
Semantic Matchmaking in a P-2-P Electronic Marketplace

Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello
Dipartimento di Elettrotecnica ed Elettronica

Politecnico di Bari
Via Re David, 200
70125 BARI, Italy

t.dinoia,disciascio,donini,mongiello@poliba.it

ABSTRACT
Matchmaking is the problem of matching offers and requests,
such as supply and demand in a marketplace, services and
customers in a service agency, etc., where both partners are
peers in the transaction. Peer-to-Peer (P-2-P) e-commerce
calls for an infrastructure treating in a uniform way supply
and demand, which should base the match on a common
ontology for describing both supply and demand. Knowl-
edge representation — in particular description logics — can
deal with this uniform treatment of knowledge from vendors
and customers, by modelling both as generic concepts to be
matched. We propose a logical approach to supply-demand
matching in P-2-P e-commerce, which allows us to clearly
distinguish between exact, potential and partial match, and
to define a ranking within the categories. The approach is
deployed in a prototype system implemented for a particular
case study (but easily generalizable) and is based on Classic,
a well-known knowledge representation system.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Decision Sup-
port; I.2.4 [Knowledge Representation Formalisms and
Methods]: Representation languages

Keywords
Matchmaking, knowledge representation, web services, de-
scription logics.

1. INTRODUCTION
The process of searching the space of possible matches

between demands and supplies can be defined as Match-
making. This process is, or should be, quite different from
simply finding, given a demand, a perfectly matching supply
(or vice versa). Instead it includes finding all those supplies
that can to some extent fulfill a demand, and eventually
propose the best ones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2003 Melbourne, Florida, USA

Earliest matchmakers, based on KQML, were proposed
in [7] and [13]. Similar approaches were deployed in SIMS
[1], which used KQML and LOOM as description language
and InfoSleuth [11], which adopted KIF and the deductive
database language LDL++. LOOM is also at the basis of
the subsumption matching addressed in [8]. Recent rele-
vant literature includes [18] and [15]. The matching process
is carried out here through five progressive stages, going
from classical Information Retrieval (IR) analysis of text to
semantic match via Θ-subsumption. The notion, inspired
by Software Engineering, of plug-in match is introduced to
overcome the limitations of a matching approach based on
exact match. No ranking is presented but for what is called
relaxed match, which basically reverts again to a IR free-
text similarity measure. So a basic service of a semantic
approach, such as inconsistency check, seems unavailable
with this type of match. In [19] and [9] a matchmaking
framework is proposed, which operates on service descrip-
tions in DAML+OIL and is based on the FaCT reasoner.
Unfortunately FaCT lacks of concrete datatypes, which are
obviously extremely useful for e-commerce applications, and
their prototype is incomplete. Semantic service discovery via
matchmaking in the Bluetooth framework is investigated
in [17]. Also here the issue of approximate matches, to
be somehow ranked and proposed in the absence of exact
matches, is discussed, but as in the previous papers no for-
mal framework is given. Also commercial electronic mar-
ketplaces try to provide some matchmaking capabilities be-
tween demand and supply. Jango (www.jango.com) pro-
vides a system that basically only allows comparison, in
terms of price, of goods available in on-line stores on the
Internet. Obviously the description of the product to be
matched has to be complete and consistent and no rea-
soning on set containment or inconsistency check can be
carried out. PersonaLogic (www.PersonaLogic.com) allows
customers to impose constraints for alternatives seeking. It
must be pointed out that constraints cannot be dynami-
cally placed but have to be taken from a pre-determined
category set. Kasbah (www.kasbah.com) is a more effec-
tive system, which allows to dynamically set constraints,
yet it does not allow handling of inconsistency and partial
or potential matches. A similar approach is also deployed
in Tete-a-Tete [14]. An advanced constraint based approach
is proposed in [12], which allows to handle conflicting pref-
erences in demands/supplies. Consistency check of prefer-
ences is accomplished visiting an offer synthesis graph with
path consistency algorithm each time a new offer is entered.
Smartclient [16] is also a system that allows users criteria

© 2003 ACM 1-58113-625-0/03/03...$5.00. 582

adjustment using an interface that shows the initial search
space —which may result quite large— and then user in-
teraction with the results. The underlying system basically
relies on partial constraint satisfaction techniques. A recent
proposal along the same lines is in [20] where negotiation
agents are formally modelled using an object-oriented con-
straint language. IBM’s Websphere matchmaking environ-
ment is, to our knowledge, the first example of commer-
cial solution that places an explicit emphasis on the match-
making between a demand and a supply in a peer-to-peer
way, which is referred to in [10] as symmetric matchmaking.
The environment is based on a matchmaking engine that
describes supplies/demands as properties and rules. Prop-
erties are name-value pairs constructed using an extension
of Corba Trading service language. Rules are basically con-
structed using a generic script language. Matching is then
accomplished by simply comparing properties and verifying
rules. A similar approach is in [4]. In [5] an initial setting
for logical matchmaking was presented in a person-to-person
framework.

As a general consideration, we note that if supplies and de-
mands are simple names or strings, the only possible match
would be identity, resulting in an all-or-nothing approach
to matchmaking. Although effective for fixed technical do-
mains, e.g., Bluetooth use of UUID descriptors, such an
approach misses the fact that supplies and demands usu-
ally have some sort of structure in them. Such a structure
could be exploited in order to evaluate “interesting” inexact
matches. Vector-based techniques taken by classical IR can
be used, too, thus reverting matchmaking to similarity be-
tween weighted vectors of stemmed terms, as proposed in the
COINS matchmaker [13] or in LARKS [18]. Obviously lack
of document structure in descriptions would make matching
only probabilistic and strange situations may ensue, e.g.,
consider a simple demand “apartment with two Rooms in
Soho pets allowed no smokers” and a supply “apartment
with two Rooms in Soho, no pets, smokers allowed”. They
would correspond to a perfect match although being in ob-
vious contrast.

We propose a matchmaking framework that allows to log-
ically distinguish and classify:

Total match: all requests in Demand are available in Sup-
ply (or vice versa)

Potential match: some requests in Demand are not spec-
ified in Supply (and further action -inquire- can be taken)

Partial match: some requests in Demand are in contrast
with Supply (and further action -retract- can be taken)

This coarse subdivision allows to immediately classify a
given supply/demand description in a category. As a further
step beyond we propose an algorithm to rank each descrip-
tion within its own category. This is of extreme importance
for a practical use of the approach, as the key question that
has to be answered is how far is a given demand (supply)
from its counterpart? And which are the requirements that
would eventually fulfill it?

In the remaining of this paper we concentrate on match-
making in a P-2-P scenario, setting a logical framework for
it, and highlighting general properties that should hold for
a matchmaking algorithm, and for the associated ranking
functions. We then apply our framework to DL for express-
ing offers and requests, adapting the general principles to
a DL knowledge base. Finally, we describe a matchmaking
facilitator prototype system, which is inspired by the prin-

ciples discussed so far.

2. PRELIMINARY NOTIONS
Description Logics (DLs) are a family of logic formalisms

for Knowledge Representation. Here we give some basics
about DLs, but for space bounds we limit to the DL of the
KR system Classic that we use in the paper. Classic [2]
has been developed at AT&T Bell Labs, where it has been
applied in several projects about configuration and program
repositories. Its language has been designed with the goal to
be as expressive as possible while still admitting polynomial-
time inferences.

The basic syntax elements are concept names, e.g., book,
person, product, apartment, and role names, like author,
supplier, hasRooms. Intuitively, concepts stand for sets of
objects, and roles link objects in different concepts, e.g., the
role author links books to persons (their writers). Formally,
an interpretation is defined as a pair I = (∆, ·I), which
consists of the domain ∆ and the interpretation function ·I ,
which maps every concept to a subset of ∆, and every role
to a subset of ∆ × ∆.

Concept and role names can be combined using construc-
tors to form concept and role expressions, and each DL has
its distinguished set of constructors. First of all, every DL al-
lows one to form a conjunction of concepts, usually denoted
as �. Roles can be combined with concepts using univer-
sal role quantification, as in product�∀supplier.japanese,
which describes products sold only by japanese suppliers.
Other constructs may involve counting, as number restric-
tions: apartment � (≤ 1 hasRooms) expresses apartments
with just one room, and book � (≥ 3 author) describes
books written by at least three people. Classic provides
also other constructs, such as same-as, fills, and one-of.
We omit their presentation, since we do not make use of
them in this paper.

Expressions are given a semantics by defining the inter-
pretation function over each construct. Concept conjunc-
tion is interpreted as set intersection: (C � D)I = CI ∩ DI

The interpretation of constructs involving quantification on
roles needs to make domain elements explicit: for example,
(∀R.C)I = {d1 ∈ ∆ | ∀d2 ∈ ∆ : (d1, d2) ∈ RI → d2 ∈ CI}.

Concept expressions can be used in inclusion assertions,
and definitions, which introduce the meaning of concept
names in terms of concept expressions. Definitions give a
meaningful name to particular combinations of concepts,
as in doubleRoom ≡ room � (= 2 hasPlaces). Inclusions
can be used in a similar way, but they state only necessary
conditions for the concept name on the left, as in book 	
(≥ 1 author)�(= 1 title)�(= 1 ISBN). Intuitively, every
book has at least one author and exactly one title, but not
everything having at least one author and exactly one title
is a book (e.g., a theater performance). Another form of
assertions that are present in Classic are disjoint groups of
names, e.g., paperbacks and hardcover. In more expressive
DL, such assertions are modeled as general inclusions. His-
torically, the set of all such inclusions and definitions in a
DL knowledge base is called TBox (Terminological Box). As
for semantics, inclusions and definitions impose restrictions
on possible interpretations: an interpretation I satisfies an
inclusion C 	 D if CI ⊆ DI , and it satisfies a definition
C = D when CI = DI . A model of a TBox T is an inter-
pretation that satisfies all inclusions and definitions of T .

It is important to note that every Classic C concept has

583

an equivalent normal form as Cnames � C� � Call, in which
Cnames is a conjunction of names, C� of number restrictions,
and Call of universal role quantifications. In the normal
form, also all inclusions, definitions and disjoint groups have
been made explicit [3].

Classic provides the two basic reasoning services of DL-
based systems, namely Concept Satisfiability (given a TBox
T and a concept C, does there exist at least one model of T
assigning a non-empty extension to C?), and Subsumption
(given a TBox T and two concepts C and D, is C more
general than D in any model of T?). Being a complete KR
system, Classic provides also data types as numbers and
strings, and other services which are useful in a deployed
prototype.

3. KR FOR MATCHMAKING
We now discuss some general principles that an approach

to matchmaking based on Knowledge Representation (KR)
may yield.

First of all, a matchmaking facilitator o practical use should
be liberal enough about details, without pretending a pro-
poser to fill in forms with (say) 30 or more different charac-
teristics to be set. This implies that the absence of a char-
acteristic in the description of a supply or demand should
not be interpreted as a constraint of absence. Instead, it
should be considered as a characteristic that could be ei-
ther refined later, or left open if it is irrelevant for a user
— what is called open-world assumption in KR. Obviously,
also the algorithm employed for matchmaking should take
this issue into account. Secondly, a matchmaking system
may give different evaluations depending on whether it is
trying to match a supply S with a demand D, or D with
S — i.e., depending on who is going to use this evaluation.
This requirement is already evident when characteristics are
modeled as sets of words: in that case, underconstrained re-
quirements of S from the point of view of D are expressed by
D − S (set difference) while underconstrained requirements
of D from S’s viewpoint are expressed as S − D.

Of course, using sets of words to model supplies and de-
mands would be too sensible to the choice of words employed
— it misses meanings that relate words. In the apartments
rental scenario, a matching facilitator should take into ac-
count that “boiler” is a form of heating system, or that a
constraint “no-pets” applies also to a dog. It is now a com-
mon opinion that such fixed-terminology problems are over-
come if terms have a logical meaning through an ontology
[6].

From now on we suppose that supplies and demands are
expressed in a description logic. We note that this approach
includes the sets-of-keywords one, since a set of keywords
can be considered also as a conjunction of concept names,
e.g., the set {apartment, soho, twoRooms} can be equiva-
lently considered as apartment � soho � twoRooms — with-
out modelling the structure of concepts. Of course, enter-
ing into the structure of concepts may yield apartment �
∀location.soho�(= 2 hasRooms), while a keyword “noPets”
can be given a logical meaning as ∀occupants.(≤ 0 hasPets),
which is probably better.

We suppose also that a common ontology for supplies and
demands is established, as a TBox in DL. Now a match
between a supply S and a demand D could be evaluated
according to T . Let T |= . . . denote logical implication
(truth in all models of T), and let 	 (subsumption) denote

also implication between constraints of S and D. There are
three relations between concepts expressing supplies and de-
mands, that we consider meaningful in matchmaking:

Implication. If T |= (D 	 S), then every constraint
imposed by D is fulfilled (implied) by S, and vice versa if
T |= (S 	 D).

Consistency. If D � S is satisfiable in T , then there
is a potential match, in the sense that the constraints of
neither proposal exclude the other. This relation has been
highlighted also by other researchers [19].

Inconsistency. Otherwise, if D�S is unsatisfiable in T ,
some constraints of one proposal are in contrast with the
properties of the other one. However, also (say) supplies
which are inconsistent with D may be reconsidered, if the
demander accepts to revise some of D’s constraints. We call
this situation a near miss or partial match.

We now state some properties that — we believe — every
ranking function should have in logical matchmaking. We
state these properties in form of definitions, since we distin-
guish between rankings having the property from rankings
that do not.

First of all, a ranking for semantic matchmaking should
be syntax independent. That is, for every pair of supplies
S1 and S2, demand D, and ontology T , when S1 is logi-
cally equivalent to S2 then S1 and S2 should have the same
ranking for D — and the same should hold also for every
pair of logically equivalent demands D1, D2 with respect to
every supply S. For example, an apartment S1, described
as available for the summer quarter, should have the same
rank — with respect to a request — as another S2, identi-
cal but for the fact that it is described to be available for
June-July-August. A similar property should hold also for
ranking incoherent pairs of supplies and demands (see the
full paper).

Secondly, a ranking for semantic matchmaking should be
monotonic over subsumption. That is, for every demand
D, for every pair of supplies S1 and S2, and ontology T ,
if S1 and S2 are both potential matches for D, and T |=
(S2 	 S1), then S2 should be ranked either the same, or
better than S1. The same should hold also for every pair
of demands D1, D2 with respect to a supply S. Intuitively,
this property could be read of as “A ranking of potential
matches is monotonic over subsumption if the more specific,
the better.” Observe that we use the word “better” instead
of using any symbol ≤,≥. This is because some rankings
may assume that “better=increasing” (towards infinity, or
1) while others may assume “better=decreasing” (towards
0).

When turning to partial matches, adding another charac-
teristic to an unsatisfactory proposal may either worsen its
ranking (when another characteristic is violated) or keep it
the same (when the new characteristic is not in contrast).
Note that this ranking should be kept different from the
ranking for potential matches.

We remark that the properties we stated in this section
are independent of the particular DL employed, or even the
particular logic chosen. For instance, the same properties
could be stated if propositional logic was used to describe
supplies, demands and the ontology. In this respect, we
believe that the properties above keep a general significance.

4. THE MATCHMAKING ALGORITHM

584

Algorithms for potential and partial matchmaking have
been devised adapting the original Classic structural algo-
rithm for subsumption [3]. In this section we thoroughly
describe only the algorithm for potential match; the algo-
rithm for partial match is similar to the potential one, and
is only briefly described here for space reasons.

A Classic concept C can be put in normal form as Cnames�
C� �Call. Without ambiguity, we use the three components
also as sets of the conjoined concepts. Moreover, recall that
the TBox in Classic can be embedded into the concepts,
hence we do not consider explicitly the TBox, although it is
present.

The algorithm easily follows a structural subsumption al-
gorithm, except for the treatment of universal role quantifi-
cation, that we explain now with the help of an example.
Suppose that D is a demand and C1, C2 are two supplies
defined as follows:

D = apartment � ∀hasRooms.(singleRoom � nonSmokerRoom)

C1 = apartment � ∀hasRooms.roomWithTV
C2 = apartment

Now, comparing D with C1, a recursive call through the uni-
versal role quantification highlights that rooms in C1 miss
both characteristics required by D, hence the ranking should
be 2 (where ranking 0 would mean subsumption). In the case
of C2, instead, since the universal role quantification is ab-
sent, no recursive comparison is possible. However, observe
that from the semantics, ∀hasRooms.� ≡ � (no restriction
on the fillers of role hasRooms is equivalent to no restrictions
at all). Hence, apartment ≡ (apartment � ∀hasRooms.�).
Since we want to enforce syntax independence, both con-
cepts should yield the same ranking. Hence, we compare
the last concept, which allows us to make a recursive com-
parison of characteristics of universal role quantifications.

Algorithm rankPotential(C, D);
input Classic concepts C, D, in normal form, such that

C � D is satisfiable
output rank n ≥ 0 of C w.r.t. D, where 0 means that

C 	 D (best ranking)
begin algorithm

let n := 0 in
/* add to n the number of concept names in D */
/* which are not among the concept names of C */
1. n := n + |Dnames+ − Cnames+|;
/* add to n number restrictions of D */
/* which are not implied by those of C */
2. for each concept (≥ x R) ∈ D�

such that there is no concept (≥ y R) ∈ C� with y ≥ x
n := n + 1;

3. for each concept (≤ x R) ∈ D�

such that there is no concept (≤ y R) ∈ C� with y ≤ x
n := n + 1;

/* for each universal role quantification in D */
/* add the result of a recursive call */
4. for each concept ∀R.E ∈ Dall

ifthere does not exist ∀R.F ∈ Call

then n := n + rankPotential(�, E);
else n := n + rankPotential(F, E);

return n;
end algorithm

Obviously, total match is a particular case of potential
match, obtained when rankPotential(C, D) = 0.

Figure 1: The architecture of the engine

It is easy to modify the algorithm if weights on subcon-
cepts of D are taken into account: instead of adding 1 to n
for each D’s concept missing in C, one just adds the corre-
sponding weight. In this way, when the proposal concerns
apartments, the concept apartment gets the highest weight,
and minor characteristics get lower weights. Then, a far
rank would mean that either many minor characteristic, or
a very important one, are left unspecified in C.

We implemented also a version of the algorithm in which
weights are learned by the system, upon repeated analysis of
proposals. In this case, of course, the learned weights are ab-
solute ones, and not relative to a particular actor. However,
also in this case, if all proposals contain e.g., the concept
apartment, this concept gains weight, which is reasonable if
the ontology refers to real estate.

The algorithm for ranking partial matches follows again
the partition of Classic concepts into names, number re-
strictions, and universal role quantifications. However, this
time we are looking for inconsistencies. Hence, when a uni-
versal role quantification is missing in either concept, the
recursive call is unnecessary.

Of course, also in this case weights could be added to
subconcepts of D, where the greater the weight, the more
that characteristic is important, making the rank of C far
off when in contrast.

For both algorithms it can be proved they respect the
properties highlighted in the previous section.

5. THE MATCHMAKING SYSTEM
The matchmaking framework presented in the previous

sections has been deployed in a prototype facilitator. The
system embeds a NeoClassic engine (a C++ implementa-
tion of the original Classic system, whose sources have been
modified for our purposes).

Our matching engine, whose architecture is shown in Fig-
ure 1, is based on Java servlets; it embeds the NeoClassic
reasoner and communicates with the reasoner running as a
background daemon. At this stage of the work, the system
is not fully transactional, so requests have to be serialized
by the engine.

The system receives a KRSS string describing the de-
mand/supply and the URI referencing the proper ontology.
The Reasoner checks the description for consistency; if it
fails, based on the reasoner output, the system provides an

585

error message stating the error occurred. Otherwise the
proper matchmaking process takes place. The NeoClassic
standard [3] subsumption algorithm has been modified in
accordance with the matchmaking algorithms presented in
section 4. Each match can return a 0, which means total
match or a value > 0. Recall that returned values for par-
tial matches and potential matches have logically different
meaning and matching descriptions are sorted in different
sets. The matching engine may return then three separate
result sets.

Main services our system currently provides are:
Support to the user in the data insertion and query sub-

mission. The user is incrementally guided in the definition
of a proposal.

Automatic construction and verification of consistency w.r.t.
the reference ontology of the demand/supply.

Deduction of new knowledge on the basis of available data.
Ability to provide ranked conceptually approximate an-

swers, i.e., near miss or partial match, in the presence of
unsatisfiable queries. Notice that this the way a human
clerk behaves: when a request cannot be satisfied he/she
will propose the nearest miss to the client; he/she will not
answer ”no match”.

Ability to provide ranked potential matches and possibil-
ity to ask for unforeseen (hence not immediately available)
services and features to the supplier, with successive auto-
matic update of description and communication of update.

Storage of satisfiable demands that were still unmatched,
with automatic reexamination when new supplies are pro-
vided, and notification on successful match between supply
and demand. The same service is available for unmatched
supplies.

We have actually registered the matchmaking web service
and we are also in the process of embedding the matchmak-
ing service in the BlueTooth environment.

6. CONCLUSION
In this paper we have set a logical framework for semantic

matchmaking, and pointed out general properties that we
believe every matchmaking facilitator should have.

In accordance with the above properties we have devised
algorithms for matchmaking that allow the categorization of
match type and the ranking of matches.

The general framework has been implemented in a match-
making facilitator. The core engine has been implemented
modifying the NeoClassic reasoner for our purposes, and we
have shown that, although with a reduced expressiveness
w.r.t. more recent reasoners, Classic can be effectively used
for this class of problems.

7. ACKNOWLEDGMENTS
We thank Peter Patel-Schneider for valuable support on

Classic. This work has been supported by project MURST-
CLUSTER22, by EU-POP project “Negotiation Agents for
the Electronic Marktplace”, by Italian CNR projects LAICO,
DeMAnD, and “Metodi di Ragionamento Automatico nella
modellazione ed analisi di dominio”.

8. REFERENCES
[1] Y. Arens, C. A. Knoblock, and W. Shen. Query

Reformulation for Dynamic Information Integration.
J. of Intelligent Information Systems, 6:99–130, 1996.

[2] A. Borgida et al. CLASSIC: A Structural Data Model
for Objects. In Proc. of ACM SIGMOD, pages 59–67,
1989.

[3] A. Borgida and P. F. Patel-Schneider. A Semantics
and Complete Algorithm for Subsumption in the
CLASSIC Description Logic. JAIR, 1:277–308, 1994.

[4] F. Casati and M. C. Shan. Dynamic and Adaptive
Composition of E-Services. Information Systems,
26:143–163, 2001.

[5] E. Di Sciascio et al. A Knowledge-Based System for
Person-to-Person E-Commerce. In Proc. Workshop on
Applications of Description Logics (KI 2001), 2001.

[6] D. Fensel et al. OIL: An Ontology Infrastructure for
the Semantic Web. IEEE Intelligent Systems,
16(2):38–45, 2001.

[7] T. Finin et al. KQML as an Agent Communication
Language. In Proc. of CIKM’94, pages 456–463. ACM,
1994.

[8] Y. Gil and S. Ramachandran. PHOSPHORUS: a Task
based Agent Matchmaker. In Proc. AGENTS ’01,
pages 110–111. ACM, 2001.

[9] J. Gonzales-Castillo, D. Trastour, and C. Bartolini.
Description Logics for Matchmaking of Services. In
Proc. of Workshop on Application of Description
Logics (KI 2001), 2001.

[10] Y. Hoffner et al. Distribution Issues in the Design and
Implementation of a Virtual Market Place. Computer
Networks, 32:717–730, 2000.

[11] N. Jacobs and R. Shea. Carnot and Infosleuth –
Database Technology and the Web. In Proc. of ACM
SIGMOD, pages 443–444. ACM, 1995.

[12] N. Karacapilidis and P. Moraitis. Building an
Agent-Mediated Electronic Commerce System with
Decision Analysis Features. Decision Support Systems,
32:53–69, 2001.

[13] D. Kuokka and L. Harada. Integrating Information
Via Matchmaking. J. of Intelligent Information
Systems, 6:261–279, 1996.

[14] P. Maes, R. Guttman, and A. Moukas. Agents that
Buy and Sell. Comm. of the ACM, 42(3):81–91, 1999.

[15] M. Paolucci et al. Semantic Matching of Web Services
Capabilities. In The Semantic Web - ISWC 2002,
number 2342 in LNCS, pages 333–347.
Springer-Verlag, 2002.

[16] P. Pu and B. Faltings. Enriching Buyers’ Experience.
CHI Letters, 2(1), 2000.

[17] S.Avancha, A. Joshi, and T. Finin. Enhanced Service
Discovery in Bluetooth. IEEE Computer, pages 96–99,
2002.

[18] K. Sycara et al. LARKS: Dynamic Matchmaking
Among Heterogeneus Ssoftware Agents in Cyberspace.
Autonomous agents and multi-agent systems,
5:173–203, 2002.

[19] D. Trastour, C. Bartolini, and C. Priest. Semantic
Web Support for the Business-to-Business
E-Commerce Lifecycle. In Proc. WWW ’02, pages
89–98. ACM, 2002.

[20] H. Wang, S. Liao, and L. Liao. Modeling
Constraint-Based Negotiating Agents. Decision
Support Systems, 33:201–217, 2002.

586

