertex v is needed,
we may add a C table that for each vertex v stores
a reference to one of its incident corners c(v). Since
in a mesh with small genus (relative to the number of
triangles) there are about twice as many triangles as
vertices, the total storage of the extended corner table
would be 6.5 rpt. Note that these references require at
most log2(3nT ) bits each, which is usually less than
the 32 bits that are allocated to each table entry in
order to support fast random access. One may exploit
a few of these bits as markers for corners or vertices.

2.5. Sorted Opposite Table (SOT)

The Corner Table has been extended by Lage et
al. [LLLV05] to represent tetrahedral meshes. More re-
cently, Gurung and Rossignac [GR09] have proposed
the Sorted Opposite Table (SOT), which is a variation

Q(C) 

V(C) 
S(C) C N(C) 

D(C) P(C) 

Figure 3: From a corner C, we can access its vertex
V (C) and quad Q(C), the next corner N(C) in Q(C),
and the swing corner S(C). For convenience, we also
define D(C) as N(N(C)) and P (C) as N(D(C)).

of this extension that eliminates the need to store v(c).
This is accomplished by matching each vertex with a
different incident tetrahedron; by sorting the tetrahe-
dra so that tetrahedron i in the first nV tetrahedra is
incident upon vertex i; and by ensuring that the corner
of a vertex is listed as the first corner in tetrahedron
i. In SOT, v(c) is computed by visiting the corners
around vertex v until the corner c matched with v is
found, i.e., c is the first corner within its tetrahedron
and satisfies c < 4nV . From this corner c, the vertex
ID is computed as v = c/4.

A more detailed description of the SOT represen-
tation for triangle meshes is given in [GR10], where
it is shown that SOT requires only 3 rpt. The SQuad
representation proposed here builds upon SOT and
further reduces storage for triangle meshes to about
2 rpt, while providing the same functionality.

2.6. Quad meshes

One may easily extend the “triangle” Corner Table to
a “quad” Corner Table for representing irregular quad
meshes. To distinguish quad corners from triangle cor-
ners, we capitalize the names of quad corners and their
operators. For efficiency, instead of storing the oppo-
site corner in table O, we use an S table that stores
the swing operator S(C), as in [YL07]. The following
primary quad corner operators (Fig. 3) may be used
to traverse the quad mesh:

• V (C) returns the vertex of corner C.
• Q(C) returns the quad of corner C.
• N(C) returns the next corner in Q(C).
• S(C) returns the “swing” corner around V (C).
• C(V ) returns one corner so that V (C(V )) = V .
• C(Q) returns one corner so that Q(C(Q)) = Q.

Their implementation is a trivial extension of their
counterpart for triangle meshes, and hence is omitted
here. Note that in a mesh of nQ quads, the V and S ta-
bles each have 4nQ entries. Hence, this representation
uses 8 rpq (references per quad).

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

2.7. Representing triangles with quads

The Euler formula nT = 2nV − 4 + 4h for a manifold
mesh with h handles and no boundary implies that nT

is even. If we arrange triangles into pairs so that each
pair shares a common edge and hence forms a quad,
we may use the above quad data structure to represent
the connectivity of the triangle mesh. This approach
translates into 4 rpt, since there are two triangles per
quad. We need to add one reference per vertex (i.e.
0.5 rpt) for storing C(V ).

Hence, if we paired all the triangles of a mesh, we
could encode its connectivity using 4.5 rpt [CADM06].
The pairing is always possible, since the dual of the
mesh is a bridgeless trivalent graph [Pet91], and can
be computed in O(nT log4 nT ) time [BBDL01]. Tarini
et al. [TPC∗10] present a method for converting a tri-
angle mesh into a pure quad mesh. Unfortunately, this
approach cannot be used directly for our purpose, un-
less we find a way to ensure that the pairing makes it
possible to match each vertex with a different triangle.

3. SQuad overview

The SQuad representation proposed here combines
the two ideas discussed above: (1) the use of a quad
mesh to represent the connectivity of a triangle mesh,
and (2) the sorting used in SOT.

SQuad requires only a table of swings (the S table)
for the quad corners of the mesh to implement a com-
plete set of adjacency queries for both the quad mesh
and the triangle mesh. SQuad uses only 4 rpq, and
if most triangles are paired, the storage approaches
2 rpt. More precisely, the storage required is 2+2f rpt,
where f is the fraction of single triangles.

Our construction of SQuad involves the following
sequence of steps.

1. In a depth-first traversal of the triangle adjacency
graph [Ros99], we match each vertex with the tri-
angle that visits it first and attempt to pair that
triangle with one of its neighbors.

2. Then, we store each pair of triangles as a quad and,
for regularity of representation, we also disguise the
few unpaired triangles as quads by storing a sen-
tinel value for the fourth unused corner.

3. Finally, we reorder these quads so that, after re-
ordering, the ith quad is the one matched with the
ith vertex.

We have tested SQuad on a benchmark of meshes of
different complexities, ranging from a few thousand
to about 55 million triangles, and report statistics
on storage size and on construction and access time.
In particular, we found that SQuad storage averages
2.072 rpt on these meshes.

4. Prior art

4.1. Compressed formats

Various triangle mesh compression schemes have
been proposed (for example, see [TG98, Ros99]).
Some of these schemes support progressive re-
finements [TGHL98] or streaming [ILS05]. Edge-
breaker [Ros99,RSS01] encodes the connectivity of the
Corner Table using one symbol per triangle drawn
from a 5-symbol alphabet. Half of the triangles are
assigned the same symbol, allowing a guaranteed com-
pressed cost of 1.8 bpt (bits per triangle). In practice,
pairing the symbols and using a simple Huffman table
results in a compressed cost of about 1 bpt. The ben-
efit of pairing triangles into quads to reduce storage
has previously been addressed by King et al. for mesh
compression [KRS99]. Unfortunately, the compressed
format is not suitable for traversing and processing the
mesh without the expensive decompression.

Several formats have been proposed that allow lo-
cal decompression. These data structures do not sup-
port random access in the usual sense, since they re-
quire decompressing a contiguous portion or hierar-
chical structure of the mesh containing the vertex,
triangle, or corner requested, which is then usually
cached. Moreover, the code for constructing, decod-
ing, and caching such data structures can be quite
involved [YL07,CH09].

4.2. Succinct theoretical representations

Castelli Aleardi et al. [CADS06] propose a theoreti-
cal data structure for an optimal representation of the
connectivity of planar triangle graphs of size n ele-
ments, which asymptotically matches the entropy of
1.62 bpt [Tut62]. They prove that their representa-
tion, which decomposes the mesh into tiny pieces of
size O(log2 n), could support constant time queries.
The catalog of all connectivity graphs of the pieces
may be constructed in o(n) time and space, so that
each tiny piece may be represented by an index into
the catalog. To reduce the index size, they form small
pieces that each group O(log2 n) tiny pieces, and store
the connectivity graph between small pieces. Exten-
sions to higher genus surfaces and support for dynamic
updates are discussed in [CADS08] and in [CAFL09].
Although this theoretical formulation was not imple-
mented, the ideas upon which it is based have been
explored independently [CADM06,Meb08].

4.3. Compact practical representations

Several data structures based on half-edges have
been proposed for polyhedra: Baumgart’s Winged-
Edge and extensions based on it [Bau72, Wei85];

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

Guibas and Stolfi’s Quad-Edge [GS85], Mantyla’s
Half-Edge [Man88], and extensions to non-manifolds
including Weiler’s Radial-Edge [Wei88]. Although
these general techniques can be used for triangle
meshes, they require significantly more storage [Ros94]
than representations designed to exploit the regularity
of a triangle mesh. For example, the quad-edge stores
3 references per half-edge (one to a vertex and two to
other half-edges), which amounts to 9 rpt.

Representations tailored for triangle meshes include
the Corner Table and the SOT (see Section 2) and
also Campagna’s et al. Directed Edges [CKS98]. Kall-
mann and Thalmann’s Star-Vertices [KT01] stores for
each vertex a list of tuples, one per exiting half-edge,
sorted around the vertex. The first entry in a tuple
references the end-vertex of that half-edge. The sec-
ond entry is the local index to a half-edge leaving that
vertex. This representation requires 3.5 rpt. Bland-
ford et al. [BBCK05] enhance Star-Vertices by using
a variable-length encoding of relative vertex indices.
By ordering vertices (building a k-d tree on the ver-
tex positions, and assigning indices recursively) they
reduce storage to about 5 bytes per triangle.

Snoeyink and Speckmann’s Tripod [SS99] repre-
sents genus-0 meshes using 3 rpt. They orient all edges
and partition them into three disjoint spanning trees.
Each vertex (except the vertices of a seed triangle) has
exactly one outgoing edge in each tree. They then as-
sociate with each vertex v six references to vertices w
so that (v, w, u) is a triangle of the mesh and (v, u) an
outgoing edge from v. Mesh traversal operators have
constant cost, but their actions depend on triangle
type, which is determined at runtime from the orien-
tations of the edges of the triangle.

5. Representation and operators

Here, we provide the details of the SQuad data struc-
ture and of an efficient implementation of its opera-
tors. We begin by describing a complete quad mesh
representation, and later elaborate on the additional
operators needed to support triangle meshes.

5.1. Quad meshes

SQuad stores only the S table of swings of all the quad
corners in the mesh. That is, the swing S(C) of a quad
corner C is defined as S[C] by indexing the S table
(see Fig. 4 for a simple example). The S table is di-
vided into sets of four consecutive entries representing
the four corners of a quad. The ID of the ith corner
of quad Q is given by C(Q, i) = 4Q + i. This con-
secutive numbering of corners makes the implemen-
tation of Q(C), N(C), C(V ), and C(Q) particularly

Q1 Q0 

0 1 

2 3 

4 5 

6 7 

Q0 Q1

C 0 1 2 3 4 5 6 7

S[C] 0 4 7 3 1 5 6 2

Figure 4: S table for a mesh of two quads.

straightforward, as these operators can be computed
using multiplication, division, and modulo by 4.

What remains is the definition of V (C). As dis-
cussed above, each vertex V is associated with exactly
one quad Q and one of its corners C. In particular,
we associate V with the zeroeth quad corner C(Q, 0).
Thus, we may determine if a corner C is matched with
a vertex by examining its two least significant bits. If
C mod 4 = 0, then C is matched with V = C/4. Oth-
erwise, we swing around V using S(C) until we find
the corner matched with V .

The set of operators defined on a quad mesh can
thus be implemented as follows:

C(V ) = 4V

C(Q) = 4Q

V (C) =

{
C/4 if C mod 4 = 0 and C < 4nV

V (S(C)) otherwise

Q(C) = C/4

N(C) = 4Q(C) + ((C + 1) mod 4)

S(C) = S[C]

The predicate C < 4nV is needed when the number of
quads exceeds the number of vertices, as in this case
some quads cannot be matched with a vertex. If in-
stead the number of vertices exceeds the number of
quads, some vertices cannot be matched with a quad.
This case is not handled by our quad mesh represen-
tation. Fortunately, such unmatched vertices generally
do not occur in triangle meshes, as nT ' 2nV .

5.2. Corner mapping

To support triangle meshes, we conceptually split each
quad along one of its diagonals into two triangles. This
splits two corners of each quad in half, while the other
two quad corners each map to a single triangle corner
(Fig. 5). Aside from this change, we use the same basic
data structure, and simply map between triangle and
quad corners when necessary. That is, the S table still
stores swing pointers between quad corners.

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

0 1 

2 

6 

4 5 

t1 

t0 

0 1 

2 3 

Figure 5: Numbering of corners within a quad (left)
and a triangle pair (right).

The mapping c 7→ C from triangle to quad corners is
not a bijection, since pairs of triangle corners may map
to the same quad corner. Hence some care is needed in
how this mapping is done. Fig. 5 depicts the mapping
that we have chosen between the four quad corners
and six triangle corners of a quad. The IDs of the tri-
angle corners of quad Q are given by c(Q, i) = 8Q+ i,
where the corner offsets i are 0, 1, and 2 for the first
triangle and 4, 5, and 6 for the second. We do not
use offsets 3 or 7; this does not incur storage overhead
because we do not store any per-triangle-corner infor-
mation. While the choice of mapping is not unique,
reserving eight offsets per quad enables an efficient
implementation based on divisions and modulus oper-
ations by 4 and 8, as shown below.

In summary, the mappings (see also Fig. 5) from
quad-corners to triangle-corners are: 0 7→ 0, 1 7→ 1,
2 7→ 4, 3 7→ 5; and from triangle-corners to quad-
corners are: 0 7→ 0, 1 7→ 1, 2 7→ 2, 4 7→ 2, 5 7→ 3,
6 7→ 0. For quad corners associated with two triangle
corners, the mapping C 7→ c is such that the second
triangle corner is reached from the first by s(c), which
as will become apparent ensures that we can traverse
all triangle corners around a vertex.

The mappings C(c) and c(C) may be implemented
efficiently without lookup tables. We use the auxiliary
functions C(Q, i) = 4Q + i, c(Q, i) = 8Q + i, Q(C) =
C/4, and Q(c) = c/8 (note the overloaded pair Q(C)
and Q(c)), which allow us to convert from a triangle
corner c to a quad corner C:

C(c) = C(Q(c), (c + ((c/2) & 2)) mod 4)

where ‘&’ indicates the bitwise AND operation.

Before defining the mapping from quad to trian-
gle corners, we note that we may not always be able
to pair triangles into quads. Single, unpaired trian-
gles are still treated as quads, and we store for the
last corner of a quad in the S table a special sen-
tinel value, referred to as null in subsequent sections,
to indicate that the second triangle of the quad does
not exist. The predicate below determines whether the
quad represents one or two triangles:

isQuad(Q) = (S[4Q + 3] 6= null)

We then compute the triangle corner c associated with
a quad corner C as follows:

c(C) =

{
c(Q(C), (C mod 4) + (C & 2)) if isQuad(Q(C))

c(Q(C), (C mod 4)) otherwise

Although C(c(C)) = C, in general c(C(c)) 6= c.

5.3. Triangle meshes

We are now ready to define the SQuad operators that
enable efficient extraction of the triangle mesh connec-
tivity information. We present their implementation
first, and follow with details:

c(v) = 8v c(t) = 4t

v(c) = V (C(c)) t(c) = c/4

n(c) =

{
c− 2 if c mod 4 = 2

c + 1 otherwise

s(c) =


c(Q(c), 6) if c mod 8 = 0 and isQuad(Q(c))

c(Q(c), 2) if c mod 8 = 4

c(S(C(c))) otherwise

Again, note the use of c(v), c(t), and c(C) depend-
ing on context. The standard corner-based operators
follow directly:

p(c) = n(n(c)) o(c) = p(s(p(c)))

l(c) = p(s(c)) r(c) = p(s(n(c)))

The majority of our operators have straightforward
implementations. We note that v(c) is computed ef-
ficiently by iteration over quad corners. This allows
us to “skip over” triangle corners known not to be
matched with v. Due to the consecutive ordering of
corners, n(c) like N(C) is efficiently implemented us-
ing modular arithmetic. Finally, s(c) computes the
adjacent swing corner if it is within the same quad
(the first two cases); otherwise it consults the S table.
Our operators run in constant time, except v(c), which
runs in expected constant time but in time linear in
the maximum degree in the worst case.

6. SQuad construction

Our linear-time construction of the SQuad data struc-
ture starts with the V table of a mesh. We compute
the O table (see [GR10]) and then match vertices
with triangles, pair most triangles into quads, reorder
the quads and single triangles, and finally produce
the S table. In this section we describe the triangle-
vertex matching and triangle-triangle pairing opera-
tions, then describe a single-pass algorithm that com-
bines the two operations. To avoid ambiguity, we use
“matching” to refer to triangle-vertex associations and
“pairing” to refer to triangle-triangle associations.

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

E 

F 

I 

A 
B 

C 

J 
K 

L 

M 
N 

O 
P D 

G 

H 

V 

X 

W 

Q 
R 

S U 
T 

14 15 16 

13 2 3 17 

12 1 0 
4 18 

11 9 
5 6 

10 8 7 

Figure 6: We invade the mesh starting from trian-
gle A. Purple arrows show the traversal order; blue
arrows are triangle-vertex matches. Matches (0, A),
(5, F ), and (9, J) are made at the beginning. Note that
triangles M , P , S, V , and X are unmatched and thus
paired (blue quads) with B, C, D, E, and G.

6.1. Triangle-Vertex matching

Our algorithm computes vertex-triangle matches first,
instead of directly matching quads with vertices. This
is necessary because some meshes have more vertices
than quads. For example, a quad mesh with genus zero
has nV = nQ + 2 vertices (where nQ = nT /2), which
shows that two vertices would remain unmatched.

Our matching procedure is described in [GR10] and
illustrated in Fig. 6. We summarize it here for com-
pleteness. We start with a seed triangle and match
its three vertices according to Fig. 6. We then invade
the mesh [RSS01] by walking between edge-adjacent
triangles. For the corner c not incident on the pre-
vious triangle, if its vertex v(c) is unvisited, then we
match it with triangle t(c). This ensures that each ver-
tex is visited and matched with a different triangle.
Since nT ' 2nV , only about half of the triangles are
matched. We observe that unmatched triangles tend
to be uniformly distributed around the matched ones.

6.2. Triangle-Triangle pairing

Next, we try to pair each matched triangle with an un-
matched one by traversing the triangles in the same
order as before. For each matched triangle t, we check
first its right, then left neighbors; if we find a neigh-
bor that is neither matched nor paired, we pair it with
t (Fig. 6). This simple procedure leaves very few un-
paired triangles (see Fig. 1): on average 3.3% of the
triangles remained unpaired in our benchmark meshes.

Match-and-Pair(in : c, out : M , P )

1 M [v(c)]← t(c) match first 3 vertices

2 M [v(n(c))]← t(s(n(c)))

3 M [v(p(c))]← t(s(p(c)))

4 P [t(s(n(c)))]← t(s(n(c))) mark triangles as paired

5 P [t(s(p(c)))]← t(s(p(c)))

6 T [t(c)]← true mark t(c) as visited

7 c← l(c)

8 stack.push(null) push sentinel value

9 while stack 6= ∅
10 T [t(c)]← true

11 if M [v(c)] = null

12 M [v(c)]← t(c) case C

13 if P [t(r(c))] = null and M [v(r(c))] 6= null

14 P [t(c)]← t(r(c)) pair t(c) and t(r(c))

15 P [t(r(c))]← t(c)

16 else if P [t(l(c)))] = null

17 P [t(c)]← t(l(c)) pair t(c) and t(l(c))

18 P [t(l(c))]← t(c)

19 c← r(c)

20 else

21 if T [t(l(c))] = true

22 if T [t(r(c))] = true

23 c← stack.pop() case E

24 else

25 c← r(c) case L

26 else

27 if T [t(r(c))] = true

28 c← l(c) case R

29 else

30 stack.push(l(c)) case S

31 c← r(c)

Table 1: Matching & pairing in a single pass.

6.3. Combined matching and pairing

The matching and pairing process may be imple-
mented in a variety of ways. A particularly elegant
implementation uses a modified Edgebreaker [Ros99]
traversal of the mesh, which performs the matching
and pairing in a single pass, as shown in Fig. 6. Edge-
breaker performs a depth-first traversal of the mesh
triangles, and labels them using one of five symbols
{‘C’, ‘L’, ‘E’, ‘R’, ‘S’} depending on how the tri-
angles are attached to the already visited triangles
(see [Ros99] for further details). We include our match-
ing algorithm here, to show its simplicity (see Table 1).

Our algorithm takes as input an arbitrary seed cor-
ner c, and outputs two tables M and P such that v
is matched with triangle M [v] and triangle t is paired
with triangle P [t]. Thus, the tuple 〈v,M [v], P [M [v]]〉
forms a vertex-quad match from which the SQuad S
table is easily constructed. All entries of M and P are
assumed initialized to null. Our algorithm makes use
of a temporary table T of booleans, which records for
each triangle if it has been visited.

From the start corner c, we walk on the mesh while
the stack is not empty. Each ‘C’ triangle t(c) involves
visiting a new (unmatched) vertex v(c), which we
match with t(c). We then attempt to pair t(c) with an
unpaired neighbor. Because ‘C’ triangles generate ver-
tex matches, and because each quad is matched with

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

only one vertex, no two ‘C’ triangles may be paired; a
condition we test for on line 13 by making sure that
vertex v(r(c)) has already been matched (otherwise
t(r(c)) is a ‘C’ triangle). A similar test on line 16 is
not needed, since we must enter t(l(c)) from a triangle
other than the current one, and hence t(l(c)) cannot
be a ‘C’ triangle. This order of trying to pair right
before left neighbors reduces slightly the ratio of sin-
gle triangles, because it pairs more of the previously
visited triangles. For ‘E’, ‘L’, ’R’, and ’S’ triangles,
no matching or pairing occurs, and for those cases we
simply follow the Edgebreaker traversal.

6.4. Quad reordering

We reorder quads (or single triangles) based on vertex
matching, such that the ith quad (or ith single trian-
gle) and its first corner are matched with the ith ver-
tex. Quads of unmatched triangles are placed at the
end of the list. The original vertex order is thus left
unmodified, while the triangle order is made “compat-
ible” with the vertex order. This freedom in ordering
may be exploited in applications that, for instance,
require high locality of reference, or for further mesh
compression for offline storage.

7. Topology extensions

So far, for simplicity and clarity, we have assumed that
the mesh is a manifold without boundary. Here we
explain how we have modified our representation to
support any orientable, non-manifold mesh, as long
as it can be represented as a pseudo-manifold [RC99]
with boundary using a Corner Table.

We store for each vertex v a “bucket” of all corners
incident upon v. We then perform the following steps:

1. We partition v’s bucket into disjoint subsets of
corners. Each set has triangles that form edge-
connected components.

2. We sort each set so that all consecutive corners
(ci, ci+1) share an edge, i.e., ci+1 = s(ci).

3. For the last corner z of a set, we change S[z], which
may have been referencing the first corner or noth-
ing (indicating that z was next to a border edge),
to the first corner of the next set (or when z is the
last corner in the last set, we set S[z] to reference
the first corner in the first set).

As a result, the links stored in S allow us to traverse
all of the corners of a vertex v, even when v is non-
manifold. However, to implement the true s(c), we now
need to know (1) whether S[c] refers to the next set
(i.e., when t(c) and t(s(c)) are not edge-connected),
and (2) whether s(c) exists. We use the two least sig-
nificant bits of S[c] to record this information and
modify the implementation of s(c) accordingly.

8. Results

We here report on how effective our construction
scheme is in matching and pairing mesh primitives,
and compare the speed of accessing our SQuad data
structure with the Corner Table and SOT. We use
several familiar triangle meshes, shown in Table 2, as
benchmarks for our evaluation. This table also lists
the fraction of unmatched and unpaired triangles for
these meshes in their SQuad representation. As is evi-
dent from the table, these fractions are usually small,
allowing 2.15 references per triangle or less to repre-
sent all meshes. We note that the mesh regularity in
terms of the fraction of valence-6 vertices is well corre-
lated with the number of paired triangles. Because our
benchmark meshes are all derived from regularly sam-
pled range scans, we also evaluated the regularity of
the Asian dragon and Thai statue after simplification
by a factor of ten. This reduced the number of regular
vertices in both meshes to about 32%, resulting in a
SQuad representation of 2.14 rpt.

Our offline SQuad construction process is quite fast.
For example, the 55 million triangle David mesh is
constructed in only 20 seconds using 2.2 GB of RAM.
This large mesh was used to evaluate the access speed
of the CT, SOT, and SQuad data structures, which
using floating-point geometry (equivalent to 1.5 rpt)
require 1,700 MB, 950 MB, and 760 MB to store this
mesh, respectively. We performed several experiments
while varying the amount of total RAM (configured
at boot time) on a MacbookPro with 2.66 GHz Intel
Core i7 and 8 GB of 1067 MHz DDR3 memory. In ad-
dition to timing the operators s(c) (for SQuad), o(c)
(for CT and SOT), and v(c), we find it instructive to
also compare higher-level tasks, such as vertex valence
and normal computation, as well as a data-dependent
contouring traversal. Our contouring task starts at the
midpoint of a randomly chosen edge. It then traces a
contour with the same z coordinate as the midpoint by
walking from each triangle to the left or right neigh-
bor stabbed by the contour. All computations, except
contouring, access corners or vertices sequentially.

The timing results are presented in Fig. 7. With the
operating system using about 400 MB, far less mem-
ory than the total RAM indicated in these graphs was
available for processing. When the whole mesh fits in
RAM, the additional memory accesses and computa-
tions for SQuad increase the execution time of s(c)
by 5X and v(c) by 10X over CT. With SQuad being
more memory efficient than CT, this relationship is re-
versed as memory is reduced and parts of the Corner
Table are stored out-of-core. One can show that the
expected number of memory accesses to the S table in
SQuad is 5

3
and 3

2
for s(c) and v(c), respectively, com-

pared to one access per operation for CT. v(c) in SOT

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

Mesh nT Val 6
Un- Matched

rpt
matched unpaired

bunny 69,451 75.1% 1.2% 1.5% 2.054

rocker arm 80,354 65.2% 1.3% 1.3% 2.054

horse 96,966 66.5% 1.1% 1.1% 2.046

dinosaur 112,384 57.9% 1.8% 1.8% 2.072

armadillo 345,944 52.6% 1.7% 1.7% 2.069

hand 654,666 53.4% 2.4% 2.4% 2.096

buddha 1,087K 32.1% 3.8% 3.7% 2.150

blade 1,760K 62.4% 2.0% 1.9% 2.078

welsh dragon 2,210K 86.7% 0.7% 0.7% 2.027

asian dragon 7,219K 89.1% 0.7% 0.7% 2.026

thai statue 10.0M 44.4% 2.8% 2.8% 2.111

david 55.5M 51.6% 1.9% 2.1% 2.082

Table 2: Mesh statistics (number of triangles and regular vertices) and SQuad representation (unmatched trian-
gles, matched unpaired triangles, and references per triangle). All meshes have zero genus except hand (6), rocker
arm (1), buddha (104), blade (163), and thai statue (3). The mesh color coding illustrates the ordering of triangles.

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.5 1 2 4 8

ti
m

e
 (

se
co

n
d

s)

RAM (GB)

(a) s(c)/o(c)

0.5 1 2 4 8

RAM (GB)

(b) v(c)

0.5 1 2 4 8

RAM (GB)

(c) valence

0.5 1 2 4 8

RAM (GB)

(d) normal

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

0.5 1 2 4 8

RAM (GB)

(e) contour

Figure 7: Average per-element execution time of various operators on the David mesh for CT (dashed blue), SOT
(dotted black), and SQuad (solid green). For s(c)/o(c), CT and SOT compute o(c) while SQuad computes s(c).
“valence” computes the number of triangles incident on a vertex; “normal” computes and averages face normals
incident on a vertex; while “contour” traverses a loop of triangles intersected by a horizontal plane.

is much slower than in SQuad, because SQuad does
fewer swings (since it swings quads), because swing-
ing in SOT (to find the matched corner) requires both
o() and n(), and because SQuad avoids modulo 3 when
checking if a corner is matched. (The SOT code has
not been optimized to avoid such divisions.) For the
same reason, SQuad executes n(c) faster than CT and
SOT: 2.7 ns vs. 3.4 ns. The timings of o(c) for CT and
SOT and of v(c) for CT are similar, since all three
are costs of a simple table look-up. The cost of s(c)
for SQuad involves converting a triangle corner to a
quad corner, a table look-up, and a reverse conversion.
This overhead is amortized in the higher-level tasks,
for which SQuad yields comparable or, when memory
is scarce, better performance than CT.

The practical implications of these performance im-
provements on the total execution time depend of
course heavily on the application’s memory access pat-
tern and on the hardware architecture. With per-core
memory bandwidth expected to decrease dramatically
on future architectures, we anticipate that the data
locality afforded by SQuad combined with its small
memory footprint will be of increasing importance.

9. Conclusions

We propose a new representation for the connectivity
of triangle meshes that only requires about 2 refer-
ences per triangle and yet provides constant-time ac-
cess to neighboring elements in the connectivity graph.
Our data structure pairs two adjacent triangles with a
shared vertex, and then reorders the triangles to follow
the user-specified vertex order. It increases the cost of
some low-level queries on small meshes, but reduces
disk access for large meshes, which may drastically
improve performance for some applications.

Although designed for in-core random access, our
compact SQuad representation is also suited for out-
of-core stream processing. By merging geometry (G
table) with connectivity (S table), we obtain a com-
plete binary streaming mesh representation. Future re-
search will focus on how to convert an indexed mesh
to such a representation without having to traverse
the whole mesh and reorder all triangles.

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.



T. Gurung, D. Laney, P. Lindstrom & J. Rossignac / SQuad: Compact Representation for Triangle Meshes

Acknowledgements

This work was performed in part under the auspices
of the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under Contract DE-AC52-
07NA27344, and was partially supported by NSF
grant 0811485.

References

[Bau72] Baumgart B. G.: Winged edge polyhedron rep-
resentation. Tech. Rep. CS-TR-72-320, Stanford Univer-
sity, 1972.

[BBCK05] Blandford D. K., Blelloch G. E., Car-
doze D. E., Kadow C.: Compact representations of
simplicial meshes in two and three dimensions. Interna-
tional Journal of Computational Geometry and Appli-
cations 15, 1 (2005), 3–24.

[BBDL01] Biedl T. C., Bose P., Demaine E. D., Lu-
biw A.: Efficient algorithms for Petersen’s matching the-
orem. Journal of Algorithms 38, 1 (2001), 110–134.

[Bri89] Brisson E.: Representing geometric structures in
d dimensions: Topology and order. In ACM Symposium
on Computational Geometry (1989), pp. 218–227.

[CADM06] Castelli Aleardi L., Devillers O.,
Mebarki A.: 2D triangulation representation using sta-
ble catalogs. In Canadian Conference on Computational
Geometry (2006), pp. 71–74.

[CADS06] Castelli Aleardi L., Devillers O., Scha-
effer G.: Optimal succinct representations of planar
maps. In ACM Symposium on Computational Geome-
try (2006), pp. 309–318.

[CADS08] Castelli Aleardi L., Devillers O., Scha-
effer G.: Succinct representations of planar maps. The-
oretical Computer Science 408, 2–3 (2008), 174–187.

[CAFL09] Castelli Aleardi L., Fusy E., Lewiner T.:
Schnyder woods for higher genus triangulated surfaces,
with applications to encoding. Discrete & Computa-
tional Geometry 42, 3 (2009), 489–516.

[CH09] Courbet C., Hudelot C.: Random accessible
hierarchical mesh compression for interactive visualiza-
tion. In Symposium on Geometry Processing (2009),
pp. 1311–1318.

[CKS98] Campagna S., Kobbelt L., Seidel H.-P.:
Directed edges—a scalable representation for triangle
meshes. Journal of Graphics Tools 3, 4 (1998), 1–11.

[GR09] Gurung T., Rossignac J.: SOT: Compact rep-
resentation for tetrahedral meshes. In SIAM/ACM Ge-
ometric and Physical Modeling (2009), pp. 79–88.

[GR10] Gurung T., Rossignac J.: SOT: Compact
Representation for Triangle and Tetrahedral Meshes.
Tech. Rep. GT-IC-10-01, Georgia Institute of Technol-
ogy, 2010.

[GS85] Guibas L., Stolfi J.: Primitives for the manip-
ulation of general subdivisions and the computation of
Voronoi diagrams. ACM Transactions on Graphics 4, 2
(1985), 74–123.

[ILS05] Isenburg M., Lindstrom P., Snoeyink J.:
Streaming compression of triangle meshes. In Sympo-
sium on Geometry Processing (2005), pp. 111–118.

[KRS99] King D., Rossignac J., Szymczak A.: Connec-
tivity Compression for Irregular Quadrilateral Meshes.
Tech. Rep. GIT-GVU-99-36, Georgia Institute of Tech-
nology, 1999.

[KT01] Kallmann M., Thalmann D.: Star-vertices:
a compact representation for planar meshes with ad-
jacency information. Journal of Graphics Tools 6, 1
(2001), 7–18.

[LLLV05] Lage M., Lewiner T., Lopes H., Velho L.:
CHF: A scalable topological data structure for tetra-
hedral meshes. In Brazilian Symposium on Computer
Graphics and Image Processing (2005), pp. 349–356.

[Man88] Mantyla M.: Introduction to Solid Modeling.
W. H. Freeman & Company, 1988.

[Meb08] Mebarki A.: Implantation de structures de
données compactes pour les triangulations. PhD thesis,
Université de Nice-Sophia Antipolis, 2008.

[Pet91] Petersen J.: Die theorie der regulären graphs.
Acta Mathematica 15, 1 (1891), 193–200.

[RC99] Rossignac J., Cardoze D.: Matchmaker: Mani-
fold BReps for non-manifold r-sets. In ACM Symposium
on Solid Modeling and Applications (1999), pp. 31–41.

[Ros94] Rossignac J.: Through the cracks of the solid
modeling milestone. In From object modelling to ad-
vanced visualization. Springer Verlag, 1994, pp. 1–75.

[Ros99] Rossignac J.: Edgebreaker: Connectivity com-
pression for triangle meshes. IEEE Transactions on Vi-
sualization and Computer Graphics 5, 1 (1999), 47–61.

[RSS01] Rossignac J., Safonova A., Szymczak A.: 3D
compression made simple: Edgebreaker on a corner-
table. In International Conference on Shape Modeling
& Applications (2001), pp. 278–283.

[SS99] Snoeyink J., Speckmann B.: Tripod: A minimal-
ist data structure for embedded triangulations. In Com-
putational Graph Theory and Combinatorics (1999).

[TG98] Touma C., Gotsman C.: Triangle mesh com-
pression. In Graphics Interface (1998), pp. 26–34.

[TGHL98] Taubin G., Guéziec A., Horn W., Lazarus
F.: Progressive forest split compression. In ACM SIG-
GRAPH (1998), pp. 123–132.

[TPC∗10] Tarini M., Pietroni N., Cignoni P.,
Panozzo D., Puppo E.: Practical quad mesh simplifica-
tion. Computer Graphics Forum 29, 2 (2010), 407–418.

[Tut62] Tutte W.: A census of planar triangulations.
Canadian Journal of Mathematics 14, 1 (1962), 21–38.

[Wei85] Weiler K.: Edge-based data structures for solid
modeling in curved-surface environments. IEEE Com-
puter Graphics & Applications 5, 1 (1985), 21–40.

[Wei88] Weiler K.: The radial-edge data structure: A
topological representation for non-manifold geometric
boundary modeling. In Geometric Modeling for CAD
Applications (1988), pp. 3–36.

[YL07] Yoon S.-E., Lindstrom P.: Random-accessible
compressed triangle meshes. IEEE Transactions on Vi-
sualization and Computer Graphics 13, 6 (2007), 1536–
1543.

[YLPM05] Yoon S.-E., Lindstrom P., Pascucci V.,
Manocha D.: Cache-oblivious mesh layouts. ACM
Transactions on Graphics 24, 3 (2005), 886–893.

c© 2011 The Author(s)

Journal compilation c© 2011 The Eurographics Association and

Blackwell Publishing Ltd.


