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AbstractOptimizing queries that involve operations on spatial data requires estimating the selectivity and costof these operations. In this paper, we focus on estimating the cost of spatial selections, or windowqueries, where the query windows and data objects are general polygons. Cost estimation techniquespreviously proposed in the literature only handle rectangular query windows over rectangular dataobjects, thus ignoring the very signi�cant cost of exact geometry comparison (the re�nement stepin a \�lter and re�ne" query processing strategy). The cost of the exact geometry comparisondepends on the selectivity of the �ltering step and the average number of vertices in the candidateobjects identi�ed by this step. In this paper, we introduce a new type of histogram for spatial datathat captures the complexity and size of the spatial objects as well as their location. Capturingthese attributes makes this type of histogram useful for accurate estimation, as we experimentallydemonstrate. We also investigate sampling-based estimation approaches. Sampling can yield betterselectivity estimates than histograms for polygon data, but at the high cost of performing exactgeometry comparisons for all the sampled objects.
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1 IntroductionFor a database system to fully support spatial data, it must be able to optimize queries involving thisdata. This requires the query optimizer to estimate the selectivity and cost of spatial operations. Inthis paper, we focus on estimating the selectivity and cost of spatial selections, also known as windowqueries. In a window query, a region called the query window is speci�ed, and the query retrieves allobjects in the data set that overlap this region. The focus of this paper is estimating the selectivityand cost of window queries where the query windows and the underlying data objects are generalpolygons.Database systems process window queries and other spatial operations using a two step �lterand re�ne strategy [Ore86]. The �ltering step identi�es a set of candidate objects whose minimumbounding rectangles (MBRs) overlap the MBR of the query window. This set of candidates is aconservative approximation (i.e., a superset) of the result. The �ltering step may use an R-treeindex if one exists. The re�nement step tests the exact geometry of the candidate objects identi�edby the �ltering step to determine the set of objects that actually overlap the polygonal query window.Several cost models for window queries have been proposed in the literature [FK94, BF95, TS96,APR99]. All these cost models assume that the query windows and the data objects are rectangles.In e�ect, they estimate the selectivity and cost of the �ltering step and ignore the re�nement step.Ignoring the re�nement step makes these cost models inaccurate for two reasons. First, theestimated selectivity of the �ltering step, no matter how accurate, is only an upper bound that maysigni�cantly over-estimate the actual selectivity of the query. Second, the re�nement step incurssigni�cant costs that cannot be ignored. The re�nement step involves fetching the exact geometryrepresentation of all the candidate objects, thus incurring an I/O cost. It also involves testing thesecandidate objects to determine the ones that actually overlap the query window using computationalgeometry algorithms that have a high CPU cost1. An important property of the costs incurred by there�nement step is that they depend not only on the selectivity of the query, but also on the numberof vertices, or complexity, of the query window and data objects. It has been shown that, for spatialjoins, the CPU cost of the re�nement step dominates the query execution cost [BKSS94, PD96]. Thecost of the re�nement step cannot be ignored when estimating the cost of window queries, especiallysince typical applications of spatial databases (e.g., GIS) involve objects with high complexities (i.e.,a large number of vertices).As an example, consider the data set of the Sequoia 2000 benchmark representing land use in thestate of California [SFGM93]. The polygons in this data set have between 4 and 5583 vertices, withan average of 56 vertices. We issued 100 random window queries over this data set using the Paradiseobject-relational database system [P+97]. The query windows were random polygons with 20 verticesgenerated in rectangles that cover 1% of the space containing the data objects (see Section 5.1 fora description of how these polygons are generated). Using an R-tree index, the re�nement step forthe 47 queries that had a selectivity of more than 1% took, on the average, 4 times as long as the�ltering step. Ignoring the re�nement step when estimating costs is clearly a mistake. Accurate costestimation should also be based on some knowledge of the underlying data distribution.In this paper, we introduce a new type of histogram for polygon data that captures all propertiesof a data distribution required for estimating the cost of both the �ltering and the re�nement steps ofspatial operations. We present a simple cost model that uses our histograms to estimate the cost ofwindow queries where the query windows and data objects are general polygons. We also investigatethe use of sampling for estimating the selectivity and cost of window queries.The rest of this paper is organized as follows. In Section 2, we present an overview of related work.1The complexity of this test is O(n log n), where n is the total number of vertices in the polygons being tested.1



In Section 3, we present a cost model for window queries. Section 4 introduces our novel approachto building histograms for spatial data. These histograms are used to estimate the parametersrequired by the cost model. Section 5 presents an experimental evaluation of the proposed techniques.Section 6 contains concluding remarks.2 Related WorkSeveral techniques have been proposed for estimating the selectivity and cost of operations on tradi-tional data types such as integers or strings. Techniques based on using histograms to approximatedata distributions are widely used by current database systems [PIHS96]. Histograms for multi-dimensional data have also been proposed in the literature [MD88, PI97].Another approach to selectivity estimation is sampling, which provides guaranteed error boundsat the cost of taking a sample of the data at query optimization time. A sequential sampling algorithmthat guarantees an upper bound for both the estimation error and the number of samples taken ispresented in [LNS90].Traditional multi-dimensional histograms can be used for point data, but not for polygons orother spatial data types. Polygons have an extent in space, whereas these histograms only capturethe location of the data. On the other hand, the same sampling approaches used for traditional datacan be used for spatial data. However, dealing with spatial data increases the cost of sampling.A cost model for window queries in R-trees is developed in [KF93], and independently in [PSTW93].This cost model assumes that the data consists of uniformly distributed rectangles and estimatesthe number of disk I/Os needed to answer a given rectangular window query. The latter paper alsosuggests a framework for studying the cost of window queries based on a knowledge of the query anddata distributions.In [FK94] and [BF95], the authors suggest using the concept that all data sets are self-similar toa certain degree to represent the distribution of spatial data. The degree of self-similarity of a dataset is represented by its fractal dimension. These papers present models developed based on thisconcept for estimating the selectivity of window queries over point data and the cost of these queriesin R-trees. Using the fractal dimension is a signi�cant departure from the uniformity assumptiontypically made by previous works.Another cost model for window queries in R-trees is proposed in [TS96]. This cost model isbased on the density of the dataset, which is the average number of data objects per point of thespace. The authors propose using the density at several representative points of the space to capturenon-uniformity in the data distribution.Acharya, Poosala, and Ramaswamy [APR99] study di�erent partitionings that could be usedto build spatial histograms, and introduce a new partitioning scheme based on the novel notion ofspatial skew. This work is closely related to ours, and a detailed comparison is given in Section 4.5.As mentioned earlier, all these works assume that the query windows are rectangles and thatthe data objects are points or rectangles, thus ignoring the re�nement step. Furthermore, with theexception of [APR99], these works do not present general solutions for accurately approximatingspatial data distributions.A di�erent approach to estimating the selectivity of spatial selections is given in [Aok99]. Thiswork assumes that an R-tree index for the spatial attribute exists, and proposes that each non-leafentry store the number of tuples that it represents. Selectivity is estimated using a tree traversalaugmented by sampling when necessary. Like other approaches, this approach ignores the re�nementstep. Furthermore, it requires I/O for selectivity estimation, making it a high-cost approach. Themain appeal of this approach is that it works not only for spatial data, but also for any data type2



Parameter Description SourceN Number of pages in the relation CatalogT Number of tuples in the relationm Average number of entries per R-tree nodeh Height of the R-treecseqio Per page cost of sequential read Calibrationcrandio Per page cost of random readcpolyio Per object cost of reading a polygoncvertio Per vertex cost of reading a polygoncMBRtest CPU cost of testing rectangle overlapcpolytest Cost coe�cient for testing polygon overlapvq Number of vertices in the query polygon GivensMBR MBR selectivity Estimatedvcand Average number of vertices per candidate polygonTable 1: Parameters of the cost model and how they are obtainedindexed by a generalized search tree (GiST) [HNP95].3 A Cost Model for Window QueriesIn this section, we present a cost model for estimating the I/O and CPU costs of both the �lteringand the re�nement steps of a window query. The model assumes that the query window and thedata objects are general polygons. The cost of the �ltering step depends on whether a sequentialscan or an R-tree index [Gut84] is used as the access method, and the cost of the re�nement step isassumed to be independent of the access method used for �ltering. The parameters used by the costmodel are given in Table 1.3.1 Filtering3.1.1 Sequential ScanIf the input relation is accessed by a sequential scan, the I/O cost of the �ltering step, CFIOseq, isgiven by CFIOseq = N � cseqiowhere N is the number of pages in the relation, and cseqio is the per page cost of a sequential read.During the sequential scan, the MBRs of all tuples of the relation are tested to determine whetherthey overlap the query MBR. The CPU cost of this test, CFCPUseq, is given byCFCPUseq = T � cMBRtestwhere T is the number of tuples in the relation, and cMBRtest is the CPU cost of testing whethertwo rectangles overlap.3.1.2 R-tree IndexTo estimate the cost of the �ltering step if an R-tree index is used as the access method, we assumethat the R-tree is \good", in the sense that retrieving the data objects that overlap the query window3



MBR requires the minimum number of disk I/Os and rectangle overlap tests. We also assume thatthe bu�er pool is managed in such a way that each required R-tree node is read from disk exactlyonce.The �ltering step retrieves sMBR � T tuples, where sMBR is the MBR selectivity of the query,de�ned as the fraction of tuples in the relation identi�ed as candidates by the �ltering step. This isthe fraction of tuples in the relation whose MBRs overlap the query window MBR. The assumptionthat the R-tree is \good" implies that the tuples retrieved by the �ltering step will be in the minimumnumber of R-tree leaf nodes. This number can be estimated as sMBR �T=m, where m is the averagenumber of entries per R-tree node. Extending this argument, we can estimate the number of nodesthat have to be read from the level above the leaves by sMBR � T=m2, from the next level up bysMBR � T=m3, and so on until we reach the root level, at which only 1 node has to be read. Thus,the I/O cost of this step, CFIOrtree, is given byCFIOrtree = �sMBR � Tm + sMBR � Tm2 + � � � + sMBR � Tmh�1 + 1� � crandio= �� 1m� 1��1� 1mh�1� � sMBR � T + 1� � crandiowhere h is the height of the R-tree (number of levels including the root node), and crandio is the costper page of a random read. We assume that we will not encounter any \false hits" while searchingthe R-tree. This means that we do not have to read any nodes beyond those accounted for in theabove formula. Notice that, for typical values of m, the number of internal R-tree nodes read willbe very small.The �ltering step has to test all the entries in each R-tree node read from the disk for overlapwith the query window MBR. Since each node contains, on average, m entries, the CPU cost of thisstep can be estimated byCFCPUrtree = �� 1m� 1��1� 1mh�1� � sMBR � T + 1� �m � cMBRtest3.2 Re�nementThe re�nement step has to retrieve the exact representation of all the candidate polygons identi�edby the �ltering step. We estimate the I/O cost of reading a polygon by two components. The �rstcomponent is a �xed cost independent of the size of the polygon, which we call cpolyio. The secondcomponent is a variable cost that depends on the number of vertices of the polygon. The numberof vertices of a polygon is referred to as its complexity. We estimate this component of the cost byvcand � cvertio, where cvertio is the per vertex I/O cost of reading a polygon and vcand is the averagenumber of vertices in the candidate polygons. Thus, the I/O cost of the re�nement step, CRIO, canbe estimated by CRIO = sMBR � T � (cpolyio + vcand � cvertio)The CPU cost of the re�nement step depends on the algorithm used for testing overlap. Detectingif two general polygons overlap can be done in O(n logn) using a plane sweep algorithm, where n isthe total number of vertices in both polygons [dBvKOS97]. We therefore use the following formulato estimate the CPU cost of the re�nement stepCRCPU = sMBR � T � (vq + vcand) log (vq + vcand) � cpolytest4



where vq is the number of vertices in the query polygon, and cpolytest is a proportionality constant.Database systems may use algorithms other than plane sweep to test for overlap between polygons.However, since the complexity of almost all overlap testing algorithms is a function of the number ofvertices of the polygons, variations of the above formula can typically be used. Each system shouldreplace the n logn term in the formula with the complexity of the overlap testing algorithm it uses.3.3 Notes� Estimating the cost of a window query does not require knowing its actual selectivity. Itonly requires knowing the selectivity of the �ltering step, the MBR selectivity. All candidatepolygons identi�ed by the �ltering step have to be tested in the re�nement step, whether ornot they appear in the �nal result of the query.� The parameters required by the cost model are obtained from several sources (Table 1). N , T ,m, and h should be available in the system catalogs. cseqio, crandio, cpolyio, cvertio, cMBRtest, andcpolytest are calibration constants that must be provided by the system implementer at systemdevelopment or installation time. These constants depend on the speci�c database system andits run-time environment. vq is known at query optimization time. Finally, sMBR and vcandmust be estimated. The next section introduces histograms that can be used to accuratelyestimate these two parameters.� The cost model we have presented here is, like all estimation models used in query optimization,a simpli�cation of reality. For example, it does not capture such things as the degree to whichthe system is able to overlap the CPU time of the re�nement step on some polygons withthe I/O time to fetch others. Certainly, variants of the equations we have given are possible,and di�erent variants may be more accurate for di�erent systems. Nevertheless, the key pointremains that any reasonable model must involve the parameters sMBR and vcand.4 SQ-histogramsIn this section, we introduce a novel approach to building histograms that represent the distributionof polygon data. These histograms capture information not only about the location of the datapolygons, but also about their size and complexity. We call these histograms SQ-histograms, forstructural quadtree histograms, because they capture the structure of the data polygons and arebased on a quadtree partitioning of the space.In this paper, we use SQ-histograms to estimate the MBR selectivity of window queries, sMBR,and the average number of vertices in candidate polygons identi�ed by the �ltering step, vcand. SQ-histograms can also be used in any application that requires an approximate representation of thespatial data distribution.SQ-histograms partition the space into possibly overlapping rectangular buckets. The partitioningis based on the object MBRs, and tries to group similar objects together in the same buckets. Eachobject is assigned to one histogram bucket, and each bucket stores information about the number ofobjects it represents, their size, and their average complexity. The data within a bucket is assumed tobe uniformly distributed. SQ-histograms are built o�-line as part of updating the database statistics,and they should be rebuilt periodically to ensure their accuracy in the presence of database updates.
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4.1 Partitioning the Data into BucketsThe goal of partitioning the data into buckets is to have each bucket represent a \homogeneous"set of objects. This makes assuming uniformity within a bucket accurate and results in an accurateoverall representation of the data distribution. Minimizing variation within a bucket is a commongoal for all histogram techniques. The properties of the data that should be taken into account bythe partitioning algorithm are:� The location of the objects. A bucket should represent objects that are close to each otherin the space. This minimizes the \dead space" within a bucket. Similar rules are used forhistograms for traditional data.� The size (area) of the objects. The size of the objects in a bucket determines the expectednumber of objects in this bucket that overlap a query window. The larger the objects in abucket, the more likely they are to overlap a query window. Accurate estimation thereforerequires that the average size of the objects in a bucket be as close as possible to the truesize of these objects. This means that grouping objects with widely varying sizes in the samebucket should be avoided.� The complexity of the objects. Estimating the cost of the re�nement step requires knowingvcand, the average complexity of the candidate polygons. It is therefore desirable for estimationaccuracy that the average number of vertices per object in a bucket be a close approximationof the true number of vertices. Grouping objects with widely varying complexities in the samebucket should be avoided.SQ-histograms are built using a quadtree data structure [Sam84]. A quadtree is a recursivedata structure in which each node represents a rectangular region of the space. A node can haveup to four children, each representing a quadrant of the region that the parent node represents.Thus, a quadtree partitions the input space into four quadrants, and allows each quadrant to befurther partitioned recursively into more quadrants (Figure 1). SQ-histograms partition the spaceinto buckets using this quadtree partitioning.The algorithm for building an SQ-histogram starts by building a complete quadtree with l levelsfor the space containing the data, where l is a parameter of the histogram construction algorithm.The di�erent levels of this complete quadtree represent di�erent sized partitionings of the space.Thus, the quadtree partitions the space at several di�erent resolutions. We use this property toseparate the data polygons according to size and location. Each polygon is assigned to a quadtreenode. The quadtree level to which a polygon is assigned is the maximum level (i.e., the furthest fromthe root) such that the width and height of the MBR of the polygon are less than or equal to thewidth and height of the quadtree nodes at this level. Informally stated, this means that the polygon\�ts" in a quadtree node at this level but not at higher levels. After choosing a quadtree level fora polygon, we choose the quadtree node at this level that contains the center of the polygon MBR.The polygon is assigned to this node. Figure 1 demonstrates assigning polygons to quadtree nodes.For the purpose of illustration, the quadtree in this �gure is not a complete quadtree.After assigning all the polygons to quadtree nodes, the complete quadtree can be used as anaccurate histogram. Each quadtree node represents a number of polygons with similar locationand size. Polygons that are far from each other will have MBRs whose centers lie within di�erentquadtree nodes, and polygons with widely varying sizes will be assigned to nodes at di�erent levelsof the quadtree.The algorithm for assigning polygons to quadtree nodes does not take into account the complexityof the polygons. The algorithm assumes that polygons in the same vicinity and with similar sizes6
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Figure 1: A quadtree partitioning and the assignment of polygons to quadtree nodes(and therefore assigned to the same quadtree node) will have similar complexities. In the nextsection, we present a solution for cases in which this assumption does not hold.The problem with the complete quadtree built by the initial phase of the SQ-histogram construc-tion algorithm is that it may take too much memory. Database systems typically limit the amountof memory available to histograms, and an algorithm for building histograms must guarantee thatthey �t in the assigned memory. This constraint translates to an upper bound on the number ofbuckets that a histogram can have. In our case, we can reduce the number of buckets by reducingthe number of levels of the complete quadtree. However, this limits the granularity at which thespace is partitioned. Instead, we want to start with a complete quadtree with as many levels as wewish, but still guarantee that the �nal histogram will �t in the assigned memory.To satisfy this requirement, we start with a histogram in which the buckets correspond to thenon-empty nodes of the complete quadtree. We repeatedly merge buckets corresponding to siblingquadtree nodes among which the data distribution has little variation, until the number of bucketsdrops to the required bound. We must choose a method of measuring the variation in data distribu-tion among four histogram buckets (corresponding to sibling nodes in the quadtree). For example,we could use the variance of the number of polygons represented by the buckets. We could also usethe maximum di�erence in the number of polygons represented by any two buckets. We use thismeasure to compute the variation in data distribution among every set of four buckets correspondingto four sibling nodes of the quadtree. Sets of siblings nodes at all levels of the quadtree are consideredin this computation. After this computation, we merge the histogram buckets corresponding to thefour sibling quadtree nodes with the least variation in data distribution.To merge these buckets, we replace them with one new bucket that represents all the objects thatthey currently represent. The new bucket represents the same region of the space that is representedby the parent node of the quadtree nodes corresponding to the buckets being merged. Hence, thenew bucket will correspond to this parent quadtree node. If, before merging, the parent quadtreenode corresponded to one histogram bucket, after merging it will correspond to two buckets. It isimportant to note that these two buckets are kept separate, even though they represent the sameregion of the space, because they represent objects of di�erent sizes that were assigned to di�erentlevels of the quadtree. After an object is assigned to a quadtree level, it is only combined with otherobjects from the same quadtree level. This guarantees that objects in a histogram bucket alwayshave similar sizes. 7



algorithm BuildSQ-histogramBuild a complete quadtree of height l representing the data space;Scan the data and assign polygons to quadtree nodes according to size and location;Set the histogram buckets to correspond to the quadtree nodes that contain data;while Current number of buckets > Required number of buckets doMerge the buckets corresponding to sibling quadtree nodesthat have the minimum variation in data distribution;end while;end BuildSQ-histogram;Figure 2: Algorithm for building SQ-histogramsThe merging operation is repeated as many times as needed to bring the number of histogrambuckets down to the required number. At each merging step, we compute the variation in data dis-tribution among buckets that correspond to sibling quadtree nodes and that contain objects assignedto the same quadtree level. We always merge the buckets with the minimum variation2. Since weonly merge buckets corresponding to sibling quadtree nodes, the partitioning of the space alwaysremains a quadtree partitioning, and the same merging procedure can be repeated as many times asneeded.After choosing the histogram buckets, the boundaries of each bucket are set to the MBR of all theobjects that it represents. This step is required because polygons can extend beyond the boundariesof the quadtree nodes to which they are assigned. It produces histogram buckets that may representoverlapping regions of the space. After this step, the regions represented by the histogram bucketsno longer correspond exactly to the regions represented by the quadtree nodes. Thus, the quadtreecannot be used as an index to search for buckets that overlap a given query window. We use thequadtree only to build the SQ-histogram, not to search it at cost estimation time. At cost estimationtime, a sequential search is used to determine the buckets that overlap the query window. Figure 2presents an outline of the algorithm for building SQ-histograms. Note that this algorithm requiresonly one scan of the data.4.2 Handling Objects With Varying ComplexitiesThe above algorithm does not take into account the complexity of the polygons when creating thehistogram buckets. To handle data sets in which polygons with similar sizes and locations may havewidely varying complexities, we should build not one but several quadtrees, one for \low complexity"objects, one for \medium complexity" objects, and so on.To build an SQ-histogram using this approach, we determine the minimum and maximum numberof vertices of all the polygons in the data set. This requires an extra scan of the data. We also specifythe number of quadtrees to build as a parameter to the algorithm. The range of vertices in the dataset is divided into sub-ranges of equal width, where the number of sub-ranges is equal to the requirednumber of quadtrees. Each quadtree represents all the objects with a number of vertices in one ofthese sub-ranges. Next, we build the required number of complete quadtrees, and assign the dataobjects to quadtree nodes according to location, size, and complexity. We decide the quadtree towhich an object is assigned based on the number of vertices in this object. As before, we start withbuckets corresponding to all non-empty nodes in all quadtrees, and we repeatedly merge until weget the required number of buckets. When merging, we only merge buckets corresponding to sibling2Repeatedly choosing the buckets with the least variation can be done in O(n log n) using a priority queue.8
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Figure 3: The MBRs of a query and an object within a bucketnodes of the same quadtree. We merge the buckets with the least variation in data distributionamong all sibling nodes of all quadtrees.4.3 Assuming Uniformity Within a BucketIn estimating the parameters required by the window query cost model, sMBR and vcand, we assumea uniform distribution within the histogram buckets. Figure 3 presents the MBR of a query window,q, and the MBR of an object, o, in a bucket, b. q overlaps o only if the upper left corner of q liesin the shaded region. Hence, under the uniformity assumption, the probability of a query windowMBR, q, overlapping an object, o, in a bucket, b, is given by (qx+ox)�(qy+oy)bx�by , where qx, qy, ox, oy, bx,and by are the width and height of q, o, and b, respectively [AS94]. This formula ignores the factthat the query window may extend beyond the bounds of the bucket. To partly take this possibilityinto account, we modify the previous formula to min[(qbx+ox);bx]�min[(qby+oy);by]bx�by , where qbx and qby arethe width and height of the rectangular overlap region between q and b.Accordingly, we estimate fi, the fraction of the objects in bucket i that appear in the result ofthe �ltering step of a given window query, by the formulafi = min[(qxi +MBRxi); bxi ] �min[(qyi +MBRyi); byi ]bxi � byi (1)where qxi and qyi are the width and height of the rectangular overlap region between the querywindow MBR and the bucket, MBRxi and MBRyi are the average width and height of the MBRsof the objects represented by this bucket, and bxi and byi are the width and height of the bucket.Hence, each histogram bucket must store the number of objects that it represents, the averagewidth and height of the MBRs of these objects, and the average number of vertices in these objects.Each bucket must also store the coordinates of the lower left and upper right corners of the regionof the space that it represents.4.4 Estimation Using SQ-histogramsTo estimate sMBR and vcand, we use a sequential search of the histogram buckets to identify thebuckets that overlap the MBR of the query window. We estimate the required quantities using the9
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Figure 4: The di�culty of estimating actual selectivities. The query polygon overlaps the datapolygons in (a) but not in (b).following formulas: sMBR = Xi2B fiNivcand = Pi2B fiNiVisMBRwhere B is the set of indices in the histogram of buckets overlapping the query window MBR, Ni isthe number of objects in bucket i, and Vi is the average number of vertices per object in bucket i.SQ-histograms provide an estimate for the MBR selectivity of window queries, but not for theiractual selectivity. We do not attempt to estimate the actual selectivity of window queries, as thiswould require information about the exact layout of the vertices of the query and data polygons. Onecannot estimate whether or not two general polygons overlap based only on their MBRs, areas, ornumber of vertices. To demonstrate this, consider the two cases presented in Figure 4. The �rst caseis a query polygon that overlaps two data polygons. The polygons in the second case are identical tothe ones in the �rst case, except that the query polygon is ipped vertically. In the second case, thequery polygon does not overlap either of the data polygons, despite the MBRs, areas, shapes andnumber of vertices being the same as in the �rst case.The query optimizer can use the MBR selectivity estimated using an SQ-histogram as an upperbound on the actual selectivity of the query. This estimate may prove to be useful, especially sinceit is based on an accurate representation of the data distribution. Alternately, the actual selectivityof the query can be estimated using sampling (Section 5.6).4.5 Comparison with MinSkew PartitioningAcharya, Poosala, and Ramaswamy recently proposed a partitioning scheme for building histogramsfor spatial data called MinSkew partitioning [APR99]. Like SQ-histograms, MinSkew partitioning isbased on the MBRs of the data objects. Partitioning starts by building a uniform grid that coversthe input space and determining the number of objects that overlap each grid cell. This grid isan approximation of the data distribution, and is used by MinSkew partitioning to construct thehistogram. During construction, the algorithm maintains a set of buckets currently in the histogram.Initially, this set contains one bucket representing the whole space. The algorithm repeatedly choosesa bucket from this set and splits it into two buckets until the number of buckets in the histogram10



reaches the required number. The bucket to split and the split point are chosen to give the maximumreduction in spatial skew. Spatial skew is de�ned as the variance of the number of objects in the gridcells constituting the buckets. The algorithm considers the space at multiple resolutions by buildingseveral grids at di�erent resolutions and generating an equal number of histogram buckets fromeach grid. To reduce computation time, the splitting decision is based on the marginal frequencydistributions of the grid cells in the buckets.Both MinSkew partitioning and SQ-histograms have to choose a partitioning of the space from anintractably large number of possibilities. SQ-histograms deal with this problem by considering onlyquadtree partitionings of the space. MinSkew partitioning restricts itself to binary space partition-ings along the grid lines, which is a more general set than quadtree partitionings. However, MinSkewpartitioning based on the marginal frequency distribution uses a one-dimensional measure of varia-tion to construct the multi-dimensional partitioning, while SQ-histograms use a multi-dimensionalmeasure of variation.A key advantage of SQ-histograms is taking the variation in object sizes into account. MinSkewpartitioning only considers the number of objects that overlap a grid cell, and not the sizes of theseobjects. SQ-histograms, on the other hand, assign small and large objects to di�erent quadtree levelsand thus place them in di�erent buckets.The most important issue in comparing SQ-histograms and MinSkew partitioning is that SQ-histograms contain information about the complexity of the objects. This information is essential foraccurate cost estimation. Our experiments in the next section demonstrate that SQ-histograms aremore accurate than MinSkew partitioning, even if we add the number of vertices to the informationstored in the MinSkew buckets.5 Experimental EvaluationIn this section, we present an experimental evaluation of di�erent cost estimation techniques usingpolygonal window queries on real and synthetic polygon data sets. We study the performance ofSQ-histograms, MinSkew partitioning, and sampling in estimating sMBR and vcand. Each bucket ofthe MinSkew partitioning stores the average complexity of the objects that it represents, in additionto the information required in [APR99]. This allows us to use MinSkew partitioning to estimatevcand.5.1 Generating Synthetic PolygonsIn our experiments, we need to generate random polygons for the test queries and the syntheticdata sets. To generate a polygon, we start by choosing a rectangle in the space within which thepolygon is generated. This rectangle speci�es the size and location of the polygon. We then choosea number of points at random inside this rectangle. These points are the vertices of the polygon.Next, we choose a random horizontal line that cuts through the rectangle, and divide the points intotwo groups: points that lie above this line and points that lie below it. The points in each of thegroups are sorted by their x (horizontal) coordinate, and connected in the sorted order to createtwo \chains" of points. The leftmost and rightmost points of the two chains are moved verticallyso that they lie on the splitting line. This is done to avoid generating self-intersecting polygons.Next, the two chains of points are connected at their end-points, forming a polygon. Finally, werotate the polygon by a random angle to avoid generating polygons that are all horizontally aligned.This algorithm generates monotone polygons [O'R98], which are a very general class of polygons.Figure 5 gives an example of a polygon generated by this algorithm. Figure 5(a) shows the initial11



(a) (b)Figure 5: A synthetically generated polygonrectangle, the split line, and the two chains of points. Figure 5(b) shows the �nal polygon generatedby connecting the two chains and rotating.5.2 Experimental Setup5.2.1 Data SetsIn this paper, we present results for one real and one synthetic data set. Results on other syntheticdata sets corroborate the conclusions drawn here.The real data set we use is the set of polygons representing land use in the state of California fromthe Sequoia 2000 benchmark [SFGM93]. This data set consists of 58; 586 polygons having between4 and 5583 vertices, with an average of 56 vertices per polygon.The synthetic data set we present here consists of 10; 000 polygons generated using the aboveprocedure. The polygons have between 3 and 100 vertices, with an average of 20 vertices per polygon.30% of the polygons are distributed uniformly throughout the space, and 70% of the polygons aredistributed in three clusters at di�erent parts of the space. The rectangles in which the points of thepolygons were generated have areas between 0:0025% and 0:75% of the area of the space, and aspectratios uniformly distributed in the range 1{3.5.2.2 Query WorkloadsThe number of vertices for the polygonal query windows is randomly chosen from the range 3{15.The polygons are generated inside rectangles of 9 di�erent sizes, with areas ranging from 0:01% to10% of the area of the space. Each workload contains 50 queries at each size, for a total of 450queries.When issuing a workload on some data set, we choose the centers of the rectangles in which thequery polygons are generated at random from the centers of the MBRs of the data objects (i.e., therectangles follow a distribution similar to the data [PSTW93]). We also experimented with workloadsin which the queries are uniformly distributed in the space. The conclusions are the same for bothtypes of workloads, but the query selectivities are much lower in the uniform workloads. In thispaper, we use the same workload for each data set in all the experiments. For the Sequoia data set,the average selectivities of the queries of di�erent sizes are shown in Figure 6. The �gure shows boththe MBR selectivity (the selectivity of the �ltering step) and the actual selectivity (the selectivity ofthe whole query after both �ltering and re�nement). The selectivities are de�ned in the usual wayas the fraction of objects in the result. 12
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Figure 6: Query selectivity (Sequoia data set)5.2.3 Run-time EnvironmentOur experiments were conducted on a Pentium Pro 200 MHz machine with 128 Mbytes of RAMrunning Solaris 2.6. We used one disk for the database, another disk for the log, and a third disk forthe software (the database system and our test programs). Our experiments were conducted on theuniversity version of the Paradise object-relational database system [P+97]. Both the server and theclient programs were run on the same machine, and the server bu�er pool size was set to 32 Mbytes.5.2.4 Error MetricIn measuring the estimation accuracy of the various techniques, we use the average relative estimationerror as our error metric. The relative error in estimating a quantity, x, for one query, q, is de�nedas eq = jestimated value of x�measured value of xjmeasured value of xFor a set of M queries, the average relative estimation error is de�ned asE = PMi=1 eiMQueries with a result size of zero are ignored when computing this error metric (i.e., removed fromthe test run). Since the query distribution is similar to the data distribution, we encounter very fewqueries with a result size of zero.5.3 Estimation Accuracy Using SQ-histogramsIn this section, we demonstrate the accuracy of SQ-histograms in estimating sMBR and vcand com-pared to MinSkew partitioning and assuming uniformity. We compare to MinSkew partitioningbecause it is identi�ed as a winner among several techniques in [APR99]. We compare to assum-ing uniformity because it is the simplest approach in the absence of information about the datadistribution.The SQ-histograms are given 5 Kbytes of memory. They are built starting with 10 completequadtrees of 8 levels each. We use 10 quadtrees to accommodate the varying complexities of thedata objects. The histograms are built using the \maximum di�erence in the number of objects"to measure the variation in distribution among the quadtree nodes (Section 5.5 provides a detailed13
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(a) sMBR (b) vcandFigure 7: Estimation error (Sequoia data set)
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(a) sMBR (b) vcandFigure 8: Estimation error (Synthetic data set)study of the e�ect of the di�erent parameters of histogram construction). MinSkew partitioning isalso given 5 Kbytes of memory. We start the MinSkew partitioning with a 25� 25 grid. This grid isprogressively re�ned two times, so that the �nal buckets are generated from a 100� 100 grid.Figures 7 and 8 present the error in estimating sMBR and vcand for the Sequoia and syntheticdata sets, respectively. Each point in the �gures represents the average relative estimation error for50 queries of a particular size. The �gures show that using a histogram is always more accuratethan assuming uniformity, and that SQ-histograms are generally more accurate than MinSkew par-titioning. The �gures also show that SQ-histograms are accurate enough in the absolute sense to beuseful to a query optimizer. The irregularities in Figure 7(a) are due to a small number of queriesthat have estimation errors greater than 90% (fewer than �ve queries per test).5.4 Accuracy of the Window Query Cost ModelTable 2 shows two sets of calibration constants for the window query cost model presented in Sec-tion 3. One set of constants is for a cold bu�er pool and the other is for a warm bu�er pool. These14



Parameter Cold Bu�er Pool Warm Bu�er Poolcseqio 5� 10�3 8� 10�4crandio 1:5 � 10�2 8� 10�4cpolyio 5� 10�7 5� 10�7cvertio 2:5 � 10�5 8� 10�6cMBRtest 0 0cpolytest (log base 10) 1:5 � 10�5 1:5 � 10�5Table 2: Calibration constants
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(a) Cold bu�er pool (b) Warm bu�er poolFigure 9: Execution times (Sequoia data set)constants calibrate the cost model for use with Paradise in our run-time environment.Figures 9 and 10 show the actual execution times of the workloads on the Sequoia and syntheticdata sets, respectively. The �gures show the execution times when we start with a cold bu�er poolfor every query (i.e., when the bu�er pool is ushed between queries), and when the bu�er pool iskept warm (i.e., not ushed between queries). An R-tree index is available, but the query optimizermay choose not to use it for queries with large areas and, hence, a large expected selectivity. The�gures also show the estimated execution times using the calibration constants in Table 2 and withsMBR and vcand estimated using SQ-histograms built using the parameters described in the previoussection. Each point in the �gures is the average execution time for 50 queries of a particular size.The �gures show that, even with the variability in execution time, with the simplifying assump-tions made by the cost model, and with the estimation errors introduced by histograms, the costmodel still estimates the overall execution times of the window queries relatively accurately. Whilethe estimated time does not, in general, match the actual time exactly, it is likely to be good enoughfor query optimization.The cost model is more accurate for a warm bu�er pool than it is for a cold bu�er pool. A warmbu�er pool reduces the variability in query execution time, making cost estimation easier. The costmodel is also more accurate for the Sequoia data set than it is for the synthetic data set. Querieson the Sequoia data set have longer execution times, so estimation accuracy is more important forthis data set. On the other hand, the short execution times of the queries on the synthetic data setmake small estimation errors appear more pronounced.15
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(a) Cold bu�er pool (b) Warm bu�er poolFigure 10: Execution times (Synthetic data set)
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Figure 11: E�ect of available memory on the accuracy of estimating sMBR (Sequoia data set)5.5 Parameters of Histogram ConstructionNext, we turn our attention to the e�ect of the di�erent parameters of the SQ-histogram constructionalgorithm. The default histogram for this experiment uses 5 Kbytes of memory, and is built startingwith one 10-level quadtree using \maximum di�erence in the number of objects" to measure thevariation in data distribution. We vary each of the histogram construction parameters in turn andshow that the histogram is robust under all these variations. The errors shown in this section areaverage errors for all the queries of the workload.Figure 11 shows the e�ect of the amount of memory available to a histogram on its accuracy.The �gure shows the error in estimating sMBR for the Sequoia data set using SQ-histograms andMinSkew partitioning occupying the same amount of memory. SQ-histograms are more accuratethan MinSkew partitioning for the whole range of available memory. As expected, more availablememory results in more estimation accuracy. Notice, though, that the error at 5 Kbytes is alreadyreasonable, and that the slope of the error beyond this point is small.Figure 12 shows the e�ect of the number of levels in the initial complete quadtree on the accu-racy of SQ-histograms in estimating sMBR for the Sequoia and synthetic data sets. Starting with16
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Figure 12: E�ect of the number of levels in the initial quadtree on estimating sMBRmore quadtree levels is generally better, as it allows the histogram to consider the space at a �nergranularity. Furthermore, using more levels allows for better separation of objects according to size.However, having too many levels may actually increase the error by creating a histogram with an un-necessarily large number of small buckets. The most important observation, though, is that the erroris relatively at for a wide range of initial quadtree levels. The histogram construction algorithm isnot overly sensitive to this parameter.Next, we compare SQ-histograms constructed using di�erent measures of variation in the datadistribution. We experiment with three di�erent measures of variation. The �rst is the maximumdi�erence between the number of objects in the di�erent buckets. The second is the maximumdi�erence between the number of objects in the di�erent buckets relative to the maximum numberof objects any of the buckets. The third is the variance of the number of objects in the buckets. Wealso try choosing the buckets to merge based on the total number of objects in these buckets. Underthis scheme, we merge the buckets in which the total number of objects is minimum. This schemetries to construct histograms where the buckets all have the same number of objects, similar to equi-depth histograms for traditional data [PIHS96]. Figure 13 presents the error in estimating sMBRusing SQ-histograms constructed using the di�erent measures of variation. Maximum di�erence isthe winner by a tiny margin. More importantly, we notice that the histogram is robust across threeof the four methods.In the interest of space, we do not present the results for starting with di�erent numbers ofquadtrees for di�erent object complexities. The number of quadtrees does a�ect histogram accuracy,but the e�ect is small.5.6 SamplingIn this section, we consider sampling for selectivity estimation. Figure 14 presents the accuracyof using sampling to estimate the MBR selectivity and the actual selectivity for the Sequoia andsynthetic data sets. The �gure presents the errors for sample sizes of 100 and 200. Sampling is veryinaccurate for queries with low selectivity because most of the samples taken are negative samples(i.e., do not satisfy the selection predicate). Thus, the �gure present the average errors for all queriesin the workloads with actual selectivities > 1%.Sampling is less accurate than SQ-histograms for estimating MBR selectivities. The key ad-vantage of sampling is that, since it accesses and tests the actual data objects, it can be used to17
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(a) Sequoia (b) SyntheticFigure 14: Estimation using samplingaccurately estimate actual selectivities. Histograms provide only summary information that does notreect the exact layout of the data objects, and hence cannot be used to estimate actual selectivities.Using the MBR selectivities estimated using the histograms as estimates of the actual selectivitiesleads to large errors (shown in the �gures).The disadvantage of sampling is its cost. Sampling involves the I/O cost of fetching the sampledtuples, as well as the high CPU cost of the exact geometry test for all the objects in the sample.In our experiments, we found that taking a positive sample of one polygon (i.e., a sample wherethe polygon does overlap the query window) takes up to 25 ms when all the required indexes arebu�ered. A negative sample can often be detected by testing the MBRs of the query and polygon.In this case, the sample usually takes less than 1 ms if the indexes are in the bu�er pool. Thus, theargument that sampling is expensive, which is often made in the context of traditional data, is morepronounced in the context of spatial data.As expected, estimation accuracy increases with increasing the number of samples. Hence, onecan reduce the error as desired by increasing the number of samples.18
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