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Bearing fault diagnosis based on
multi-scale permutation entropy
and adaptive neuro fuzzy classifier

Rohit Tiwari, Vijay K Gupta and PK Kankar

Abstract

The rolling element bearing is among the most frequently encountered component in a rotating machine. Bearing fault

can cause machinery breakdown and lead to productivity loss. A bearing fault diagnosis method has been proposed based

on multi-scale permutation entropy (MPE) and adaptive neuro fuzzy classifier (ANFC). In this paper, MPE is applied for

feature extraction to reduce the complexity of the feature vector. Extracted features are given input to the ANFC for an

automated fault diagnosis procedure. Vibration signals are captured for healthy and faulty bearings. Experiment results

pointed out that proposed method is a reliable approach for automated fault diagnosis. Thus, this approach has potential

in diagnosis of incipient bearing faults.
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1. Introduction

Automated fault diagnosis plays an important role in
industries by avoiding catastrophic accidents and
machinery malfunction. In order to keep machines safe
many fault diagnosis techniques have been developed in
which vibration signal analysis is one of the most widely
used techniques. Vibration signal analysis can be done in
time, frequency and time-frequency domains.

Vibration signals often exhibit nonlinearity due to
factors of nonlinear stiffness and clearance of bearing.
For this reason, such systems can only be described by
nonlinear dynamic models. Commonly used signal pro-
cessing techniques in time and frequency domains are
designed for linear vibration signals. On the other
hand, various nonlinear parameter estimation tech-
niques can be a possible substitute for fault associated
feature extraction in complex bearing vibration signals.
Combined parametric effects have been analyzed to pre-
dict the dynamic response of a rotor-bearing system
using a response surface method (Kankar et al., 2012a).

Many nonlinear parameter identification schemes
have been applied to fault diagnosis. Yang et al.
(2007a) have applied correlation dimension in such
cases, moreover this technique is not suitable for
real time monitoring due to the demand of very long
data sets. Appropriate entropy is the another entropy

which was exploited to access the status of rotary
machines but is not preferred due to its dependency
on record length and lower estimation value
(Richman and Moorman, 2000). To overcome this
shortcoming, a sample entropy is introduced which
attracted a lot of attention. Costa et al. (2002, 2005)
have carried out a multi-scale entropy (MSE) analysis
of biological signals. Then, Zhang et al. (2010) used
MSE in bearing fault diagnosis and identification of
fault severity and showed the high accuracy of this
enhanced method to evaluate the regularity of complex
time series. Permutation entropy (PE) was introduced
by Bandit and Pompe (2002), for the complexity ana-
lysis of time domain data by using the comparison of
neighboring values. The PE method was successfully
applied in numerous applications like electroencephal-
ography (EEG) signal analysis (Bruzzo et al., 2008),
tool breakage detection in end milling (Li et al., 2008)
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and complexity of a power electronics based system
(El-Mezyani et al., 2012). Time series data captured
from mechanical systems are complex in nature and
contain multiple temporal scale structures. Therefore,
the PE based on a single scale structure shows ineffi-
cient analysis results on these complex data. To avoid
such a problem, Aziz and Arif (2005) have introduced
the concept of multi-scale permutation entropy (MPE)
to estimate entropy across multiple scales. Wu et al.
(2012) have applied MPE and a support vector machine
for bearing fault diagnosis.

After feature extraction, a classifier is exploited to
achieve automated fault diagnosis. Various classifica-
tion techniques have been applied to bearing fault diag-
nosis such as support vector machines (SVM) (Yang
et al., 2007b; Kankar et al., 2011a,b; Kankar et al.,
2012b) and neural network (NN) (Vyas and Kumar,
2001; Samanta and Al-Balushi, 2003; Kankar et al.,
2011a,b, 2012b). Kankar et al. (2013) have presented
a feature-recognition system for rolling element bear-
ings fault diagnosis using cyclic autocorrelation of raw
vibration signals. Fuzzy logic is also employed for fault
diagnosis but it lacks learning ability. To overcome this
shortcoming fuzzy logic is combined with NNs to
obtain a hybrid model which contains the ability of
both fuzzy logic and NNs. The adaptive neuro fuzzy
classifier (ANFC) is such a system in which NNs will
provide learning ability to fuzzy logic and fuzzy logic
will offer a high level IF-THEN rule thinking to deal
with system uncertainty. The ANFC is successfully
implemented in image recognition, machine fault diag-
nosis and disease diagnostics.

In the present work, vibration signals for healthy and
defective bearings are considered. Three defects have
been simulated on bearings which include inner race
defect (IRD), outer race defect (ORD) and ball defect
(BD). Then a new technique using MPE and ANFC is
utilized for bearing fault diagnosis. Firstly the MPE is
estimated for 16 scales and these values are partitioned
into training and test set for fault classification using
ANFC. But before dividing the data in to training and
test set the mean value is calculated to reduce the dimen-
sion of data. The diagnosis results show that this method
is an effective and reliable technique for machine condi-
tion monitoring. When compared with a time domain
statistical feature method this method displays a better
performance in terms of accuracy.

2. Multi-scale permutation entropy

The physical and biological system shows nonlinear
and complex behavior, time series complexity analysis
of such a system is very useful. The MPE is employed
by Aziz and Arif (2005) for the estimation of complex-
ity parameters. The MPE calculates PE over multiple

scales to avoid contradictory results by a single scale
entropy. In the case of Shannon entropy, the sequential
relation between values of the time series is neglected.
This is more useful for a linear system while MPE
employs the comparison of neighboring values for ana-
lysis of complex time domain data. This property of
MPE makes it more useful for the analysis of non-sta-
tionary signals.

Firstly, time series data t¼ {t1, t2 ,. . . , tN} is con-
verted into multiple coarse grained time series. This
can be done by taking the average of the data inside
non overlapping windows of length t. coarse grain time
series shown in Figure 1 can be expressed using follow-
ing equation.

cðl Þn ¼
1

l

Xnl
i¼ðn�1Þlþ1

ti ð1Þ

Now from each coarse grain series the PE is esti-
mated (Costa et al., 2002). PE is the function of l.

Therefore, procedure for PE is given as

. Course grained time series is transformed in to m
dimensional space

cmn ¼ c nð Þ, c nþ dð Þ . . . c nþ m� 1ð Þð Þd½ � ð2Þ

where m is embedded dimension and d is delay time.
. Now arranging in increasing order

½c nþ n1�1ð Þð Þd� c nþn2�1ð Þd . . . . . . :� c nþ nm�1ð Þð Þd �

ð3Þ

Figure 1. Schematic illustration of the course-grained time

series for scale n.
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Therefore, for m-tuple vector there is m! possible
permutations. Probability distribution for m distinct
symbols [1, 2 . . .m] be Y1,Y2, . . .Yk where k�m!.
. Then PE of m dimension is defined as

Hpe mð Þ ¼ �
Xk
i¼1

Yi lnYi ð4Þ

Maximum value ofHpe(m) is log(m!). where all pos-
sible permutation shows the same probability.

3. Adaptive neuro fuzzy classifier

The neuro fuzzy classifier is an adaptive network based
system in which the antecedent parameters are adapted
with NNs. This combined system with a fuzzy logic
qualitative approach and artificial NN adaptive cap-
abilities named as ANFC. The ANFC explicates a
zero order surgeon fuzzy inference model (Cetisli,
2010) in to the framework of a multilayer artificial
neural network (ANN) with adaptive and non-adaptive
nodes. The ANFC is based on fuzzy rules and to ini-
tialize fuzzy rules the k-mean algorithm is used. The
ANFC regulates the membership function and other
antecedent parameters using the scaled conjugate gra-
dient (SCG) algorithm. Moller (1993) has described
SCG as two times faster than the back propagation
algorithm because of its super linear convergence rate.

For two inputs {x1,x2} and one output y fuzzy clas-
sification rule is defined as

If X1 is A1 and X2 is A2 then y is C1 class

where A1 and A2 are the linguistic terms that are
defined on feature space X1 and X2 and C1 represents
class label of the output y.

In this architecture each node in the same layer has
the same node function. The structure of the classifier is
shown in Figure 3. The first layer generates the mem-
bership grade of each input to a specified fuzzy region.
In this layer for the membership function (MF) bell
shape, Gaussian, triangular and trapezoidal functions
can be used. Gaussian function has less parameter and
because of smooth partial derivatives of its parameters
it is utilized as MF.

The Gaussian MF is described as

�ijðxcjÞ ¼ exp �0:5
ðxcj � �ijÞ

2

�2ij

 !
ð5Þ

where xcj is the input variable and �ij and �ij are the
centre and width of the Gaussian function respectively.
The Nnext layer is the rule layer which uses the mem-
bership values of input to calculate the firing strength of
fuzzy rules. So the �ic firing strength of the ith rule is

�ic ¼
YN
j¼1

�ijc ð6Þ

This layer describes the fuzzy rules for xcsample. N is
the number of features. The third layer in the classifier
calculates the weighted outputs. The maximum firing
strength of the rules decides the output class. If the
rule output weight for a class is greatest among the
other class weights it means that the particular class
region is controlled by that rule. Weighted output �ck
for the cth sample in the kth class can be shown as

�ck ¼
XM
i¼1

�ic!ik ð7Þ

Figure 2. Schematic diagram of the experimental setup.
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where !ik denotes the degree of association to kth class
that is controlled with the ith rule, M represents the
number of rules. The next layer is known as the nor-
malization layer. Its function is to normalized network
output because sometimes the summation of the weight
can be larger than 1.

�ck ¼
�ckPK
i¼1 �cl

¼
�ck
�c

, �c ¼
XK
l¼1

�cl, ð8Þ

where �ck is the degree of c
th sample that belongs to kth

class. K is the number of classes. Then, 	c class label
can be calculated by the maximum of �ck

	c ¼ max
k¼1,2...:K

f�ckg ð9Þ

4. Experimental setup

All the bearing vibration data used in this paper are
obtained from Case Western Reserve Lab (Loparo,
2013). As shown in Figure 2 the test stand consists of
a 2 hp three phase induction motor (left), a

dynamometer (right) and a torque transducer (centre).
The motor shaft is supported by the test bearing at the
drive end. Electro-discharge machining is utilized to
introduce single point faults into the test bearing.

To collect the vibration data from the bearing, an
accelerometer with bandwidth up to 5000Hz is
mounted on the bearing housing at the drive end of
the motor. Healthy bearing data is considered as base-
line data. Specific bearing faults considered are inner
race fault, outer race fault at 6 o’clock position and
rolling element fault having defect size 7mils, 14mils
and 21mils (1mil¼ 0.001 inch) in diameter. The speeds
of the motor are 1730, 1750, 1772 and 1797 rpm and
sampling frequency is 48,000Hz per channel.

5. Results and discussion

In the present paper, a 2048-point width non-overlap-
ping window is selected to divide the vibration data
captured from different fault conditions. An MPE
over 16 scales corresponding to each window is calcu-
lated. A sample training vector is shown in Table 1
contains average values of MPE over different scales.

Figure 3. Architecture of neuro fuzzy classifier.
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The MPE parameter delay time d is taken as one and
the number of possible permutation m is set at three
through empirical observation. Bandit and Pompe
(2002) suggested m¼ (3 . . . 7) because a larger value of
possible permutations increase the computational time
and memory requirement. After extracting MPE as fea-
ture vectors, this data is divided in to training and

testing data sets for automated fault diagnosis.
However, computation complexity will increase with
the high dimensional feature vectors. Therefore, the
arithmetic mean of the MPE values is calculated to
reduce the feature vectors.

A total of 40 cases are considered for testing in
which 12, 12, 12, 4 cases IRD, ORD, BD and healthy
bearing (HB) have been taken. For accurate estimation
of these models ability to unseen data 10-fold cross

Table 1. Average value of MPE over different scales for sample input.

Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Scale 9 Scale 10 Scale 11 Scale 12 Scale 13 Scale 14 Scale 15 Scale 16 Class

2.7736 3.5975 3.9391 4.2895 4.5480 4.5854 4.5490 4.5121 4.4474 4.4370 4.3923 4.3112 4.3171 4.3213 4.2705 4.1868 Ird

2.7369 3.5678 3.9197 4.2818 4.5209 4.5420 4.4933 4.4455 4.3964 4.4176 4.3880 4.3361 4.3385 4.3149 4.2610 4.2129 Ird

2.6812 3.5224 3.9389 4.3222 4.5454 4.5418 4.4693 4.4395 4.4065 4.4081 4.3884 4.3631 4.3300 4.2891 4.2488 4.2079 Ird

2.4145 3.1756 3.4182 3.8576 4.2356 4.3606 4.2977 4.2270 4.2973 4.3825 4.3415 4.2398 4.2650 4.2806 4.2755 4.2339 Ball

2.3593 3.1073 3.3423 3.7835 4.1261 4.2045 4.0929 4.0376 4.1537 4.3059 4.3340 4.2361 4.1655 4.1892 4.2063 4.2155 Ball

2.3362 3.0697 3.3304 3.8037 4.1319 4.1654 4.0430 4.0017 4.1584 4.3223 4.3459 4.2167 4.1164 4.1193 4.1496 4.1738 Ball

2.2852 2.9996 3.3162 3.8059 4.0925 3.9114 3.7001 3.6105 3.9380 4.2173 4.3112 4.2253 4.1434 4.1502 4.1875 4.0784 Ord

2.2880 3.0039 3.3159 3.8076 4.0879 3.8545 3.5973 3.5029 3.9096 4.2109 4.3102 4.1552 4.0023 3.9741 4.0635 3.9585 Ord

2.2300 2.9309 3.2701 3.7802 4.0676 3.8064 3.5155 3.4372 3.8531 4.1605 4.2497 4.1312 3.9790 3.9305 3.9940 3.8878 Ord

3.4549 4.5383 4.6158 4.5420 4.5801 4.5150 4.4796 4.4131 4.3219 4.2519 4.1993 4.1558 4.1286 4.1409 4.1241 4.1079 Hb

3.4769 4.5117 4.5990 4.5159 4.5506 4.4540 4.4607 4.3867 4.2501 4.1622 4.0998 4.0519 4.0369 4.0475 4.0513 4.0641 Hb

3.4730 4.4156 4.5419 4.4929 4.5192 4.4084 4.4351 4.3649 4.1704 4.0762 4.0121 3.9451 3.9218 3.9466 3.9811 4.0001 Hb

MPE: multi-scale permutation entropy; Ird: inner race defect

Hb: healthy bearing; Ord: outer race defect.

Table 5. Confusion matrix of 10-fold cross validation ANFC

classification with statistical features.

Ird Ball Ord Hb Classified as

9 2 0 1 Ird

0 10 1 1 Bd

4 0 8 0 Ord

0 0 0 4 Hb

ANFC: adaptive neuro fuzzy classifier; Bd: ball defect; Hb: healthy bearing;

Ird: inner race defect

Ord: outer race defect

Table 3. Confusion matrix of 10-fold cross validation ANFC

classification with MPE.

Ird Ball Ord Hb Classified as

11 0 0 1 Ird

2 10 0 0 Bd

0 0 12 0 Ord

0 0 0 4 Hb

ANFC: adaptive neuro fuzzy classifier; MPE: multi-scale permutation

entropy

Bd: ball defect; Hb: healthy bearing; Ird: inner race defect; Ord: outer race

defect

Table 2. Confusion matrix of ANFC classification with MPE.

Ird Ball Ord Hb Classified as

12 0 0 0 Ird

0 12 0 0 Bd

0 0 12 0 Ord

0 0 0 4 Hb

ANFC: adaptive neuro fuzzy classifier; MPE: multi-scale permutation

entropy

Bd: ball defect; Hb: healthy bearing; Ird: inner race defect; Ord: outer

race defect

Table 4. Confusion matrix of ANFC classification with

statistical features.

Ird Ball Ord Hb Classified as

9 3 0 0 Ird

1 11 0 0 Bd

1 3 8 0 Ord

0 0 0 4 Hb

ANFC: adaptive neuro fuzzy classifier; Bd: ball defect; Hb: healthy bearing

Ird: inner race defect; Ord: outer race defect.
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validation is carried out in the study. Ten-fold cross
validation is the standard method of testing classifiers.
Thus, the results reported in this study are statistically
unbiased. From Table 2, it is inferred that the ANFC
has correctly classified all the cases. It has shown 100%
accuracy while using 10-fold cross validation, as
shown in Table 3, classification accuracy is 92.50%
for the ANFC.

This result of MPE and ANFC is compared with the
most widely used time domain statistical features kur-
tosis, skewness, mean, max, min and standard devi-
ation, which have been calculated from time domain
vibration data. These features are given as input to
ANFC for fault diagnosis. Table 4 demonstrates the
confusion matrix of such a method which has correctly
predicted 9, 11, 8 and 4 cases out of 12, 12, 12, 4 cases
of IRD, BD, ORD and healthy bearing. 10-fold cross
validation of ANFC with statistical features displays
9, 10, 8, 4 correctly classified cases as shown in the
Table 5. Table 6 indicates classification accuracy of
these methods 80% and 77.50% respectively.

6. Conclusions

An automated fault diagnosis approach has been devel-
oped using MPE and an ANFC. To account for the
dynamic nonlinearity and coupling effect between
mechanical parts MPE over 16 scales are calculated.
Mean value for each scale value is extracted to reduce
the dimensionality of the feature vector. Then data is
divided into training and test sets. This experimental
result demonstrates that ANFC with MPE can achieve
100% accuracy better than ANFC with statistical fea-
tures and can predict defects at an early stage. This
technique can be used as a reliable on-line fault diag-
nosis system and will avoid machinery breakdown.
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