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We explore several alternative formal models of working memory capacity
limits and of the eVect of ageing on these capacity limits. Three models test
variations of resource accounts, one assumes a � xed number of free slots in
working memory, one is based on decay and processing speed, one attri-
butes capacity limits to interference, and one to crosstalk between associa-
tions of content and context representations. The models are evaluated by
� tting them to time–accuracy functions of 16 young and 17 old adults
working on a numerical memory-updating task under varied memory-load
conditions. With increasing complexity (i.e., memory load), both asymptotic
accuracy and the rate of approach to the asymptote decreased. Old adults
reached lower asymptotes with the more complex tasks, and had generally
slower rates. The interference model and the decay model � t the individual
time–accuracy functions reasonably well, whereas the other models failed to
account for the data. Within the interference model, age eVects could be
attributed to the older adults’ higher susceptibility to interference. Within
the decay model, old adults diVered from young adults by a higher degree
of variability in the activation of working memory contents.

A well-documented � nding in cognitive ageing research is that old adults
perform considerably worse than young adults in tasks that require high
amounts of working memory capacity (e.g., Babcock, 1994; Mayr &
Kliegl, 1993; Salthouse, 1994). Research on individual diVerences as well
as on cognitive development and ageing has shown that working memory
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capacity is a crucial limiting factor for human performance on a broad
range of reasoning tasks (e.g., Case, 1985; Kyllonen & Christal, 1990;
Salthouse, 1991). To understand the growth and decline of reasoning
ability over the life span, therefore, it seems particularly important to
understand the factors that limit working memory capacity in the � rst
place. The purpose of this paper is to explore a number of hypotheses
about the nature of capacity limits in working memory. We will propose
a formal framework for modelling performance in working memory
tasks, and pit a number of mathematical models incorporating diVerent
assumptions about the nature of capacity limits against each other within
this framework. These models will be tested with data from young and
old adults on a representative working memory task. Our goal is to
narrow down a set of simple, plausible models of capacity limits in
working memory to one or two promising candidates, and to identify the
parameters of the viable models that carry age diVerences.

THE NATURE OF CAPACITY LIMITS IN WORKING
MEMORY

We will discuss � ve potential sources of capacity limits in working
memory: (1) limited cognitive resources, (2) a � xed capacity to hold a
certain number of information elements simultaneously available,
sometimes referred to as a ‘‘magical number’’, (3) a speed account based
on the race between decay of memory traces and rehearsal, (4) similarity-
based interference, and (5) crosstalk between elements in a memory set.

Limited resources

One common account of working memory capacity limits is that the
cognitive system has limited resources for simultaneous storage and
processing. Resource theories assume that resources are general (although
they may be con� ned to broad domains like verbal or spatial contents);
resources can be allocated to tasks and processes � exibly; and the amount
of resources a person can spend at any moment is roughly constant
during short periods of time. Two well elaborated models addressing
capacity limits in cognition, ACT-R (Anderson, Reder, & Lebiere, 1996)
and CAPS (Just & Carpenter, 1992), are based on the idea of limited
resources. Resource theories have been criticised for being too vague and
unconstrained (e.g., Meyer & Kieras, 1997; Navon, 1984). The theoretical
precision of resource theories can be improved by � eshing them out as
formal models, as was done with ACT-R and CAPS. Our own attempts
to model working memory performance borrow many basic assumptions
from these two approaches.
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Magical numbers

The idea of a ‘‘magical number’’ of information elements or chunks that can
be held in short-term memory was � rst discussed by Miller (1956) in his
famous paper on the ‘‘magical number seven’’. Recently, the idea of a
maximum number of chunks to be held in working memory was revived by
Halford, Wilson, and Phillips (1998) and by Cowan (in press), who argued
for a ‘‘magical number’’ around four. Apparently larger capacities of short-
term or working memory in some tasks arise, so they argue, from chunking
or rehearsal strategies or long-term memory contributions that increase
recall performance over and above the basic capacity. To measure the
‘‘magical number’’, one therefore must use a task that rules out additional
help from strategies, long-term memory, and other sources as much as
possible.

Decay and rehearsal

Research on verbal short-term memory has produced serious doubts
about a constant number of chunks that can be immediately recalled
independent of material. One important � nding was the word-length
eVect, a linear relationship between pronunciation time for a class of
words and memory span for the same words (Baddeley, Thomson, &
Buchanan, 1975). It led researchers to the conclusion that the limiting
factor for immediate serial recall of verbal material is not a ‘‘magical
number’’ of chunks, but a certain maximum articulation time—what
Schweickert and BoruV (1986) called the ‘‘magic spell’’. One way to
understand this � nding is to assume a constant decay rate for memory
traces, which can be refreshed by rehearsal with a speed that roughly
corresponds the time to articulate the words. If traces decay below
retrieval threshold within a certain time, the maximum span will equal
the number of words that can be articulated in this time. The capacity
limit results from a race between decay and rehearsal.

This model was � rst applied to the phonological loop, a short-term
retention system for verbal material (Baddeley, 1986). It can be extended,
however, to working memory in general. Many working memory tasks
require the retention of information while the same or diVerent informa-
tion is manipulated. If we assume that memory traces decay by a
constant rate, then the probability that a given information element is
still available when it is needed for a processing step depends on the
speed of earlier processing steps during which it had to be remembered.
Working memory performance then is a function of the race between
decay and processing speed. This may explain why working memory and
processing speed measures share a large part of their age-related variance
(Salthouse, 1996).
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Similarity-based interference and crosstalk

Interference and crosstalk are two strongly related concepts, which are
rarely distinguished in the literature; we distinguish them here because
they lead to diVerent formalisations of capacity limits. Both concepts rest
on the assumption that working memory for some material is impaired
by the presence of other, similar, material. We de� ne interference as
mutual degradation of memory traces that are held in working memory
simultaneously. For example, the representation of a new word might
overwrite all features of an old word that are shared among the two
(Nairne, 1990), or features belonging to diVerent words might mix up to
new, spurious representations (Tehan & Humphreys, 1998).

We de� ne crosstalk as the confusion between two elements that are
held simultaneously in working memory. Like interference, crosstalk is a
function of similarity between memory elements. DiVerent from interfer-
ence, which has an eVect on the memory traces themselves, crosstalk
arises at the selection of one out of several elements in working memory.
Crosstalk is the basic mechanism that limits memory span in recent
models of serial recall that are based on Hebbian associations between
list items and contextual cues (Brown, Preece, & Hulme, 2000; Burgess &
Hitch, 1999; Henson, 1998). At retrieval, a context representation coding
a given ordinal list position cues the corresponding item at this position.
Due to overlap between neighbouring ordinal positions, however, neigh-
bouring list items are also cued, and occasionally a wrong item is
activated highest and is selected for output. Note that through this
mechanism the representation of the correct item is not degraded, so that
there is a high probability that it will be recalled on another position (cf.
Henson, Norris, Page, & Baddeley, 1996).

Old age and inhibition

Each of these hypothetical sources of capacity limits is compatible with
the inhibition account of working memory de� cits in old age as proposed
by Hasher and Zacks (1988; Hasher, Zacks, & May, 1999). The general
idea is that old adults have less eYcient inhibitory processes that elimi-
nate no-longer relevant contents from working memory and prevent
irrelevant material from entering working memory. This leaves old adults
with more irrelevant information in working memory. Irrelevant material
can take away resources or free slots from the relevant material. Irrele-
vant material can overwrite relevant working memory contents or become
confused with them. Irrelevant information can also distract people from
rehearsing the relevant material and thereby lead to more forgetting.
Therefore, we regard the inhibition-de� cit hypothesis not as a further

190 OBERAUER AND KLIEGL



genuine source of capacity limits, but as a hypothesis about why capacity
limits, whatever their cause may be, are exaggerated in old age.

A FRAMEWORK FOR MODELLING WORKING
MEMORY CAPACITY

Our strategy is to compare diVerent assumptions about the source of
capacity limits by building them into a common formal framework. This
section will develop such a framework that should be applicable to many,
if not all working memory tasks.

We assume that the function of working memory is to hold a number
of distinct information elements (e.g., numbers, words, objects, spatial
positions) available for ongoing processes. This means that elements in
working memory can be retrieved eYciently and selectively as inputs for
cognitive operations. This function can be ful� lled by a system that links
episodic representations of content elements (i.e., tokens of numbers,
words, etc.) to context representations (i.e., temporal contexts, list
positions, spatial positions, syntactic roles in parse trees, etc.). The links
between content and context representations must be built and dissolved
quickly, because usually there is not much time to encode new informa-
tion into working memory or to update its contents. According to this
framework, working memory is more than just a subset of highly
activated representations in long-term memory, as was proposed in some
models (Anderson, 1983; Cantor & Engle, 1993). Working memory
contents must be both activated and � exibly linked to contexts.

We further assume that errors in working memory tasks arise mainly
(as an idealisation in the models: exclusively) at retrieval. That is, we
assume that the elementary processing steps by which information is
manipulated are error free. This assumption is justi� ed for working
memory tasks that require only trivial processes like, for example, single-
digit addition and subtraction and other tasks where participants usually
perform close to ceiling when the memory load is minimal. Conway and
Engle (1996) have shown that the diYculty of the processes involved in a
working memory task does not play a role for its validity as a measure of
working memory. Sü û , Oberauer, Wittmann, Wilhelm, and Schulze (2000)
provide evidence that working memory tasks with trivial elementary
operations are good predictors of reasoning ability. Working memory
tasks are diYcult, and they tap capacity limits, because of their
complexity and not because of the diYculty of the elementary cognitive
processes they require. The complexity of a working memory task can be
de� ned as the number of independent elements that must be kept avail-
able simultaneously (i.e., the memory load).
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The probability of retrieving a single element i from working memory
is modelled as a function of this element’s activation level at the time of
retrieval, Ai. An element in working memory is successfully retrieved as
input for a cognitive operation if its activation value surpasses a threshold
. In its deterministic form, the performance function that transforms

activation into retrieval accuracy is a step function. We assume, however,
that the activation level of an element, and therefore its availability, is
aVected by Gaussian noise. The probability of successful retrieval, there-
fore, follows the cumulative probability of a normal distribution with
mean Ai and standard deviation , which can be approximated by the
logistic function (cf. Anderson & Matessa, 1997):

1
p = ————————— (1)

1 + exp(–(Ai – )/s)

with s = sqrt(3) / . The logistic function is shown in Figure 1a. Most of
the models discussed in this paper will use the logistic function to relate
activation to retrieval accuracy. Only the crosstalk model will use a
variant of this function to capture the competition between target and
distractor elements during retrieval.

Processes in working memory take time, and the most important
dependent variable in cognitive psychology besides accuracy is latency. A
model of working memory capacity should specify the duration of infor-
mation processing steps. For the family of models explored here, we

Figure 1. (a) Logistic performance function relating an element’s availability to the prob-
ability of successful access. The threshold parameter is set to 0.25 and to 0.2. (b) Exponen-
tial functions for activation accumulation with an asymptote of 1 (dotted line) and with an
asymptote of 0.8 (solid line), the rate parameter is set to 1.

192 OBERAUER AND KLIEGL



assume that information is manipulated by cognitive operations that
generate a new element in working memory and gradually increase its
activation. The increase of activation is assumed to follow a negatively
accelerated exponential function with the general form:

Ai = i (1 – exp(–t/ri)), (2)

where t is the time since the new element was created, ri is the rate of
activation for the new element, and i is the asymptote of activation for
the new element i (see Figure 1b). The assumption of processing by
gradually activating new elements is incorporated in several models,
among them CAPS (Just & Carpenter, 1992) and the cascade model
(McClelland, 1979). For one variant of a resource model, we will deviate
from this equation to introduce a latency function directly borrowed from
ACT-R (Anderson & Lebiere, 1998).

DiVerences between individuals and groups are assumed to arise from
diVerences in parameter values. In modelling working memory perfor-
mance for young and old adults, we hope to identify a subset of
parameters on which age diVerences are pronounced. Provided that a
viable model can be identi� ed, this will help us to characterise the source
of age-related cognitive de� cits in complex cognition. Our working
hypothesis is that the same parameter that drives the decline in perfor-
mance with increasing memory load (i.e., the complexity eVect) also
carries the largest part of the age-related variance. This hypothesis
directly implies the Age Complexity interaction found with many
cognitive tasks (e.g., Salthouse, 1992): The complexity eVect will be
stronger for old adults.

To summarise, we propose to build formal models of working memory
capacity from three building blocks:

(1) A processing model for the speci� c task for which performance is
modelled, which speci� es the number of independent memory elements
required at each time during task solution and the sequence of processing
steps required for a solution.
(2) A complexity function that expresses the activation of each content
element Ai as a function of task complexity (i.e., the number of content
elements that are held in memory at the same time).
(3) Performance functions that express accuracy of retrieval for an
element i and latency of processing element i as a function of this ele-
ment’s current activation level Ai.

Taken together, these three building blocks should suYce to make
exact predictions for task solution accuracies and latencies of a person
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working on a task if the person’s parameter values are known: The
process model determines how many representation elements and proces-
sing steps are needed for task solution. The complexity function then
determines the activation level of the elements that need to be retrieved at
any step. The expected performance scores (accuracy and speed) can be
computed by applying the performance functions to this information.

An unknown number of free parameters is hidden in the task-speci� c
process model: Researchers have considerable freedom in specifying how
a task is done. In particular, the information required for task solution
and the transformations that must be performed on it can be segmented
into elementary units in many diVerent ways, yielding quite diVerent
complexity values for a task. Does a proposition, for example, count as a
single element in working memory, or should we count the number of
concepts linked by it? We propose, therefore, to develop a capacity model
with as simple tasks as possible in order to limit the space of plausible
processing models. We will present our process model together with the
� rst resource model later, after introducing the memory-updating task in
the next section.

THE EXPERIMENT

Method

Participants. Eighteen young adults (eight men and ten women; mean
age 19.1 years, SD: 0.68) and eighteen old adults (nine women and nine
men; mean age 68.8, SD: 3.55) were recruited from the Potsdam partici-
pant pool. The young group consisted of high school students, the old
participants had responded to newspaper advertisements or were friends
or relatives of other participants. The two groups were roughly equivalent
in years of formal schooling (young: 11.67 years, SD: .69, old: 10.59
years, SD: 1.62) and a vocabulary test (young: 22.1, SD: 3.92, old: 23.3,
SD: 4.55). Young adults performed better on the digit symbol test than
old adults (young: 63.1, SD: 9.4, old: 45.4, SD: 8.0). Groups did not
diVer in their ratings of subjective health as ‘‘good’’. Thus, the two
groups were comparable to typical samples of young and healthy old
adults in the literature with respect to standard indicators of cognitive
status. Participants were paid 15 DM (i.e., about $8) for each one-hour
session.

Seventeen old and sixteen young adults from the � rst part of the
experiment could be recruited for a second part. We present only data
from the 33 participants who completed the whole experiment.
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Materials and procedure. We chose a numerical memory-updating task
introduced by Salthouse, Babcock, and Shaw (1991) to generate a data
set for testing our models. Each trial began with simultaneous presenta-
tion of n digits, where n represents the working memory load. Each digit
was presented in a separate rectangular frame; the frames were arranged
on a virtual circle on the screen. After the initial numbers disappeared,
arithmetic operations (e.g., ‘‘+ 2’’ or ‘‘–5’’) appeared in individual frames,
one at a time. Participants had to apply the operation to the number in
the respective frame, thereby updating it in their memory. Eight opera-
tions were presented in a regular sequence, always starting with the same
frame and moving clockwise through the circular arrangement of frames.
After eight arithmetic operations, all frames were probed by question
marks in a random order, and participants were required to type the � nal
results of the probed frames on the computer keyboard. An example task
is illustrated in Figure 2.

This task has several advantages. First, it was shown to have high
loadings on a working memory factor in a comprehensive individual-
diVerences study (Oberauer, Sü û , Schulze, Wilhelm, & Wittmann, 2000).
Second, it uses only very simple elementary operations (single-digit
addition and subtraction). Third, the memory load, as well as the number

Figure 2. Example trials for memory updating with a memory demand of three digits.
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of successive operations, can be varied � exibly over a large range.
Fourth, the task is not amenable to obvious strategies to surpass a
hypothetical capacity limit; e.g., chunking the elements is of little use
because they must be updated individually. Finally, the experimenter has
control over the available processing time for each updating step by
manipulating the presentation time for individual arithmetic operations.
We used an adaptive algorithm (Kaernbach, 1991) to vary presentation
times for the updating operations over the whole range from chance to
nearly asymptotic performance within each memory load condition. This
allowed us to determine time-accuracy functions for each participant and
each memory load condition.

Participants were informed that � nal results, as well as all intermediate
values, always were numbers between 1 and 9. A time limit of 3000ms
(young) or 5000 ms (old) was set for each response; responses surpassing
this limit elicited the feedback message ‘‘too slow’’ instead of ‘‘correct’’ or
‘‘false’’. These responses were nevertheless registered and treated as valid
data because the time limit served only to prevent extensive computations
after the last operation had been presented.1 We also instructed partici-
pants that only trials with correct responses on all probes counted as
passed to discourage the strategy of ignoring some frames from the begin-
ning. Percentage of correct responses was used as score for each trial.

The experiment had two parts. In the � rst part, old and young adults
worked on the memory-updating task with memory loads of one, two,
three, and four. In the second part, we extended the range of memory
loads, testing the same participants with loads of four, � ve, and six digits.
The load factor was varied between blocks of 13 trials, and counterba-
lanced within each part of the experiment. For each memory load condi-
tion, 234 trials were presented.2

Results

A convenient way to summarise the results is to present parameter
estimates from descriptive time–accuracy functions. Based on experience

1Reaction times for keying in the � rst results were 1232ms (SD = 1025) for young adults
and 1868ms (SD = 1717) for old adults. This leaves little time for additional computations
after the end of the presentation time. If response times were used for computations, this
should be the case more often with short than with very long presentation times. The reac-
tion times for the shortest and the longest presentation times, however, diVered by only
272ms for young adults and not at all for old adults.

2Details about the adaptive algorithm and the models described only brie� y here can be
inspected in a technical report at our webpage: http://www.psych.uni-potsdam.de/people/

oberauer/working-e.html
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with similar data (Kliegl, Mayr, & Krampe, 1994; Mayr, Kliegl, &
Krampe, 1996; Verhaeghen, Kliegl, & Mayr, 1997), we used negatively
accelerated exponential functions of the form

p = d + (c – d)(1 – exp(–(t – a)/b)), (3)

where d is a parameter for chance performance, c represents asymptotic
performance, b is the rate of approaching asymptote, and a the point in
time (t) where accuracy (p) rises above chance. For the present purpose,
we � xed d to 1/9, because participants knew that each result must be a
number between 1 and 9, leaving three free parameters for each partici-
pant and condition. Parameter estimation was done with the CLNR
module of SPSS with a Maximum Likelihood loss function called G2,
which can be interpreted like a Chi2 measure of deviation. Eight functions
were � t for each participant simultaneously, � ve for the memory load
conditions in the � rst part of the experiment, and three for the conditions
in the second part.3

The descriptive functions yielded an excellent � t with G2 values for
individual data ranging from 28.13 to 97.78. Overall G2 was 1702.8.
Subtracting the free parameters for 33 subjects from the total of 3173
data points yields 2381 degrees of freedom, so that this value is far from
signi� cant.

Two summary indicators of performance were extracted from the time-
accuracy functions. First, parameter c from equation 3 re� ects the asymp-
totic accuracy reached when processing time is not externally limited.
Second, we computed criterion-referenced presentation times (CPTs)
relative to the asymptotes. CPTs can be derived from equation 3 by
setting p to the desired relative criterion k (e.g., 80% of asymptote) and
solving for t:

c – d
CPT = a + b [ ln ( ——) – ln (1 – k) ] (4)

c

Relative CPTs represent the time a participant needs to reach a given
proportion of her or his asymptote in a condition. Thus, CPTs re� ect
processing speed conditional on asymptotic accuracy. Figure 3 shows
mean asymptotic accuracies for young and old adults (a) and CPTs for
80% of the asymptotes (b).

3The memory demand one condition was realised in two slightly diVerent ways, which did
not diVer signi� cantly in any respect and therefore were aggregated for all further analyses.
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Figure 3. Parameters from exponential time–accuracy functions for young and old adults.
(a) asymptotic accuracy. (b) relative criterion-referenced presentation time for 80% of the
asymptote. Error bars represent two standard errors.
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The data yielded four basic facts that a model should capture.

(1) Asymptotic performance declined with increasing memory load, F(7,
217) = 77.2, MSe = 0.01. The eVect was clearly nonlinear with a highly
signi� cant quadratic trend, F(1, 31) = 39.19, MSe = 0.01, indicating a
positively accelerated decline of the performance asymptote with increas-
ing memory load.
(2) The decline in asymptotic accuracy was more pronounced in old
adults, leading to an interaction of age and memory load, F(2, 217) =
7.85, MSe = 0.01.
(3) Processing time, as re� ected by the CPTs, increased with memory
load, F(7, 217) = 18.76, MSe = 0.59.
(4) Old adults were slower than young adults (F = 11.28, MSe = 1.12),
and age interacted with memory load (F = 2.72, MSe = 0.59). In
general, age diVerences increased with higher memory load, as can be
expected when old adults are slowed by a constant proportion relative to
young adults (Cerella, 1985).

There is a notable exception to the fourth observation for memory load
condition 6, where old adults apparently needed less time than young
adults to reach 80% of their asymptote. This anomaly in the data pattern
was most likely due to strategic in� uences. If one decides to concentrate
on only part of the memory set from the beginning, for example focus on
three out of six elements, then a subset of operations can also be ignored.
The time for these operations can in eVect be used to process the
remaining operations. As a result, the actual processing time for each
attempted operation is much more than the presentation time controlled
by the programme. This leads to an underestimation of processing time
needed to reach a relative criterion. In a post-experimental debrie� ng
session, a majority of the old adults con� rmed that they used this
strategy in the most demanding condition, despite being instructed not to
do so, because they felt unable to do the task in any other way.

There was a clear eVect of practice from the � rst to the second part of
the experiment, evident in the improvement on memory load level 4. Both
asymptotic accuracy (F = 5.73, MSe = 0.01) and log-transformed CPT
values (F = 10.41, MSe = 0.13) were signi� cantly better in the second
part. Practice eVects did not interact with age.

THE MODELS

We will � rst discuss a resource model for the memory-updating task. This
model will also serve to explain our processing model for the memory-
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updating task and how the assumptions of each working memory model
are linked to the processing model. Next we will brie� y discuss two alter-
native resource models, and show that a magical number model makes
predictions equivalent to one of these resource models. We will then test
a model based on a race between decay and rehearsal, and � nally turn to
models incorporating interference and crosstalk, respectively.

Resource models

A resource sharing model. The most straightforward way to � esh out
the notion of limited resources is to postulate a constant quantity of acti-
vation that is shared among the elements held in working memory at any
time. This leads to a simple complexity function:

Ai = W/n (5)

where W is the available activation and n is the memory load. Each
initial number receives activation according to equation 5 before it is � rst
updated. The task begins with an attempt to retrieve the number in the
frame where the � rst arithmetic operation appears. The success of this
attempt can be computed by the logistic function given in equation 1. If
retrieval succeeds, the arithmetic operation is applied and the result is
gradually activated according to the negative exponential (equation 2)
until the presentation time for the operation is over. Since the new
element must share the total activation resource with all other elements in
working memory plus the arithmetic operand presented on the screen, its
asymptote will be Ai as computed by equation 5, but with n = memory
load + 1. The rate of activation is a function of the source activation,
that is the activation of the elements that serve as input for the cognitive
operation, and the connection weights linking the source elements to the
resulting element. This is an assumption borrowed directly from CAPS
(Just & Carpenter, 1992), but also incorporated in many other models
based on spread of activation in semantic or connectionist networks. In
the memory-updating task, the source activation comes from the two
addends, one retrieved from memory and one presented on the screen:

ri = wji Aj + wki Ak (6)

Here, wji is the connection weight from source item j to target item i and
wki is the weight connecting source k to target i. For simplicity, we
assume that all addends have equal association weights with the result
they generate. This allows us to reduce the individual association weights
to a common parameter w. This parameter captures the speed with which
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activation is transmitted to the new element i, and therefore can be inter-
preted as a processing speed parameter for a person working on a speci� c
task like addition or subtraction. The parameter w can vary with the type
of operation, thereby re� ecting mean latency diVerences between various
operations, and with persons or groups of persons, thereby re� ecting
individual diVerences in processing speed.

At the � rst updating step, both addends will have an activation value
close to Ai as computed by equation 6. At later steps, the activation of
the element retrieved from memory can be considerably lower, because
new elements gain activation only gradually according to equation 2, and
with short presentation times, the results of earlier computations will not
have been activated to asymptote. As a consequence, they will be less
likely to be retrieved later, and if they are retrieved, they contribute less
source activation to the next updating step in which they serve as an
addend.

The models discussed here treat an updating step as a single operation,
although it can certainly be broken down into distinct components like
activation of the operand, retrieval of the required arithmetic fact, repla-
cement of the old element by the new one, gradual activation of the new
element, and maybe rehearsal of all the elements in working memory.
The present data, however, do not allow us to distinguish these compo-
nents, so we summarise them all in the accumulation of activation for a
new element. Further research should try to disentangle the contributions
of distinct processing components to the overall time demand for an
updating step.

Because activation of the memory elements changes over the eight
updating steps, the model must be computed iteratively. The model for a
single trial consists of eight successive operation cycles, followed by n
cycles with the attempt to recall the � nal values in each frame. For each
cycle, the probability of retrieving the element and an activation value for
the new element is computed. At the end of all the cycles, the probability
of recalling each � nal element correctly is computed as

Pi = 1/9 + 8/9
c

pic (7)

where pic is the success probability for retrieving element i in cycle c. The
multiplication runs over all cycles where i was updated plus the � nal
recall (e.g., four plus one cycles for each element at memory load level
two); 1/9 is added for guessing probability.

The eVect of practice between the � rst and the second part of the
experiment was captured by a learning parameter h. We assumed that
practice aVects primarily the speed with which new elements can be
activated because practice with the memory-updating task strengthens the
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weights between source and target elements used in arithmetic. Thus, the
w parameters in equation 6 are multiplied with h in the three conditions
from the second part of the experiment. The learning parameter was
restricted to be larger than one to re� ect positive gains from practice.

Finally, we introduced a strategic parameter speci� cally for the
memory demand of six elements. We assumed that some participants
(mostly from the old group) ignored a subset k of the six elements from
the beginning, thereby eVectively reducing n to 6–k and increasing their
mean processing time per operation to t times 6/(6–k).

To summarise, the � rst model has six free parameters: The total activa-
tion resource W, the speed parameter w, the standard deviation of activa-
tion , the access threshold , the learning parameter h, and the strategy
parameter k. Most of the assumptions and parameters outlined in this
section are common to all (or at least most) of the models discussed here,
only the complexity function expressed in equation 5 is a distinctive
feature of the � rst resource model.

We � t this model to the data from 33 participants, leaving all six
parameters free to vary among individuals. This implies that the model
has 33 6 = 198 free parameters overall. They were subtracted from
the total number of observations, yielding 2975 degrees of freedom
(ranging from 81 to 96 for individual participants). The best � t we were
able to produce with model 1 by trying various starting values yielded G2

values from 49.99 to 250.85 for individual participants, the total G2 was
4891. This indicates a highly signi� cant deviation from the data.

For comparability, the predicted accuracy values computed by the
model were submitted to the same treatment as the observed ones. This
means that we estimated exponential time–accuracy functions for each
participant and condition according to equation 3 and extracted asymp-
totic accuracy and the CPTs for 80% of the asymptote as performance
indicators. Inspection of these predictions showed that the model
captured the asymptotes quite well, but did poorly on the CPTs (space
restrictions do not allow us to show the predictions here—see footnote
2). Since model 1 obviously does not � t the present data, we will not
present further analyses of parameter estimates.

Resource models inspired by ACT-R and CAPS. There are several
ways a resource model could be speci� ed within our general framework.
In addition to the one presented earlier, we tried two other variants, one
inspired by ACT-R (Anderson et al., 1996) and one motivated by CAPS
(Just & Carpenter, 1992). In ACT-R, processing time is not modelled as
the gradual increase of activation for a new element. Instead, new ele-
ments receive their activation instantaneously, and a time demand for
processing arises at retrieval. The time to retrieve an element is a function
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of this element’s activation. We designed a model that incorporates the
relevant equations from ACT-R. Since many assumptions of our frame-
work common to all the models were also inspired by ACT-R, we believe
that this variant of a resource model comes very close to the way the
memory-updating task would be speci� ed in ACT-R. This model had an
overall G2 of 3995.4 (range 60.72 to 163.83), which is better than the ori-
ginal resource model, but again deviates signi� cantly from the data.
Panels A and B of Figure 4 show the predictions.

The model inspired by CAPS diVers from the previous models by its
resource allocation policy. In the previous two resource models, the avail-
able activation is always distributed completely among the elements in
working memory. An alternative allocation scheme is to provide each
element with the activation it demands as long as there are suYcient
resources, and cut down on activation proportionally when the sum of all
demands surpasses the available resources. This scheme is incorporated in
CAPS (Just & Carpenter, 1992) and can be formalised by a modi� ed
complexity function:

n

Ai = di if dj W (8)
j= 1

W n

Ai = di — if dj W
n

j= 1

With this modi� cation, the resource model yielded an overall G2 of
3193.7 (range 40.6–216.9), which is much better than the previous two
models, but still indicates a signi� cant deviation from the data with 2975
degrees of freedom (p = .003).

Why did the resource models fail? To sum up, all three resource
models did not � t the data well. Why did these models fail? Consider the
complexity function of the � rst and second model (equation 5), which is
plotted in Figure 5 for a typical high capacity person (W = 1) and a
typical low capacity person (W = 0.7). With increasing memory load,
there is a steep drop in the activation allocated to a single element at the
beginning of the complexity scale, which becomes much shallower at the
higher end. Moreover, the diVerences between high and low capacity per-
sons diminish with increasing complexity. The empirical asymptotic
accuracies, however, remained stable over the � rst part of the complexity
scale and decreased at higher complexity with positive acceleration. And
the accuracy of young and old adults diverged with increasing complexity.
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Figure 4. Data and model predictions for parameters of time–accuracy functions for the
three models. A: Asymptotic accuracies for the second resource model (with equations from
ACT-R). B: Relative criterion-referenced presentation times for 80% of asymptote, second
resource model. C: Asymptotic accuracies for the decay model. D: Relative criterion refer-
enced presentation times for the decay model. E: Asymptotic accuracies for the interference
model. F: Relative criterion referenced presentation times for the interference model.

204



Likewise, the CPTs increased in an approximately linear way (disturbed
by the eVects of practice and strategy) and show no sign of convergence
of young and old with increasing complexity. A model with a complexity
function that behaves opposite to the data will obviously have diYculty
reproducing these data. The logistic performance function (equation 1)
helps to compensate the inconvenient form of the complexity function,
but not enough to reach a good � t. This becomes manifest, for example,
in the predictions for asymptotic accuracies derived from the second
resource model (Figure 4, panel A), which decline in a negatively acceler-
ated fashion, contrary to the data (Figure 3).

A ``magical number’’ model

Models that assume a capacity for a � xed number of elements can be
formalised by the same complexity function as was introduced for the
earlier CAPS-oriented model (equation 8). Let us assume that each
element that manages to enter working memory receives an activation
level of one, and each element that does not � nd a slot receives zero

Figure 5. Mean activation of a single item as a function of complexity. Complexity func-
tions are plotted for one high-capacity and one low-capacity individual. Solid squares and
circles represent activation functions for resource sharing (with a resource pool W); open
squares and circles are activation functions for the interference model (with an interference
parameter C).
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activation. As long as the memory demand is less than or equal to the
‘‘magical number’’, all elements receive the full activation with a
probability of one. If memory demand surpasses the ‘‘magical number’’,
each element receives an activation of 1 with probability W/n, where W is
the ‘‘magical number’’. Over many trials, the statistical expected value of
activation for each element will then equal W/n. Hence, the complexity
function of a ‘‘magical number’’ model can be expressed as equation 8. It
turns out that a ‘‘magical number’’ model will make the same predictions
that would be made by a resource model incorporating the complexity
function of CAPS. As a consequence, the ‘‘magical number’’ model will
also fail to give a satisfactory account of the data.

A decay-based model

Another plausible idea used to explain the limits of short term or
working memory is time-based decay (e.g., Anderson & Matessa, 1997;
Byrne, 1998). In this subsection, we discuss a model variant that incorpo-
rates the idea that working memory capacity is limited by the interplay of
decay and reactivation.

The rationale of the decay model is as follows: The asymptote for the
gradual activation of working memory elements is always one, indepen-
dent of memory load. Each element in working memory decays according
to a logarithmic decay rate (cf. Anderson & Matessa, 1997). The rate of
decay is a free parameter:

At = A0 – ln(t) (9)

Decay can be counteracted by reactivation, e.g., through rehearsal.
Rehearsal is modelled by equation 2, but with a speci� c rate parameter
for rehearsal. All processes, including reactivation of working memory
elements, are performed serially and therefore must share the available
processing time. When confronted with a task that requires both manipu-
lation and retention of information, the cognitive system must decide on
what proportion of the total processing time is allocated to the manipula-
tion task. This proportion is expressed by the parameter T. The time
available for the arithmetic operation in the memory-updating task there-
fore is T times the presentation time t, and the time available for the
reactivation of each of the remaining elements in working memory equals
(t–T)/(n–1), assuming that the rehearsal time is distributed evenly among
the elements in memory. Thus, with increasing memory demand n the
amount of reactivation for each element decreases, and this explains the
decrease of asymptotic accuracy and the increase of time demand with
memory load. The decay model has eight free parameters for each
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person, two more than model 1. We had to introduce three new
parameters— T, , and the rate parameter for rehearsal—in return for the
one saved (the resource parameter W).

Our decay model � t the data remarkably well. Overall G2 was 2741.9
(range 49.3–140.8), which was not signi� cant with 2909 degrees of
freedom. Only two out of 33 individual data sets showed a deviation
from the model signi� cant at the 5% level. Figure 4 (panels C and D)
shows that the predictions traced the asymptotic accuracies and criterion-
referenced presentation times with only minor deviations (except for the
drop in time demands at memory demand six for old adults, which was
underestimated despite of the extra parameter k introduced for it).

Since the decay model gives a satisfactory account for the data, we can
use it to investigate age diVerences in its parameters. The mean
parameters of both age groups are summarised in Table 1. Signi� cant age
diVerences emerged for the standard deviation of activation and for the
strategy parameter. Old adults’ activation of working memory elements
seems to be noisier, and they decided more frequently than young adults
to drop some elements from the beginning when their capacity was
overloaded. There was a nonsigni� cant trend for slower processing in old
adults, but the estimated rehearsal rates were essentially the same for
both age groups.

An interference model

Our interference model starts from the assumption that each element is
represented in working memory by a set of features. The activation of an
element i is the sum of the activation of its features. Any two elements i
and j share a proportion Cij of features. When two elements are held in
working memory simultaneously, the features they have in common are

TABLE 1

Parameter estimates for decay model, young and old adults

Parameter Young Old t(diV) p(diV)

r (rehearsal rate) 3.06 (2.70) 3.0 (2.83) 0.05 .96
T (time split) 0.86 (0.15) 0.88 (0.15) 0.40 .69

(decay rate) 0.05 (0.01) 0.06 (0.01) 1.86 .07
w (speed) 1.22 (0.39) 0.99 (0.44) 1.57 .13

(stdev) 0.19 (0.03) 0.23 (0.07) 2.42 .02
(threshold) 0.26 (0.15) 0.23 (0.15) 0.65 .52

h (learning) 1.31 (0.16) 1.34 (0.19) 0.44 .66
k (strategy) 0.65 (0.68) 1.67 (1.33) 2.83 .01
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lost for these representations. One reson why this might happen is
because features recruited by two diVerent content elements that are
linked to diVerent context representations cannot be bound unambigu-
ously to a speci� c context. Another reason could be that features
included in a vector representing one element are overwritten when a new
element including the same feature enters working memory.

Let us assume that an element receives a total activation of one if all
its features become fully activated. The activation of an element in the
context of other elements can then be expressed as the proportion of the
element’s features that are not lost through interference. When Cij is the
proportion of features that two elements i and j have in common, the
proportion of their features that is still active when i and j interfere with
each other is 1–Cij. For more than two elements in working memory, we
assume that the sets of overlapping elements are independent of each
other. Thus, the proportion of active features of element i can be
expressed as

n–1

Ai = (1 – Cij) (10)
j= 1

with n as the number of elements in working memory. When the degree
of overlap among all elements is the same, as can be assumed for a
homogeneous set of elements spaced evenly in their respective coordinate
system (i.e., no grouping), this reduces to

Ai = (1 – C)(n–1) (11)

with C as a common interference parameter for a given class of elements
(e.g., digits). This provides the complexity function for the interference
model. When applied to the memory-updating task, n equals the memory
demand plus one, because the arithmetic operation adds one more digit
to the set of elements in working memory that interfere with each other.
Except for the new complexity function, the interference model is exactly
like the � rst resource model developed earlier.

The interference model had an excellent � t with G2 values ranging from
40.59 to 130.76 for individual participants. Only one out of 33 individual
models was rejected with an alpha level of .05. The overall G2 was
2524.87 with 2975 degrees of freedom, which is not signi� cant. The
predicted asymptotic accuracies and CPT values are plotted in panels E
and F of Figure 4. The predictions are generally close to the data, except
for the CPT values at higher memory demand levels for old adults. Like
the decay model, the interference model underestimates the size of the
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drop in CPT between memory demands � ve and six. The data points
where the model deviates from the observations, however, have large
interindividual variability (see Figure 3), and since the model was � t to
individual data, the group aggregates might not re� ect the degree of � t
on an individual level.

Table 2 presents the means and standard deviations of the six
parameters for the two age groups. Separate comparisons revealed signi� -
cant age diVerences only in the interference parameter C. This is compa-
tible with the notion that young and old adults diVer in their working
memory capacity, de� ned as the capacity to resist interference in working
memory. Presumably as a consequence of their reduced capacity, old
adults showed a tendency to focus more frequently than young adults on
only a subset of elements in the most complex condition. Age diVerences
in several other parameters were marginally signi� cant, so we cannot rule
out the hypothesis that additional factors besides working memory diVer
between young and old adults.

Figure 5 shows the complexity functions of the interference model for a
typical young adult (C = 0.15) and a typical old adult (C = 0.2). In
comparison to the complexity functions of the resource models, these
functions exhibit a less dramatic negative acceleration, which makes it
easier for the interference model to � t the positively accelerated drop of
asymptotic performance with increasing memory load. Perhaps more
important, the two curves diverge with increasing memory load, so that
the interference model can explain the Age Complexity interaction
much better than the resource models.

A crosstalk model

The crosstalk model diVers from all other models in that memory load
has no eVect at all on the activation level of elements in working
memory. Memory load eVects arise only from the increased chance of

TABLE 2
Parameter estimates for interference model, young and old adults

Parameter Young Old t(diV) p(diV)

C (interference) 0.14 (0.03) 0.17 (0.05) 2.69 .01
w (speed) 1.67 (0.31) 1.46 (0.43) 1.57 .13

(stdev) 0.19 (0.03) 0.21 (0.05) 1.29 .21
(threshold) 0.22 (0.12) 0.20 (0.14) 0.37 .72

h (learning) 1.51 (0.25) 1.69 (0.33) 1.78 .08
k (strategy) 0.12 (0.21) 0.32 (0.41) 1.79 .08
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selecting the wrong element from the memory set at retrieval. The general
assumption is that the system selects the element with the highest activa-
tion at the moment of retrieval. The activation of the content elements
comes from the context cues to which they are associated. A given
context cue (e.g., a position in a list or a frame on the screen) will usually
activate the target element most, but it will also spread activation to
competing elements that are also associated to it (e.g., Burgess & Hitch,
1999). Crosstalk is one way to arrive at erroneous retrievals from long-
term memory in ACT-R (Anderson & Lebiere, 1998). We incorporated
the idea of crosstalk into our modelling framework by modifying the
logistic performance function (equation 1) in such a way that it re� ects
the joint probability of an item i being activated above threshold and
being activated higher than all other items in working memory. There is
no limit to the activation resource, and no interference, so the eVect of
memory load is attributed entirely to increasing competition at retrieval.

The crosstalk model did not � t the data adequately. Overall G2 was
3751.2 (range 45.2–231.8), a highly signi� cant deviation from the data (df
= 2975). The pattern of residuals suggests that the crosstalk model has
similar problems as most of the resource models: It predicts a decelerated
decline in performance for both asymptotic accuracy and speed, whereas
the actual decline is accelerated for the asymptotes and approximately
linear for the CPT’s (ignoring the deviant point at memory demand 6).

DISCUSSION

We tested seven formal models of capacity limits in working memory
with the same comprehensive data set. Only two models—one based on
decay, one based on interference as the source of capacity limits—� t the
data adequately. Several other models based on limited resources, a
‘‘magical number’’ limit, or crosstalk between context-content associations
failed to reproduce the time–accuracy functions.

Implications for theories of capacity limits

The models we tested were designed to represent the most important
hypotheses about the nature of capacity limits in the literature. We
formalised these hypotheses within a common framework in order to
make the models as comparable as possible. We also tried to keep the
models simple (i.e., limiting the number of free parameters), while giving
them the best chance possible to � t the data.

The failure of models tested here does not disprove conclusively the
hypotheses on which they are based. It is possible that another model
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incorporating the idea of a limited resource pool, the assumption of a
‘‘magical number’’, or the crosstalk hypothesis will be able to reproduce
the present data adequately. We suspect, however, that such a model will
not be easily found. Where one of the models failed, we could identify
the reason for its failure as one rooted in the underlying assumptions, not
in some arbitrary feature of our formalisation.

As things stand, we regard the interference model as the best account
of our data. The decay-based model also had an adequate � t, but it used
two more free parameters, so that we prefer the interference model for
reasons of simplicity.

Implications for Cognitive Ageing

Our data with the memory-updating task showed a pattern typical for the
eVect of ageing on working memory: Old adults performed worse on the
task, in particular with higher memory load levels. Unfortunately, ordinal
interactions like these are diYcult to interpret, because a nonlinear
monotonic scale transformation of the dependent variable (e.g., percen-
tage correct) can make them disappear (Loftus, 1978; Kliegl et al., 1994).
Formal models like those explored here can help to overcome this diY-
culty, because they make explicit assumptions about the transformations
that translate a hypothetical variable (e.g., activation) into an observable
outcome (e.g., percentage correct). For most of our models, we assume
that a logistic function relates the activation value of an element into an
observable performance score. Within a given model, we can therefore
infer the hypothetical activation levels from the observable performance.
To the degree that a model passes a rigorous test, we can be con� dent
that the parameter estimates re� ect theoretically meaningful constructs. A
good model can then be used to measure hypothetical variables like
activation, decay rate, or degree of interference. We can then ask, among
other things, which of these variables is sensitive to an eVect of ageing,
and thereby attempt to pin down the source of ageing-related cognitive
de� cits.

The two models that accounted satisfactorily for the present data trace
the source of the age diVerence to diVerent parameters. In the decay
model, it was mainly the Gaussian noise assumed for the activation levels
of individual elements in working memory that distinguished the age
groups. Although this model attributes the capacity limits of working
memory to a speed factor (i.e., the speed of processing the computations
and/or the speed of rehearsal, relative to the decay of information in
memory), none of the two speed parameters reliably distinguished old
and young adults. Thus, there is little evidence in our data for the speed
theory of working memory decline in old age, as advanced by Salthouse
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(1996). The results of the decay model are better compatible with the idea
that ageing is associated with increased noise in the cognitive system
(Allen, 1991; Allen, Kaufman, Smith, & Propper, 1998; Welford, 1958).
Increased variability in the activation of working memory elements could
also arise from non-optimal rehearsal strategies (e.g., rehearsing some
items too often and others not often enough), which might point to a
de� cit in the control of attention as one aspect of executive functions
(Engle, Kane, & Tuholski, 1999).

The results from the interference model suggest that old adults are
more susceptible to interference than young adults. Consistent with this,
Li (1999) reported that old adults suVer more from dual-task interference
when an arithmetic task was combined with the memorisation of digits
than when it was combined with memorisation of words. Presumably, the
numbers involved in the arithmetic tasks have more feature overlap with
the digit memory lists than with the words, resulting in a higher degree of
interference which particularly impairs old adults.

The conclusion from the interference model seems to be at odds with
results from a meta-analysis by Jenkins, Myerson, Hale, and Fry (1999).
They compared simple memory spans with spans when a secondary task
is added, and found that old and young adults did not diVer in the
amount of interference from the secondary task. Jenkins et al. (1999)
noted, however, that the two age groups had diVerent baselines (i.e.,
diVerent mean simple spans). When subgroups of young and old adults
with nearly equivalent simple spans were compared, the old subgroups
showed larger interference eVects than the young subgroups. A look at
panel E of Figure 4 shows how the interference model proposed here can
account for these data: Asymptotic accuracy declines over increasing
complexity with positive acceleration. This implies that adding a constant
amount of interfering material has a smaller absolute eVect on perfor-
mance when it is added at a lower complexity level than when it is added
at a higher baseline of complexity. Thus, although old adults’ perfor-
mance drops steeper with increasing complexity, this is compensated by
the fact that their baseline (i.e., simple spans) lies lower on the complexity
scale. As a result, the drop in performance due to the same amount of
additional interfering information is about equal for young and old
adults.

One potential reason for the increased susceptibility to interference of
old adults could be a reduced ability to inhibit irrelevant information
(Hasher et al., 1999). Updating of working memory contents requires,
among other things, to forget the old values when they are replaced. If
old adults are less successful in getting rid of the old values, the
remaining representations of old elements in working memory add to the
total interference. In particular, each item suVers interference from n–1
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present items plus n old elements, the latter weighted by the degree to
which the old elements are still associated with the n frames.

Conclusions

A decline in working memory performance is a characteristic phenom-
enon of cognitive ageing. In this paper, we explored a number of poten-
tial factors that could be responsible for the limit of working memory
capacity, and that could be aVected by ageing. We think that our formali-
sation of a number of simple accounts of working memory capacity helps
to chart the search space for an explanation of capacity limits in general,
and of age-related declines in complex cognition in particular. Within this
search space, we were able to identify two candidates that � t the time–
accuracy data from one working-memory task particularly well, one
based on decay and the other on interference. Decay and interference are
the two main sources of forgetting in general theories of memory. It
seems that we need no additional constructs, like limited resource pools
or a ‘‘magical number’’ of free slots, to explain the limited capacity of
working memory. Starting from the present results, we can now test
speci� c predictions of the viable models in order to pin down more
precisely the nature of one of the most important limiting factors in old
adults’ cognition.

Manuscript received September 2000
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