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Abstract

We introduce a new class of conditionally dependent Dirichlet processes (CDP) for hierarchical

mixture modelling of naturally correlated data sources. This class of models provides a Bayesian

nonparametric approach for modelling a range of challenging datasets which typically consists of

heterogeneous observations from multiple correlated data channels. Some typical examples include

annotated social media, networks in community where information about friendship and relation

coexist with user’s profiles, medical records where patient’s information exists in several dimension

(demographic information, medical history, drug uses and so on). The proposed framework can

easily be tailored to model multiple data sources which are correlated by some latent underlying

processes, whereas most of existing topic models, notably hierarchical Dirichlet processes (HDP), is

designed for only a single data observation channel. In these existing approaches, data are grouped

into documents (e.g., text documents or they are grouped according to some covariates such as time

or location). Our approach is different: we view context as distributions over some index space and

model both topics and contexts jointly. Distributions over topic parameters are modelled according

to the usual Dirichlet processes. Stick-breaking representation gives rise to explicit realizations of

topic atoms which we use as an indexing mechanism to induce conditional random mixture distri-

butions on the context observation spaces – loosely speaking, we use a stochastic process, being DP,

to conditionally ‘index’ other stochastic processes. The later can be designed on any suitable family

of stochastic processes to suit modelling needs or data types of contexts (such as Beta or Gaussian

processes). Dirichlet process is of course an obvious choice. Our model can be viewed as an inte-

gration of the hierarchical Dirichlet process (HDP) and the recent nested Dirichlet process (nDP)

∗Part of the work was done when the author was at the Artificial Intelligence Center, SRI International, Menlo Park,
USA.
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with shared mixture components. In fact, it provides an interesting interpretation whereas, under

a suitable parameterization, integrating out the topic components results in a nested DP, whereas

integrating out the context components results in a hierarchical DP. Different approaches for poste-

rior inference exist. This paper focus on the development of an auxiliary conditional Gibbs sampling

in which both topic and context atoms are marginalized out. We demonstrate the framework on

synthesis datasets for temporal topic modelling and trajectory discovery in videos surveillance. We

then demonstrate an application on a current visual category classification challenge in computer

vision for which we significantly outperform the current reported state-of-the-art results. Finally,

it is worthwide to note that our proposed approach can be easily twisted to accommodate different

forms of supervision (weakly annotated data, semi-supervision) and to perform prediction.

1 Introduction

Bayesian nonparametric methods have recently emerged in machine learning and data mining as an

extremely useful modeling framework due to their model flexibility capable of fitting a wide range of

data types. A widely-used application of Bayesian nonparametric is clustering data where models for

inducing discrete distributions on a primary parameter space – the (hierarchical) Dirichlet process and

Beta processes are two noticeable examples. In these clustering models, when multiple covariates are

present, they are often treated as independent factors in a given the cluster; more generally, one has

to make a choice of a parametric model of the covariates inside each cluster. Addressing more realistic

problems in machine learning and data mining requires a need to advance Bayesian nonparametric

modeling, both in theory and computation, to accommodate richer types of data in a principled way.

When one considers realistic multimodal data, covariates are rich, and yet tend to have a natural

correlation with one another; for example: tags and their associated multimedia contents; patient’s

demographic information, medical history and drug usage; social user’s profile and friendship network.

The presence of rich and naturally correlated covariates calls for the need to model their correlation

with nonparametric models, without reverting to making parametric assumptions. These needs have

been recognized in various recent discussions and is reflected in MacEachern’s remark: “ [...] cur-

rent nonparametric models are inadequate in that they do not easily accommodate covariates. Cur-

rently, two distinct distributions of random effects are (conditionally) independent realizations from

a nonparametric prior distribution; either a single elaboration or several independent elaborations

are conducted. The remedy for these, and many other inadequacies, lies in correlated, or dependent

nonparametric processes. In particular, extension of the Dirichlet process provides a class of models

that are attractive conceptually and computationally, and that capture many fundamental modelling

strategies which have heretofore been inaccessible.” 1

This paper presents a full Bayesian nonparametric approach to the problem of jointly clustering

1MacEachern’s abstract to Workshop on Bayesian Nonparametrics
(available online: http://www.stats.bris.ac.uk/˜guy/Research/WORKSHOP/speakers abstracts.html#gelfand)
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data sources and modeling their correlation. To simplify presentation, throughout the paper, we

consider the case of a pair of primary naturally correlated data sources, abstractly referred to as

content and context (which covariates constitute content and which constitute context will be decided

per actual application).

In our approach, we view context as distributions over some index space, governed by the topics

discovered from the primary data source (content), and model both contents and contexts jointly.

We impose a conditional structure in which contents provide the topics, upon which contexts are

conditionally distributed. Distributions over topic parameters are modelled according to a Dirichlet

processes (DP). Stick-breaking representation gives rise to explicit realizations of topic atoms which

we use as an indexing mechanism to induce conditional random mixture distributions on the context

observation spaces. Loosely speaking, we use a stochastic process, being DP, to conditionally ‘index’

other stochastic processes. The later can be designed on any suitable family of stochastic processes

to suit modelling needs or data types of contexts (such as Beta or Gaussian processes). Dirichlet

process is of course an obvious choice and will be again employed in this paper. In typical hierarchical

Bayesian style, we also provide the model in grouped data setting, where contents and contexts appear

in groups (for example, a collection of text documents or images embedded in time or space).

Our model can be viewed as a generalization of the hierarchical Dirichlet process (HDP) [28]

and the recent nested Dirichlet process (nDP) [21]. In fact, it provides an interesting interpretation

whereas, under a suitable parameterization, integrating out the topic components results in a nested

DP, whereas integrating out the context components results in a hierarchical DP. Different approaches

for posterior inference exist. This paper focus on the development of an auxiliary conditional Gibbs

sampling in which both topic and context atoms are marginalized out. We demonstrate the framework

on synthesis datasets for temporal topic modelling and trajectory discovery in videos surveillance. We

then demonstrate an application on a current image classification challenge in computer vision for

which we significantly outperform the current reported state-of-the-art results. Finally, it is worthwide

to note that our proposed approach can be easily twisted to accommodate different forms of supervision

(weakly annotated data, semi-supervision) and to perform prediction.

In brief, our key contributions in this paper includes: a) a new Bayesian nonparametric approach

for modeling topics and nested contexts linked to data; b) an interesting model interpretation that

provides a connection between two most popular classes of Bayesian nonparametric models, namely

the hierarchical DP and the nested DP; c) an efficient auxiliary conditional Gibbs sampling approach

for this models, c) a demonstration of the proposed modeling approach on various applications, both

with simulated and real-world problems, d) the proposed model is also flexible and can readily be

extended for more challenging data structure, making it attractive for many data modelling tasks,

especially in the presence of heterogeneous, high-dimensional and richly connected data sources which

we shall further highlight in the discussion section.

3



2 Related Background

There has been a very large body of work on hierarchical mixture modeling for text and image data,

which can be placed under a very broad umbrella known as “topic models”. The Latent Dirichlet Allo-

cation (LDA) is perhaps the most well-known. There has been extensions to the LDA to incorporate

contextual information, specially both time and space. Hierarchical mixing distributions that vary

over time [4, 31] or over space [30]. [3] provided an excellent review of recent work on topic modeling.

A notable strand in both recent machine learning and statistics literature focused on construction

of Dirichlet process-based models that enable infinite mixture distributions that vary over an indexed

set, where the index might represent time or spatial information, see a recent book edited by [16].

While there are generally a number of methods for doing this via the dependent DP framework of [13],

we highlight several approaches that build on the nonparametric and hierarchical modeling framework

advocated by [28]. For instance, the dynamic HDP [20, 19] constructs a sequence of HDP-distributed

mixing distribution that varies over time, while the nested HDP [15] constructs a collection of HDP-

distributed mixing distribution that varies over general covariate space.

All above work can be viewed as “context-sensitive” topic models: data are grouped according to

context (such as time or location), where each group is described by a mixture model (whether para-

metric or nonparametric). Our approach is different: we view context as distribution over some index

space (such as time or locations), and model both topic and context jointly. To link context distribu-

tions with topic distributions we utilize the nonparametric and hierarchical modeling: A distribution

over context can be viewed as random, conditionally on the topic, where the topic variables are dis-

tributed according to some Dirichlet process mixture. The resultant model can be described in terms

of a collection of DP processes that are hierarchically linked, a modeling idea that were advocated by

[27]. However, because we are modeling jointly the topic and the context distribution, our model is

related to fundamentally different class of model known as the nested Dirichlet process [21]. In fact,

it provides an interesting interpretation whereas, under a suitable parameterization, integrating out

the topic components results in a nested DP, whereas integrating out the context components results

in a hierarchical DP.

To provide the background for our paper, we first briefly review the Dirichlet process and its related

models including the Dirichlet process mixture model (DPM) and the hierarchical Dirichlet processes

(HDP). The description of the proposed model then follows.

2.1 Dirichlet Processes and Hierarchical Dirichlet Processes

A Dirichlet process DP (γ,H) is a distribution of a random probability measure G over the measurable

space (Θ,B) where H is a base probability measure and γ > 0 is the concentration parameter. It is

defined such that, for any finite measurable partition (Ak : k = 1, . . . ,K) of Θ, the resultant finite-

dimensional random vector (G (A1) , . . . , G (Ak)) is distributed according to a Dirichlet distribution
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with parameters (H (A1) , . . . ,H (Ak)).

Dirichlet process and its existence was established by Ferguson [7] who has also showed that draws

from a DP are discrete with probability one. Sethuraman [24] provides an alternative constructive

definition which makes the discreteness property of a Dirichlet process explicitly via a stick-breaking

construction:

G =
∞∑
k=1

βkδφk (1)

where φk
iid∼ H, k = 1, . . . ,∞ and β = (βk)

∞
k=1 are the weights constructed through a ‘stick-breaking’

process βk = vk
∏
s<k (1− vs) with vk

iid∼ Beta (1, γ) , k = 1, . . . ,∞. It can be shown that
∑∞

k=1 βk = 1

with probability one, and as a convention [18], we hereafter write β ∼ GEM (γ).

Yet another useful interpretation for the Dirichlet process is given by the Polya urn scheme [2]

which shows that draws from the Dirichlet process are not only discrete, but also exhibit a clustering

property. More concretely, let θ1, θ2, . . . , θn+1 be iid draws from G, Blackwell and MacQueen [2]

showed that G can be integrated out to give the following marginal conditional distribution form:

θn+1 | θ1, . . . , θn, γ,H ∼
n∑
i=1

1

n+ γ
δθi +

γ

n+ γ
H (2)

If we further group identical values in the set {θ1, . . . , θn} together and let K be the number of such

distinct values, each represented by φk with nk be its count, then Eq (2) is equivalent to:

θn+1 | θ1, . . . , θn, γ,H ∼
K∑
k=1

nk
n+ γ

δφk +
γ

n+ γ
H

This expression is clearly showing the clustering property induced by G: a future draw θ is likely to

return to an existing atom φk and it does so with a probability proportional to the popularity nk of

the respective atom; however it may also pick on a new value with a probability proportional to the

concentration parameter γ – a view which is also known as the Chinese restaurant process.

However, due to its discreteness, the Dirichlet process is often not applied directly to model data

(e.g., it is unable to model continuous data) instead it can be effectively used as a nonparametric

prior on the mixture components θ, which in turn serves as the parameters within another likelihood

function F to generate data - a model which is known as Dirichlet process mixture model (DPM)

[1, 6]. To be precise, under a DPM formalism an observation xn is generated from a two-step process:

xn ∼ F (xn | θn) where θn ∼ G. Using the stick-breaking representation in Eq 1, it is not hard to see

that DPM yeilds an infinite mixture model representation:

p (x | γ,H) =

∞∑
k=1

βkf (x | φk) (3)
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where f denotes the density function for F . Dirichlet process mixture models have been embraced

with a great success and enthusiasm recently [8, 14]. The crucial advantage is its ability to naturally

address the problem of model selection - a major obstacle encountered in several parametric mixture

modeling, such as the Gaussian mixture models whose number of mixtures cannot be specified apriori

in a principal way.

(a) generative view (b) stick-breaking view

Figure 1: Graphical model representation for HDP [28].

The Dirichlet process can also be utilized as nonparametric prior for modelling of grouped data.

Under this setting, each group is modelled as a Dirichlet process mixture model and these models are

‘linked’ together to reflect the dependency among them. The goal is to exploit the mutual statistical

strength across groups, and at the same time provide the clustering flexibility at the group level -

a formalism which is generally known as dependent Dirichlet process [13]. One particular attractive

formalism is the hierarchical Dirichlet processes [28, 27] which posits the dependency among the group-

level DPM by another Dirichlet process (Figure 1). Specifically, let J be the number of groups and{
xj1, . . . , xjNj

}
be Nj observations associated with the group j which are assumed to be exchangeable

within the group. Under HDP framework, each group j is endowed with a random group-specific

mixture distribution Gj which is statistically connected with other mixture distributions via another

Dirichlet process sharing the same base probability measure G0:

Gj | α,G0
iid∼ DP (α,G0) , j = 1, . . . , J (4)

This generative process further suggests that Gj (s) are exchangeable at the group level and condition-

ally independent given the base measure G0 , which is also a random probability measure distributed
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(a) generative view (b) stick-breaking view

Figure 2: Graphical representation for the proposed Conditionally Dependent Dirichlet Processes
model.

according to another Dirichlet process

G0 | γ,H ∼ DP (γ,H) (5)

It is clear from the definition of the hierarchical Dirichlet process that Gj ’s ,G0 and H share the same

support Θ.

3 Conditionally Dependent Dirichlet Processes

3.1 Model Description

We start the model description with a basic setting as in the HDP whose modeling goal is to provide

random mixture distributions over groups of data xji’s as described before (cf. Section 2.1). Recall

that HDP models each group j with a random mixture distribution Gj , which are linked together via a

shared DP-distributed random measure G0 with the support provided by global atoms φk (k = 1, 2, . . .)

drawn iid from the base measure H. These global atoms φk’s are also commonly known as topics. In

this paper, we refer to observations xji’s as content observations and φk’s as topic atoms.

Now consider the case where each content observation xji is further augmented with a corresponding

context observation sji, providing extra information about xji. Different from existing work [19, 20,

15, 30], we consider context as a distribution over some index space and we wish to model both xji

and sji jointly. To link context distributions with topic distributions we utilize the nonparametric and

hierarchical modeling: a distribution over context can be viewed as random, conditionally on the topic.

Specifically, for each topic atom φk there corresponds a conditional distribution Qφk to generative its

associated contexts. These random context mixture distributions are hierarchically linked in a manner

similar to [28].
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Since we impose an HDP over the content observations, each xji is generated from a local factor

θji ∈ Θ denoting the parameter for its corresponding mixture component. Since each cluster has

several observations, it is convenient to separate the set of local factors {θji : ∀j, i} into groups of

distinct values in which members of the same group has the same value. Assume there are such K

distinct values represented by φ1, . . . , φK , which are our global topic atoms.

To specify the context, let (Ω,L) be another measurable space to provide support for context

observation si(s). Furthermore, let L be a fixed probability base measure on (Ω,L) and η > 0 be a

context concentration parameter. Corresponding to each topic atom φk ∈ Θ, we impose a conditional

random context mixture distribution Qφk to explain the context observations sji’s associated with

the set of content observations associated with φk. These mixture distributions Qφk ’s are further

connected together via another Dirichlet process sharing a common base measure Q0:

Qφk | v,Q0
iid∼ DP (v,Q0)

To achieve an effect of hierarchical sharing as in the HDP, Q0 is also a random probability measure

distributed according another Dirichlet process with the base measure L and concentration parameter

η:

Q0 | η, S ∼ DP (η, S) (6)

Gathering the specification so far gives us the Topic-dependent Context Models whose graphical model

representation is given in Figure 2a:

G0 | γ,H ∼ DP (γ,H)

Gj | α,G0
iid∼ DP (α,G0)

θji | Gj
iid∼ Gj

xji | θji ∼ F (· | θji)

Q0 | η, S ∼ DP (η, S) (7)

Qφk | v,Q0
iid∼ DP (v,Q0) (8)

ϕji | θji, {Qφk}
iid∼ Qji where Qji = Qθji (9)

sji | ϕji ∼ Y (· | ϕji) (10)

Note that, in Eq (9) the local topic atom θji (left) has been used as the index in random context

mixture distribution Qθji , abbreviated by Qji, to generate the local context atom ϕji which is then

used to generate the context observation sji.

3.2 Stick-breaking representation

We present a stick-breaking representation for the proposed model, starting with the definitions of

DP-distributed probability measures G0, Q0 and Qφ’s given in Eq (7) and (8). Since G0 ∼ DP (γ,H)

and Q0 ∼ DP (η, S) are DP-distributed, they admit the following stick-breaking representations [24]:
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φk
iid∼ H, k = 1, . . . ,∞

β = (βk)
∞
k=1 ∼ GEM (γ)

G0 =
∞∑
k=1

βkδφk

Assuming that the base measure H is non-atomic, G0 is distributed according to a Dirichlet process

G0 ∼ DP (γ,H), and since G0 has the support at at global content atoms φ = (φk)
∞
k=1, Gj admits the

following stick-breaking representation [28]:

Gj =

∞∑
k=1

πjkδφk πj = (πjk)
∞
k=1 ∼ DP (α,β) , φk | H

iid∼ H. (11)

In addition, for each atom φk a corresponding conditional distribution Qφk ∼ DP (v,Q0) is drawn

according the definition given in Eq 8. Since Q0 ∼ DP (η, S), it admits a stick-breaking representation:

λm
iid∼ S, m = 1, 2, . . .

ε = (εm)∞m=1 ∼ GEM (η)

Q0 =

∞∑
m=1

εmδλm

For each φk, the random mixture measure Qφk ∼ DP (v,Q0), hence using the property of HDP [28],

it admits the following form:

τ k ∼ DP (v, ε)

Qφk =

∞∑
m=1

τkmδλm (12)

Finally, the content observation and xji and context observation sji are generated respectively as

follows:

θji | Gj ∼ Gj

xji | θji ∼ F (· | θji)

ϕji | θji, {Qφk} ∼ Qθji

sji ∼ Y (· | ϕji)
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4 Inference for Conditionally Dependent Dirichlet Processes

We detail model inference in this section. We use an auxiliary conditional approach, assuming conju-

gacy between F and H in the content distribution and between Y and S in the context distribution.

Base on the stick-breaking representation shown in Figure 2b, we develop a MCMC posterior infer-

ence which will be a collapsed Gibbs by integrating out the global topic atoms φk (s) and context

atoms λm (s). The state space to be sampled consists of {z1, . . . ,zJ ,β, l1, . . . , lJ , ε}. Hyperparame-

ters {γ, α, η, v} are further endowed with Gamma distributions and will be resampled at each Gibbs

round. Given a sample realization {z1, . . . ,zJ ,β, l1, . . . , lJ , ε}, following notations are used:

• wk,m: count for context m observed within content k

• njk: count for the content k observed within document j

• sk: collection of context observations for topic k, i.e, sk := {sji : zji = k, ∀j, i}

• s−jik (m) :=
{
sj′i′ : sj′i′ = m, zj′i′ = k, j′ 6= j, i′ 6= i

}
: collection of context observations for topic

k and context m, excluding at position i in document j.

4.1 Sampling content variables

Sampling the topic indicator z

Different from HDP, sampling zji needs to take into account the influence of the corresponding con-

texts.

p (zji = k | z−ji, l,x, s) ∝ p (zji = k | z−ji, α,β)︸ ︷︷ ︸
CRP

p (xji | zji = k, z−ji,x−jiH)︸ ︷︷ ︸
content predictive likelihood

p (lji | zji = k, l−ji, ε)︸ ︷︷ ︸
context preditive likelihood

(13)

The first term can easily be recognized as a form of Chinese restaurant process. The second term

is the predictive likelihood from the content observations under the content mixture component k.

Specifically, let f (· | φ) and h (·) be respectively the density function for F (φ) and H, the conjugacy

between F and H allows us to integrate out the mixture component parameter φk , leaving us the

conditional density of xji under the mixture component k given all the content data items except xji:

p (xji | zji = k, z−ji,x−ji) =

´
φk
f (xji | φk)

∏
j′ 6=j,i′ 6=i,zj′i′=k

f
(
xj′i′ | φk

)
h (φk) dφk

´
φk

∏
j′ 6=j,i′ 6=i,zj′i′=k

f
(
xj′i′ | φk

)
h (φk) dφk

:= f
−xji
k (xji)

Finally, the last term is the contribution from the context observation. Since lji | zji = k ∼ Mult (τ k)

where τ k ∼ Dir (vε1, . . . , vεM , εnew), the Multinomial-Dirichlet conjugacy property allows us to com-
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pute the last term in Eq (13) as:

p (lji = m | zji = k, l−ji, ε) =


vεm+wk,m

wk,•+v
if k previousely used

vεm
v = εm if k = knew

In summary, the conditional distribution to sample zji is given as:

p (zji = k | z−ji, l,x, s) ∝


(n−jik + αβk)f

−xji
k (xji)

vεm+wk,m

wk,•+v
if k previousely used

αβnewf
−xji
knew

(xji) εm if k = knew

where again we recall that the value of lji is denoted by m for readability.

Sampling stick weights β

Sampling β is similar to the HDP in [28] and proceed as follows.

p (β | z, γ, α) ∝ p (β, z | γ, α) = p (z | β, α, γ) p (β | γ)

Integrating out πj using the conjugacy property of Multinomial-Dirichlet and recall that πj ∼

Dir (αβ1, . . . , αβK) and
∑K

k=1 βk = 1 the first term becomes

p (z | β1:K) =

J∏
j=1

[p (zj | β1:K)] =

J∏
j=1

ˆ
πj

p (zj | πj) p (πj | αβ1, . . . , αβK) dπj

=
J∏
j=1

Γ (
∑

k αβk)

Γ (
∑

k αβk +Nj)

K∏
k=1

Γ (αβk + njk)

Γ (αβk)
=

J∏
j=1

Γ (α)

Γ (α+Nj)

K∏
k=1

Γ (αβk + njk)

Γ (αβk)

For the second term, note that β = (β1, . . . , βK , βnew) ∼ Dir
( γ
L , . . . ,

γ
L ,

L−K
L γ

)
, let γr = γ

L and

γnew = L−K
L γ then

p (β | γ) =

Γ

 γ︷ ︸︸ ︷
Kγr + γnew


[Γ (γr)]

K Γ (γnew)

(
K∏
k=1

βγr−1
k

)
βγnew−1

new

Put them together, we get:

p (β, z | γ, α) =
Γ (γ)

[Γ (γr)]
K Γ (γnew)

βγnew−1
new

J∏
j=1

Γ (α)

Γ (α+Nj)

K∏
k=1

βγr−1
k︸ ︷︷ ︸

(term)

Γ (αβk + njk)

Γ (αβk)
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Using the results from [28], let m = (mjk : for all j and k) and Stirl (n, k) is the Stirling number of

the second kind, we have:

Γ (αβk + njk)

Γ (αβk)
=

njk∑
mjk=0

Stirl (nij ,mjk) (αβk)
mjk

p (β, z | γ, α) = (term)×
njk∑

mjk=0

Stirl (nij ,mjk) (αβk)
mjk

Dropping the summation over mjk, it is easy to see that

∑
m

(term)×Stirl (nij ,mjk) (αβk)
mjk = p (β, z | γ, α)

This defines a joint distribution over β, z,m:

p (β, z,m) = (term)× Stirl (nij ,mjk) (αβk)
mjk

=
Γ (γ)

[Γ (γr)]
K Γ (γnew)

βγnew−1
new

J∏
j=1

Γ (α)

Γ (α+Nj)

K∏
k=1

βγr−1
k Stirl (nij ,mjk) (αβk)

mjk

We sample β jointly with the auxilary variable m:

p (mjk = m | z,m−jk,β) ∝ Stirl (nij ,mjk) (αβk)
m

p (β |m, z, α, γ) ∝ βγnew−1
new

K∏
k=1

β
∑

j mjk+γr−1

k
∞
= βγ−1

new

K∏
k=1

β
∑

j mjk−1

k (as L→∞)

where we note in the last equation that γnew =
(
L−K
L

)
γ → γ and γr = K

L → 0 and L→∞.

4.2 Sampling context variables

Sampling context indicator l

The key idea behind sampling lji is group those lji (s) indexed by the same content assignment zji

together and then HDP inference as in [26] can be utilized. Given z, let sk be the set of all context

observations indexed by the same k, i.e., sk := {sji : zji = k, ∀j, i}, in addition let s−jik be the same

set as sk but excluding sji, i.e., s−jik :=
{
sj′i′ : zj′i′ = k, j′ 6= j, i′ 6= i

}
, we can then write:

p (lji = m | l−ji, z, s, v, ε) ∝ p (lji = m | zji = k, l−ji, ε)︸ ︷︷ ︸
conditional CRP

p (sji | lji = m, zji = k, s−ji)︸ ︷︷ ︸
predictive likelihood

(14)

Since conditional on zji = k the collection of context observations sk = {sji : zji = k,∀j, i} sharing the

same k are modeled by a DPM distributed according the random mixture distribution Qk ∼ DP (v,Q0)
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whose stick-breaking is given the Eq (12), the first term in Eq (14) can be computed using the Chinese

restaurant process, or equivalently its Polya-urn characterization, to give:

p (lji = m | zji = k, l−ji, ε) ∝


(wk,m + vεm) if m previously used

vεnew if m = mnew

(15)

The second term in Eq (14) is recognized to be a form of predictive likelihood in a standard Bayesian

setting whose likelihood function is Y , conjugate prior S and a set of observation s−jik (m) :={
sj′i′ : sj′i′ = m, zj′i′ = k, j′ 6= j, i′ 6= i

}
. If the context likelihood distribution function Y (λ) and

its conjugate prior S have a (· | λ) and b (·) as their density functions respectively, then this term can

be expressed as

p (sji | lji = m, zji = k, s−ji) =

´
λm

a (sji | λm)
[∏

s∈s−ji
k (m)

a (s | λm)
]
b (λm) dλm

´
λm

[∏
s∈s−ji

k (m)
a (s | λm)

]
b (λm) dλm

:= y
−sji
k,m (sji) (16)

Substitute Eqs (16) and (15) into Eq (14) give us the final form to sample lji:

p (lji = m | l−ji, z, s, v, ε) ∝


(wk,m + vεm) y

−sji
k,m (sji) if m previously used

vεnewy
−sji
k,mnew

(sji) if m = mnew

Sampling stick weights ε

Different from HDP, sampling ε requires more works as it is dependent on both z and l. Let start

with this factorization:

p (ε | l, z, v, η) ∝ p (ε, l | z, v, η)

= p (l | ε, z, v, η) p (ε | v, η) (17)

Isolating those context variables lkji generated by the same topic zji = k into one group lkj :=

{lji : 1 ≤ i ≤ Nj , zji = k}, the first term of Eq (17) can be expanded as

p (l | ε, z, v, η) =
J∏
j=1

K∏
k=1

ˆ
τk

p
(
lkj | τ k

)
p (τ k | ε) dτ k

=

J∏
j=1

K∏
k=1

Γ (v)

Γ
(
v + u·jk

) M∏
t=1

Γ
(
vεt + utjk

)
Γ (vεt)

where utjk := |{lji | lji = t, zij = k, i = 1, . . . , Nj}| is the count of seeing the content-context pair (k, t)

in document k and u·jk :=
∑M

t=1 h
·
jk, which is also the number of elements in lkj .

Let ηr = η
R and ηnew = R−M

M η and recall that ε ∼ Dir (ηr, . . . , ηr, ηnew) the second term of Eq (17)
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is a Dirichlet density:

p (ε | η) =

Γ

 η︷ ︸︸ ︷
Mηr + ηnew


[Γ (ηr)]

M Γ (ηnew)

(
M∏
t=1

εηr−1
t

)
εηnew−1
new

Put them together and again use the result
Γ(vεt+utjk)

Γ(vεt)
=
∑utjk

htjk=0
Stirl

(
utjk, h

t
jk

)
(vεt)

htjk we have:

p (ε, l | z, v, η) =
Γ (η)

[Γ (ηr)]
M Γ (ηnew)

J∏
j=1

K∏
k=1

Γ (v)

Γ
(
v + u·jk

) M∏
t=1

Γ
(
vεt + utjk

)
Γ (vεt)

εηr−1
t εηnew−1

new

Γ (η)

[Γ (ηr)]
M Γ (ηnew)

εηnew−1
new

J∏
j=1

K∏
k=1

Γ (v)

Γ
(
v + u·jk

) M∏
t=1

εηr−1
t

utjk∑
htjk=0

Stirl
(
utjk, h

t
jk

)
(vεt)

htjk

Now let h =
(
htjk : ∀j, k, t

)
we arrive the following joint distribution

q (ε, l,h) ∝ εηnew−1
new

J∏
j=1

K∏
k=1

Γ (v)

Γ
(
v + u·jk

) M∏
t=1

εηr−1
t Stirl

(
utjk, h

t
jk

)
(vεt)

htjk

Therefore we sample ε jointly with the auxiliary variable htjk as follows

q
(
htjk = h | ·

)
∝ Stirl

(
utjk, h

t
jk

)
(vεt)

htjk , h = 0, 1, . . . , utjk

q (ε | ·) ∝ εηnew−1
new

M∏
t

ε

∑
j

∑
k h

t
jk+ηr−1

t
∞
= εηnew

M∏
t

ε

∑
j

∑
k h

t
jk−1

t (as R→∞)

4.3 Sampling hyperparameters

There are four hyper-parameters in our model: α, γ, v and η. Sampling α and γ is identical to HDP

and therefore we refer to [28] for details.

Sampling v. The key idea here is to note that after z has been sampled, the number of active

topics K plays a role of grouping contexts into K ‘documents’, we then utilize the results from HDP

to sample v.

Let Mk =
∑

j,t h
t
jk which is the number of active context atoms conditional topic atom k-th, and

M· =
∑

kMk, then:

p (M1, . . . ,MK | v, ·) =

K∏
k=1

Stirl (M·,Mk) v
Mk

Γ (v)

Γ (v +Mk)
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Using the technique in [28], we write:

Γ (v)

Γ (v +Mk)
=

ˆ 1

0
wvk (1− wk)Mk−1

(
1 +

Mk

v

)
dwk

Assuming v ∼ Gamma (a, b), define w = (wk : k = 1, . . . ,K) , wk ∈ [0, 1] and o = (ok : k = 1, . . . ,K) , sk ∈

{0, 1} we have

q (v,w,o) ∝ va−1+
∑

kMke−vb
K∏
k=1

wvk (1− wk)Mk−1

(
Mk

v

)ok
Therefore we sample v together the two auxiliary variables wk and ok as follows:

q (v | ·) ∝ va−1+
∑

k(Mk−ok)e−v(b−
∑

k logwk) = Gamma

(
a+

∑
k

(Mk − ok) , b−
∑
k

logwk

)

q (wk | v) ∝ wvk (1− wk)Mk−1 = Beta (v + 1,Mk)

q (ok | ·) ∝
(
Mk

v

)ok
= Bernoulli

(
Mk/v

1 +Mk/v

)
Sampling η. Using similar strategy and using technique from Escobar and West [6], we write:

p (M | η,M·) = Stirl (M,M·) η
M Γ (η)

Γ (η +M·)

Let η ∼ Gamma (c, d) and for readability, we also replace M· by U .

p (η |M,U) ∝ p (M | η, U) p (η)

Recall that:

Γ (η)

Γ (η + U)
=

ˆ 1

0
wη (1− w)U−1

(
1 +

U

η

)
dw

Therefore,

p (η | w) ∝ ηc−1+Me−ηdwη (1− w)U−1

(
1 +

U

η

)
= ηc−1+Me−η(d−logw) (1− w)U−1 + ηc−1+M−1e−η(d−logw) (1− w)U−1 U

∝ ηc−1+Me−η(d−logw) + Uηc−1+M−1e−η(d−logw)

= λGamma (c+M, b− logw) + (1− λ) Gamma (c+M − 1, b− logw)

15



where λ satisfies this following equation to make the above expression a proper mixture density:

λ

1− λ
=

c+M − 1

M (b− logw)

Finally,

p (w | η) ∝ wη (1− w)U−1 = Beta (η + 1, U)

To re-sample η, we first sample w ∼ Beta (η + 1, U), compute λ as in the previous equation, and then

use λ to select the correct Gamma distribution to sample η.

5 Experiments

We provide three experiments. Two with synthesis data to demonstrate the possible use of the

proposed framework for topic modeling sensitive to time and trajectory discovery in surveillance data.

The last experiment is an application of the model as a way to induce features for a visual category

classification problem in computer vision.

5.1 Synthesis data: nonparametric Topic-Over-Time modeling

Topic-over-Time, introduced in [31], is a topic model whose topics are time-sensitive. It extends LDA

[5] to deal with documents in which each word has an additional observed time information modelled

by a Beta distribution customized for each topic. Our framework developed in this paper naturally

be twisted to provide a nonparametric extension to this modeling providing two key advancements:

a) the number of topics is unknown and to be inferred, b) the time distribution for each topic is a

Dirichlet process mixture model over time axis, instead of a Beta distribution, thus it naturally fits

better to many real-world problems where topic is allowed to rise and fall over time unbounded over

time (whereas the Beta distribution is bounded between 0 and 1 and unimodal).

The fix is simple: we let the xji be the observed word and sji be the corresponding observed time

information. We construct in this experiment a synthesis dataset to demonstrate this scenario. A

similar set of simulated bar topics in [9] is used, but the topics are distributed according to different

time mixture distributions of univariate Gaussian distributions. There are ten bar topics of size 5×5 as

visualized in Figure 3 (top), grouped into either horizontal or vertical bars, resulting a vocabulary size

of V = 25 . The time distributions are the uniform mixture of five Gaussians, being the context atoms,

centered at even numbers from 2 to 10 with a fixed variance of 0.2. Corresponding to each of these

centers, a set of N = 30 documents are constructed whose topics are dictated by the groundtruth as

shown in Figure 3 (middle) where H means only horizontal bar topics are used, V means only vertical

bar topics and H + V means a uniform mixture of both. Each document at location t is therefore
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Figure 3: Groundtruth simulated data. Top: ten bar topics grouped into horizontal and vertical
themes. Middle: Five Gaussians centered evenly from 2 to 10 used to generate the timestamps and
words for documents: H means horizontal topics only, V vertical topics only, and H + V means a
uniform mixture of both. Bottom: examples of documents (visualized for words only) at different
times.

consists of a set of 25 = 5× 5 words drawn from the topics, and each word is further augmented with

a timestamp drawn from the Gaussian with mean t and variance of 0.2 where t = 2, 4, 6, 8, 10.

A context-sensitive HDP is then fitted to the data whose topics are modelled as conjugate pair of

Multinomial-Dirichlet, and for time information Gaussians with unknown means and variances are used

together with their conjugate priors Gaussian-Gamma. The concentration parameters are resampled

at each MCMC round where a Gamma prior are used: γ, η ∼ Gamma (4, 1), α, v ∼ Gamma (3, 6). We

collect 500 Gibbs samples after a burnin period of 100 samples.

The posterior distribution on the number of topic and context atoms (K,M) is shown in Figure 5

where the number of groundtruth atoms has been recovered correctly K = 10 for topics and M = 5

for five Gaussians (cf. Figure 3). Moreover, Figure 4 (middle) further shows that it recovers exactly

5 horizontal and 5 vertical bar topics as have been seen with the groundtruth where given a Gibbs

sample {α,β, z} the recovered topics and mixture proportion are estimated as

φ̂k,v =
mk,v + λ

mk,• + λV
π̂jk =

nj,k + αβk
nj,• + α

We are also interested in inferring the conditional distribution of context given a topic; in our case

each is a DP mixture of Gaussians. Given a realization of the Gibbs sample {v, l, ε} it is estimated as

p (t | k) =

M∑
m=1

τ̂k,mNormal
(
t
∣∣µ̂k,m, σ̂2

k,m

)
where τ̂k,m =

[k,m] + vεm
[k, •] + v

and µ̂k,m, σ̂
2
k,m are respectively the mean and variance from the collection of timestamps which are

assigned to context m and topic k. Precisely they are computed from the following set of observation
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Figure 4: Results for bar topics over time experiment. Middle: learned topics which are able to
recover exactly 10 topics grouped into horizontal and vertical bar topics. Top: learned conditional
time distributions for learned horizontal topics which are able to recover correct periods of times they
are active (note the ground where H mean horizontal topics are used). Bottom: learned conditional
distributions for vertical topics, which are again able to recover correct times.

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

Gibbs iteration

 

 
γ
α
η

0
2

4
6

8
10

12

0

2

4

6

8
0

100

200

300

400

500

Context M

  (K=10, M=5)

Topic K

P
os

te
rio

r
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Figure 6: Left: Two motion topics: low magnitude µ = 50 in red color and low magnitude µ = 150 in
blue color. Right: Four context atoms for low motion pattern are shown in red color and four context
atoms for high motion patterns in blue noting the overlap of two context atoms in the middle which
presents a challenging scenario.

{tji | lji = m, zji = k, ∀i, j}. Figure 4 illustrates the conditional time distributions learned for the

group of horizontal bar topics (top) and vertical bar topics (bottom). We observe that, in all cases

the model has correctly learned the time epochs at which the horizontal and vertical bar topics exist

according to the groundtruth.

5.2 Synthesis Data: Detecting Movement Patterns in Video Surveillance

Scene understanding is a classic and challenging problem in computer vision. The work of [23] presents

a state-of-the-art modeling approach in which the authors used a sequence of parametric mixture

models at each time slice, which are then ‘matched’ through time formulated under a graph-cut

formalism. We present in this section a toy example, mimicking the problem in[23] and demonstrate

that our proposed model can address this problem elegantly, at least at from the modeling point of

view.

Data is simulated from two motion patterns, each is characterized by a sequence of locations mod-

elled by a sequence of Gaussian distributions on 2D plane. However, two motion patterns are different

in the intensity of movements in the scene. For example, high motion pattern might correspond traffic

movements whereas low motions corresponds to people walking. To distinguish motion level, two

motion intensity distributions are introduced, each serves as the topics whereas spatial observations

are contexts.

Fig 6 displays true motion intensity atoms and context atoms. True motion intensity atoms are

univariate Gaussian distributions at µ = 50 and µ = 150 with fixed variance of 5 characterizing low

motion and high motion respectively. Eight context atoms are 2D Gaussian distributions, four atoms

for low topic motion and the rest for high topic motion. We simulate a set of J = 30 images, describing

a sequence of video frames. Some examples are shown Figure 7a

We fit this data to the model where motion intensity is the content xji and its (x, y) spatial location
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(a) Example of simulated images of the traffic
scene with two motion patterns distinguished by
their intensities
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(b) Two topics are learned from the data. Each
represents a motion intensity level, resembling
identically to the groundtruth.

Figure 7: Examples of data simulated and the model recovers exactly two topics, describing low and
high motion intensity.

is the context sji. The data is relatively small and thus we learn exactly two topic atoms φk as shown in

Figure 7b, resembling almost identical the groundtruth. Conditional on each topic (low and high), the

distribution on the context represents the motion patterns are shown in Figure 8. Again, the model

estimate these motion patterns almost identical to the groundtruth, suggesting that the proposed

framework might be effective to tackling the problem of scene understanding in real-world computer

vision problem.

5.3 Real-world Data Experiment: Visual Category Classification

In this section, we present an application of the proposed framework as a method for multimodal

dimensionality reduction and use the reduced dimension vector, being the mixture proportion πj as a

form of feature. We use the benchmark dataset in [17] which consists of 8 visual categories collected

from LabelMe dataset [22]. These include: tall buildings, inside city, street, highway, coast, open

country mountain and forest. Each image in LabelMe is annotated. User draws one or more regions

on the image and annotate each region with a label. Annotation examples are shown in Figure 9.

In our model, each image j is then treated as a document, the label of the region is used as content

xji and the visual feature of that region is the context sji. In this case, we extract GIST feature [17]

from each region and use in place of sji. GIST is a visual descriptor to represent perceptual dimensions

and oriented spatial structures of a scene. Each GIST descriptor is a 512-dimensional vector. Figure

10 shows some examples of GIST features. We further use PCA to project GIST features into 30

dimensions, thus sji is modelled according to a 30-dim Gaussian distribution whose conjugate prior is

a Gaussian-Wishart distribution for both mean and covariances.

The inference setting for sampling hyper parameter are γ ∼ Gamma (6, 5), η ∼ Gamma (3000, 100),

α, v ∼ Gamma (3.5, 1). We run collapsed Gibbs MCMC for 1000 iterations and 100 burnins which
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Figure 8: Learned topic atoms φk representing motion intensity and their corresponding conditional
context atoms ψkm and mixture distributions, each represents a motion or movement pattern.
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Figure 9: Examples of images used in our dataset. Each image consists of different annotated regions.
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Figure 10: Visualization of GIST feature extraction [17].
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Figure 11: Top four topics learned from annotated labels.
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Methods Accuracy

Using HDP features on annotated labels 62.385%

Using our model on annotated labels and local GIST 77.125%

Context by visual region ancestry [12] 82%

Using GIST feature extract at image level [17] 83.7%

Using Gabor-PHOG feature at image level[25] 86.6%2

Dense SIFT + Texton HSMK at image level [11] 89.75%

Our mixture proportion feature + GIST at image level 91.88%

Table 1: Comparison of classification results for 8 visual categories. This dataset is originally intro-
duced in [17].

takes roughly 5 mins for each loop using Matlab implementation. The model returned 8 topic atoms,

each is a distribution over the set of annotated labels and 20 context atoms over GIST features, each

is a multivariate Gaussian distribution of dimension 30. Fig 11 shows top four topic atoms learned.

To further demonstrate the strength of the model, we consider a classification task among these

8 visual categories. Our intuition is that, by further leveraging the GIST feature together with the

annotated labels, the proposed model will help to ‘regularize’ and learn more discriminative topics

(than not using together with visual information). We use the mixture component πj in each image as

an input feature for SVM classification with RBF kernel. In each class, we split randomly 100 images

for training and 100 images for testing, the accuracy comparison on this dataset is recorded at their

best performances after parameter selection step in validation set.

For comparison, we also employ Hierarchical Dirichlet Processes [28] on the annotated labels,

then use the mixture components as features for SVM classification in a similar manner. In this

experiment, we additionally consider a setting in which the mixture proportion is used together the

existing GIST features (extracted at the image level) as a combined feature vector before input to

SVM. We compare our method with state-of-the-art results reported in [17], [12], and [11] on the

same dataset. Table 1 presents the classification results in which the use of model has improved

over the most of baseline methods, including the use of HDP. This suggests that correlation among

data channels carries additional discriminative information, which has been exploited in our modeling

approach.

6 Extensions and Discussions

We provide discussions on some possible and attractive extensions arrived from the proposed models.

6.1 Modeling Multiple Contexts

When multiple contexts exist for a topic, the proposed model can easily be extended to accommodate

this. That is for each content xji there is a set of M context
{
smji

}M
m=1

correlated to it. In the nutshell,

conditional on the a topic φ, one can imposes multiple conditionally independent context distributions
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{
Qmφ

}M
m=1

where M is the number of contexts. The generative process for contexts be modified as

follows, starting with the sticking breaking G0 =
∑∞

k=1 βkδφk

• For each m = 1, . . . ,M draw Qm0 ∼ DP (η, Sm)

• For each topic φk and for m = 1, . . . ,M draw QMφk ∼ DP (η,Qm0 )

• For each group j and each word i within this group

– Generate content xji ∼ F (· | θji) where θji
iid∼ Gj

– For each context channel m = 1, . . . ,M

∗ Sample m-th context smji ∼ Y m
(
· | ϕmji

)
where ϕmji

iid∼ Qmθji

The inference presented in Section 4 can be readily extended to accommodate for this setting. More

interesting, under a Gibbs sampling approach, it is clear that we can sample the latent indicator lmji

each context channel m in parallel once conditioning the content topic zji, thus the computation

complexity in this case should remain the same as in the single context case given enough number of

core processors to execute in parallel.

6.2 Modeling Hierarchically Nesting Contexts

In the setting of multiple contexts described in the extension in Section 6.1, instead of treating context

conditionally independently given the topic, one might prefer to a setting in which the contexts are

hierarchically nested xji → s
(1)
ji → . . .→ s

(M)
ji . This nested structure leads to the nested structure in

the latent space zji → l
(1)
ji → . . .→ l

(M)
ji .

Though it appears that Gibbs inference in Section 4 might be derived for this case, it is anticipated

that the Gibbs sampling might be very slow due to nested structure which requires the samples from

the upper level to perform sampling at the lower level.

6.3 Modelling Group-Level Context Observations

In some application, context data sji may not be available for each word xji within a group j, instead

it exists at the group-level; i.e., for each document j there is group-specific context sj . Exemplar

scenarios include: timestamps attached to a document (not at word level as overly treated in [31]),

GPS location recorded for a text message sent from a mobile phone, modelling patient complication

progression when the patient’s living location is known.

The twist is simple, by interchanging the role of context and content in our model and push the

context outside the document plate, it is readily to derive a model to model group-specific context

observation. The generative process can be twisted as follows where we note that H is now providing

the support for context sj and Q provides support for content xji:
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• G0 ∼ DP (γ,H) and for each j: Gj ∼ DP (α,G0)

• Q0 ∼ DP (η,Q) and for each topic φk, from the stick-breaking representation G0 =
∑∞

k=1 βkδφk ,

generate Qφk ∼ DP (v,Q0)

• For each group j:

– generate context sj ∼ F (· | θj) where θj ∼ Gj

– for each word i within this document, generate content xji ∼ ϕji where ϕji
iid∼ Qθj

The inference scheme presented in Section 4 is readily to be applied to this case.

6.4 Modelling Contextual Factors

Another possible and interesting extension to the proposed framework is to consider other nonpara-

metric stochastic processes for contexts. One attractive choice is to induce hierarchical Beta processes

for the context instead of hierarchical DP. Specifically, for each topic φk we introduce a topic-specific

distribution Qφk which is now a Beta processes. The collection of random distributions {Qφ}φ∈Θ is

now linked according to a hierarchical Beta processes introduced in the work of [29]. Conditional on

the topic, sampling the hierarchical Beta processes appears to be tractable using the sampling scheme

presented in [29]. Alternatively, a Restricted Hierarchical Beta process (R-HBP) in our previous work

present another attractive model choice with more efficient slice sampling routine [10].

7 Conclusion

Bayesian nonparametric methods are attractive modelling choices for several problems in machine

learning and data mining due to flexibility. However, addressing more realistic problems in machine

learning and data mining requires a need to advance Bayesian nonparametric modeling, both in the-

ory and computation, to accommodate richer types of data in a principled way. Most of existing

work considers a single data observation type. This paper addresses more realistic multimodal data

in which covariates are rich, and yet tend to have a natural correlation with one another. These

setting arises in a wide array of practical applications across many domains; including, to name a

few: medical data mining (e.g., patient profiling, modelling medical records, modeling early interven-

tion data in children), multimedia social media (e.g., tags and their associated multimedia contents,

network data, context-sensitive community detection, joint topic and sentiment analysis), computer

vision (e.g., context-sensitive object recognition and patterns discovery in surveillance) and pervasive

computing (e.g., context-aware applications on mobile devices, analysis of honest social signals). The

presence of rich and naturally correlated covariates calls for the need to model their correlation with

nonparametric models, without reverting to making parametric assumptions and we have proposed
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a flexible class of fully Bayesian nonparametric model to address these problems. We have derived

an auxiliary conditional Gibbs sampling scheme and demonstrated the applicability of the models on

three experiments. Finally, we have discussed various extensions that are immediately possible to

carry on using the proposed framework.
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