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Manipulation of differentiation programs has therapeutic potential in a spectrum of human

cancers and neurodegenerative disorders. In this study, we integrated computational and

experimental methods to unravel the response of a lineage uncommitted precursor cell-line,

HL-60, to Retinoic Acid (RA). HL-60 is a human myeloblastic leukemia cell-line used extensively

to study human differentiation programs. Initially, we focused on the role of the BLR1 receptor

in RA-induced differentiation and G1/0-arrest in HL-60. BLR1, a putative G protein-coupled

receptor expressed following RA exposure, is required for RA-induced cell-cycle arrest and

differentiation and causes persistent MAPK signaling. A mathematical model of RA-induced

cell-cycle arrest and differentiation was formulated and tested against BLR1 wild-type (wt)

knock-out and knock-in HL-60 cell-lines with and without RA. The current model described

the dynamics of 729 proteins and protein complexes interconnected by 1356 interactions.

An ensemble strategy was used to compensate for uncertain model parameters. The ensemble

of HL-60 models recapitulated the positive feedback between BLR1 and MAPK signaling.

The ensemble of models also correctly predicted Rb and p47phox regulation and the correlation

between p21-CDK4-cyclin D formation and G1/0-arrest following exposure to RA. Finally, we

investigated the robustness of the HL-60 network architecture to structural perturbations and

generated experimentally testable hypotheses for future study. Taken together, the model

presented here was a first step toward a systematic framework for analysis of programmed

differentiation. These studies also demonstrated that mechanistic network modeling can help

prioritize experimental directions by generating falsifiable hypotheses despite uncertainty.

1. Introduction

Understanding the molecular basis of differentiation, the process

by which a cell becomes a more specialized cell, is one of the

grand unmet challenges facing molecular cell biology. If

differentiation programs could be rationally manipulated,

advanced therapies could be developed to treat a spectrum

of human cancers, spinal cord injuries and neurodegenerative
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Insight, innovation, integration

A molecular understanding of cellular differentiation

programs represents an unmet medical challenge. A major

barrier in this pursuit is the complexity and scale of the

protein interaction networks involved. In this study, we

integrated computational and experimental strategies to

unravel the differentiation program of the uncommitted

hematopoietic precursor cell HL-60. We used experimental

results to generate an ensemble of mathematical models.

The analysis demonstrated the sufficiency of an experi-

mentally suggested BLR1/MAPK control architecture to

recapitulate features of retinoic acid induced differentiation.

In silico robustness analysis provided insight on critical

species which may be valuable experimental targets. This

work presents a computational framework for the integra-

tion of experimental data and hypothesis-generation using a

novel, molecular level, differentiation model.
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disorders. However, the molecular basis of these fundamental

programs are still emerging in both adult and embryonic

models.1 To rationally reprogram these networks we must first

understand their connectivity and regulation. Lessons learned in

simple systems could perhaps inform analysis of more complex

programs. One such model system for the study of differentia-

tion is the lineage uncommitted human myloblastic cell line

HL-60. HL-60 is an archetypal in vitro differentiation model

studied since the late 1970’s.2–4 Depending upon the stimulus,

HL-60 undergoes G1/0-arrest followed by either myeloid or

monocytic differentiation. Retinoic acid (RA) or dimethyl

sulfoxide (DMSO) causes G1/0-arrest and myeloid differentia-

tion. On the other hand, 1,25-dihydroxy vitamin D3 (D3) or

sodium butyrate causes arrest with monocytic differentiation.

Stimuli such as RA or D3 drive MEK-dependent activation of

the ERK1/2-MAPK pathway.5–8 Elevated MAPK signaling

persists until cells G1/0-arrest and terminally differentiate.

The onset of G1/0 arrest and terminal differentiation requires

approximately 48 h. During this period, HL-60 cells undergo

approximately two division cycles.9–12 Interestingly, during the

first 24 h of treatment, called a precommitment period, cells

are primed to differentiate without lineage specificity. Lineage

specificity is determined in the second 24 h period. Disrup-

tion of MEK signaling leads to failure of ERK1/2 activation

and HL-60 differentiation. Activation of both Retinoic acid

receptor (RAR) and retinoid X receptor (RXR) is necessary

for RA-induced G1/0-arrest, MAPK signal activation13–15 and

myeloid differentiation.6–8,16

RA-induced differentiation is contingent on the early

transcriptional up-regulation of BLR1 (Burkitt’s Lymphoma

Receptor-1). BLR1, also known as CXCR5, is a putative

serpentine heterotrimeric Gq protein-coupled receptor, with

a sequence similar to IL-8 receptors.17 It was first discovered in

a screen for differentially expressed genes that conferred

metastatic capability to human B-cell lymphomas.17,18 BLR1

was identified as an early RA (or D3)-inducible gene in HL-60

cells using differential display,4,19 suggesting it had a broader

function than lymphocyte regulation. Studies of the BLR1

promoter identified a 50 17 bp GT box approximately 1 kb

upstream of the transcriptional start that conferred RA

responsiveness.20 Over-expression of BLR1 in HL-60 cells

enhanced ERK2 activation in both RA-untreated and treated

cells and accelerated RA- and D3-induced differentiation and

G1/0-arrest. Alternatively, BLR1 homologous knockout cells

failed to produce a sustained MAPK response, arrest or

differentiate. However, activation of MAPK signaling via

constitutively active c-Raf over-expression was able to rescue

the differentiation response. Furthermore, inhibiting MAPK

activation via a c-Raf inhibitor or siRNA knockdown resulted

in decreased BLR1 expression, and loss of differentiation

and arrest.21 Thus, RA-induced BLR1 expression appears to

contribute to sustained ERK2 activation and propulsion of

induced differentiation and G0 arrest.

To analyze RA-induced arrest and differentiation in HL-60

we integrated experimental and computational methods.

Many have suggested that the integration of experimental

and computational research is required to unravel critical

questions facing modern cell biology.22,23 Toward this end,

mathematical modeling has become an important tool to

understand biological complexity.24 A common method

of modeling biological pathways is to formulate coupled

ordinary differential equations (ODEs).25–36 However, to

formulate and solve ODE models, both the network struc-

ture and parameter estimates are required. Yeast two-hybrid

(Y2H),37–40 fluorescence resonance energy transfer (FRET)41

or chromatin immunoprecipitation (ChIP)-DNA microarray

techniques42–45 have all been used to identify network inter-

actions. Although error-prone,46,47 these techniques along

with traditional low-throughput immunoprecipitation, have

been the basis for most experimental network discoveries.

Computational motif discovery,48–50 high-throughput network

reconstruction51–54 or text processing,55 have also contributed

significantly to network identification. The integration of these

studies has led to comprehensive on-line network data-

bases such as STRING,56 NetworKIN57,58 or KEGG.59–61

However, while network structural knowledge continues to

evolve, the identification of model parameters remains a

fundamental challenge.

Many forms of experimental data can be used to estimate

the parameters and challenge physiochemical models. The

direct simulation of metabolite, mRNA and protein concen-

trations provides a direct means of incorporating absolute or

relative experimental measurements into the model identifica-

tion process. In this study, we made use of protein and mRNA

data from Western and Northern blot analysis. Blotting

techniques are common, low throughput strategies to measure

relative protein or mRNA levels. Relative levels of multiple

proteins and post-translational modifications can also be

measured by micro or multiplex Westerns,62–64 multi-parameter

fluorescence techniques,65,66 and absolute values by HPLC-mass

spectrometry.67,68 Data from high throughput RNA techno-

logies, e.g., oligonucleotide arrays,69–71 are also valuable for

constraining model parameters. Future data sets can be used

to challenge the current model structure. Paradoxically, the

best result of this type of challenge is catastrophic model

failure; qualitative model failures often suggest new biology

and helps focus experimental investigation. Thus, the real

value of physiochemical modeling is not constructing a model

that is consistent with current data. Rather, it is generating an

integrated platform that can be used to systematically check

consistency and help focus our understanding of complex

biology.

2. Results

In this study, we tested the sufficiency of the BLR1-MAPK

architecture to recapitulate persistent MAPK activation and

to predict qualitative molecular features of RA-induced arrest

and differentiation in HL-60. The model was organized around

the regulation of seven transcription factors by ERK1/2 and

PKCa and the subsequent RA-induced transcriptional program

(Table 1). The signaling and transcription factor network

architecture was assembled by aggregating information from

online databases such as NetworKIN57 and TRANSFAC72

along with experimental literature. Model parameters and

structures were re-identified to make the model HL-60 specific.

The composite network included steroid/hormone activated

nuclear transcription factor receptors.19,73 Yen and coworkers
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established that RA treatment induces BLR1 expression

through a non-canonical retinoic acid-responsive element (RARE)

in the BLR1 promoter.20 However, the mechanism by which

BLR1 drives c-Raf activation in HL-60 remains uncertain.

There is evidence suggesting that BLR1 acts as a Gq protein-

coupled receptor.74,75 Moreover, Kolch et al. showed that

protein kinase C activator (PKCa) phosphorylates c-Raf, at

several sites, in NIH 3T3 fibroblasts.76 Here we hypothesized

that RA-induced BLR1 activated PKCa through its Gq

protein-coupled receptor activity and PKCa in turn phosphoryl-

ates c-Raf. The c-Raf driven MAPK signal then activates

factors in the BLR1 transcriptional activator complex, resulting

in positive feedback. We encoded this connectivity by

re-identifying the Gq protein-coupled receptor model of Song

and Varner33 in HL-60. To complete the loop, MAPK family

members must be connected in some way with BLR1 expres-

sion. Components of the BLR1 transcriptional activator

complex e.g., NFATc3 and CREB can be phosphorylated by

ERK, JNK or p38 MAPK family members.77 In the model we

encoded the simplest route, namely the phosphorylation of

NFATc3 by ppERK1/2. The in vivo phosphorylation of

NFATc3 by ppERK1/2 has been shown in a variety of

blood cell types.77 PI3K/AKT/TOR mediated translation

initiation78–80 and G1/0 mammalian cell-cycle regulation81

were also included. All molecular interactions, including trans-

cription and translation, were modeled as elementary reactions

using mass action kinetics. Mass balance equations describing

the dynamics of network components were formulated as a

system of non-linear ODEs. The deterministic system of ODEs

modeled the average behavior of a cell culture population.

Thus, we ignored stochastic effects in this study; both experi-

mental and computational evidence suggest that cell popula-

tions act deterministically.82,83 While we assumed spatial

homogeneity, we differentiated between cytosolic, membrane

and nuclear localized processes using segregated compartments.

In total, the model described 729 species and 1356 interactions

(Fig. 1 and Table S1, ESIw). The model had 1462 unknown

parameters (1356 kinetic constants and 106 initial conditions).

The kinetic constants were of three types: association, dissocia-

tion or catalytic rate constants. Identification of these unknown

model parameters posed a significant challenge. We addressed

this challenge by identifying an ensemble of parameter sets

consistent with the training data instead of a single best fit

but uncertain parameter set. The ensemble of HL-60 models

recapitulated the positive feedback between BLR1 and

MAPK signaling. The ensemble of models was also capable

of making important predictions. For example, the model

ensemble correctly predicted Rb and p47phox regulation and

the correlation between p21-CDK4-cyclin D formation and

G0 arrest. Finally, we investigated the robustness of the

HL-60 network subjected to structural perturbations and

generated experimentally testable hypothesis for future

study. Model parameters and all model codes are available

in the ESI.w

2.1 Estimating an ensemble of HL-60 models

Signal transduction models often exhibit complex behavior.84–87

It is often not possible to identify model parameters, even with

extensive training data and perfect models.88 Thus, despite

identification standards89 and the integration of model identifi-

cation with experimental design,90 parameter estimation

remains challenging. In this study, an ensemble of plausible

model parameters was estimated from the study of Wang and

Yen.21 The data sets used for model training and validation

along with the model error are summarized in Table 2. We

used the time-course of MAPK activation and BLR1 expres-

sion following RA treatment to generate the HL-60 ensemble

(Fig. 3). In addition, measurements of the MAPK-BLR1

signaling axis in genetically engineered HL-60 cell-lines were

also used (Fig. 4). We employed a maximum likelihood

random-walk strategy similar to Battogtokh et al.91 to identify

the ensemble (Fig. 2A). We generated 2377 possible parameter

sets and selected the most likely sets for inclusion in the

ensemble (lowest mean squared error; N = 100). The use of

multiple parameter sets allowed for quantitative estimation of

the effect of parametric uncertainty.

The median binding affinity for interactions in the model

(calculated over the ensemble) was approximately 100 nM,

while the median kcat C 0.5 s�1. Thus, although no specific

Table 1 Transcription factors (TFs), corresponding kinases and trans-
cription factor target genes used in the transcription subnetwork. *TFs
for BLR1 interact with each other to promote BLR1 transcription
(AND relationship). Alternatively, the other TFs in the model were
assumed to independently drive gene expression of their target genes
(OR relationship). z Interaction determined via NetworKIN.57

TF Kinase Targets Citation

ETS ERK IRF 93,108
SRPK2
p47Phox
CD45
EIF2AK
SIIIp15

BRN — IRF 93
SRPK2
RhoGDI
p47Phox
CD45
EIF2AK
SIIIp15

CREB PKCa IRF 21,93z
SRPK2
RhoGDI
p47Phox
CD45
EIF2AK
SIIIp15
BLR1*

Oct1 — IRF 21,93
SRPK2
RhoGDI
p47Phox
CD45
EIF2AK
SIIIp15
BLR1*

NFATc3 ERK BLR1* 77

E2F — CycE, E2F 109

AP1 ERK CycD 108Pu
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constraint was applied, the parameters were physiologically

reasonable. Additionally, the correlation between ensemble

parameter sets showed that we sampled from at least two local

minima (Fig. 8). This suggested that the ensemble was diverse

and explored multiple possible local solutions. Seventy-two

percent of parameters in the ensemble had a CV of less than

100% (Fig. 2B). Thus, the order of magnitude of approxi-

mately three-quarters of the model parameters was identified

from the training data. Unconstrained parameters typically

involved processes not activated by RA or not associated with

BLR1 signaling.

2.2 The ensemble of HL-60 models recapitulated RA-induced

BLR1 expression and MAPK activation

Wang and Yen demonstrated that RA-induced BLR1 expres-

sion was necessary for sustained MAPK activation.21 In this

study, we explored whether a BLR1 control element was

Fig. 1 Overview of BLR1-MAPK positive feedback loop driving RA induced HL-60 arrest and differentiation. RA signals are intercepted by a

family of RAR/RXR nuclear receptors which in turn drive the expression of genes with RARE promoter elements. One key RA-regulated protein

is BLR1. BLR1, a putative G protein-coupled transmembrane surface receptor, drives an atypical sustained MAPK signal which in turn activates

the expression of genes required for the execution of the cell-cycle arrest and differentiation programs. MAPK also activates factors in the BLR1

transcriptional activator complex resulting in positive feedback.

Table 2 Quantification of model training and validation error. The normalized mean squared error (NMSE) or the fraction of correct predictions
was calculated over the parameter ensemble.

Species Simulation NSME or Fraction correct Purpose Citation

Fig. 3

BLR1 mRNA Panel A 1.80 Training 21
pRaf Panel B 0.83 Training 21
pMek Panel C 2.31 Training 21
pErk Panel D 10.58 Training 21
Fig. 4

BLR1 mRNA Panel A — Training 21
BLR1 mRNA Panel B — Training 21
pRaf Panel C — Training 21
Fig. 5

G1/0 Arrest Panel A — Validation 92
Rb mRNA Panel B 0.07 Validation 92
Rb protein Panel B 2.52 Validation This study
Table 3

p47Phox — 3/3 Validation 93
SPRK2 — 3/3 Validation 93
PRK — 2/3 Validation 93
Cyclin D — 1/3 Validation 93
RhoGDI — 1/3 Validation 93
CD45 — 1/3 Validation 93
IRF — 0/3 Validation 93
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sufficient for sustained MAPK activation. We incorporated a

putative BLR1-MAPK feedback architecture supported by

literature. BLR1 acted as a Gq protein-coupled receptor74,75

which activated c-Raf via PKCa. The MAPK signaling axis

was connected back to BLR1 expression through the regula-

tion of the BLR1 transcriptional activator complex.

The HL-60 connectivity recapitulated RA-induced sustained

MAPK activation and feedback between BLR1 and MAPK

(Fig. 3 and 4). The ensemble of HL-60 models, following the

addition of RA, captured the transient expression of BLR1

(Fig. 3A). BLR1 then drove c-Raf phosphorylation through its

hypothesized Gq protein-coupled activity (Fig. 3B). Activated

c-Raf was then free to activate downstream MAPK kinases

(Fig. 3C and D). The median training error for RA-induced

BLR1/MAPK signaling was B2, where ppERK1/2 was the

least constrained species (Table 2). An error of 1.0 indicated

the model accuracy was equal to experimental error (assumed

to be�20% for the training blots). Thus, the model recapitulated

three of the four species to within a neighbourhood around the

experimental error. The ensemble of models also recapitulated

aspects of BLR1/MAPK signaling following c-Raf and BLR1

perturbations (Fig. 4). Because the perturbation magnitudes

were not reported, we assumed�50% for all changes, excluding

the BLR1 homologous knockout. A 50% decrease in c-Raf

expression resulted in a significant reduction in BLR1 message

after 48 h of RA exposure (Fig. 4A). Conversely, a 50%

increase in c-Raf activation increased BLR1 transcription

(Fig. 4A). Removal of BLR1 blocked RA-induced c-Raf

Fig. 2 Parameter identification strategy. (A) Multiple Monte-Carlo

trajectories were used to randomly explore parameter space. The simula-

tion likelihood was used to generate a family of parameter sets used in the

simulation study. We generated N = 2377 possible parameter sets and

selected the 100 sets with the highest likelihood for inclusion in the

ensemble. (B) Coefficient of Variation (CV; standard deviation of a

parameter relative to its mean value) for the parameter ensemble used

in this study. A small CV suggested a parameter was tightly constrained

by the training data used for model identification. Black circles represent

the CV values for the full N = 100 sets used in the ensemble. The gray

circles indicate the CV values for a sub-ensemble (N = 47) selected from

the main ensemble and used in the robustness analysis study. CV values

were sorted from lowest to highest relative to the full ensemble.

Fig. 3 Model simulations over the parameter ensemble captured the sustained activation of MAPK following RA exposure (1 mM) at time = 1 h.

Dashed lines denote the simulation mean. Shaded regions denote one ensemble standard deviation. (A) Experimental and simulated levels of BLR1

mRNA following RA exposure. (B) Time profile of phosphorylated RAF1 activation following RA exposure. (C) Simulated versus measured

phosphorylated MEK activation following RA exposure. (D) Simulated versus measured phosphorylated ERK following RA exposure. Data was

adapted from Wang and Yen.21
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activation, while increased BLR1 expression increased c-Raf

phosphorylation (Fig. 4B). The BLR1-MAPK perturbation

simulations were qualitatively consistent with experimental

measurements (Fig. 4 bottom panel).

2.3 The HL-60 ensemble predicted RA-induced expression

shifts and qualitative features of G1/0 cell-cycle arrest

We tested the ability of the model to predict qualitative

features of RA-induced differentiation not included in the

training data (Table 2). The model ensemble predicted that

for Rb, a known cell-cycle regulator, protein levels decreased

following RA treatment (Fig. 5B). Down-regulation of the Rb

protein level was consistent with Western blot measurements,

performed in this study, 24 h after RA treatment (Fig. 5B,

lower inset). Interestingly, Rb protein levels decreased despite

a stable mRNA signal, as demonstrated by Northern blot

measurements taken from RA-induced HL-60 cells under

similar conditions92 (Fig. 5B, top inset). Ultimately, the model

suggested that competition for translational machinery resulted

in decreased Rb protein levels. One might consider measuring

either mRNA or protein levels to determine regulatory

changes in a cell population. However, mRNA and protein

levels are not always directly related. Our approach includes

both transcription of genes into mRNA and translation of

mRNA into proteins by directly modeling the mechanisms

involved in these processes. This detailed mechanistic approach

allowed us to directly simulate both mRNA and protein levels

and to identify possible kinetic differences between the trans-

cription and translation rates for proteins in the model. Thus,

the model correctly predicted an unanticipated experimental

observation. Other factors not present in the model, for

example, RA-induced degradation mechanisms, could also

play a role. In addition to shifts in Rb expression, the

model ensemble also predicted other RA-induced cell-cycle

responses. For example, the model ensemble predicted an

increased association of p21 with the CDK4-cyclin D complex

following RA-treatment (Fig. 5A). Because p21 is a known

cell-cycle inhibitor, increased p21-CDK4-cyclin D levels

may be representative of previous data on the kinetics of

RA-induced G1/0-arrest (Fig. 5A, inset). However, there was

some discrepancy between the previous arrest studies and the

cyclin D expression data as cyclin D expression levels were not

consistently predicted (Table 3).

Finally, we were interested in identifying the extent to which

the current network captured the global RA-induced differentia-

tion program. We predicted the expression of seven key

Fig. 4 The model recapitulated RA-induced feedback between BLR1

expression and MAPK activation. (A) Simulated BLR1 expression

normalized to wildtype (WT) with Raf inhibition (�, 50% decrease in

Raf initial condition) and overexpression (+, 50% increase in Raf

initial condition) 48 h after the addition of RA. (B) Simulated

phosphorylated Raf levels normalized to wildtype (WT) with BLR1

knockout (KO, BLR1 gene initial condition set to zero) and over-

expression (+, 50% increase in BLR1 gene initial condition) 12 h after

the addition of RA. (bottom panel) Corresponding model training

data adapted from Wang and Yen.21 First row: effect of Raf siRNA

(left) and overexpression (right) on the expression of BLR1 (Northern).

Second row: effect of BLR1 knockout and overexpression of the level of

phosphorylated Raf (S621).

Fig. 5 Computationally predicted markers of RA-induced phenotypic

shift. (A) Predicted p21-CDK4-cyclinD complex formation was con-

sistent with the percentage of G1/0-arrested cells (insert). (B) Effect of

RA on Rb expression. Rb transcript (top) remains constant while Rb

protein (bottom) decreases. Rb transcript consistent with Northern

analysis (top insert) while Rb protein levels were consistent with

Western analysis (bottom insert). G1/0-arrest data was reproduced

from Yen et al., Exp. Cell Res., 165: 193–151 1986. Rb Northern data

was reproduced from Yen et al., Eur. J. Cell Biol., 65: 103–113 1994.

Rb Western analysis was performed in our lab as described in the

Experimental section. Dashed lines denote the simulation mean.

Shaded regions denote one ensemble standard deviation.
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proteins identified as being commonly regulated in HL-60

differentiation by Western blot analysis.93 These protein level

measurements were not used in the model training. Unlike the

cell-cycle, the model was not tailored to specifically account

for the detailed mechanisms involved in regulating each of

these proteins. Rather, regulatory information was limited to

the identification of putative transcription factors (TRANSFAC72)

and their phosphorylation dependent activation (NetworKIN57).

The expression shift (up, down or unchanged) at three time

points (3, 12 and 24 h) post RA-treatment was compared with

model simulations. In total, the BLR1-MAPK control element

was responsible for approximately half of the significant

RA-induced protein shifts (Table 3). A completely random

assignment of expression shift would be correct only one out

of three times, indicating the model prediction was above

random. For some key proteins, the given network structure

and kinetics, although relatively limited, was sufficient to describe

the expression profile. For example, the model ensemble

consistently predicted the experimentally observed up-regulation

of p47Phox, a component of oxidative metabolism important

in the functional differentiation of mature myeloid cells.94

Consistently missed predictions, like IRF, indicated the involve-

ment of important regulatory components beyond RA activated

nuclear transcription factors and the MAPK cascade.

2.4 Robustness analysis identified essential nodes in

RA-induced differentiation of HL-60

Signal transduction architectures often contain redundancy,

feedback and crosstalk. These and other features make signaling

networks robust to perturbation. However, robust networks

which are highly optimized for specific tasks may also contain

hidden fragility.95 Here, we generated falsifiable predictions

about the fragility or robustness of structural features of the

HL-60 network using robustness analysis. We calculated the

direction of RA-induced concentration shifts for 729 markers

following the deletion of 106 network components. The struc-

tural perturbations included the deletion of 80 constitutively

expressed proteins, the genes for 20 regulated proteins or the

removal of calcium, ATP, etc. Robustness coefficients

were calculated to quantify the effect of perturbations where

values 4 1 indicated a marker increased compared to wild-

type and values o 1 indicated a marker decreased. We

identified markers that were statistically significantly shifted

up (red) or down (blue) over the ensemble (Fig. 6A). We

then rank-ordered the results from least (rank = 1) to most

(rank = 106) effective knock-down (x-axis) and least (rank = 1)

to most (rank = 729) affected marker (y-axis). Effectiveness

was defined as the number of expression shifts caused or the

number of perturbations a marker was affected by.

The majority of deletions resulted in only small changes in

the network output following the addition of RA. Approxi-

mately 80% of the entries in the robustness matrix were equal

to zero indicating no significant shift (Fig. 6A, green). For

those species that did influence the network state, there was

approximately a 30% correlation between connectivity and

influence. For example, deletion of RNA polymerase (RNAp)

resulted in the largest number of statistically significant shifts,

468 or 64% of the network components. RNAp was also the

most connected component with 191 connections (connected

to approximately 26% of the network species). However, the

Spearman rank correlation between connectivity and knock-

down effectiveness was only 0.32. Globally, the largest impact

was made by removing RNAp as well as components of

translation initiation. Interestingly, while deletion of transla-

tion components affected many markers, there were only a

limited number of perturbations that impacted translation.

Deletion of other structural elements withmuch lower connectivity

also produced global variation. For example, removal of

BLR1 or the BLR1 transcription factor complex affected

on average 280 markers, or 38% of the network. BLR1 or

components of its transcriptional activator complex had an

average connectivity of 11, or just 1.5% of the network. Small

molecules such as calcium ions, ATP and GDP were also struc-

turally critical, on average effecting 185 markers. Interestingly,

MAPK species appeared nearly midway through the ordered list

with ERK at rank 43/106 and MEK at rank 46/106. The most

influential MAPK component was c-Raf at rank 59/106.

No single structural deletion led to enhanced differentiation

of HL-60 following RA exposure. We considered three markers

to represent a significant tendency towards HL-60 differentiation:

ppERK1/2 represented sustained MAPK signaling; the

p21-CDK4-cyclin D complex represented initial aspects of cell-

cycle arrest; p47phox expression represented early aspects of the

inducible reactive oxygen species machinery. Of the 106 deletions,

none consistently up-regulated all three markers. Twenty-two

network components (or 21% of those tested) were essential for

differentiation (Fig. 6B). Sixteen of these involved translation and

RNAp. The remaining six targets were members of the BLR1

transcription factor complex including RAR/RXR. Analysis of

the shifts for the individual markers following the structural

perturbations suggested functional relationships in the network.

For example, deletion of 32 components (or 30% of those

explored) reduced ppERK1/2 formation (Fig. 6B, top panel).

These included BLR1, RXR/RAR, proteins in the Gq protein-

coupled cascade connecting BLR1 with c-Raf, upstream kinases

and MAPK phosphatases. Thirty-six perturbations (or 34%

of those explored) influenced p21-CDK4-cyclin D forma-

tion (Fig. 6B, center panel). In addition to those perturbations

associated with ppERK1/2, deletion of components involved

with cyclin D expression also influenced p21-CDK4-cyclin D

levels. For example, deletion of the phosphatase responsible

for dephosphorylating AP1 (transcription factor for cyclin D)

increased p21-CDK4-cyclin D levels. Twenty-seven perturba-

tions (or 25% of those explored) shifted p47Phox expression

Table 3 Predicted and measured RA-induced protein expression
shifts at 3, 12 and 24 h after the addition of 1 mM RA to exponentially
growing HL-60 cells. Plus (+) indicates that the model and experiment
agreed on the statistically significant direction of the shift (up, down or
no change). Minus (�) indicates no match. The data was reproduced
from Yen and coworkers.93

Protein 3 h 12 h 24 h

p47Phox + + +
SPRK2 + + +
PRK + + �
RhoGDI + � �
Cyclin D � + �
CD45 + � �
IRF � � �
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(Fig. 6B, bottom panel). These structural perturbations were

largely associated with the regulation of the transcription factors

driving p47Phox expression.

2.5 Robustness coefficients identified distinguishable species

and functional subnetworks

Direct observation of robustness coefficients for functional

markers, while useful, provided very specific information

about model behavior. Global analysis of the robustness

coefficients provide a systems-level insight into the RA-induced

HL-60 differentiation program. For our global analysis, we

considered the log of the robustness coefficients (LRC) as the

primary metric for measuring response to species knockouts.

An LRC of +1 represents an order of magnitude increase from

wild-type while a value of �1 represents a ten-fold decrease.

The vectors in LRC space provide information on both the

Fig. 6 Robustness analysis. Each non-zero initial condition (conserved species) was removed, the model was run to approximate steady state and

RA was added at time = 1 h. The area under the curve was calculated for each model species. (A) Qualitative coupling results. Removed species

are along the x-axis from lowest to largest impact and observed model species are along the y-axis from least to most effected. Blue or red markers

depict a statistical decrease or increase, respectively, in the area under the curve within a 90% confidence interval. (B) Coupling coefficients

(area under the curve from the simulation with species removed over wild-type simulation) for three markers of differentiation: phosphorylated

ERK, p47phox expression and p21-CDK4-cyclin D complex. Red circles indicate knock-downs which demonstrated a statistical decrease in all

three markers: (left to right) RAR, RXR, BLR1, NFATc3, RNAp, eIF4E, Oct1, CREB, 40s and 60s ribosomes, met tRNA, EIF2, PABP, eIF4A,

B, G, H, and eIF1, 1A, 3, 5, 5B. (C) Dendrogram of knockout species. The distance metric was the Euclidean norm and the linkage function was

the inner square product (variance minimization algorithm). Each additional cluster is chosen to reduce the variance (y-axis). The color-threshold

was chosen to be 200 which is 50% of the remaining variance after the initial division. General species and/or functions are indicated below each

colored group. (D) Distinguishability is defined as the magnitude of the orthogonal components for all knockout species considered. Species are

ordered from largest to smallest magnitudes. Red markers indicate species which are statistically significantly above 5. Specific species are identified

as shown. Error bars show one standard deviation over the parameter ensemble.
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direction and the magnitude of a given knockout over all

729 markers. We constructed a dendrogram by separating the

species knockouts into clusters which minimized the variance

in LRC (Fig. 6C).

The most distinct separation was between infrastructure

species, e.g.RNAp and components of the translation initiation

complex, and the remaining signaling species. The segregation

of infrastructure from signaling species reduced the initial

variance by approximately two thirds (Fig. 6C colored groups).

Clusters beyond the initial segregation represented distinct

functional groups; cell-cycle, the MAPK-BLR1 control element,

and transcriptionally regulated markers. Interestingly,

although functional relationships emerged in each cluster,

the correlation between elements in a cluster was minimal; of

the 11 130 possible knockout pairs only 32 returned correla-

tion coefficients above 0.95.

Approximately 50% of the responses following structural

perturbation to the HL-60 network were redundant and

shared by two or more structural perturbations. We computed

the magnitude of the orthogonal component of these changes

in LRC space for each knockout over the ensemble (Fig. 6D).

The orthogonal component was used to establish a unique

marker that could be associated with the different structural

perturbations. Interestingly, all knockouts were found to

have orthogonal components with magnitudes greater than

one with a 95% confidence. This suggested that each of the 106

knockouts produced a unique order of magnitude, or more,

shift from wild-type. Furthermore, half were found to be

statistically significantly above five (Fig. 6D red).

3. Discussion

A grand challenge in tumor biology continues to be an under-

standing of the regulation of cell division and differentiation.

The primary obstacle to understanding these programs has

been their complexity and scale. Interrogating these systems

species by species is simply intractable. A computational

approach that allows in silico analysis versus experimental

surveying would be a tool of widespread utility to push past

this hurdle. Our ultimate objective is to develop a cell-type

agnostic mathematical model of hormone/growth factor regulated

cell division and differentiation. However, as an initial step

towards this goal we focused on the archetypal in vitro cell line

HL-60. Upon RA treatment, HL-60 undergoes growth arrest

and myeloid differentiation. Our basic hypothesis has been

that RA-induced cell differentiation is regulated by BLR1

which signals through a RAF/MEK/ERK axis. In turn, the

MAPK cascade activates a limited number of transcription

factors who then drive the expression of proteins mediating the

phenotypic shift.20 The current network incorporates these

basic signaling features. We established that a literature-based

positive feedback loop between BLR1 and MAPK signaling

was sufficient to generate the BLR1 expression and MAPK

activation profiles observed experimentally (Fig. 3 and 4).

Furthermore, we demonstrated that the current model was

capable of making important predictions including the regula-

tion of Rb and p47phox along with the correlation between

the p21-CDK4-cyclin D complex and G0 arrest.

Robust networks or systems maintain performance despite

structural or operational perturbations. In this study, we

performed robustness analysis to estimate which architectural

features of the HL-60 network promoted or destroyed differentia-

tion. This analysis also generated falsifiable predictions on the

role of individual model species and global insights into the

network itself. For example, the core translation machinery

was a robust yet fragile subsystem. Deletion of translation

components effected roughly 60% of the entire network

(Fig. 6A). However, translation was robust in that removal

of other network species had little impact on its function.

The majority of translation, save met-tRNA and eIF5, were in

the lower third of effected markers. However, while necessary, the

translation subnetwork may not be experimentally interesting.

To focus on phenotypic conversion we considered three

markers of programmed differentiation and G1/0-arrest:

ppERK1/2, p21-CDK4-cyclin D and p47phox. These markers

were representative of sustained MAPK activity, cell-cycle

arrest and early ROS machinery, respectively. Simulations of

RA-induced phenotypic change in the wild-type model showed

these markers were reliable compared to experimental data.

None of the structural perturbations considered consistently

up-regulated all three markers. This suggested that no single

structural perturbation enhanced the effect of RA and that,

given the current network, no components were blocking

differentiation. Structural perturbations that consistently

down-regulated all three markers were considered targets

that would prevent differentiation. Again the translational

core machinery along with RNAp proved to be necessary

for differentiation. Beyond these global components, we also

found that deletion of RAR, RXR, BLR1, NFATc3, Oct1 and

CREB (Fig. 6B) also down-regulated differentiation. RAR

and RXR were obvious candidates for mitigating the RA

differentiation response.96 Removal of BLR1 has previously

been shown to prevent differentiation21 and was indeed a

motivating factor in the original model design. NFATc3,

Oct1, and CREB were all required for transcriptional activation

of the BLR1 gene and were therefore of similar importance.20

While this study identified key differentiation regulators, the

list was not complete. For example, Yen et al. showed that Raf

and MEK activation was also required for differentiation.21,97

In the current network, ERK deletion repressed only two

(ppERK1/2 and p21-CDK4-cyclin D) of the three differentia-

tion markers, not affecting p47phox. While ERK may regulate

p47phox expression, it may also impact inducible ROS

response at other points in the network. A more detailed

model, including other differentiation markers, is required to

fully unravel the key species in the differentiation program.

We demonstrated that there was a limited relationship

between the direct connectivity of a node and the functional

consequences of its removal. It has been suggested that many

biological networks, including protein–protein interaction

networks, have a non-random scale-free or hub and spoke

topology.98 Scale-free networks contain many nodes with very

few connections and a small number of highly connected

nodes producing a power law connectivity distribution. In

scale-free networks connectivity has been experimentally related to

biological functions, such as mutation lethality in the S. cerevisiae

protein–protein interaction network.99 However, increasingly
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persuasive evidence suggests a divergence between topological

metrics like connectivity and importance.100–102 While the

HL-60 model architecture was approximately scale free (Fig. 7),

we observed a poor relationship (Spearman rank = 0.32)

between the connectivity and influence of network nodes.

Furthermore, the unique response to structural perturbation

is linear unlike the degree distribution (Fig. 6D); one would

expect an exponential decrease in response if connectivity

alone dominated. Thus, both interaction topology and

dynamics must be considered in complex biological programs

such as differentiation.

The initial model presented here was a step towards a

systematic framework for the organization and prediction of

hormone-induced programmed differentiation. However, there

are several issues that should be addressed in subsequent

studies. For example, a common criticism of large complex

mathematical models is the poorly characterized effect of

model uncertainty. Model uncertainty has two forms. Structural

uncertainty is uncertainty in the biology, while parametric

uncertainty is incomplete knowledge of model parameters. We

used an ensemble approach to overcome parametric uncertainty.

Ensemble approaches have successfully addressed uncertainty in

systems biology and other fields like weather prediction.33,91,103–105

Their central value is the ability to constrain model predictions

despite uncertainty. For example, Sethna and coworkers

showed in a model of growth factor signaling that predictions

were possible using ensembles despite incomplete parameter

information (sometimes only order of magnitude estimates).85

They further showed that model ensembles were predictive

using many different mathematical models.106 Consistent with

these previous ensemble studies, the HL-60 ensemble predicted

the expression of a panel of markers previously found to be

important.93 These predictions were successful despite the large

uncertainty in the model parameters. However, the prediction

error rate was significant. This suggested that structural uncertainty

was also important. It is likely that structural uncertainty was

present both in terms of missing interactions (false negatives)

and incorrect interactions (false positives). We partially mitigated

structural uncertainty by associating each interaction with

experimental studies or previously validated network models.

However, in some cases connectivity had to be hypothesized

from literature. For example, the connectivity between BLR1

signaling and c-Raf activation was hypothesized from studies

in fibroblasts. G coupled-protein receptor (GCPR) signaling

and the subsequent activation of PKCa was modeled as a

sequential series of activating events. This basic architecture

was sufficient to generate an RA-induced sustained MAPK

signal. Furthermore, we demonstrated that all of the 106 con-

served model species played a unique functional role. Removal

of any of these resulted in an order of magnitude, or more,

shift from wild-type that was orthogonal to all other knockout

species (Fig. 6D). Despite the apparent importance of all

modeled species, the exact connectivity remains to be validated

in HL-60. To validate the proposed architecture, our laboratory

is employing biochemical strategies to characterize intermediate

complexes in the BLR1 signaling axis. False negative structural

defects also represent a significant challenge. Current com-

putational and biological limitations render a full cell model

intractable. Thus, the choice of scope is an important aspect to

modeling protein interaction networks. In this study, we focused

on MAPK-BLR1 positive feedback. Inclusion of other signaling

pathways or a more advanced transcriptional regulation net-

works will be required to capture the RA-induced expression

shifts missed here as well as other HL-60 differentiation data. The

framework provided in this study is amenable to expansion. The

inclusion of more experimental data and a more detailed network

architecture could improve the predictive power of the model and

provide an in silico tool for understanding hormone-induced

programmed differentiation.

4. Conclusions

In this study, we presented a mechanistic mathematical model

of RA-induced differentiation of the hematopoietic cell line

HL-60. We demonstrated that a BLR1-MAPK positive feedback

mechanism was sufficient for sustained RA-induced MAPK

activation. Furthermore, we demonstrated that, while limited

in biological scope, this control element was sufficient to describe

the transcriptional regulation of several proteins found to

be important in HL-60 differentiation. Through in silico

knockouts we also showed the model’s ability to generate

Fig. 7 The HL-60 network architecture exhibits scale free properties.

Fig. 8 Correlation between parameter sets in the HL-60 ensemble.

Regions of red indicate high correlation, while blue regions denote low

correlation.
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falsifiable predictions. For example, we predicted that no

knockout of the species considered resulted in an increased

differentiation. Structurally, the HL-60 differentiation net-

work demonstrated the divergence between simple topological

metrics like connectivity and biological function. Interestingly,

we found that conserved species, the majority of which have

low connectivity, contributed a unique and distinguishable

response to RA treatment. Finally, a systematic clustering

analysis identified distinct subnetworks important to the

differentiation response. One of these subnetworks, the protein

synthesis/translation subnetwork, exhibited robust yet fragile

behavior. While perturbations to translation resulted in

general program failure, translation itself was robust to outside

perturbation. This is a prime example of how biological net-

works are structured to protect against catastrophic failure.

We believe that this study is a significant first step in providing

a computational tool for understanding the pathways involved

in hormone-induced programmed differentiation.

5. Experimental

5.1 Cell culture, RA treatment and western blot analysis

Human myeloblastic leukemia cells (HL-60) were grown in a

humidified atmosphere of 5% CO2 at 37 1C and maintained

in RPMI 1640 supplemented with 5% fetal bovine serum

(Invitrogen). The cells were cultured in constant exponential

growth as previously described.107 The experimental cultures

were initiated at a cell density of 0.2� 106 cells ml�1. RA (Sigma)

was dissolved in 100% ethanol with a stock concentration of

5 mM and used at a final concentration of 1 mM as previously

described.107 For Western blot analyses, 1.2 � 107 cells were

lysed using 400 ml of M-Per lysis buffer (Pierce) and lysates

were cleared by centrifugation at 16 950 � g in a microcentrifuge

for 20 min at 4 1C. Equal amounts of protein lysates (20 mg)
were resolved by 8% SDS-PAGE at 90 volts, transferred to nitro-

cellulose membranes and probed with a primary and secondary

antibodies for visualization. Antibody solutions contained 10 mL
of the appropriate antibody and 1 g bovine serum albumin

dissolved in 20 mL 1X TBS, 0.1% Tween. The primary Retino-

blastoma (Rb) antibody was purchased from Zymed. A GAPDH

antibody (Cell Signaling, Beverly, MA) was used to check uniform

loading. Anti-rabbit and anti-mouse horseradish peroxidase-

linked secondary antibodies (Cell Signaling, Beverly, MA) were

used for visualization.

5.2 Formulation and solution of the model equations

The HL-60 model was formulated as a set of coupled ordinary

differential equations (ODEs):

dx

dt
¼ S � rðx; pÞ x ¼ ðt0Þ ¼ x0 ð1Þ

The symbol S denotes the stoichiometric matrix (729 � 1356).

The quantity x denotes the concentration vector of proteins or

protein complexes (729 � 1). The term r(x,p) denotes the

vector of reaction rates (1356 � 1). Each row in S described a

protein while each column described the stoichiometry of

network interactions. Thus, the (i, j) element of S, denoted

by sij, described how protein i was involved in rate j. If sij o 0,

then protein i was consumed in rj. Conversely, if sij 4 0,

protein i was produced by rj. Lastly, if sij = 0, there was no

protein i in rate j.

We assumed mass action kinetics for each interaction in the

network. The rate expression for protein–protein interaction

or catalytic reaction q was given by:

rqðx; kqÞ ¼ kq
Y

j2fRqg
x
�sjq
j ð2Þ

The set {Rq} denotes reactants for reaction q. The kq term

denotes the rate constant governing the qth interaction. Lastly,

sjq denotes stoichiometric coefficients (elements of the matrix S).

We treated every interaction in the model as non-negative. All

reversible interactions were split into two irreversible steps.

The mass action formulation, while expanding the dimension of

the model, regularized the mathematical structure. The regular

structure allowed automatic generation of the model equations

using the UNIVERSAL code generation tool (http://code.

google.com/p/universal-code-generator/). Mass-action kinetics

also regularized the model parameters. Unknown model para-

meters were one of only three types: association, dissociation or

catalytic rate constants. Thus, although mass action kinetics

increased the number of parameters and species, they reduced

the complexity of model analysis. In this study, we did not

consider intracellular concentration gradients. However, we

accounted for membrane, cytosolic and nuclear species by

explicitly incorporating separate well mixed compartments.

5.3 Simulation protocol

A pseudo steady state was used as the starting point (t = 0 h)

for all simulations presented in this study. For example, when

calculating the response of HL-60 to the addition of RA, we

first ran the model to steady state and then simulated the

addition of RA. We assumed that a pseudo steady state was a

reasonable approximation of the population average behavior

of HL-60 growing in the exponential phase. The steady state

was estimated numerically by repeatedly solving the model

equations and estimating the difference between two subsequent

time points:

8x(t + Dt) � x(t)82 r e (3)

The quantities x(t) and x(t + Dt) denote the simulated concen-

tration vector at time t and t+ Dt, respectively. The quantity 8�82
denotes the L2 vector norm. In this study, we used Dt = 50 h of

simulated time and e = 0.01 for all simulations.

5.4 Estimating an ensemble of model parameters

The 1462 unknown model parameters (1356 kinetic constants

and 106 non-zero initial conditions) were estimated using the

experimental studies performed by Wang and Yen.21 The

experimental work focused on the existence of a BLR1-MAPK

positive feedback loop and included time course data and

genetically engineered cell-lines to capture perturbations in

both the BLR1 and MAPK signaling axis. The initial para-

meter guess p0 was used to generate an ensemble of parameters

that maximized the likelihood of describing the training data.

The difference between the measured and simulated value of

species j at time or condition i, denoted by x̂i,j and x(pk)i,j
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respectively, was quantified by the normalized mean squared

error, Z:

ZðpkÞ ¼
1

N

X
i;j

ðx̂i;j � bjxðpkÞi;jÞ
2

ŝ2i;j
; ð4Þ

where the sum was carried out over all species j and observa-

tions i. The quantities N and ŝi,j denote the total number of

observations and the measurement error of species j at time

or condition i, respectively. If no experimental error was

reported, we assumed a standard deviation equal to 10% of

the reported observation. In cases where the quantification

of the stimulus or observation was unclear an augmented

error of 20–100% was applied to compensate for the added

uncertainty. The scaling factor bj was chosen to minimize

the normalized squared error for a given experiment and

species j:104

bj ¼

P
i

ðx̂i;jxi;j=ŝ2i;jÞP
i

ðxi;j=ŝi;jÞ2
: ð5Þ

Because of the scaling factor, the concentration units on

simulation results were arbitrary (consistent with the arbitrary

units associated with the majority of the training data). There

was insufficient training data to properly constrain the

model parameters. To account for parametric uncertainty, a

Monte-Carlo approach similar to Battogtokh et al.91 was used

to generate an ensemble of parameters. Consider a set of

model parameters pi. Let the likelihood that model simulations

with parameters pi describe the training data be defined as:

fðpiÞ � exp
�ZðpiÞ
T

� �
; ð6Þ

where Z(pi) denotes the simulation error associated with para-

meter set pi. The quantity T is a parameter used to tune the

rate of acceptance. Further, let the acceptance probability,

Pðp0 iþ1jpiÞ, of a new parameter set, p0 iþ1, be
fðp0 iþ1Þ
fðpiÞ

if

fðp0 iþ1ÞofðpiÞ and 1 otherwise. P denotes the probability

that p0iþ1 will be accepted as the starting point for consecutive

Monte-Carlo steps. Parameter sets were generated by applying

a small additive random perturbation in log space:

log p0iþ1 ¼ log pi þNð0; nÞ ð7Þ

where N(0,n) is a normally distributed random number with

zero mean and variance n. The perturbation was applied in log

space to account for the large variation in parameter scales

and to ensure positivity. Monte-Carlo trajectories were generated

starting from p0 where n= 0.05 or 0.1 and T = 1 or 0.5. The

autocorrelation function of each trajectory was calculated.

The number of Monte-Carlo steps between parameter sets

which were added to the ensemble was taken to be the number

of steps after which the autocorrelation function dropped to

5% of its initial value. This was done to ensure independence

between sets in the ensemble. To compensate for noise in

the autocorrelation function an exponential fit was applied.

We generated 2377 possible parameter sets from which we

selected the 100 sets with the highest likely-hood for inclusion

in the final ensemble.

5.5 Robustness analysis of the HL-60 architecture

Robustness coefficients of the form:

aði; j; t0; tf Þ ¼
Z tf

t0

xiðtÞdt
� ��1 Z tf

t0

x
ðjÞ
i ðtÞdt

� �
ð8Þ

were calculated to understand the regulatory connectedness of

the HL-60 network. The robustness coefficient a(i,j,t0,tf) is

the ratio of the integrated concentration of a network output

in the presence (numerator) and absence (denominator) of

structural or operational perturbation. Here t0 and tf denote

the initial and final simulation time, respectively. The network

output was taken to be the network states. The quantity

i denotes the index for a marker or reference species while

j denotes the perturbation index, respectively. If a(i,j,t0,tf)4 1,

then the perturbation increases the output concentration.

Conversely, if a(i,j,t0,tf) { 1 the perturbation decreases the

output concentration. Lastly, if a(i,j,t0,tf)B 1 the perturbation

does not influence the output concentration. Because of compu-

tational constraints, we calculated the robustness coefficients

using a sub-ensemble (N = 47) selected from the full ensemble

(N = 100). The sub-ensemble had a CV distribution similar

to the full ensemble (Fig. 2B, circles). While we sampled a sub-

ensemble, this subset had a diversity similar to the full ensemble.

Thus, we expect results calculated using the sub-ensemble will

be similar to the full ensemble.

5.6 Species clustering and dendrogram

A dendrogram was derived by considering each of the 106

knockouts as variables and the average log of robustness

coefficient (LRC) for each of the remaining 728 species as

observations. We used the Euclidean norm in LRC space as

the distance metric. The linkage function (objective function

for identifying variable clusters) was the inner squared distance

(minimum variance algorithm). The Statistical Toolbox of Matlab

(TheMathworks, Natick,MA) was used to generate the distances,

linkages and the final dendrogram.

5.7 Identification of distinguishable species

Robustness coefficients were used to rank-order knockout experi-

ments in terms of the greatest unique responses and to identify

species (network nodes) which were linearly distinguishable.

As described above, 106 in silico knockouts were performed.

The response of these knockouts was measured in terms of

robustness coefficients. Here we considered the log of the

robustness coefficients (LRC) as the primary metric for measuring

response. The LRC has desirable linear properties, such that no

response (no change in trajectories from wildtype) returns a value

of zero and similar negative and positive responses have different

directions but similar magnitudes:

F(0) = 0

|F(X)| = |F(�X)|.

We considered the unique component of the response to be the

orthogonal component in LRC space and the magnitude of

the response to be the Euclidean norm. The orthogonal

components and their magnitude were identified for each

parameter set in the ensemble by first choosing the knockout
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with the greatest magnitude, x1, and placing it in the empty

set V. The knockout x1 defines the orthogonal directions in

LRC space. We then calculated the orthogonal components

for all remaining knockouts relative to x1, and added the

knockout species with the greatest orthogonal magnitude

to set V. In general, the components of all remaining xi ortho-

gonal to set V were calculated and the largest was moved into set

V. This process was continued until all knockout species, xi were

added to set V. Mathematically, two species were considered

distinguishable if, and only if, they were linearly independent

(the orthogonal components were non-zero). We considered a

threshold value of one or five and performed a student t-test

(Matlab Statistical Toolbox, The Mathworks, Natick, MA) to

identify which species had orthogonal components above the

threshold with a 95% confidence over the ensemble.
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