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Abstract 

Firefighters require a high level of physical fitness in order to meet the demands of their 

profession. While physical fitness testing is required to join the department, firefighters are not 

subject to further formal exercise testing throughout the duration of their careers. Active, career 

firefighters were tested on a variety of physical fitness measures related to body composition, 

strength, power, and endurance over three testing sessions. 49 firefighters (40.5 ± 8.3 yr, 89.5 ± 

13.0 kg, 27.8 ± 3.6 kg/m2) were found to have a resting heart rate of 57.7 ± 8.2 bpm, blood 

pressure of 121.5 ± 11.9/71.5 ± 9.9 mmHg, and 24.2 ± 5.4 % body fat, culminating in 7.6 ± 6.8 

points in the CPAFLA Healthy Body Composition Score. They performed 31.4 ± 11.6 pushups 

and scored 15.6 ± 1.6 on the 21-point Functional Movement Screen. A subset of participants also 

completed the Wingate Anaerobic Test, producing 10.6 ± 1.1 W/kg at peak revolutions and 

averaging 7.4 ± 1.0 W/kg of power with a fatigue index of 49.7 ± 8.7% over the test duration. 

Maximum strength, as measured by torque produced in a 60°/s isotonic, concentric contraction 

was 3.0 ± 0.7 Nm/kg for the quadriceps and 1.0 ± 0.1 Nm/kg for the bicep. Measures of core 

torso strength included the 60° abdominal endurance test (153.8 ± 94.2 s) and Biering-Sorensen 

test (113.4 ± 48.6 s) for back extensor endurance. Vertical jump was found to be 50.0 ± 9.6 cm. 

VO2 max was 42.2 ± 6.5 ml O2/kg/min while VO2 at the anaerobic threshold was 33.3 ± 8.2 ml 

O2/kg/min. Many of the measurements taken displayed large ranges and though many firefighters 

performed above-average, there were a number who did not. The contrast between the highest 

and lowest performers for many measures suggests that there may be a small, but significant, 

portion of the population that do not possess the requisite fitness to optimally perform their job 

responsibilities. This is cause for concern and may be mitigated by implementation of mandatory 
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training and testing programs. Previous studies examining firefighter fitness have often used a 

young sample with little experience and fragmented testing while this report assessed greater 

numbers of senior firefighters and performed a more comprehensive range of testing. This is the 

first report of firefighter performance on Wingate tests, upper- and lower-body peak torque 

characteristics, and other performance and body composition characteristics. This data along 

with the other fitness measures assessed in this study will provide comprehensive baseline data 

to inform development of fitness training and maintenance protocols for active firefighters.  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1.  Introduction 

Firefighters are rescue workers extensively trained in dealing with fire suppression and 

prevention. In addition, they are often first-responders in a variety of medical emergencies and 

must be trained in both cardiopulmonary resuscitation (CPR) and first aid (1). Firefighting 

involves rescuing trapped victims, suppressing and controlling the spread of the fire, and limiting 

property and environmental damage. In addition, the personal safety of firefighters is of extreme 

importance when performing any task. It is extremely physically demanding and firefighters are 

often thought of as being very physically fit. While firefighters are most commonly associated 

with fire suppression, the reality is that it only generally accounts for about 1% of their total time 

on duty (2). A large portion of their time is spent educating the public about fire safety and 

prevention as well as being first responders to a number of different types of emergencies. Many 

duties that were traditionally associated with police officers, such as crime scene protection, are 

increasingly becoming the responsibility of firefighters as they often arrive at the scene first (1). 

Firefighters also regularly inspect buildings to ensure that they are up to fire-code and give fire 

prevention seminars in schools and at community events. Fire departments are usually optimized 

to serve either urban areas or rural/wild-land areas. Strategies for fire suppression and prevention 

as well as equipment used often differ between the two. 

Unique occupational hazards manifest themselves in the firefighter population, mainly in 

the form of increased rates of cardiovascular incidents. Cardiovascular related deaths account for 

45% of all firefighter deaths while on duty (2). This figure is much higher than the general 

average for cardiovascular death incidence of on-the-job deaths in the workplace, which is 15%, 

and also higher when compared to another public safety related work population, the police force 
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(22%). Kales et al. (2007) also found that 32% of deaths occurred during fire suppression 

activities even though it comprises the least amount of the typical work of firefighters by far (2). 

This represents an odds ratio of death of 136 compared to nonemergency duties. A possible cause 

of the increased rate of cardiovascular deaths during fire suppression may be due to the increased 

heart rates achieved as a result of the heat stress encountered by the firefighters (3). Firefighter 

recruits performed a cycle test to estimate maximum volume of oxygen consumed per minute 

(VO2 max) before performing a simulated smoke-dive in full equipment (25 kg) in the heat to 

rescue a victim (70 kg mannequin) as part of their training. The 35 male recruits were found to 

have a VO2 max of 52.4 ± 5.2 ml O2/kg/min while their highest heart rate was 191 ± 8 bpm. 

During the smoke-dive, subjects averaged 60% of VO2 max and 80% of heart rate max, but some 

subjects achieved heart rates greater than that of maximum achieved during the VO2 max test. 

Two factors hypothesized to contribute to the increased heart rate are increased heat stress and 

the high use of upper body musculature (4). While the VO2 max cycle test was performed at 

room temperature, during fire suppression the extreme heat encountered by firefighters 

necessitates that some blood be shuttled to the skin to dissipate heat. This results in an increased 

heart rate in order to maintain adequate blood flow to the muscles to perform the task at hand. In 

addition, perspiration decreases total body water and therefore blood volume. Stroke volume is 

then decreased so heart rate must increase in order to maintain cardiac output. This puts 

additional strain on the heart and therefore requires a greater blood supply to the heart itself. If 

the coronary arteries are narrowed from pre-existing medical conditions (e.g., increased blood 

lipids) or the heart can not maintain a sufficient cardiac output to supply oxygenated blood to 

both the peripheral muscles and itself, a myocardial infarction may occur (4). The second reason 
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is that during a rescue task there is significant work being performed by the upper body as 

opposed to just the lower body in a cycle test. The lower capillary volume in the upper body 

necessitates an increase in heart rate in order to maintain sufficient blood flow to overcome the 

increased flow resistance in order to fuel the muscles (4). Rodriguez-Marroyo and colleagues 

(2011) also identified increased psychological stress as a possible contributor to the higher heart 

rates seen during fire suppression (5). A group of sixty active male wild-land firefighters 

performed a treadmill VO2 max test to determine three heart rate zones based around the 

ventilatory and respiratory compensation threshold. Subjects were found to have a maximal 

aerobic capacity (VO2 max) of 54.2 ± 1.1 ml O2/kg/min. Wearing heart rate monitors and using 

an intestinal temperature capsule, data was recording as firefighters performed either a direct 

attack (less than 5 m away from the fire, actively trying to suppress it) or an indirect attack 

(greater than 100 m away from the fire trying to control its spread) on the flames. Firefighters 

performing a direct attack had significantly higher heart rates and spent more time above the 

ventilatory and respiratory compensation thresholds than did those performing an indirect attack 

that spent more time below the ventilatory threshold. Interestingly, air and core temperature were 

not significantly different between the two attack types, ruling out cardiovascular drift as the 

cause of increased heart rate seen in direct attacks. It should be noted that fires requiring an 

indirect attack strategy are often larger and this may be the reason for the similarity in 

temperatures at different distances from the flames. The researchers hypothesized that increased 

psychological and emotional stress as a result of being so close to the fire was the cause of the 

increased heart rates seen in direct attacks. While there is a bit of a disconnect in the literature 

between the effects of heat stress on heart rate, it is clear that increased heart rates encountered 
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during fire suppression have a positive effect on cardiovascular incidents in this population of 

public safety workers. 

 In order to become a firefighter there is a thorough examination and interview process. In 

order to gain employment with the Toronto Fire Department, a department serving an urban area 

similar to that of the Kitchener Fire Department, potential candidates must first write an Aptitude 

Test which assesses their skills in memory and comprehension, understanding of firefighting 

material, mathematics, mechanical aptitude, and interpersonal relationships (1). After passing 

this examination, applicants must present a firefighting qualification (most commonly the 

National Fire Protection Association’s Firefighter I & II Certification) before writing a General 

Firefighter Knowledge Examination. Candidates who possess a recognized certification (e.g., 

NFPA-1001) and have passed both exams (note that 70% is the minimum passing grade) are then 

placed in a hiring pool for interviews and a full medical examination including a vision, hearing, 

and acrophobia (i.e., fear of heights) test. In addition, successful applicants will have completed 

the Candidate Physical Ability Test (CPAT) in the previous six months. The CPAT is a pass or 

fail course that must be completed in 10 minutes 20 seconds or less and is administered by the 

University of Waterloo (6). Consisting of 8 different events that simulate different firefighter 

situations, participants must wear a 50 lb (22.7 kg) weighted vest to simulate the weight of 

equipment plus an additional 25 lb (11.3 kg) during the stair climb task to simulate a hose 

bundle. The events are, in order, a stair climb, hose drag, equipment carry, ladder raise and 

extension, forcible entry, search task, rescue task, and ceiling breach and pull. Hiring often takes 

place in cycles and is very competitive (1). 
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 Firefighting is a very perilous profession that requires one to be in excellent physical 

fitness to pass the initial screening tests. They are at a greater risk of on-the-job cardiovascular 

incidents than the average job (2), with a major contributor to this increased risk being the heat 

stress encountered during fire suppression (3). Passing the CPAT to be eligible for hiring requires 

potential recruits to be very physically fit, and highlights the high fitness level required to be a 

firefighter. 

Other than passing the CPAT in a specified time, for Kitchener and most other Canadian 

firefighter units, there are no specific physical fitness guidelines that need to be met once the 

firefighters secure employment and there are no continued requirements to demonstrate any 

specific fitness standards during employment though firefighting is by its very nature a 

physically demanding profession. Most of the research conducted on firefighters has focused on 

cardiovascular fitness, specifically on determining the oxygen consumption cost of firefighting 

and quantifying firefighters’ VO2 max. A lesser focus of research has been on determining the 

strength of firefighters as well as other anaerobic power measurements. One can argue that 

standardized fitness tests, more so than just the CPAT, are a necessity due to the high costs of 

training. A 2007 study by Lunt found that British Royal Navy recruits who took an optional pre-

joining fitness test significantly improved their pass rates of training compared to those who did 

not, and had only about a third of voluntary releases (6% vs. 15%) (7). There was no requirement 

for applicants to pass the test, a 2.4 km timed treadmill run, it was only for participants’ own 

knowledge of a general time required to succeed in training. Having additional benchmarks for 

applicants to strive for before applying can only help the process and reduce time and money 

wasted on incomplete training. 
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A brief review of the current literature on exercise physiology and firefighter fitness is 

needed before delving further into ways of characterizing the fitness and health status of veteran 

firefighters who have been employed for a significant period of time. In particular, there is less 

information on the conditioning levels of veteran firefighters than on new recruits. Although 

firefighters are encouraged to exercise regularly and to maintain fitness, and are often provided 

with opportunities to train, little is currently known about the degree to which veteran firefighters 

avail themselves to these opportunities and what the overall fitness status is of firefighters who 

have been working for a number of years. 

When a group of active firefighters was asked to report their fitness level on a scale from 

0-7, no association was found between their perceived level of fitness and actual fitness as 

determined by a treadmill VO2 max test (8). This would highlight the need for comprehensive 

fitness testing in order to better establish the fitness level of current firefighters as well as their 

perceptions and understanding of their actual fitness levels and limits. This information may be 

especially pertinent to older, veteran firefighters as they are at a higher risk for cardiovascular 

incidents than younger firefighters are (OR: 4.4; 95% CI: 1.7 – 11.1) (9). 

Briefly stated, the current study aimed to create a Canadian database of firefighter 

physical fitness characteristics, create a testing battery that is predictive of work performance and 

injury risk, and make recommendations regarding the composition of physical fitness training 

programs tailored for active firefighters. 

1.1  Energy Systems 

  Adenosine triphosphate (ATP) is the primary molecular compound that the body uses for 

energy, in the form of chemical energy within its phosphate bonds (10). The enzyme ATPase is 
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able to cleave off one of the phosphate groups to liberate the chemical energy stored within its 

bond for various processes within the body. Adenosine diphosphate (ADP) is a relatively low 

energy molecule that can be converted back to ATP through the process of phosphorylation by 

way of either aerobic or anaerobic metabolism. The body is unable to store large amounts of ATP 

(only about 80-100 g, enough for a few seconds of activity) so it must continually be synthesized 

by either the phosphocreatine, glycolytic, or oxidative systems (11). In addition to being unstable 

due to its high-energy phosphate bonds, ATP is also quite heavy, such that the average sedentary 

person is estimated to resynthesize an amount of ATP every day equal to about 75% of their body 

weight (11). 

 The body is able to resynthesize ATP most rapidly using the anaerobic phosphocreatine 

system (10). Creatine is a nitrogenous organic acid that is able to bind to an inorganic phosphate 

(Pi) to produce phosphocreatine (PCr), of which the body is able to store four to six times the 

amount of ATP (11). In times of increased energy demand, the enzyme creatine kinase is able to 

cleave Pi from PCr and the energy produced allows for the reformation of ATP from ADP and Pi. 

This process occurs quite rapidly and does not require the presence of oxygen, but is only able to 

sustain ATP levels for about 10 seconds before exhaustion of PCr stores. Creatine kinase is also 

able to reform PCr from creatine and ATP during rest in order to replenish the phosphocreatine 

system for the next bout of intense physical activity. 

 For activities lasting longer than a few seconds, the glycolytic system is able to 

anaerobically produce ATP for approximately two minutes of activity (10). Glycolysis, or the 

breakdown of glucose, requires that 2 ATP be consumed initially but produces 4 ATP (net 2 ATP) 

and 2 NADH (nicotinamide adenine dinucleotide, a reducing agent for aerobic metabolism) for 
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every molecule of glucose. Liver or muscle glycogen can also be used in this process and 

actually results in a net of 3 ATP being produced, as it is able to bypass an initial step in 

glycolysis (11). In the absence of oxygen, the final product of glycolysis, pyruvate, is converted 

to lactate. This occurs because glycolysis requires NAD+ in one of its steps but if oxygen is not 

available, NADH cannot be oxidized so pyruvate accepts its protons to become lactate. Due to 

this, the phosphocreatine and anaerobic glycolytic system are only able to generate ATP for 

intense physical activity for short durations in comparison to the slower but much more efficient 

oxidative system, capable of maintaining ATP production for hours. 

 The oxidative system is the most complex of the three energy systems but is capable of 

producing the most energy by using oxygen to assist in metabolizing fuel sources in the process 

of cellular respiration (10). The previously discussed glycolytic system produces 2 pyruvate, but 

in the presence of oxygen these will be converted into acetyl coenzyme A (acetyl CoA), which is 

able to enter the Krebs cycle, also known as the citric acid cycle, in addition to forming 1 

NADH. The Krebs cycle produces 1 ATP as well as 3 NADH and 1 FADH2 (flavin adenine 

dinucleotide) to act as reducing agents per acetyl CoA that enters. The final process of aerobic 

metabolism is the electron transport chain in the mitochondria where hydrogen atoms carried by 

the coenzymes NADH and FADH2 are split into electrons and protons to provide the energy 

needed to phosphorylate ADP, forming ATP. This process is able to produce 36-39 ATP per 

molecule of glucose that begins aerobic glycolysis but is slower than anaerobic metabolism and 

cannot match the energy needed during high-intensity activity. The difference in ATP production 

is due to whether glucose comes from the blood stream or glycogen and whether NADH or 

FADH2 is used to transport electrons through the mitochondrial membrane to the electron 
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transport chain. If electrons are originally donated by NADH, 3 ATP are able to be produced but 

if donated by FADH2 only 2 ATP can be produced because it enters the electron transport chain 

at a lower energy level, bypassing the first site of ATP synthesis (11). 

 Oxidation of fat is very similar to aerobic metabolism of glucose. Fat for energy 

production is stored in the body as triglycerides that must be broken down into glycerol and three 

free fatty acids (FFAs), in the process of lipolysis, in order to be oxidized for ATP production 

(10). Though FFAs can be of different lengths and structurally different, they are all cleaved into 

2-carbon units of acetyl CoA through the process of β-oxidation. From this point onwards, fat 

metabolism follows the same pathway as carbohydrate metabolism with acetyl CoA going 

through the Krebs cycle and then the electron transport chain. Glycerol cleaved from 

triglycerides is also metabolized, degrading to pyruvate and then entering the Krebs cycle, just as 

a pyruvate formed from glycolysis would (11). ATP production is dependent upon the length of 

the FFA being oxidized and specifically the amount of acetyl CoA molecules it is able to 

produce. For example, a 16-carbon FFA such as palmitic acid is able to produce 129 ATP when 

fully oxidized.  Though fat is able to provide more energy per gram (9.4 kcal/g) compared to 

carbohydrate (4.1 kcal/g) it requires more oxygen (5.6 ATP/O2 compared to 6.3 ATP/O2 for 

carbohydrate). During high-intensity activity oxygen transport is often the limiting factor in 

performance so carbohydrate is the preferred fuel. In addition to aerobic metabolism being 

slower than anaerobic metabolism, lipid oxidation is slower than carbohydrate oxidation, 

explaining why an athlete’s intensity level will decrease when carbohydrate stores become 

depleted and fat becomes the predominant fuel source. 
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 It is worth noting that protein can also be used as a fuel source in the form of amino 

acids. Some amino acids are able to be converted into glucose in the process of gluconeogenesis 

as well as intermediate products in aerobic metabolism such as pyruvate and acetyl CoA (10). 

However, since protein metabolism accounts for less than 5% of total energy expenditure during 

either rest or exercise, it is usually excluded in energy expenditure estimates. 

1.2  Aerobic Fitness 

Aerobic capacity refers to the maximum amount of oxygen one is able to uptake during 

exercise, also known as VO2 max. Although controversial, maximum oxygen uptake is often 

thought to be limited by the capacity of the cardiovascular system to deliver oxygen to the 

working muscles (4). Regarded as the best measurement of cardiorespiratory endurance and 

overall aerobic fitness, VO2 max tests can be performed in a number of ways (10). Direct 

measurement via gas exchange is more accurate than estimating VO2 max using indirect 

methods, such as extrapolating heart rate and workload to a theoretical max. In addition, as long 

as safety allows for it, maximum effort tests are more accurate than using a submaximal test in 

which extrapolation must be used to estimate VO2 max. With training it is possible to increase 

one’s VO2 max but it has been demonstrated that it will eventually plateau. Training adaptations 

which influence VO2 max include increased blood and hematocrit volume, left ventricle size, 

cardiac output, and peripheral capillarization which augments local blood flow and enhances 

arterial-venous O2 difference, or local oxygen uptake (4). Continued training will allow one to 

sustain work at a greater percentage of VO2 max, which translates into athletic and submaximal 

exercise performance gains. This is often measured as the percentage of VO2 max that 

corresponds to a non-linear increase in blood lactate accumulation (“anaerobic threshold”) and/or 
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a non-linear increase in ventilation (“ventilatory threshold”). Training adaptations that facilitate 

improvements in the anaerobic or ventilatory threshold include increased muscle mitochondria, 

which facilitate greater fat utilization, a relative reduction in carbohydrate utilization, and a 

reduction in glycolytic flux at any given workload (4). 

Submaximal athletic or work performance is better predicted by the anaerobic, or 

ventilatory, threshold rather than VO2 max. The anaerobic threshold is the intensity at which 

lactate begins to quickly accumulate in the blood and the body begins shifting towards anaerobic 

metabolism, as aerobic metabolism cannot continue to meet energy demands and glycolysis rate 

begins to exceed the rate of aerobic metabolism. At this point the body is no longer in steady 

state and will not be able to sustain the heightened intensity level for long (12). However, most 

reasonably fit individuals can sustain work for a significant period of time at intensities at or just 

below the ventilatory threshold. Thus the work capacity at the ventilatory threshold is a good 

measure of the maximal energy expenditure or functional capacity that can be carried on for a 

significant period of time (4). 

Exercise intensity is sometimes classified in terms of metabolic equivalents (METs) since 

the amount of oxygen consumed by the body is directly proportional to the energy requirements 

of an activity (10). At rest the body requires approximately 3.5 ml O2/kg/min for basic metabolic 

functioning and this is defined as 1.0 MET. Different activities then can have their oxygen 

requirement classified by METs, which may be easier to use for the purposes of prescribing 

exercise. Walking at a speed of 4 km/h for example, requires approximately 10.5 ml O2/kg/min, 

so it would be equivalent to 3.0 METs. 
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Early research regarding firefighters first focused on determining the metabolic cost of 

firefighting in terms of oxygen consumption. VO2 max was determined in a group of 17 

firefighters using a graded maximal cycle test and then, to simulate a firefighting task, subjects 

performed a stair climb wearing full equipment weighing an additional 86.5 lb (39.2 kg) for five 

minutes (13). Results indicated that heart rates reached 95% of maximum, with an oxygen cost 

of 39 ml O2/kg/min, corresponding to 80% VO2 max during this task. Researchers found the 

range of fitness levels of subjects most alarming, even with such a small sample size. Subjects 

achieved oxygen consumption values ranging from 63% to 97% of VO2 max to complete the 

stair-climbing task, leaving very little margin of reserve fitness for an unexpected increase in 

workload in many of the subjects. Considering the effects of heat stress (3) this becomes even 

more alarming. O’Connell et al. (1986) conclude that a VO2 max of 42 ml O2/kg/min should be a 

sufficient fitness level to meet the demands of firefighting, but recommend that firefighters be 

able to consume 49 ml O2/kg/min to provide a margin for safety (13). Rather than use a task that 

simulates energy demands a firefighter might encounter, Sothmann et al. (1992) had a group of 

10 firefighters wear heart rate monitors during actual fire suppression emergencies (14). Later, 

the same group performed a treadmill VO2 max test and the researchers used heart rate values to 

estimate oxygen consumption while engaged in fire suppression. As previously discussed (3,5), 

heart rate is increased during fire suppression above actual VO2 requirements due to factors such 

as heat stress, upper body activity, and psychological stress. Taking this into account and 

applying a statistical correction, researchers estimated that the average cost of firefighting was 

33.1 ml O2/kg/min (14). This value is consistent with previous literature in the area suggesting 

that the average short-term energy cost of firefighting is 35 ml O2/kg/min (13,15). Adding a 20% 
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buffer for safety, a VO2 max of 42 ml O2/kg/min has been recommended as a minimum for 

firefighters to ensure that there is an adequate reserve capacity for cardiovascular stressors (14). 

Cardiorespiratory fitness can be used as general measure of health and subsequent injury 

risk (15). Prior to 2004, all firefighter recruits in the United Kingdom underwent a formal 

assessment of cardiorespiratory fitness and had to have a VO2 max of at least 45 ml O2/kg/min to 

be admitted into training. In light of mounting evidence that firefighting requires 35 ml O2/kg/

min (13,14) plus a 20% safety buffer, the cardiorespiratory standard was amended to 42 ml O2/

kg/min in 2004. After this change, some fire departments adopted the new standard of 42 ml O2/

kg/min and some kept the old standard of 45 ml O2/kg/min, while others dropped the 

cardiorespiratory standard requirement altogether from the application process. After following 

new recruits for 4 years it was found that when controlling for age and gender, eliminating the 

cardiorespiratory standard increased injuries by 8%, however there was no statistically 

significant difference in injury rates when a cardiorespiratory standard was maintained, be it 42 

or 45 ml O2/kg/min (15). It may be that having a fitness standard eliminates some candidates 

who are at the lower end of the physical fitness spectrum to begin with and this is driving the 

lower injury rates seen after four years of follow-up. 

An inverse dose-response relationship was found between cardiorespiratory fitness and 

physiological abnormalities following an exercise stress test (16). Firefighters performed a VO2 

max treadmill test and were tested for abnormalities in maximum heart rate achieved (< 90% 

age-predicted maximum), heart rate recovery at one minute post-test (< 12 bpm decrease), blood 

pressure response (> 220/90 mmHg), and electrocardiogram (ECG) reading (ST segment 

elevation or depression > 0.5 mm). Participants were divided into quartiles based on VO2 max 
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and it was found that 64% of subjects in the lowest quartile experienced at least one post-test 

abnormality while only 23% of the most fit subjects experienced one symptom. 

A cross-sectional study of 968 male career firefighters aimed to further quantify the 

relationship between cardiorespiratory fitness and cardiovascular disease risk factors (17). 

Higher VO2 max values had an inverse association with diastolic blood pressure, body fat, 

triglycerides and low-density lipoprotein (LDL) cholesterol. In addition, higher cardiorespiratory 

fitness was also associated with higher high-density lipoprotein (HDL) cholesterol. All 

relationships remained significant after adjustment for age and body mass index (BMI). Less 

than half of the participants tested met the 42 ml O2/kg/min standard and almost 90% were 

classified as overweight or obese by BMI standards. Though BMI has been criticized for not 

taking abnormally large lean body mass into account, blood markers of cardiovascular risk 

factors and body fat percentage have been positively correlated with increased BMI in this 

population (17). 

Various studies have looked at the cardiorespiratory fitness of firefighters in an attempt to 

accurately describe the population. In most active veteran firefighter populations tested the 

average is well below the aerobic power standard of 42 ml O2/kg/min for firefighting. In 1998, 

Campbell et al. performed a fitness assessment of 65 active firefighters serving an urban area and 

found their VO2 max to be 33.7 ml O2/kg/min (18). In addition, not a single firefighter assessed 

performed at or above the recommended minimum standard for all tests (included a variety of 

strength and anthropometric measures also). Baur et al. (2012) categorized their subject pool of 

1149 male career firefighters according to metabolic equivalents (METs) and 1 MET is equal to 

3.5 ml O2/kg/min so 12 METs would be considered the aerobic power standard (12 x 3.5 = 42 ml 
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O2/kg/min) (16). Unfortunately, actual VO2 max values were not given as participants were 

divided into categories based on METS, but 589 or 51.3% of subjects fell below the 12 MET 

standard. A smaller study performed on 10 career male firefighters provided a VO2 max of 40.0 ± 

6.4 ml O2/kg/min from a treadmill test (14). Using a mixture of both urban- and suburban-

serving male career firefighters, another study found cardiorespiratory fitness to average 12 

METS, although there was a considerable range in the results, from less than 10 METS to greater 

than 14 METS (17). Calavalle et al. (2013) assessed VO2 max in male career firefighters as part 

of a larger study to determine what variables can be measured to predict cardiorespiratory fitness 

(19). Their sample of firefighters was able to consume 39.6 ± 6.1ml O2/kg/min, as estimated by a 

submaximal graded treadmill exercise test. 

 In a study using 35 male firefighter recruits as subjects, a VO2 max of 52.4 ± 5.2 ml O2/

kg/min was observed (3). Rodriguez-Marroyo et al. (2011) found that male wild-land firefighters 

with two years of experience were able to maximally consume 54.2 ± 1.1 ml O2/kg/min (5). 

From these studies it appears that while longer serving career firefighters do not generally meet 

the minimum recommended fitness standard for aerobic power, younger, more recent recruits do. 

The two studies that resulted in favourable fitness outcomes (3,5) used new recruits and 

firefighters with only two years of experience and it can be argued that using these younger 

firefighters does not represent an accurate sample of firefighters as a whole. Recruits often have 

excellent fitness as they must pass a fitness test to get into the training program. Those who have 

only two years of experience are likely to be young and still exercising quite regularly. However 

when the population is looked at as a whole with varying years of experience and age, it can be 
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seen that the cumulative cardiorespiratory fitness decreases (14,16,18,19) and this is of some 

concern. 

When firefighters are compared to other populations with some similar work demands 

and stresses, their cardiorespiratory fitness levels still tend to be lower. Police officers of varying 

seniority from new recruits to the Chief of Police were tested and found to have an average VO2 

max of 44.3 ± 5.8 ml O2/kg/min (20), which is above the 12 MET (42 ml O2/kg/min) standard for 

firefighters. Pryor and colleagues (2012) performed fitness testing on Special Weapons and 

Tactics (SWAT) officers and found them to possess good cardiorespiratory fitness, at 45.3 ± 6.1 

ml O2/kg/min (21). Aerobic power of untrained undergraduate and graduate university students 

was 41.7 ml O2/kg/min for males and 35.4 ml O2/kg/min or females (22). Normative population 

data in 2012 from the American College of Sports Medicine (ACSM) for 20-29 year olds at the 

50th percentile for VO2 max is 42.5 ml O2/kg/min for males and 35.2 ml O2/kg/min for females 

(23), very similar to values found by Bulbulian et al. (1996) more than 15 years prior (22). Males 

aged 30-39 typically average 41.0 ml O2/kg/min while females average 33.8 ml O2/kg/min. VO2 

max values continue to decrease as age progresses with 40-49 year old males and females 

averaging 38.1 and 30.9 ml O2/kg/min, respectively (23). Looking at these comparisons, it 

appears that firefighters are not as aerobically fit as we would expect them to be. SWAT officers 

wear about 50 kg of gear and equipment (21), approximately double that of firefighters, so this 

may be the reason the group tested has higher cardiorespiratory fitness as they carry more weight 

during their daily activities. However, it could be argued that all firefighters, regardless of age or 

length of service, should have at least comparable cardiorespiratory to regular police officers and 

university students who are at or above aerobic power levels recommended for firefighters when 
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one considers that a significant portion of their job responsibilities is rescuing people from 

burning buildings. 

1.3  Anaerobic Power and Muscular Strength 

 As previously discussed, short-duration, high-intensity events utilize ATP very rapidly 

and hence require a very rapid rate of ATP resynthesis, such that aerobic metabolism is not 

sufficient. In these instances, anaerobic metabolism by way of the phosphocreatine and 

glycolytic systems generate an increasing amount of ATP to sustain muscle contraction. 

Anaerobic power reflects the maximal energy output of these systems and is of great importance 

in sport, particularly events where high muscular force must be produced quickly and only 

sustained for a short period of time, such as sprinting. 

 Anaerobic glycolytic capacity is controlled by concentrations of various enzymes and 

their substrates. Often these regulatory enzymes catalyze irreversible reactions near the 

beginning of a pathway and in the case of glycolysis, hexokinase and phosphofructokinase-1 

(PFK-1) act in this capacity (12). When glucose first enters the cell via GLUT-4 transporters it is 

phosphorylated by hexokinase to glucose 6-phosphate (glucose 6-P) in one of the priming 

(energy-input) steps of glycolysis. If glucose 6-P concentration increases due a slow-down at 

another step or an increase in glycogen breakdown (glycogen is broken down directly into 

glucose 6-P, bypassing hexokinase) then it will slow down the rate of reaction for hexokinase via 

negative feedback. PFK-1 is the main regulatory enzyme of glycolysis as it commits the sugar 

molecule for degradation by phosphorylating fructose 6-P to fructose 1,6-bisphosphate. A 

number of substrates act as modulators of PFK-1 activity, including ADP, AMP, and Pi. Increased 

concentrations of these products indicate a high rate of ATP utilization and hence act as allosteric 
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activators to increase PFK-1 activity and therefore increase substrate availability (fructose 1,6-

bisphosphate) for glycolysis. PFK-1 activity can also be allosterically increased by fructose 2,6-

bisphosphate formed by phosphofructokinase-2 (PFK-2). PFK-2 activity is increased by 

epinephrine and muscle contraction, both of which are increased during exercise or times of 

increased ATP demand, in order to increase ATP production via glycolysis by increasing PFK-1 

activity to make more substrate available. 

 Buffers resist pH change by either bonding to H+ ions when a solution becomes more 

acidic or releasing protons to make a solution more acidic when it is becoming alkaline. They 

play an important role in allowing the glycolytic pathway to continue producing ATP as H+ ion 

accumulation occurs during the upregulation of anaerobic metabolism. Bicarbonate is the most 

important buffer in the body as it combines with a proton to form carbonic acid which then 

dissociates to water and carbon dioxide which can be exhaled (4). Intracellular buffers in muscle 

fibers include proteins, which can accept protons on their amine or carboxylic acid group, 

phosphate groups (including phosphocreatine), and bicarbonate. Muscle buffering capacity is 

limited and intense exercise can decrease muscle pH quite a bit so extracellular buffers in the 

blood also exist as pH regulation in blood is much more restricted. Proteins, bicarbonate, and 

hemoglobin all contribute to blood buffering and interestingly, deoxygenated hemoglobin has a 

greater buffering capacity than oxygenated hemoglobin so it is better able to accept protons from 

working muscles after it has shuttled oxygen there which also helps to reduce acidity by allowing 

the electron transport chain to operate and use some hydrogen ions. 

 Exercise training can improve anaerobic power by improving the phosphocreatine and 

glycolytic systems’ ability to generate ATP as well as buffering capacity and acid-base control. 
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The phosphocreatine and glycolytic systems can be improved by training them in the manner that 

they are used. That is, short high-intensity bouts of exercise interspersed with recovery periods.  

This is known as high-intensity interval training and has been shown to increase glycolytic 

enzyme concentration and creatine kinase reaction speed so that faster ATP turnover is possible 

(4). Interval training also has the added benefit of slightly improving aerobic power and 

mitochondria concentration in muscle, which helps to create additional ATP to spare PCr. 

Intracellular muscular buffering capacity is also increased with high-intensity training (24). 

 Muscle fibers can be categorized as either slow-twitch (type I) or fast-twitch (type IIa and 

IIx) based on how quickly they can reach peak tension (10). The rate of skeletal muscle fiber 

contraction is determined by the rate of myosin head ATPase activity as different types of myosin 

heads exist. The rate at which myosin can hydrolyze ATP determines the rate of cross-bridge 

formation and cycling, which in turn determines the maximal contraction velocity of the fiber. 

Type I fibers may also be called slow oxidative fibers because they have a high resistance to 

fatigue and oxidative capacity but are unable to contract quickly or produce a large amount of 

force. On the contrary, type IIx fibers are also known as fast glycolytic fibers and fatigue quite 

quickly due to a low oxidative capacity but are able to produce a tremendous amount of force 

very quickly. Type IIa fibers, or fast oxidative glycolytic fibers, lie in the middle of the spectrum 

of the fiber types but have characteristics closer to type IIx, hence their classification as fast-

twitch. 

 A motor unit consists of a single motor neuron and all of the muscle fibers that it 

innervates (10). Muscle fibers are recruited according to the size principle, such that motor units 

are recruited in order of increasing motor neuron size as effort increases. Since slow-twitch 
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motor units are innervated by smaller motor neurons, these fibers are recruited initially for force 

production. As force requirement and effort increases, motor units of type IIa fibers will be 

additionally recruited and finally at near-maximum effort type IIx motor units will be 

additionally recruited to maximize force production. Note that at maximum effort type I and IIa 

motor units continue to contract and produce force. As with energy systems, muscle fiber 

recruitment operates on a continuum rather than an absolute on-off system of the different fiber 

types. 

 Many factors come together to determine the maximum force a contracting muscle is able 

to generate. Most obviously, larger muscles are able to produce a greater force as there are more 

actin and myosin filaments able to form cross-bridges and initiate contraction. As previously 

discussed, type IIx fibers are able to produce the most force and with the greatest shortening 

velocity because calcium is released from the sarcoplasmic reticulum at the fastest rate to allow 

cross-bridges to form and they also have higher ATPase activity (4). Muscle length at the time of 

contraction is also an important factor in force production as there exists an optimal length and 

subsequent overlap of actin and myosin filaments that allows for maximal cross-bridge formation 

and therefore, tension development (4). Too little or too much overlap limits cross-bridge 

formation simply due to availability of binding sites and fewer bound myosin heads means less 

power strokes and therefore less force production. 

 Exercise training can increase muscular force production through both neural and 

physiological means. Rapid strength gains at the start of a resistance training program are mainly 

due to neural adaptations and not changes in muscle size (4). Resistance training only one arm 

has been shown to exhibit a “carry-over” effect whereby the untrained arm experiences strength 
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gains as well even without the training stimulus or hypertrophy (25). This demonstrates the 

concept of neural learning, resulting in improved coordination and ability to recruit motor units 

synchronously for improved force production. Physiologically, skeletal muscle responds to 

strength training by increasing in size. Hyperplasia is an increase in total number of muscle 

fibers while hypertrophy refers to an increase in individual fiber size or cross-sectional area (4). 

Though hyperplasia has been demonstrated in animals, it is not clear if it occurs in humans and 

even if it does, it contributes very little to increases in muscle size. Hypertrophy occurs via 

undifferentiated satellite cells fusing with existing and damaged (from training) muscle fibers 

and donating their nucleus to the fiber. Muscle fibers are multinucleated cells but maintain a 

certain nucleus to cytoplasm volume, termed the myonuclear domain (26). This is necessary 

because a nucleus can only sustain gene expression and subsequently, protein synthesis, for a 

limited cytoplasm volume so in order to increase in size additional nuclei are needed. Resistance-

training induced increases in muscle fiber size (hypertrophy) increases actin and myosin 

filaments due to the addition of sarcomeres in parallel (4). This creates more opportunities and 

sites available for cross-bridge formation, thus increasing the fiber’s ability to generate force. 

Anaerobic power and muscular strength are other important components of a firefighter’s 

overall physical fitness. The Wingate test, which involves a 30-second maximal effort cycling 

bout against a heavy resistance (usually 7.5% of body weight), is commonly used to assess 

anaerobic, or glycolytic, capacity and lower body power (27). Female firefighting recruits from 

the Chicago area were assessed using a variety of strength and power tests as well as 

anthropometric measures (28). Researchers were attempting to link performance in the stair-

climbing task as part of the application process to a standard fitness measure. The recruits 
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averaged 398.2 ± 56.9 W in the Wingate test with a peak power of 494 ± 84.7 W. Vertical jump 

height for the group was measured at 31.0 ± 4.8 cm while leg press averaged 143.5 ± 30.3 kg. 

When compared to normative data, Misner et al. (1988) found that the female recruits generally 

score better than reference adult women, but poorer than reference adult men (28). In addition, 

the stair-climbing test, which is used to assess leg power in the field, was only slightly correlated 

with any tests of anaerobic leg power. Interestingly, the best predictor of performance on any test 

was lean mass. Michaelides et al. (2008) performed a similar study to the aforementioned one 

but instead used male firefighting recruits (29). They attempted to link muscular strength and 

body composition to performance in the Arkansas Ability Test (similar to the CPAT required for 

firefighters in Toronto and Kitchener). Average body fat for the male recruits was 21.8 ± 6.2% 

while maximum bench press, as a measure of upper body strength, was 96.1 ± 22 kg. Upper 

body muscular endurance was tested via pushups and averaged 35.6 ± 15.3 repetitions. 

Somewhat opposed to the previous study utilizing female firefighter recruits (28), assessments of 

upper body muscular strength and endurance best correlated with ability test time for males (29). 

In a study of 20 career firefighters, correlations were found between simulated job performance 

tasks and various fitness measurements (30). Highest and most frequent correlations were found 

with 400 m run time, a test of anaerobic power/endurance. This may be because many 

firefighting tasks operate within the same time range as a 400 m run. Interestingly, body 

composition and cardiorespiratory fitness did not correlate greatly with many performance 

variables. This may be because full recovery was allowed between performance tasks in order to 

rule out the effects of fatigue. Had this not occurred, VO2 max values would probably have had 

higher correlations. A fitness assessment of career firefighters performed by Campbell et al. 
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(1998) revealed that average one-repetition maximum for bicep curl was 46.4 ± 11 kg and that 

over 65% of participants fell below the 120 lb (54.5kg) standard for firefighting (18). Leg 

dynamometry (measuring the force production by holding a handle while attempting to stand 

upright on a platform) tested at 152.2 ± 36.7 kg but 45% of firefighters fell below the ACSM 

average for leg strength. In addition, the group averaged 21.3% body fat, which is higher than 

recommended for optimal health. 

As with cardiorespiratory fitness, when comparing firefighters’ muscular strength to other 

population groups the results are discomforting. Active SWAT officers are able to leg press 243.4 

± 32.7 kg, which ranks in the 90th percentile for age- and gender-based normative data, bench 

press 105.6 ± 16.2 kg (85th percentile), and jump 41.8 ± 5.3 cm (50th percentile) (21). Regular 

police officers have 17.7 ± 4.5% body fat according to Stamford et al. (1978) (20). They also 

found that the physical fitness of police officers declines with age and length of service, 

eventually reaching a level below what would be expected of a professional working in the 

public safety sector. This demonstrates that the physical rigours of police work alone are not 

sufficient to maintain the necessary fitness level and highlights the need for continuous training 

to counteract the age-related decline in fitness. It would therefore not be difficult to imagine that 

firefighting would pose a similar situation. 

Murphy et al. (1984) found that about 50% of the variance in anaerobic power capacity 

can be attributed to thigh volume, body weight, and lean mass (31). Males in their study 

performed a Wingate test with an average of 555.4 W while females’ power averaged 334.3 W. 

Peak power was 750.4 W and 503 W for males and females, respectively. Maximum power 

achieved during the Wingate test for male intercollegiate (NCAA) athletes was 11.65 W/kg while 
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female athletes peaked at 9.59 W/kg, according to a 2009 study (32). In addition the authors add 

that studies using a Wingate test performed on Monark bikes prior to 1999 often underestimate 

peak power because the weight was not loaded instantly in those older models of cycle 

ergometers. The implication of this is that some of the previously discussed studies for 

comparison, which put firefighters in a negative light in terms of anaerobic power, may not 

actually be as bad as believed. 

Normative population data at the 50th percentile for 20-29 year olds from the ACSM lists 

pushups at 28 repetitions for males and 20 for females (23). Bench press is listed at 1.06 times 

body weight for males and 0.4 of body weight for females while leg press should be 1.91 and 

1.32 times body weight for males and females, respectively. 

1.4  Validity and Reliability of Measurements Performed 

In addition to the types of measures previously reported on firefighters, the present study 

performed a number of other measures, some of which have not previously been reported with a 

firefighter population. 

Many of the techniques used in this study have been previously shown to be both valid 

and reliable. Validity refers to the ability of a measurement to actually measure what it intends to 

measure; for example, a questionnaire designed to measure one’s self-esteem would have high 

validity if it actually measures self-esteem levels and not extroversion. Reliability is the ability of 

a measurement to produce relatively similar results when repeated. A scale used to measure body 

weight with high reliability should produce the same result if a person steps off the scale and 

then back on again without any change in their physical condition. 
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 The Canadian Society for Exercise Physiology (CSEP) maintains a screening form for 

those wishing to become physically active, entitled the Physical Activity Readiness 

Questionnaire (PAR-Q) (33). Originally developed by Chisholm et al. (1975), the PAR-Q aims to 

identify people for whom beginning a physical activity program may be detrimental based on 

pre-existing health conditions (34). It was originally designed to be conservative in order to 

minimize risks (35) and this is reflected in the exclusion rates it produces (~35%), some of which 

are false positives (36). 

 Measurement of skinfold thickness for the purpose of determining body fat percentage is 

an attractive option due to its quickness, low-cost, and ease of use. Measuring a skinfold’s 

thickness gives an indication of the amount of subcutaneous fat at a particular site (37). These 

measurements can then be used to calculate body density and eventually body fat percentage. 

Equations used in these calculations are based on numerous studies that have tested many people 

for skinfold thickness and also using other accurate methods of determining body fat percentage, 

such as underwater (hydrostatic) weighing, and then linking the two together. There are many 

different sites at which skinfold thickness can be measured and different equations for 

calculating body density depending on the sites chosen. Skinfold thickness measurements have 

been shown to be both reliable and valid when compared to using hydrostatic weighing to 

calculate body density and then body fat percentage from this (38). Cross-validation correlation 

coefficients between skinfold measurements and hydrostatically determined body fat percentage 

was shown to be r = 0.92 for males and r = 0.88 for females (p < 0.001). Skinfold thickness 

measurements were also shown to be reliable with 97.7% and 98.8% of the variance in 

measurements of males and females, respectively, being attributed to differences in subjects and 

- !  - 25



the standard error of measurement being 1% and 0.9% body fat in males and females, 

respectively. As previously noted, there have been a limited number of studies that have provided 

body composition data on active firefighters. 

 The Functional Movement Screen (FMS) is a tool used to identify functional movement 

compensations due to underlying muscle imbalances and has been used to predict general risk of 

musculoskeletal conditions and injuries (39). Seven movements are performed to give a 

composite score ranging from 0-21 points and a composite score less than or equal to 14 has 

previously been indicated to have an increased injury risk in professional American football 

players (40). Although scoring of the various movements is subjective, there are a set of criteria 

for each movement outlining common compensations and things to look for. The FMS has been 

shown to be reliable with the inter-rater correlation coefficient being 0.76 (95% CI: 0.63, 0.85) 

and test-rest reliability coefficient slightly lower at 0.74 (95% CI: 0.6, 0.83) (39). Previous 

research has also linked composite FMS score to injury in firefighters, as the odds of scoring 16 

or lower were 1.68 times greater (p = 0.033) for those with a history of any injury (41). In 

addition, new recruits in the firefighter academy who became injured over the duration of their 

training had lower pre-training composite FMS scores (13.8 ± 2.3 vs. 14.9 ± 1.7, p = 0.01) than 

those who did not (42). 

 The American College of Sports Medicine (ACSM) Pushup Test (43) was used to assess 

muscular endurance of the upper-body musculature, particularly the triceps, anterior deltoids, 

and pectoral muscles although many other muscle groups in the upper-body are used for support 

and stabilization. More specifically, this test attempts to quantify absolute muscular endurance by 
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measuring the total number of repetitions performed at a given resistance. As previously noted, 

there is only limited data on firefighter populations using this type of measure (29). 

 The current gold standard for assessing intermediate-term anaerobic power is the 30-

second Wingate Anaerobic Test, first described in 1974 (44). It was originally conceived as a test 

of lower-body and leg power but has since been adapted so that the same principles can be used 

to assess upper-body and arm anaerobic power (27). The Wingate test provides data on the 

subject’s peak power produced over a 5-second interval, mean power produced over the entire 

30-second test, and fatigue index, the difference between the peak and minimum power 

produced. Generally thought of as a reliable instrument, test-retest reliability coefficients of peak 

and mean power range from 0.9 to 0.98, though the fatigue index (r = 0.43) is considerably less 

reliable (27,45). 

 Many muscles within the torso are required for stabilization of the spine and isometric 

endurance times in various postures can provide insight into the fitness of these muscle groups, 

specifically the quadratus lumborum (46). While the abdominal muscles also provide 

stabilization to the spine, the quadratus lumborum was the most active muscle during any upright 

posture. The flexor endurance test (47), also known as the 60° abdominal muscle endurance test, 

coupled with the extensor endurance, or Biering-Sorensen test (48) are used to provide a measure 

of lumbar spine stabilizer muscle strength. Both of these tests have been shown to be extremely 

reliable with repeated tests on five consecutive days producing reliability coefficients of 0.97 and 

0.98, respectively (47). In addition, the Biering-Sorensen test has been shown to be a valid test 

for assessing torso stabilizing musculature as it can discriminate between subjects with and 
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without nonspecific low back pain (49). No previous studies on firefighter populations have 

reported data from these types of tests. 

 Vertical jump height has long been used in athletics as a way of assessing force 

production and more specifically, lower body power (50). Coaches and athletes often use 

maximum vertical jump height as an index of athletic performance because it is an inexpensive 

and simple field test to perform (51). One of the most common field methods for assessing 

vertical jump is the Sargent test (52), in which the difference between standing reach height and 

jumping reach height with a countermovement arm swing is calculated to determine vertical 

jump. The Sargent test has been shown to be both a reliable (intraclass correlation coefficient = 

0.96) and valid (r = 0.8) method of assessing explosive muscle power (51). As previously 

reported, only limited data is available with regard to firefighter performance on the vertical 

jump (28). 

 Maximal exercise testing as long been considered the standard for assessing aerobic 

power by way of a VO2 max test (53). In theory, combining a maximum effort test with 

measurement of breath-by-breath gas exchange allows for the most accurate account of 

cardiorespiratory fitness. This type of test was performed in the current study on a treadmill 

using a modified Bruce protocol (54) in which grade and speed were increased in a stepwise 

manner until voluntary exhaustion was achieved. A limitation in using any maximal performance 

VO2 max test includes musculoskeletal fatigue prior to achieving VO2 max (53), but the 

modified Bruce protocol used involves small increases in workload at each stage, such that 

excellent reliability is achieved with correlation coefficients of r = 0.94 for men and r = 0.93 for 

women without any type of cardiac condition (53). Anaerobic threshold can be measured using 
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either blood sampling methods or noninvasively using gas exchange methods (55). One method 

of estimating the anaerobic threshold is to look for the inflection point of the VE/VO2 curve 

(volume of air expired/volume of oxygen consumed) when plotted against work. The sharp 

increase in the slope of the line reflects a disproportionate increase in the amount of air exhaled 

without an accompanying increase in the volume of oxygen consumed (10). Physiologically, the 

body is becoming increasingly acidic from an increased reliance on anaerobic metabolism due to 

an unsustainable work rate. In an effort to combat this, breathing rate is increased to exhale 

excess carbon as carbon dioxide and reduce acidic compounds in the body. Studies in the past 

have looked at VO2 max in firefighters (3,5,13–19) but anaerobic threshold data has not 

previously been reported. 

!
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2.  Objectives 

 The current study was descriptive in nature and aimed to fulfill three objectives:  

1) To gather data regarding the physical fitness of active firefighters 

2) To determine whether a predictive testing battery could be developed to assess work 

performance and injury risk 

3) To make recommendations regarding the composition of physical fitness training and testing 

programs for firefighters 

Many previous studies focusing on the fitness of firefighters have heavily utilized new 

recruits or those with little experience (3,5,14,28) and predictably these samples produced 

excellent fitness results. The aim of this study was to test a sample of firefighters with a wide 

range of ages in order to gain a more accurate assessment of the fitness of “average” active, mid-

career firefighters serving an urban area. In addition, there is limited Canadian data regarding 

firefighter health and fitness and this study will set the necessary foundation to develop a 

Canadian database of firefighter physical fitness variables. 

 Correlations between the various fitness measurements were also examined with a view 

towards seeing if a simple set of tests may suffice to predict physical fitness and potentially 

injury risk in this population without the need for continued use of more sophisticated measures, 

such as those used in the present study. Identifying field tests that can substitute for more 

complicated technical tests with reasonable accuracy is critical in producing a testing battery that 

will be adopted by fire departments. 

Finally, the data collected also has the potential to inform future direction of firefighter 

training programs to address potential shortcomings in fitness for job performance and overall 
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health-related quality of life. By having some baseline variables on which to base a training 

program, the quality and effectiveness of it is inherently increased. Rather than using a generic 

approach to designing a program, one can specifically tailor the program to focus on areas of 

weakness to increase overall fitness level. 

!
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3.  Methodology 

 Participants were recruited from fire stations under the jurisdiction of the Kitchener Fire 

Department (KFD). Written informed consent was obtained from all participants and 

participation in the study was completely voluntary, the results of which would be confidential 

and reported only in aggregate so that testing would be devoid of any impact on their career. 

Study design and recruitment was reviewed and accepted by the Wilfrid Laurier University 

ethical review board (REB #3640). In addition, the KFD Health Promotion Committee, with 

representatives from the KFD management and workers’ union, also approved the study design 

and Dr. Peter Tiidus of Wilfrid Laurier University supervised all research design. 

3.1  Subjects 

 To be included in the study, potential participants must have been active members of the 

fire suppression unit of the KFD. They were required to complete an informed consent form, 

screening form, and CSEP Physical Activity Readiness Questionnaire (PAR-Q) (33). 

Exclusionary criteria included having been advised by a medical professional to not participate 

in vigorous physical activity, not being able to perform all of the physical demands of their job as 

a result of a musculoskeletal issue, or answering “Yes” to one or more questions on the PAR-Q. 

Firefighters were first recruited by way of a letter sent out by the KFD inviting them to 

participate in a study looking at various measures related to health and fitness. Those who 

wished to participate were tested at the KFD headquarters. After an initial round of recruitment a 

second follow-up letter was distributed and the researcher targeted and went to specific fire 

stations where participation was low to recruit additional participants and perform testing. 
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Testing took place over three separate sessions in which unique tests were administered. 

49 subjects (47 male, 2 female) were tested at their fire stations for the first session. One 

potential participant was excluded as a result of the exclusionary criteria. The second session was 

performed at Wilfrid Laurier University (WLU) and 24 firefighters were tested. The final session 

also took place at the University, with 23 (22 male, 1 female) of the original 49 subjects 

completing all three testing sessions. Each session took approximately one hour to complete. 

3.2  Session 1 

The first testing session at the fire stations focused mainly on baseline physiological 

testing and was done to also better establish rapport with the participants before requiring them 

to come to the University for further testing. After the screening and informed consent forms 

were obtained, height and weight measurements were taken. Height was measured using a 

generic measuring tape taped to a flat wall to the nearest 0.5 cm using a flat board to mark the 

point at which the top of the subject’s head reached the measuring tape. Weight was measured to 

the nearest 0.1 kg using a body composition scale in light clothing without shoes on. Participants 

were then asked to remove their shirt and sit in a chair for measurement of resting heart rate and 

blood pressure. A three-lead electrocardiograph was used to measure heart rate and a 

sphygmomanometer was fitted over the subject’s left arm, just above the elbow for blood 

pressure measurement of the brachial artery. Subjects were instructed to remain relaxed 

throughout the measurements and were allowed to sit quietly in the chair for a couple minutes 

prior to taking any readings in order to allow for heart rate and blood pressure to stabilize. Three 

measurements were taken of each variable with the lowest being recorded. 
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Waist circumference was measured on the right-hand side of the body to the nearest 0.5 

cm using a generic measuring tape at the superior border of the iliac crest (56). In the event that 

this point could not be visualized the navel was used as a reference point. Participants were 

instructed to cross their arms across their chest and stand relaxed with feet parallel and shoulder-

width apart and the measurement was taken at the end of a normal exhalation. Skinfold thickness 

was measured on the right-hand side of the body using Harpenden calipers to the nearest 0.2 mm 

using the overhand technique so that the caliper jaws were applied at 90° to the skinfold 1 cm 

below the landmark at five sites: biceps, triceps, subscapularis, iliac crest, and medial calf. Each 

site was measured a minimum of two times to obtain an average. Measurements were repeated in 

the same order to allow for the skin to regain its elasticity and if measurements differed by ≥ 0.4 

mm a third reading was taken and all three were averaged. Skinfold measurements of the biceps, 

triceps, subscapularis, and iliac crest were used to calculate body fat percentage according to the 

Durnin-Womersley method (57) based on body density using Siri’s equation (58): 

% fat = (4.95/density – 4.50) x 100 (1) 

Equations used to calculate body density differed for various age groups and gender (please see 

Appendix 7.6 Body Density Estimation Equations for all body density equations) (57). Height, 

weight, waist circumference and all five recorded skinfold thickness measurements were used to 

calculate the Canadian Physical Activity, Fitness, and Lifestyle Appraisal (CPAFLA) Health 

Body Composition Score (59). Calculating the CPAFLA Healthy Body Composition Score 

involves determining whether BMI, waist circumference, the sum of five skinfolds (biceps, 

triceps, subscapular, iliac crest, and medial calf), and the sum of two trunk skinfolds (subscapular 

and iliac crest) are in a predetermined “healthy” or “unhealthy” range based on criteria from 
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CPAFLA (please see Appendix 7.7 CPAFLA Healthy Body Composition Score Criteria for 

charts with predetermined healthy ranges). Skinfolds were landmarked and assessed using 

standard procedures (57,60). The biceps and triceps were landmarked by having the participant 

flex their elbow to 90° with the palm supinated and the midpoint between the distal tip of the 

acromion process and the olecranon process was marked. The midpoint level was then 

transferred to the front and the back of the arm to obtain the landmark for the biceps and triceps, 

respectively. Skinfolds for the biceps and triceps both ran vertically. The subscapcularis was 

landmarked 1 cm below the inferior angle of the scapula and the skinfold ran downwards and 

outwards at a 45° angle to the spine. To landmark the iliac crest the participant was first 

instructed to raise the right elbow, place the right hand on the shoulder, and not bend to the side 

as this can distort the skin, and subsequently the landmark. The landmark was placed 3 cm above 

the iliac crest at the axillary midpoint of the body with the skinfold running forward and slightly 

downward. The medial calf landmark was obtained by having the participant unload their right 

leg on a chair with the knee bent at a 90° angle. At maximum calf girth the landmark was placed 

along the midline of the medial side of the calf with the skinfold running vertically. 

Participants then completed the Functional Movement Screen (FMS), a seven-movement 

assessment used to identify compensatory movements in the kinetic chain of movement patterns 

(39). Each movement was scored from 0-3 with higher scores being better. A score of 3 indicates 

that the movement was performed without any compensatory movements while a 2 indicates that 

some type of minor compensation was required. If a participant cannot perform a movement a 

score of 1 is given. If the participant complains of pain at any time during a movement, a score 

of 0 is assessed. In bilateral movements the lower of the two scores is recorded for the 
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movement. In addition, some movements have an additional clearing test associated with them. 

If the participant experienced pain during the clearing test a score of 0 was assessed for the 

corresponding movement (please see Appendix 7.7 Functional Movement Screen Movement 

Patterns & Scoring Criteria for images of all seven components and clearing tests). 

The first component of the FMS was the Deep Squat (39). Participants were instructed to 

hold a dowel with both hands overhead with arms fully extended. With feet roughly shoulder-

width apart, parallel, and toes pointed forward, they descended into a deep squat so that the 

thighs broke parallel with the floor. The torso should be parallel with the tibia in the lowered 

position and the dowel, knees, and feet aligned. To perform the bilateral Hurdle Step, a hurdle 

was set up at the height of the subject’s tibial tuberosity and a dowel was held across the 

shoulders with the feet shoulder-width apart and toes touching the base of the hurdle. Subjects 

were instructed to step over the hurdle without touching it while maintaining an upright posture, 

touch the heel to the floor and return to the starting position. The hips, knees, and ankles should 

remain aligned in the sagittal plane and the dowel and hurdle should remain parallel throughout 

the movement. The In-Line Lunge was performed with a dowel held vertically behind the back 

with one hand against the back of the neck and the other hand against the lower back. The feet 

were placed in-line at a distance of the tibial tuberosity and subjects were instructed to descend 

into a lunge so that the knee touches the floor while maintaining an upright posture and constant 

contact of the dowel against the head, thoracic spine, and sacrum. The torso should not move and 

the dowel and feet should remain in the sagittal plane while the knee touches the floor directly 

behind the heel. The bilateral Shoulder Mobility movement involved making a fist with the 

thumb tucked in and then, in a single motion, placing one hand over the head onto the back and 
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the other hand behind the back as close together as possible. If the fists were within one hand 

length of each a perfect score of 3 was given while a 2 was recorded if the fists were within 1.5 

hand lengths. The Impingement Clearing Test required participants to place their hand on the 

opposite shoulder and raise the elbow toward the forehead while maintaining hand placement. 

The bilateral Active Straight Leg Raise was performed laying down face-up by lifting one 

straight leg towards the torso as much as possible while keeping the other leg extended on the 

floor. The ankle of the raised leg needed to be superior to the mid-thigh of the relaxed leg for a 

score of 3. If the ankle fell between the mid-thigh and knee a 2 was given and if the ankle was 

below the knee joint a 1 was assessed. The Trunk Stability Pushup was performed in the standard 

pushup position with the hands positioned shoulder-width apart. Males placed the thumbs in line 

with the forehead while females placed the thumbs in line with the chin. Maintaining a rigid 

torso, participants raised their body off of the floor as one unit with no lag. If participants could 

not perform the pushup as described, males moved the hands to a position in line with the chin 

and females moved the hands to a position in line with the clavicle for a score of 2. The Press-Up 

Clearing Test was performed from the lowered pushup position with the hands palm-down 

beneath the shoulders. Participants pressed the chest off of the floor, arching the back as much as 

possible while keeping the hips in contact with the floor. The final movement performed of the 

FMS was the bilateral Quadruped Rotary Stability task. Participants positioned the shoulders and 

hips at 90° and attempted to lift the same side arm and leg off the floor, extend the limbs 

simultaneously, and then flex the limbs to touch the elbow and knee together all while 

maintaining a flat back position. If a unilateral rep could not be performed a diagonal rep was 

attempted to score a 2. The Posterior Rocking Clearing Test was performed by maintaining 
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contact with the hands on the floor, rocking back on the heels so that chest reached towards the 

knees, and extending the arms in front of the body. 

The final test performed during session 1 at the fire stations was the ACSM Pushup Test 

(43). Participants started in the standard pushup position with hands pointed forwards under the 

shoulder, back straight, head up, and the toes acting as the pivot point with the floor (females 

begin in a modified pushup position with their knees contacting the floor rather than toes) and 

performed as many consecutive pushups as possible without rest. A successful pushup involved 

the participant straightening the elbows to raise the torso off of the ground and then lowering 

down until the chin touched the floor (note that the chest should not touch the floor at any time). 

3.3  Session 2 

When participants first arrived at WLU for the second testing session their weight was 

measured to the nearest 0.1 kg in light clothing without footwear. The first test performed was 

the 60° abdominal muscle endurance test (47). Participants laid down, face-up, with their legs 

bent and feet wedged underneath a bike frame. They folded their arms across their chest and kept 

their back straight while the experimenter adjusted their upper body to a 60° angle using a 

goniometer. Participants were instructed to maintain this position and given feedback when they 

deviated from 60° so that minor corrections could be made. 

Measures of maximum strength for both the lower and upper body were next assessed. 

Participants performed a 60°/s, isokinetic, concentric quadriceps contraction using a human 

dynamometer followed by a biceps contraction of the same variety. Torque production has 

previously been measured using concentric contractions at 60°/s (61,62) and has been shown to 

be quite reliable at this speed with mean variation test-retest results being 4.7 ± 0.96% (95% CI: 
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3.6, 6.1%) (61). Once the equipment was set-up per its directions, three practice repetitions were 

performed to allow subjects to become acquainted with the machine. After a 30 s rest period 

three maximum effort contractions were performed and the peak torque produced in any of the 

repetitions was recorded. 

The last assessment of the first testing session at WLU was the Wingate Anaerobic Test 

(44). Brake weight was set at 7.5% of the participant’s body weight, as measured that day at the 

beginning of the testing session. Prior to the Wingate test, participants warmed up using a cycle 

ergometer for approximately 7 min at 1-2 kp resistance. At approximately 5 and 6 min into the 

warm-up a short 5 s sprint against the approximate resistance of the Wingate test was performed 

to allow participants to become acquainted with the load. Following this, participants transferred 

to the Wingate cycle ergometer and began cycling without any resistance. Toe-clips were used 

and participants were instructed not to leave the seat during the test as this can increase test 

performance by up to 8% as well as reducing standardization and therefore, reliability (45). Once 

participants reached maximum cycling speed, a button on the handlebar was pressed to engage 

the brake weight and begin the 30 s test timer. Participants were verbally encouraged to maintain 

maximum effort throughout the test duration and following the test a 10 min cool down on a 

cycle ergometer was performed plus a short walk to ensure that no negative symptoms 

developed. 

3.4  Session 3 

As with the previous two sessions, the third and final testing session at WLU began with 

weight measured to the nearest 0.1 kg in light clothing without footwear. The Biering-Sorensen 

test (48), which measures back extensor muscle endurance, was then administered by having the 
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participants lie face down on a table with their upper body hanging off the edge while the 

experimenter applied pressure to their lower legs to stabilize them. Participants then crossed their 

arms on their chest, brought their upper body in-line with their lower body, and maintained this 

straight body position for as long as possible. 

Vertical jump was then assessed from a standing, two-footed takeoff with 

countermovement arm swing as outlined in the Sargent test protocol (51). A commercial vertical 

jump measurement tool with a 2 ft (60.96 cm) measuring area (by way of vanes separated by 1 in 

[2.54 cm]) was adjusted so that it was at the level of the participant’s overhead raised arm’s 

fingertip. Participants were given three opportunities to jump and swipe a vane with their hand 

and the highest jump was recorded as this method is often used in athletic settings and there is a 

motor learning effect present (50). In the event that a participant’s vertical jump was greater than 

2 ft (60.96 cm), the measurement device was set to a known height and their standing reaching 

height was measured prior to jumping. 

The final test performed was a VO2 max treadmill test to assess aerobic power. 

Participants were outfitted with a mask hooked up to a metabolic cart to measure breath-by-

breath gas exchange in addition to a 4-lead electrocardiograph to track heart rate over the 

duration of the test. Participants were instructed to remain running on the treadmill for as long as 

safely possible. The testing protocol was based on the Bruce protocol (54), began at a walking 

pace, and grade was increased by 2% every 1 m 30 s with small increases in speed until 

voluntary exhaustion (for full testing protocol please see Appendix 7.6 Modified Bruce Protocol 

for VO2 max Treadmill Test). The respiratory exchange ratio (RER) was recorded at the time of 

exhaustion. Anaerobic threshold was also recorded by determining the inflection point of the VE/
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VO2 curve (volume of air expired/volume of oxygen consumed) and heart rate was also recorded 

at this point. 

Data was presented as mean ± standard deviation and ranges also given. Where 

appropriate, data was normalized to allow for comparison between people of different body 

sizes. Sub-analysis by decade-long age groups was also performed. Assumptions of statistical 

normality were checked using estimates of skewness and kurtosis as well as the Kolmogorov-

Smirnov test. Statistical testing using SPSS 21 software comprised of Pearson’s correlation 

coefficients and one-way ANOVAs for between group differences based on age. Statistical 

significance was set at the two-tailed, p < 0.05 level. 

!
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4.  Results 

All three testing sessions of the study were completed by only 23 participants out of 49 

people who began the study and completed the first session, yielding a ~ 47% completion rate. 

There are about 150 active firefighters in the KFD. Only one subject completed the second 

session but did not return for the final third session. Initially, two females were recruited for the 

study but only one completed all three sessions. Due to this, their data was grouped in with the 

rest of the male data and comparisons were made to male populations where applicable. 

Descriptive statistics of procedures performed, including mean, standard deviation, and 

range are displayed in Table 1. Of particular interest are some of the low-end ranges of some 

variables, such as with VO2 max. Though aerobic capacity averaged 42.2 ± 6.6 ml O2/kg/min for 

the group as a whole, the lower end of the data reaches 27.3 ml O2/kg/min. The RER at test 

conclusion was found to be 1.2 ± 0.1, indicating the absence of steady state. We can then be 

reasonably confident that our group attained VO2 max during their test, as their RER was > 1.15, 

which is generally accepted as the threshold point for differentiating between a VO2 max and 

VO2 peak (4).VO2 max values as well as VO2 at the anaerobic threshold (33.3 ± 8.2 ml O2/kg/

min) were expanded to show individual values in ascending order in Figures 1 and 2, 

respectively. Peak power produced during the Wingate test (10.6 ± 1.1 W/kg) and average power 

produced (7.4 ± 1.0 W/kg) were also expanded out in increasing order in Figures 3 and 4, 

respectively. 

Normality of the measures was assessed in three ways: subjectively with P-P plots and 

objectively using Kolmogorov-Smirnov tests and z-scores of skewness and kurtosis. Abdominal 

muscular endurance, D (24) = 0.2, p = 0.014, was the only variable with a non-parametric 
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distribution, in addition to z-scores for skewness and kurtosis of 3.37, p < 0.001 and 2.09, p < 

0.05, respectively. This indicates that distributions for variables other than abdominal muscular 

endurance are parametric and inform the type of correlation statistics used. It also indicates that 

the distribution of scores in the various assessments reported for the firefighter populations were 

for the most part normally distributed without undue skewing at the lower or higher ends. 

Correlations were performed in hopes of determining which variables may best predict 

performance in most other variables. Pearson’s r correlation statistic was used because variables 

had a parametric distribution of the data (63). Body fat percentage correlated with the most other 

variables while resting blood pressure, height, and abdominal muscular endurance had the fewest 

amount of significant correlations. Weight displayed a strong, positive correlation with both BMI 

(r = 0.86, p < 0.001) and waist circumference (r = 0.83, p < 0.001), as did waist circumference 

with BMI (r = 0.88, p < 0.001). Body fat percentage had a significant negative correlation with 

almost all of the performance measures save for abdominal flexor and back extensor muscular 

endurance (see Table 2 for correlations), potentially hinting at its use as a general predictor of 

fitness and performance. Quite predictably, the CPAFLA Healthy Body Composition score had 

strong negative correlations with the variables that factor into it: body fat percentage (r = - 0.72, 

p < 0.001), waist circumference (r = - 0.71, p < 0.001), and BMI (r = - 0.62, p < 0.001). Total 

score in the FMS displayed modest, negative correlations with many of the body composition 

variables (see Table 3 for correlations), specifically weight, BMI, waist circumference, and body 

fat percentage, while correlating positively with CPAFLA score. 

 Pushup repetitions correlated most with maximum bicep strength (r = 0.62, p = 0.001) in 

addition to strong positive relationships with other performance measures. Maximum quadriceps 
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strength has strong positive correlations with Wingate peak power (r = 0.7, p < 0.001), vertical 

jump (r = 0.62, p = 0.002), and VO2 max (r = 0.61, p = 0.002). Wingate test peak power 

production had strong, positive correlations with many of the performance variables (see Table 4 

for correlations), specifically vertical jump (r = 0.75, p < 0.001). Vertical jump also correlated 

strongly with many of the other performance measures (see Table 5 for correlations). 

Unsurprisingly, VO2 max exhibited strong, positive correlations with VO2 at anaerobic threshold 

(r = 0.84, p < 0.001), Wingate peak power (r = 0.63, p = 0.001), and maximum quadriceps 

strength. However, when VO2 at the anaerobic threshold was expressed as a percentage of VO2 

max the two variables surprisingly did not correlate (r = 0.37, p = 0.079). 

 One-way ANOVAs were performed to look for differences in VO2 max and Wingate test 

peak power production values based on differences in decade-long age groups. No significant 

difference was found for either VO2 max (F (3,19) = 1.42, p = 0.27) or Wingate test peak power 

(F (3,20) = 1.46, p = 0.26). However, VO2 max did display a significant negative correlation with 

age, as shown in Figure 7 (r = - 0.5, p = 0.015). 

!
!
!
!
!
!
!
!
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Table 1. Baseline and physical fitness characteristics of firefighters 
Subject number, mean, standard deviation, minimum, and maximum values for all data collected. !

!!

N Mean SD Minimum Maximum

Age (years) 49 40.5 8.3 26 55

Resting Heart Rate (bpm) 49 57.7 8.2 40 74

Resting Systolic Blood Pressure (mm Hg) 49 121.5 11.9 100 149

Resting Diastolic Blood Pressure (mm Hg) 49 71.5 9.9 48 96

Height (cm) 49 179.2 6.6 166.5 196.0

Weight (kg) 49 89.5 13.0 64.3 126.1

Body Mass Index (kg/m 49 27.8 3.6 21.7 37.3

Waist Circumference (cm) 49 93.5 10.1 79 123

Body Fat (%) 49 24.2 5.4 14.7 37.9

CPAFLA Healthy Body Composition Score 49 7.6 6.8 0 15

Functional Movement Screen (total score) 49 15.6 1.6 11 19

60° Abdominal Endurance Test (s) 24 153.8 94.2 64 407

Biering-Sorensen Test (s) 23 113.4 48.6 24 231

ACSM Pushups (repetitions) 49 31.4 11.6 8 60

Vertical Jump (cm) 22 50.0 9.6 33 66

Quadriceps Strength (Nm/kg) 24 3.0 0.7 1.9 4.2

Bicep Strength (Nm/kg) 24 1.0 0.1 0.7 1.2

Wingate Test Peak Power (W/kg) 24 10.6 1.1 8.5 12.3

Wingate Test Average Power (W/kg) 24 7.4 1.0 5.2 8.8

Wingate Test Minimum Power (W/kg) 24 5.3 1.0 3.5 6.7

Wingate Test Fatigue Index (%) 24 49.7 8.7 31.3 64.5

VO2 23 42.2 6.5 27.3 52.8

Anaerobic Threshold VO 23 33.3 8.2 18.4 47.3

Anaerobic Threshold VO 23 78.1 11.5 57.0 96.0
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Table 2. Correlations between body fat percentage and performance variables !

!!!!
Table 3. Correlations between Functional Movement Screen total score and body composition 
variables !

!!!!!!!

r Value p Value

ACSM Pushups - 0.61 < 0.001

Quadriceps Strength - 0.58 0.003

Bicep Strength - 0.56 0.005

Wingate Test Peak Power - 0.55 0.005

Wingate Test Average Power - 0.62 0.001

Wingate Test Minimum Power - 0.51 0.012

Vertical Jump - 0.72 < 0.001

VO2 - 0.44 0.037

Anaerobic Threshold VO - 0.53 0.009

r Value p Value

Weight - 0.36 0.01

Body Mass Index - 0.48 < 0.001

Waist Circumference - 0.47 0.001

Body Fat Percentage - 0.48 < 0.001

CPAFLA Healthy Body 
Composition Score

0.48 0.001
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Table 4. Correlations between peak power production during the Wingate test and performance 
variables !

!!!
Table 5. Correlations between vertical jump and performance variables !

r Value p Value

ACSM Pushups 0.53 0.008

Quadriceps Strength 0.7 < 0.001

Bicep Strength 0.53 0.007

Wingate Test Average Power 0.74 < 0.001

Wingate Test Minimum Power 0.43 0.037

Vertical Jump 0.75 < 0.001

VO2 0.63 0.001

Anaerobic Threshold VO 0.57 0.004

r Value p Value

ACSM Pushups 0.58 0.005

Quadriceps Strength 0.62 0.002

Bicep Strength 0.73 < 0.001

Wingate Test Peak Power 0.75 < 0.001

Wingate Test Average Power 0.8 < 0.001

Wingate Test Minimum Power 0.6 0.003

VO2 0.67 0.001

Anaerobic Threshold VO 0.78 < 0.001
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!  
Figure 1. Individual Wingate test peak power production 
Relative power production in W/kg of all subjects (N = 24) during 5 s period of peak revolutions 
during the Wingate test in ascending order. !

!  
Figure 2. Individual Wingate test average power production 
Relative power production in W/kg of all subjects (N = 24) during 30 s Wingate test in ascending 
order. 
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!  
Figure 3. Individual VO2 max during treadmill test 
Relative VO2 max in ml O2/kg/min achieved during treadmill test of all subjects (N = 23) in 
ascending order. !

!  
Figure 4. Individual VO2 at the anaerobic threshold during treadmill test 
Relative VO2 in ml O2/kg/min at the anaerobic threshold achieved during treadmill test of all 
subjects (N = 23) in ascending order. 

- !  - 49



!  
Figure 5. Correlation between body fat and VO2 max 
Scatter plot of body fat (%) and relative VO2 max (ml O2/kg/min) showing a negative correlation 
(r = - 0.44, p = 0.037). !

!  
Figure 6. Correlation between vertical jump and Wingate test peak power production 
Scatter plot of maximum vertical jump height (cm) and peak power produced (W/kg) during the 
Wingate test showing a positive correlation (r = 0.75, p < 0.001). 
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!

�  !
Figure 7. Relationship between VO2 max and age 
Bar graph of relative VO2 max (ml O2/kg/min) and age (years) grouped into decade-long cohorts. 
A negative correlation as found between VO2 max and age (r = - 0.5, p = 0.015). !

r = - 0.5, p = 0.015 
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5.  Discussion 

 The average age of this sample of firefighters was 40.5 ± 8.3 years old. This is important 

and worth noting because the target sample group was active firefighters with a wide range of 

service time and age in order to gain a more accurate snapshot of the physical fitness level of 

“average” experienced firefighters of a wider age range, rather than just a younger group who 

more recently had to complete the physical fitness testing to become a firefighter. When 

appropriate and possible, references to normative population data or previous literature were 

done using males in the 40 – 49 year old age range in order to gain the most applicable and 

relatable bases for comparison. 

Though largely descriptive in nature, the present study highlights several interesting 

trends in the current fitness level of an active urban-area firefighter population. VO2 max was 

found to be 42.2 ± 6.5 ml O2/kg/min, superficially appearing very much in line with the standard 

previously established for firefighting of 42 ml O2/kg/min (13,14). However, when individual 

VO2 max values were examined, as in Figure 1, it was seen that many firefighters actually fall 

below the cardiorespiratory standard and in fact there may be a small, but significant, portion of 

this population that is physically unfit to perform the duties of their job expected of them. Part of 

being a firefighter involves maintaining one’s fitness and ideally even those with lowest 

cardiorespiratory fitness should still be greater than the minimum standard and if a number of 

firefighters fall significantly below this standard this may be a cause for concern. It should be 

noted that this particular sample was not alone in their less than ideal aerobic work capacity as 

previous studies using an active firefighter have also reported average VO2 max values below 42 

ml O2/kg/min (18,19). Also, though this sample tested better than reference adult males in the 
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same age range (38.1 ml O2/kg/min) (23), it is expected that those in a public safety profession 

such as firefighting would maintain a better fitness level than their counterpart in the population 

as there is a large physical fitness component to their job. Though no significant difference was 

found in VO2 max based on differences in age (F (3,19) = 1.42, p = 0.27), there was a negative 

correlation between age and VO2 max (r = - 0.5, p = 0.015), suggesting that aerobic fitness 

capacity declines with age. 

 Predictably, VO2 consumed at the anaerobic threshold followed similar patterns to VO2 

max and the two measures have a strong positive correlation (r = 0.84, p < 0.001). Quite 

surprisingly, when VO2 at the anaerobic threshold was expressed as percentage of VO2 max (78.1 

± 11.5%) the two variables did not significantly correlate. Exercise training usually produces 

gains in VO2 max and both absolute and relative VO2 at the anaerobic threshold so that one is 

able to sustain work performance at a higher percentage of absolute VO2 max (4). Since there 

was a modest trend towards statistical significance between the two variables (r = 0.37, p = 

0.079), a greater sample size may have been needed to achieve significance of the expected 

relationship. As with VO2 max, it is most interesting to note the wide spread of the data 

regarding VO2 at the anaerobic threshold, which ranged from 18.4 – 47.3 ml O2/kg/min. The 

anaerobic threshold is a good predictor of actual sustained work performance (4), and looking 

again at the lower range values, the results are somewhat concerning. Converting 18.4 ml O2/kg/

min to METs gives approximately 5.3 METs, which would correspond to a slow jog or brisk 

walk at about 6.5 km/h (64). This is then the intensity of work that the individual at this low end 

could sustain for a significant period of time. Firefighters will often need to perform work that is 

sustained for significant periods of time at intensities greater than 5 METs, and having a 
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maximum capacity to perform work at 12 METs has previously been recommended as the 

minimum necessary to be a firefighter (13,14). This further highlights the possibility that a small 

portion of this sample may not possess the requisite fitness level to perform their job 

responsibilities adequately. The mean VO2 at the anaerobic threshold was found to be 33.3 ml 

O2/kg/min, which can be converted to approximately 9.5 METs. This corresponds to jogging at 

about 9.5 km/h (64), which can be thought of as the average, sustainable work capacity of this 

sample of firefighters. Looking at a population’s VO2 at the anaerobic threshold may prove 

valuable in predicting the level of work performance that can be sustained for a significant 

period of time (4) and has not been previously reported in firefighters. This important new 

information will add to the available data on the quantification and assessment of firefighter 

fitness and work capacity. 

 The trends seen regarding age and both VO2 max and VO2 at the anaerobic threshold 

seemingly highlight the need for continuous firefighter training programs to combat the age-

related decline in fitness. Currently, fire departments for many large, urban areas only require a 

physical fitness test which individuals need to pass to qualify for employment (1). Though active 

firefighters are encouraged to maintain their fitness and often are provided with the facilities to 

do so while on shift, they do not perform any further formal fitness testing for the duration of 

their careers and there are few formal fitness training programs provided for firefighters. The 

insight and data provided by the current study may help to inform development of future training 

programs designed specifically for firefighters to target areas of weakness. Having accurate 

baseline data helps to increase the efficiency of any training program and this is especially 

valuable to a fire department where funds allocated for fitness training may be limited. 
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 Peak power produced during the Wingate test averaged 10.6 ± 1.1 W/kg for the 

firefighters measured. Some previous studies that have performed Wingate tests using either 

male or female firefighters (28,31) have reported only absolute values and only Murphy et al. 

(1984) observed male firefighters achieving 750.4 W of power produced at peak (31). By very 

crudely multiplying peak power and weight, we calculated that this sample of firefighters might 

have been able to maximally produce about 948.7 W during the Wingate test. A group of active 

firefighters, as used in the present study, has been observed to produce 9.4 ± 0.3 W/kg at peak 

revolutions during the Wingate test (65). By expressing power output using a relative measure 

(work per kilogram of body weight), our study adds additional value not presently seen in past 

studies by allowing for direct comparisons to other groups, even in cases where body sizes may 

differ significantly. Though this group of firefighters performed better than other firefighters, 

other potential comparator groups such as male intercollegiate (NCAA) athletes are able to 

produce more power during the Wingate test, 11.65 W/kg (32). This sample of firefighters 

appears to have adequate power to perform their job duties although no standard has been set for 

anaerobic power as it has with aerobic power. As with VO2 max, there was not a significance 

difference for age having an effect on Wingate test peak power (F (3,20) = 1.46, p = 0.26). Mean 

power produced in the Wingate test averaged 7.4 ± 1.0 W/kg and converting to an absolute value 

was estimated to be approximately 662.3 W. Hence this group performed better than previously 

reported data of 555.4 W from Murphy et al. (1984) (31). 

Most firefighting tasks last 30 seconds or longer, such that a fire department may be more 

interested in its firefighters’ average power production rather than peak power for the purposes of 

predicting performance in an emergency situation, which most likely will be in the duration of 
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minutes rather than seconds and favour power endurance over peak power output. Separating out 

individual scores, as in Figure 4, shows that the vast majority of the sample is within 1 W/kg of 

the mean but there are a few individuals who fall quite below this, again lending credibility to the 

notion that there may be a small, but significant, portion of this firefighter sample that may be 

unfit to optimally perform their job responsibilities. A fire department might be more interested 

in this knowledge rather than peak power data as it may help inform development of future 

training programs to target power endurance production, thereby increasing the effectiveness and 

efficiency (in both time and money) of said program. In addition, fatigue index, or power drop, 

of the Wingate test was also calculated and determined to be 49.7 ± 8.7%. Fatigue index 

measures the change in power output between the peak power output during the first few seconds 

of the test and the minimum power output (5.3 ± 1.0 W/kg). In collegiate cyclist athletes, a 

fatigue index of 40.9% has been observed (66) during the Wingate test while youth national team 

basketball players have been observed with a fatigue index of 56% (67). Cyclists are likely much 

more familiar with a cycle ergometer than firefighters are and also are more well-versed in that 

modality of training, thus offering a potential explanation for their reduced fatigue in Naharudin 

& Yusof’s study (2013) (66). The fatigue index observed in the current study ranged from 31.3 – 

64.5%, indicating that some firefighters experienced little fatigue during the Wingate test while 

others lost almost two-thirds of their power output. The large range of fatigue experienced is also 

seen in male intercollegiate athletes, who have reported a similar mean fatigue index of 47 ± 

7.6% and range of 13 – 77% (32). More research is needed in the area of fatigue index to 

determine the real-world effects of greater fatigue indexes and define what level might constitue 

excessive fatigue. 
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 Maximum vertical jump was found to be 50.0 ± 9.6 cm and correlated strongly with 

many other performance measures, as shown in Table 5. Reference Canadian males aged 40 – 49 

years old have been reported to possess a vertical jump of 35 ± 2 cm (68). Since the vertical 

jump is an easy test to administer with minimal training, equipment, time, and space needed it 

may be of great use to a fire department to predict or indicate performance and fitness of new 

and current firefighters in a variety of areas, when more sophisticated and expensive fitness tests, 

such as the VO2 max and Wingate tests may be difficult to perform. Logically, this is sound 

reasoning for the Wingate as both tests emphasize anaerobic power of the lower body. While a 

treadmill VO2 max test, such as the one used in the present study, does utilize the lower body 

musculature to propel one forward, it taxes the cardiorespiratory system more so. Possibly, 

vertical jump performance may simply be indicative of overall physical fitness and health. 

Further research is needed in this area to more accurately determine if maximum vertical jump 

performance is actually a good predictor of both aerobic and anaerobic performance but it may 

have the potential to do so and hence if validated may eventually serve as a simple predictive test 

to monitor more than one type of fitness in firefighters. 

 Maximum strength of the quadriceps muscle was measured via torque production of an 

isokinetic, 60°/s, concentric contraction using a human dynamometer and averaged 3.0 ± 0.7 

Nm/kg. As previously mentioned, maximum quadriceps strength had strong, positive correlations 

with many of the performance tests that tax the lower body (Wingate test, VO2 max test, vertical 

jump). Unsurprisingly, it correlated most strongly with Wingate test peak power (r = 0.7, p < 

0.001) as both of these tests emphasize maximum power production in the quadriceps. In other 

words, while force development and production is an integral part of these tests, the speed at 
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which one can achieve their maximum force production is paramount to achieving a good test 

result. While quadriceps strength may be useful for predicting performance in other tests, it is 

probably not as feasible to use in continued testing of large populations (in this iteration, using a 

human dynamometer) as the previously mentioned vertical jump due to the increased cost and 

complexity of the equipment required. Maximum quadriceps strength using this methodology 

has not previously been reported in firefighters. This data is valuable in formulating a full 

understanding of firefighter fitness and possibly contributing to the formation of an easy to 

administer battery of tests to quantify the fitness of this population for the purposes of predicting 

future performance and health outcomes. 

 As with the quadriceps, a human dynamometer was used to measure torque production of 

an isokinetic, 60°/s, concentric contraction of the biceps to quantify maximum strength of the 

muscle. This sample of firefighters was able to produce 1.0 ± 0.1 Nm/kg in the biceps and this 

measure has not been previously reported in firefighters. Though they focus on antagonist 

muscle groups, maximum bicep strength had a strong positive correlation with pushup 

repetitions completed (r = 0.62, p = 0.001). This relationship may simply be rooted in overall 

upper-body musculature and fitness as they do not stress the same muscle groups. As with data 

on quadriceps strength, this new information on biceps strength provides additional knowledge 

on firefighter fitness. Specifically, a better understanding of the upper-body strength 

requirements relative to the demands of firefighting is predicated on obtaining real-world, 

practical data on different upper-body muscle groups, as we performed. 

 As another measure of upper-body musculature, but instead focusing more on muscular 

endurance (43), repetitions in the ACSM pushup test averaged 31.4 ± 11.6 in this sample of 
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firefighters. This number is similar to previously reported data of 35.6 ± 15.3 repetitions in 

firefighters (29) and once more highlights the large range of the data as both groups had standard 

deviations of a third or more of their respective means. In our particular group the minimum 

value seen of 8 repetitions would place in the “needs improvement” category according to the 

ACSM (43), regardless of the age of the individual. Conversely, one person was able to 

successfully complete 60 repetitions, far exceeding the standard for an “excellent” rating from 

the organization. Results from this pushup test provide additional knowledge on some of the 

primary “pushing” muscles of the upper-body, specifically the pectorals, triceps, and deltoids. 

Coupled with new data on one of main “pulling” muscles, the bicep, a greater understanding of 

the upper-body musculature of an active firefighter can be fostered and potentially contribute to 

the development of training programs and predictive testing batteries. As the results of the 

pushup test correlated well with the dynamometer determined upper-body muscle peak torque, it 

is possible that the more accessible ACSM pushup test (43) may be used as a reasonably accurate 

assessment of upper-body strength in a firefighter population. 

 Core and postural muscles that support the torso were assessed for muscular endurance 

using the 60° abdominal endurance test and Biering-Sorensen test, respectively. Performance in 

the abdominal endurance test averaged 153.8 ± 94.2 s with a very large range of data, from as 

low as 64 s to 407 s. This may be the reason for its non-parametric distribution as it is positively 

skewed due to a few values that are much larger than the others and leptokurtic as most data 

points reside close to the mean. This group of firefighters was able to hold the upright position in 

the Biering-Sorensen test for an average of 113.4 ± 48.6 s as it taxed the posterior extensor 

muscles, particularly those of the back. Typical adult males have been shown to hold the 
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extended position of the Biering-Sorensen test for 146 ± 51 s and the flexed position of the 60° 

abdominal endurance test for 144 ± 76 s (47). It has previously been reported that males who 

experienced low-back pain in the year following testing were not able to hold the Biering-

Sorensen test position for as long as males who did not experience any low-back pain (176 s vs. 

198 s, p = 0.029) (48). In addition, it has been suggested that maintaining a near 1.0 ratio 

between torso flexor and extensor muscle endurance time may be ideal for optimal health (47). 

There was quite a large spread of data in our firefighters’ Biering-Sorensen test time, as shown 

by the large standard deviation, suggesting that further research is needed with a larger sample 

size in order to more accurately assess the health of firefighters’ back extensor musculature as 

their test results were much lower than previously reported data, even in those who eventually 

experienced low-back pain. This is the first time data for either of these tests has been reported in 

the firefighter population and gives insight to the health of their torso, and specifically spine 

stabilizing musculature, which are being increasingly implicated in injury risk and low-back pain 

(47,48). Nevertheless, it appears that some of our subjects may be at risk for back injury based 

on the test results. Together with the Functional Movement Screen, these three tests may form 

the basis of some type of injury-risk screening program for fire departments in the future with 

additional research to better discern predictive value. 

 The Functional Movement Screen (FMS) aims to identify compensations in movement 

patterns that may predispose an individual to an increased risk of injury (39,40). Lower scores 

indicate that one has compensations in their movement patterns, which can lead to muscle 

imbalances and over-use injuries over time as other less-optimally designed or positioned muscle 

groups must work harder to compensate for weaker muscle groups. Out of a possible 21 points 
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this sample of firefighters produced an average score of 15.6 ± 1.5 points. Scores of 14 or less 

have been shown to be associated with an increased risk of injury in professional American 

football players (40) and the potential for the FMS to be used in the same manner with 

firefighters certainly exists. Both injury history and future injury risk have been evaluated in 

firefighters previously using the FMS. Firefighters with a previous injury of any type were more 

likely to score 16 or below on the FMS (41) and firefighters who became injured during academy 

training scored significantly lower than those who did not (42). There were not any significant 

relationships demonstrated between FMS score and either of the core or postural muscle 

endurance tests (abdominal flexor and back extensor tests). This study adds to the limited pool of 

data available on active firefighters’ FMS score and may eventually contribute to the design of 

some type of pre-joining testing battery, perhaps with abdominal flexor endurance and back 

extensor endurance tests, used to predict general injury risk and overall health. Information such 

as this would be valuable for any type of organization or workplace involving physical activity, 

but especially for a fire department in which the high physical demands of the profession 

exacerbate any pre-existing injury or health risks. As shown in Table 3, total score in the FMS 

had modest, negative correlations with weight, BMI, waist circumference, and body fat 

percentage. Generally speaking, these measurements should be as low as possible (within a 

healthy range) for optimal health and that the FMS score correlates negatively with them lends 

further evidence to its possible use as a predictor of general health in any type of population. As 

more data becomes available using this measure, its power as a predictive tool can only increase. 

The current data suggest that there is a small sub-population of firefighters tested that may be 

more susceptible to on-the-job injury. 
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 Body fat percentage has the potential to be a general predictor of health and performance 

in this population due to its positive correlations with many of the health-related measures and 

negative correlations with many of the performance tests, as shown in Table 2. The application of 

the present study is two-fold: to determine simple tests that can predict performance and to 

determine fitness variables that can serve as risk factors for on-the-job mortality. Body fat 

percentage addresses both of these applications as increased body fat impaired performance in 

almost all of the tests conducted and likely reflects an increased risk for a myocardial infarction 

if it is assumed to positively correlate with increased blood lipids (17). With an average of 24.2 ± 

5.4% body fat, this group of firefighters did not test as well firefighter recruits (21.8 ± 6.2%), but 

this is to be expected somewhat as our sample was older and fitness declines with age while 

body fat increases (29). However, other active experienced firefighters aged 44.9 ± 4.7 years 

have been reported to possess 17.7 ± 5.4% body fat (19). Normative data indicates that the 

average 40-49 year old male has 21.9% body fat (43), so there is certainly room for improvement 

in this regard, especially taking into account that being in public safety profession that places a 

premium on physical fitness, firefighters should be expected to be leaner than their average 

counterpart in the population. 

Body mass index (BMI) has been calculated previously in active firefighters and it was 

found that almost 90% were either overweight or obese by classification standards (healthy 

range: 18.5 – 24.9 kg/m2) (17). The firefighters from the current study averaged 27.8 ± 3.6 kg/

m2, putting them in the “overweight” classification (43). Interestingly, BMI has been used to 

predict body fat percentage by Gallagher et al. (2000) and for BMIs of 25 – 29.9 kg/m2 the 

predicted body fat is 22 – 27% for males, a range encompassing our group’s result (69). 
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Although BMI has been critiqued in the past for not differentiating between fat and fat-free mass, 

it has displayed a positive correlation with blood markers of cardiovascular risk in the firefighter 

population (17). 

Waist circumference was measured in addition to calculating body fat percentage in order 

to gain a better understanding of not only how much fat mass one possesses, but also its 

distribution, as this has been increasingly implicated in increased health risks (43). Android 

distribution of fat (around the trunk and abdominal region) carries with it an increased risk of 

health problems such as hypertension, dyslipidemia, and coronary artery disease compared to a 

gynoid (around the hip and thigh) fat distribution (70). The current sample of firefighters 

possessed an average waist circumference of 93.5 ± 10.1 cm, placing them in the “low risk” 

category according to Bray (2004) (71). Data from reference adult men aged 42.1 ± 8.7 years 

indicated that their waist circumference was 97.1 ± 12.4 cm (56). The firefighters tested had a 

smaller waist circumference than this group from the average population, but both still are at a 

“low risk” of health complications (71). 

The Canadian Society for Exercise Physiology (CSEP) pulled together the underlying 

measurements for body fat percentage, BMI, and waist circumference to produce one statistic to 

assess body composition and give an indication of overall health: the Canadian Physical Activity, 

Fitness, and Lifestyle Appraisal (CPAFLA) Healthy Body Composition Score (59). Providing 

new data not previously reported in this population, our firefighters achieved 7.6 ± 6.8 points out 

of a possible 15. Not every integer from 0-15 is a possible CPAFLA Score based on how it is 

calculated, thus partly explaining the large standard deviation found, relative to the mean. 

However, examining the range shows that both ends of the spectrum were seen with multiple 
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scores of both 0 and 15. Taking into account that the CPAFLA Score attempts to sum body 

composition variables, we see an emerging trend of a wide range of body composition levels, just 

as was seen with many of the performance variables. While there are many firefighters that 

appear to be maintaining good body composition levels, there seems to be a small portion of the 

sample that is not. 

 Some basic resting cardiovascular measures that were taken include heart rate, systolic, 

and diastolic blood pressure. Heart rate at rest was found to be 57.7 ± 8.2 bpm while systolic 

blood pressure was 121.5 ± 11.9 mm Hg and diastolic pressure was 71.5 ± 9.8 mm Hg. These 

data are within a normal, healthy range previously reported in 30 – 49 year old males of 65 ± 10 

bpm for resting heart rate and systolic and diastolic blood pressures of 123 ± 9 mm Hg and 76 ± 

6 mm Hg, respectively (72). Previous research using male firefighters aged 40.3 ± 7.4 years has 

found their resting heart rate to be 67.6 ± 11.1 bpm while systolic and diastolic blood pressures 

were 122.7 ± 11.7 mm Hg and 77.8 ± 8.8 mm Hg, respectively (17). The present study will add 

further confirmatory data regarding these measures in active firefighters that may eventually be 

used to establish recommended guidelines for resting cardiovascular-related measures in new 

firefighter recruits. 

5.1  Conclusion 

One of the common trends that emerged from the current study is the wide range of data 

for many of the measures collected. In many instances this sample of firefighters’ mean values 

were close to either pre-established standards, such as with VO2 max, or normative population 

data, such as with body fat percentage. This means that probably close to half of the firefighter 

population falls below the standard or reference adult men in many of the fitness tasks. When 
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one considers that part of the duties of firefighters includes rescuing others and that there is a 

large physical fitness component to their profession, it should be expected that as a group their 

average would greatly exceed normative data so that even the least fit firefighter in the 

department possesses greater fitness than the average adult in the population. This is certainly 

cause for concern as firefighters are encouraged to maintain their fitness throughout their careers 

but are not subject to any formal fitness testing, save for the CPAT at the time of joining the fire 

department. It is unclear what proportion of firefighters exercise regularly throughout their 

careers but without the impetus of formal fitness testing or formal training programs, it is likely 

that many firefighters do not exercise sufficiently to maintain fitness at levels needed to 

optimally perform their jobs. 

5.2  Limitations 

 The primary limitation of this study was the low participation and specifically, 

completion rate of testing. Though 49 firefighters signed up for and completed the first session of 

testing, only 23 actually completed all three testing sessions. Since only 47% of the sample 

finished the study there are legitimate concerns regarding sampling bias as participation was 

voluntary and thus a convenience sample was used rather than a more robust random sample. As 

this was a voluntary study examining physical fitness it would not be without merit to believe 

that those who exercise regularly and maintain their fitness would be more likely to participate 

and thus we may actually have experienced an over-representation of more fit people in our 

sample. The implication of this possibility is that the fitness of the group as a whole may actually 

be over-estimated. As there is already some cause for concern due to the lower-end ranges of 

some of the data previously discussed, this only further heightens the notion that there is 
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probably a small, but significant, portion of the firefighter population that does not possess the 

requisite physical fitness needed to optimally perform the job responsibilities expected of them. 

Had the entire sample completed the study, statistical significance may have been achieved in 

some of the measures for which there was a trend, such as the association of age with declining 

VO2 max and Wingate test peak power values. In addition, this would have allowed for more 

sub-analysis by age and potentially uncovered trends not previously seen. Lastly, in terms of 

creating a database regarding firefighter physical fitness, the larger the sample the better as 

accuracy increases in proportion to sample size. 

 Another limitation of the current study was the lack of females in the sample group. Only 

two females were recruited to participate and only one of them was able to fully complete the 

study. It would have been interesting to perform sub-analysis by gender to determine if fitness 

characteristics differ between the sexes and specifically if the age-related decline in fitness is 

different as both males and females have to complete the CPAT under the same conditions and 

job responsibilities in the fire department do not differ. 

 Lastly, there was a lack of data regarding the current exercise level of our participants. 

Such data was originally envisioned to be collected in a concurrent study by another graduate 

student. Unfortunately, this other concurrent study could not be completed due to other 

complications. It would have been interesting to have this data available to determine if there is a 

connection between self-reported exercise level and actual exercise test performance as was 

performed in the current study. This information may have informed the design of training 

programs and helped to ascertain whether a lack of fitness seen in some individuals results from 
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a lack of exercise training or if training programs currently used are either inefficient or 

ineffective at maintaining and improving fitness. 

5.3  Future Directions 

 Further research should be performed in this area in order to better quantify firefighter 

physical fitness as it plays an integral role in their profession and public safety as a whole. With a 

greater sample size and participation, more valuable and accurate conclusions can be made about 

their fitness status. This can then be used to design a simple and cost-efficient testing battery, 

which may be predictive of future performance and can help a fire department to optimize 

deployment of their employees to various situations. As previously discussed, there appears to be 

great potential in maximum vertical jump testing to be used in this regard but more research is 

needed to determine if it would actually be a reliable predictor of performance in other areas of 

fitness. Exercise programs to combat the age-related decline in fitness can also be more 

intelligently designed with a greater knowledge of the pre-existing fitness status of firefighters so 

that time and money can be focused on areas of weakness to bring the collective fitness level up. 

Not all individuals will require the same training program of course, but this can serve as a 

foundation upon which to start. 

5.4  Recommendations for the Kitchener Fire Department 

 The most common trend found appears to be the wide range of data for many of the 

measurements taken, as previously discussed. Though many of Kitchener Fire Department’s 

firefighters are at or above the required level of fitness for their profession, potentially up to 50% 

do not meet the recommended standard or are only at par with normative data, and some are 

significantly below average in various fitness aspects. Formal fitness testing that continues 
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throughout one’s career as a firefighter may be part of a solution to ensure that all members of 

the department meet the minimum requirement. It may not be necessary to have annual fitness 

testing but perhaps a system could be put in place where fitness testing every 2 – 3 years is 

required. Since maintaining one’s physical fitness is an integral component of a public safety job 

such as firefighting, perhaps an incentive program to encourage fitness maintenance could be 

initiated. There is a precedent for a program similar to this in Ontario for the police force called 

the Ontario Police Fitness Pin Award Program (73). As with firefighters, police officers are 

encouraged to maintain their fitness but are not subject to further formal fitness testing once they 

are accepted into the academy. Many police departments across Ontario offer incentives to their 

officers for voluntarily completing the Ontario Police Fitness Award as a means of encouraging 

their employees to maintain their physical fitness levels. A similar program could be made 

available for firefighters. 

 While more research is needed to provide conclusive evidence, the fire department may 

find it beneficial to invest in predictive testing for both new and experienced firefighters. The 

Functional Movement Screen (39) is an easy to administer test that does not require much time 

or money and has been shown to have a relationship with both injury history (41) and risk of 

future injury (42) in firefighter populations. Continuing with injury risk and prevention, the 60° 

abdominal endurance test and Biering-Sorensen test are both easy to administer without 

expensive equipment and may be used to assess the health of torso stabilizing musculature that is 

increasingly being linked to incidences of low-back pain (47). Body fat percentage correlated 

negatively with many of the performance measures and might be useful as general indicator of 

overall health but more intensive training is required to accurately use calipers to determine body 
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fat via skinfold thickness and thus may not be as favourable to the department looking for the 

most efficient solution as possible. The ACSM pushup test (43) was found to be a reasonably 

accurate assessment of upper-body strength and could easily be administered with minimal 

training, time, and space. Finally, maximum vertical jump (52) is quite simple to perform with 

minimal equipment and was found to be a good predictor of performance in many of the more 

complex tests stressing lower-body strength and power, including maximum quadriceps strength, 

the Wingate test, and the VO2 max test. With further research, these five tests may serve as a 

simple testing battery that is reasonably accurate in predicting both injury risk (FMS, 60° 

abdominal endurance, Biering-Sorensen) and work performance (ACSM pushup and vertical 

jump). It should not take more than 20 – 30 minutes per person to complete all these tests and 

perhaps a fire department might perform them annually, even if only to acquire baseline data as 

their employees age, and their fitness inevitably decreases. 

 Firefighters require a well-balanced approach in a training program as they can be 

exposed to numerous physical fitness stressors. Aerobic training is of primary importance as they 

must be able sustain their workload for many minutes at a time, in addition to carrying a 

multitude of equipment. Our study identified that there may be a small portion of their 

population that does not possess sufficient aerobic capacity to optimally perform their job duties 

and thus lends credibility to the notion that aerobic training is of primary importance in this 

population. Our research has also demonstrated that some firefighters may not possess the core 

and spine stabilizing musculature equal to that of typical healthy adult males. It would be prudent 

to include abdominal and back musculature training in any program for the sake of overall health 

and injury risk reduction. Performing the isometric contractions of both of the tests used (60° 
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abdominal endurance and Biering-Sorensen test) may be a sufficient stimulus for training and 

also serve as a useful benchmark of progress, provided they are performed diligently. Power 

training is also important but less so than aerobic training in our opinion as most firefighting 

tasks last longer than 60 seconds, the lesser of which is the primary focus of power training. In 

addition, power training should focus on power endurance (e.g., > 30 s sprints) rather than 

attaining peak power as most firefighting tasks last longer than a few minutes. In this regard, our 

research has shown that concerning average power produced during the Wingate test, most of the 

firefighters are close to the mean with only a few falling appreciably below. It would therefore be 

unwise to devote significant training time to anaerobic power production both because it is not as 

crucial to firefighting tasks, and our sample appeared to perform quite well in this regard. Lastly, 

this group of firefighters performed reasonably well on most of the strength and muscular 

endurance measures, such as pushups and vertical jump, negating the need for extensive training 

in this area. Training programs for firefighters should be designed with aerobic fitness as the 

primary goal and a secondary emphasis on improving core and back musculature health and 

strength as this may be an area of weakness and increased injury risk.  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7.  Appendices 

7.1  Recruitment Letter 

Physical fitness characteristics of an active firefighter population serving an 
urban area !

Firefighters of the Kitchener Fire Department, !
You have previously received information about upcoming voluntary Fitness and Health 

Testing. Physical fitness testing will be performed in the coming weeks using a variety of 
measures as part of a research project at Wilfrid Laurier University (WLU) under the supervision 
of Dr. Peter Tiidus, and in cooperation with the Kitchener Fire Department. All data gathered will 
be completely anonymous and any data reporting will only occur as averages of all individuals 
involved. Individual participants’ data can also be reported confidentially to and interpreted for 
those individuals wishing to personally receive such information. 

Participation in all testing is completely voluntary and you may choose not to participate 
or to only participate in some tests. Below is a list of all tests, which will be performed over three 
sessions (1 at the firehall and 2 at WLU). Testing will commence with the firehall sessions, 
during which you will be able to sign-up for the other 2 sessions at WLU if you would like to do 
so. Further health-related questionnaires will also be forthcoming later in the fall.  

Please indicate if you have an interest in being tested at the firehall (or learning more 
about the testing) by emailing Steve Usher at steve.usher@kitchener.ca by Friday July 26, 2013. 
Testing will commence on August 1, 2013 at headquarters. More information will be given prior 
to testing and formal consent to participate will be obtained from you when you have been fully 
informed of all procedures. The Informed Consent Form is attached for your viewing and 
provides additional information on the study. Please do not hesitate to contact me if you have any 
questions at anto9400@mylaurier.ca. !
Regards, 
Michael Antolini, MSc Student 
Wilfrid Laurier University !!
Firehalls: 

• Resting heart rate and blood pressure 
• Height, weight, waist circumference 
• Skinfolds: bicep, tricep, hip, back, calf 
• Movement patterns 
• Pushups 

WLU 1 
• Obstacle avoidance 
• Abdominal muscular endurance 
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• Bicep and quadriceps maximum strength 
• Wingate test (30-second cycle against heavy resistance) 

WLU 2 
• Back muscular endurance 
• Perception of low-back injury risk (visual task) 
• Vertical jump 
• VO2 max test (treadmill run to exhaustion) !
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7.2  Follow-Up Letter 

Firefighters of the Kitchener Fire Department, !
You have previously received information regarding my M.Sc thesis project testing the physical 
fitness of firefighters. Testing will take place over 3 sessions, the latter two of which will take 
place at the university. Tests to be performed include: !
Firehalls: 
Resting heart rate and blood pressure 
Height, weight, waist circumference 
Skinfolds: bicep, tricep, hip, back, calf 
Movement patterns 
Pushups 
WLU 1: 
Obstacle avoidance 
Abdominal muscular endurance 
Bicep and quadricep maximum strength 
Wingate test (30-second cycle against heavy resistance) 
WLU2: 
Back muscular endurance 
Perception of low-back injury risk (visual task) 
Vertical jump 
VO2 max test (treadmill walking test) !
Participation is completely optional and you may take part in the study while declining 
participation in one or more tests. 
Thus far 34 people are completed the first session of testing at the firehalls, however I hope to 
have at least 50 people participating in the study (and more than that can be accommodated and 
appreciated). I will be coming to the firehalls to perform the first session of testing as well as 
invite you to sign-up for the testing sessions at Laurier. There will be multiple time slots 
available to sign-up for the testing at Laurier, encompassing both evenings and weekends to 
better suit your schedule. !
In addition, the Kitchener Fire Department will randomly select one person who has completed 
all 3 sessions of testing to receive a 24-hour shift off with full pay. !
If you have any questions or would like to participate please do not hesitate to contact me at 
anto9400@mylaurier.ca. !
Regards, 
Michael Antolini, M.Sc Student 
Wilfrid Laurier University 
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7.3  Informed Consent Statement 

INFORMED CONSENT STATEMENT !
WILFRID LAURIER UNIVERSITY !

Physical fitness characteristics of an active firefighter population serving an urban area !
Dr. Michael Cinelli, Dr. Diane Gregory, and Michael Antolini, Principle Investigators 

under the supervision of Dr. Peter Tiidus 
Dr. Pam Bryden, Dr. Kim Dawson, Dr. Paula Fletcher, Dr. Renee MacPhee, Zach Weston, and Meghan 

Hoefs, Co-Investigators !
You are invited to participate in a research study. The purpose this study is to determine physical fitness 
characteristics of a firefighter population serving an urban area. Firefighters will be tested at both the 
firehalls and in two visits to Wilfrid Laurier University (WLU). Testing will include a variety of 
physiological baseline and maximum performance tests as well as testing to evaluate cognitive ability for 
obstacle avoidance in both a rested and fatigued state. This study is being conducted by Michael Antolini, 
a M.Sc candidate, under the supervision of Dr. Peter Tiidus (ptiidus@wlu.ca), a professor in the 
Department of Kinesiology and Physical Education at Wilfrid Laurier University. !
INFORMATION 
This study will assess various physical fitness and anthropometric variables in firefighters as well as 
cognitive ability of obstacle avoidance in both a rested and fatigued state. A health and fitness 
questionnaire will also be part of the study and will be distributed in due course. Data from the 
questionnaire and physical fitness testing may be coded by date of birth and gender so that results 
between the two can be linked for analysis. !
There will be 3 separate testing times: 
Session 1 – Firehalls: You will be outfitted with the Tango+ device and told to sit quietly in a room for 5 
minutes in order to relax, after which three measurements of resting heart rate and blood pressure will be 
taken. Height and weight measurements will then be taken in light clothing without footwear. Your waist 
circumference and bicep, tricep, subscapular, iliac crest, and medial calf skinfolds will be measured. You 
will then perform the Functional Movement Screen, consisting of seven assessments. The assessments are 
the deep squat, hurdle step, in-line lunge, shoulder mobility, active straight leg raise, trunk stability 
pushup, and rotational stability. In the last test for the first session you will be asked to complete as many 
consecutive pushups as possible with proper form. !
Session 2 – WLU 1: You will first report to Dr. Cinelli for an obstacle avoidance task as part of a separate 
research project. You will be required to walk between two obstacles for approximately 36 trials during 
which the distance between the obstacles will vary. In total this task will take approximately 20 minutes 
and you may take breaks as needed. You will be recorded using a video camera from the posterior view 
during this task. For the 60-degree abdominal endurance test, you will be seated on a table with your back 
resting on a board at a 60-degree angle. The board will be removed and you will be instructed to maintain 
this position for as long as possible. After a familiarization period with the equipment, you will be asked 
to perform three maximum strength contractions of the bicep and quadricep of your dominant limb on the 
CYBEX machine. After warming up on a stationary bike you will be instructed to achieve maximum 
pedaling speed before hitting a switch that will engage a weight basket for resistance and the 30-second  

__________ 
Participant’s initials 
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Wingate test will commence. After the test you will perform a cool down on the bike and monitored to 
ensure no ill symptoms emerge before being directed back to Dr. Cinelli to perform his obstacle 
avoidance task a second time in a fatigued state. !
Session 3 – WLU 2: You will first be asked to lie face-down on a table with your legs secured and upper 
body hanging off the edge before contracting your back extensors to bring your torso in line with your 
legs and hold this position for as long as possible. You will then be given a 10-minute rest period, during 
which you will be asked to view 10 different pictures of various tasks and postures. You will be asked to 
assign a numerical value to each picture in terms of your perceived level of risk of low back injury for 
each picture. After your standing reach height is measured you will have three attempts to jump as high as 
possible from a two-legged stand-still and touch a vane on the Vertec apparatus. You will be fitted with a 
mask to measure gas composition for a VO2 max test and be allowed to warm up on the treadmill before 
being instructed to run to exhaustion with the speed and/or grade increased every 2 minutes until 
voluntary test termination. !
Testing will require about 60 minutes at the firehall, 90-120 minutes for the first visit to WLU, and 60-65 
minutes for the second session at WLU. Between 50 and 60 participants will be recruited for the study. !
RISKS 
The possibility exists for residual muscle soreness after some of the maximal effort tests that will be 
conducted. Following the pushup, abdominal, and back extensor endurance tests you may experience 
muscle soreness in the chest/arms, abdominals, and lower back, respectively. This should reside within a 
day or two and would not be any more uncomfortable than the discomfort felt following a more vigorous 
workout. The Wingate and VO2 max tests are the most physically demanding and carry with them the 
greatest risk for minor muscle damage and soreness. A very minor risk factor with any type of maximal 
effort muscular test is that damaged muscle can leak proteins that can compromise kidney function in a 
very small group of susceptible individuals in a condition called rhabdomyolysis. During the VO2 max 
you may become so exhausted that you may fall off the back of the treadmill as the speed is increased. As 
the participant pool is comprised entirely of firefighters of the Kitchener Fire Department a very minor 
theoretical possibility exists that you may become alienated from those who choose not to participate, and 
vice-versa. This may affect your social relationships and reputation within the workplace. Although all 
test results are de-identified and only presented in aggregate, you may become uncomfortable or lose self-
confidence after a poor test result. In addition, the measurement of body fat percentage via the use of 
calipers and skinfolds may make you uncomfortable with the researcher touching your body. Please 
contact the researcher if you experience anything more than minor short-term muscle soreness. You will 
be directed to a health care professional if symptoms persist or become aggravated. !
BENEFITS 
This research will attempt to provide a more complete assessment of current firefighters' physical fitness 
using a sample that will be representative of the entire fire department. In addition, a variety of testing 
will be done that incorporates measures of anthropometry, cardiovascular fitness, muscular strength, 
endurance, and power. You will also gain an understanding of the scientific experimental process and 
become familiarized with different types of exercise testing procedures and apparatus. !
CONFIDENTIALITY 
All data will be de-identified and coded by number. Data will be reported as aggregate in any publications 
and no individual subjects will be identified. Hard copies of data will be stored in a locked cabinet and !

____________ 
Participant’s initials 

electronic data will be stored on a password-protected computer. The principle and co-investigators, as 
well as Dr. Tiidus will have access to the data which will be retained until all appropriate analysis and 
manuscripts for publication have been completed. This may take up to five years and several analyses 
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may be performed using the data collected. Dr. Tiidus will ultimately be responsible for the disposal of 
the data. !
COMPENSATION 
For participating in this study you will be offered feedback and information on all of your personal test 
results, if desired. If you would like to receive your test results please indicate by initialing below. 
Yes, I would like to receive my testing results. ________  Email address: __________________________ 
If you withdraw from the study prior to its completion, you are still eligible to receive results for tests 
completed thus far. !
CONTACT 
If you have questions at any time about the study or the procedures, (or you experience adverse effects as 
a result of participating in this study) you may contact the researcher, Michael Antolini at Wilfrid Laurier 
University, Department of Kinesiology and Physical Education, or at anto9400@maylaurier.ca. This 
project has been reviewed and approved by the University Research Ethics Board. If you feel you have 
not been treated according to the descriptions in this form, or your rights as a participant in research have 
been violated during the course of this project, you may contact Dr. Robert Basso, Chair, University 
Research Ethics Board, Wilfrid Laurier University, (519) 884-1970, ext. 4994, or at rbasso@wlu.ca. !
PARTICIPATION 
Your participation in this study is completely voluntary; you may decline to participate without penalty.  
If you decide to participate, you may withdraw from the study at any time without penalty and without 
loss of benefits to which you are otherwise entitled.  If you withdraw from the study before data 
collection is completed your data will be returned to you or destroyed. You have the right to omit any 
question(s)/procedure(s) you choose. !
FEEBACK AND PUBLICATION 
If you would like to see the findings of the research, a copy of the final paper, as it would appear in a 
journal, will be emailed to you free of charge. If you would like a copy of the final paper please indicate 
so by writing your email address below. 
Yes, I would like a copy of the final paper emailed to me. Email address: __________________________ !
CONSENT 
I have read and understand the above information. I have received a copy of this form. I agree to 
participate in this study. !!
Participant’s name: ____________________________________ !!
Participant’s signature: _________________________________  Date: _____________ !!
Investigator’s signature: ________________________________  Date: _____________ !
!
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7.4  Screening Form 

SCREENING FORM !
WILFRID LAURIER UNIVERSITY !

Physical fitness characteristics of an active firefighter population serving an urban area !
Dr. Michael Cinelli, Dr. Diane Gregory, and Michael Antolini, Principle Investigators 

under the supervision of Dr. Peter Tiidus 
Dr. Pam Bryden, Dr. Kim Dawson, Dr. Paula Fletcher, Dr. Renee MacPhee, Zach Weston, and Meghan 

Hoefs, Co-Investigators !
You are invited to participate in a research study. The purpose this study is to determine physical fitness 
characteristics of a firefighter population serving an urban area. Firefighters will be tested at both the 
firehalls and in two visits to Wilfrid Laurier University (WLU). Testing will include a variety of 
physiological baseline and maximum performance tests as well as testing to evaluate cognitive ability for 
obstacle avoidance in both a rested and fatigued state. This study is being conducted by Michael Antolini, 
a M.Sc candidate, under the supervision of Dr. Peter Tiidus (ptiidus@wlu.ca), a professor in the 
Department of Kinesiology and Physical Education at Wilfrid Laurier University. !
Prior to participation in this study, please complete the attached Physical Activity Readiness 
Questionnaire (PAR-Q) and answer the question below. !
Have you been advised by a medical professional that you should not participate in vigous physical 
activity or cannot currently perform all physical demands of your job as a result of musculoskeletal (i.e., 
muscle, joint, or bone) issues? Please inital next to the appropriate response. !
Yes __________  No __________ !!!
I have read and understand the above information. I have received a copy of this form. !!
Participant’s name: ____________________________________ !!
Participant’s signature: _________________________________  Date: _____________ !!
Investigator’s signature: ________________________________  Date: _____________ !
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7.5  CSEP Physical Activity Readiness Questionnaire (PAR-Q) 

!  
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7.6  Body Density Estimation Equations 

!  

!
!
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7.7  CPAFLA Healthy Body Composition Score Criteria 

!  
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7.8  Functional Movement Screen Movement Patterns & Scoring Criteria 

!  !!!
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7.9  Modified Bruce Protocol for VO2 max Treadmill Test 

!

Stage Time Speed (km/h) Grade (%)

1 00:00 4.0 0

2 02:00 4.8 0

3 04:00 5.1 2

4 05:30 5.5 4

5 07:00 5.8 6

6 08:30 6.1 8

7 10:00 6.4 10

8 11:30 6.8 12

9 13:00 7.1 14

10 14:30 8 16

11 16:00 8.8 18

12 17:30 9.7 20
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