Accurate Estimation of the Cost of Spatial Selections

Ashraf Aboulnaga
Jeffrey F. Naughton
Computer Sciences Department
University of Wisconsin - Madison
1210 West Dayton Street
Madison, WI 53706

{ashraf ,naughton}@cs.wisc.edu

Abstract

Optimizing queries that involve operations on spatial data requires estimating the selectivity and cost
of these operations. In this paper, we focus on estimating the cost of spatial selections, or window
queries, where the query windows and data objects are general polygons. Cost estimation techniques
previously proposed in the literature only handle rectangular query windows over rectangular data
objects, thus ignoring the very significant cost of exact geometry comparison (the refinement step
in a “filter and refine” query processing strategy). The cost of the exact geometry comparison
depends on the selectivity of the filtering step and the average number of vertices in the candidate
objects identified by this step. In this paper, we introduce a new type of histogram for spatial data
that captures the complexity and size of the spatial objects as well as their location. Capturing
these attributes makes this type of histogram useful for accurate estimation, as we experimentally
demonstrate. We also investigate sampling-based estimation approaches. Sampling can yield better
selectivity estimates than histograms for polygon data, but at the high cost of performing exact
geometry comparisons for all the sampled objects.

June 15, 1999

1 Introduction

For a database system to fully support spatial data, it must be able to optimize queries involving this
data. This requires the query optimizer to estimate the selectivity and cost of spatial operations. In
this paper, we focus on estimating the selectivity and cost of spatial selections, also known as window
queries. In a window query, a region called the query window is specified, and the query retrieves all
objects in the data set that overlap this region. The focus of this paper is estimating the selectivity
and cost of window queries where the query windows and the underlying data objects are general
polygons.

Database systems process window queries and other spatial operations using a two step filter
and refine strategy [Ore86]. The filtering step identifies a set of candidate objects whose minimum
bounding rectangles (MBRs) overlap the MBR of the query window. This set of candidates is a
conservative approximation (i.e., a superset) of the result. The filtering step may use an R-tree
index if one exists. The refinement step tests the exact geometry of the candidate objects identified
by the filtering step to determine the set of objects that actually overlap the polygonal query window.

Several cost models for window queries have been proposed in the literature [FK94, BF95, TS96,
APRY99]. All these cost models assume that the query windows and the data objects are rectangles.
In effect, they estimate the selectivity and cost of the filtering step and ignore the refinement step.

Ignoring the refinement step makes these cost models inaccurate for two reasons. First, the
estimated selectivity of the filtering step, no matter how accurate, is only an upper bound that may
significantly over-estimate the actual selectivity of the query. Second, the refinement step incurs
significant costs that cannot be ignored. The refinement step involves fetching the exact geometry
representation of all the candidate objects, thus incurring an I/O cost. It also involves testing these
candidate objects to determine the ones that actually overlap the query window using computational
geometry algorithms that have a high CPU cost!. An important property of the costs incurred by the
refinement step is that they depend not only on the selectivity of the query, but also on the number
of vertices, or complezity, of the query window and data objects. It has been shown that, for spatial
joins, the CPU cost of the refinement step dominates the query execution cost [BKSS94, PD96]. The
cost of the refinement step cannot be ignored when estimating the cost of window queries, especially
since typical applications of spatial databases (e.g., GIS) involve objects with high complexities (i.e.,
a large number of vertices).

As an example, consider the data set of the Sequoia 2000 benchmark representing land use in the
state of California [SFGM93]. The polygons in this data set have between 4 and 5583 vertices, with
an average of 56 vertices. We issued 100 random window queries over this data set using the Paradise
object-relational database system [P197]. The query windows were random polygons with 20 vertices
generated in rectangles that cover 1% of the space containing the data objects (see Section 5.1 for
a description of how these polygons are generated). Using an R-tree index, the refinement step for
the 47 queries that had a selectivity of more than 1% took, on the average, 4 times as long as the
filtering step. Ignoring the refinement step when estimating costs is clearly a mistake. Accurate cost
estimation should also be based on some knowledge of the underlying data distribution.

In this paper, we introduce a new type of histogram for polygon data that captures all properties
of a data distribution required for estimating the cost of both the filtering and the refinement steps of
spatial operations. We present a simple cost model that uses our histograms to estimate the cost of
window queries where the query windows and data objects are general polygons. We also investigate
the use of sampling for estimating the selectivity and cost of window queries.

The rest of this paper is organized as follows. In Section 2, we present an overview of related work.

!The complexity of this test is O(nlogmn), where n is the total number of vertices in the polygons being tested.

In Section 3, we present a cost model for window queries. Section 4 introduces our novel approach
to building histograms for spatial data. These histograms are used to estimate the parameters
required by the cost model. Section 5 presents an experimental evaluation of the proposed techniques.
Section 6 contains concluding remarks.

2 Related Work

Several techniques have been proposed for estimating the selectivity and cost of operations on tradi-
tional data types such as integers or strings. Techniques based on using histograms to approximate
data distributions are widely used by current database systems [PTHS96]. Histograms for multi-
dimensional data have also been proposed in the literature [MD88, P197].

Another approach to selectivity estimation is sampling, which provides guaranteed error bounds
at the cost of taking a sample of the data at query optimization time. A sequential sampling algorithm
that guarantees an upper bound for both the estimation error and the number of samples taken is
presented in [LNS90].

Traditional multi-dimensional histograms can be used for point data, but not for polygons or
other spatial data types. Polygons have an extent in space, whereas these histograms only capture
the location of the data. On the other hand, the same sampling approaches used for traditional data
can be used for spatial data. However, dealing with spatial data increases the cost of sampling.

A cost model for window queries in R-trees is developed in [KF93], and independently in [PSTW93].
This cost model assumes that the data consists of uniformly distributed rectangles and estimates
the number of disk I/Os needed to answer a given rectangular window query. The latter paper also
suggests a framework for studying the cost of window queries based on a knowledge of the query and
data distributions.

In [FK94] and [BF95], the authors suggest using the concept that all data sets are self-similar to
a certain degree to represent the distribution of spatial data. The degree of self-similarity of a data
set is represented by its fractal dimension. These papers present models developed based on this
concept for estimating the selectivity of window queries over point data and the cost of these queries
in R-trees. Using the fractal dimension is a significant departure from the uniformity assumption
typically made by previous works.

Another cost model for window queries in R-trees is proposed in [TS96]. This cost model is
based on the density of the dataset, which is the average number of data objects per point of the
space. The authors propose using the density at several representative points of the space to capture
non-uniformity in the data distribution.

Acharya, Poosala, and Ramaswamy [APR99] study different partitionings that could be used
to build spatial histograms, and introduce a new partitioning scheme based on the novel notion of
spatial skew. This work is closely related to ours, and a detailed comparison is given in Section 4.5.

As mentioned earlier, all these works assume that the query windows are rectangles and that
the data objects are points or rectangles, thus ignoring the refinement step. Furthermore, with the
exception of [APR99], these works do not present general solutions for accurately approximating
spatial data distributions.

A different approach to estimating the selectivity of spatial selections is given in [Aok99]. This
work assumes that an R-tree index for the spatial attribute exists, and proposes that each non-leaf
entry store the number of tuples that it represents. Selectivity is estimated using a tree traversal
augmented by sampling when necessary. Like other approaches, this approach ignores the refinement
step. Furthermore, it requires I/O for selectivity estimation, making it a high-cost approach. The
main appeal of this approach is that it works not only for spatial data, but also for any data type

H Parameter ‘ Description ‘ Source H

N Number of pages in the relation Catalog
T Number of tuples in the relation
m Average number of entries per R-tree node
h Height of the R-tree
Cseqio Per page cost of sequential read Calibration
Crandio Per page cost of random read
Cpolyio Per object cost of reading a polygon
Cyertio Per vertex cost of reading a polygon
cmBRrtest | CPU cost of testing rectangle overlap
Cpolytest Cost coefficient for testing polygon overlap
Vg Number of vertices in the query polygon Given
SMBR MBR selectivity Estimated
Veand Average number of vertices per candidate polygon

Table 1: Parameters of the cost model and how they are obtained

indexed by a generalized search tree (GiST) [HNP95].

3 A Cost Model for Window Queries

In this section, we present a cost model for estimating the I/O and CPU costs of both the filtering
and the refinement steps of a window query. The model assumes that the query window and the
data objects are general polygons. The cost of the filtering step depends on whether a sequential
scan or an R-tree index [Gut84] is used as the access method, and the cost of the refinement step is
assumed to be independent of the access method used for filtering. The parameters used by the cost
model are given in Table 1.

3.1 Filtering

3.1.1 Sequential Scan

If the input relation is accessed by a sequential scan, the I/O cost of the filtering step, CFrogeq, is
given by

CFIOseq = N« Csegio

where N is the number of pages in the relation, and cs.q;, is the per page cost of a sequential read.
During the sequential scan, the MBRs of all tuples of the relation are tested to determine whether
they overlap the query MBR. The CPU cost of this test, CFopseq, is given by

CFCPUseq = T * crBRiest
where T is the number of tuples in the relation, and cprppreest is the CPU cost of testing whether
two rectangles overlap.
3.1.2 R-tree Index

To estimate the cost of the filtering step if an R-tree index is used as the access method, we assume
that the R-tree is “good”, in the sense that retrieving the data objects that overlap the query window

MBR requires the minimum number of disk I/Os and rectangle overlap tests. We also assume that
the buffer pool is managed in such a way that each required R-tree node is read from disk exactly
once.

The filtering step retrieves sprggr * 1 tuples, where sy pr is the MBR selectivity of the query,
defined as the fraction of tuples in the relation identified as candidates by the filtering step. This is
the fraction of tuples in the relation whose MBRs overlap the query window MBR. The assumption
that the R-tree is “good” implies that the tuples retrieved by the filtering step will be in the minimum
number of R-tree leaf nodes. This number can be estimated as syrgr * T'/m, where m is the average
number of entries per R-tree node. Extending this argument, we can estimate the number of nodes
that have to be read from the level above the leaves by sy pg * T/m?, from the next level up by
sypr * T/m3, and so on until we reach the root level, at which only 1 node has to be read. Thus,
the I/O cost of this step, CFropiree, is given by

SMBR*T SMBR*T SMBR*T
+ 3 + ... Pt

CFIOrtree = (+ 1> * Crandio

m m mh—1

1 1
— [<—> (1 — T) x SyBr* T + 1:| * Crandio
m—1 m

where h is the height of the R-tree (number of levels including the root node), and ¢, 4,4;0 i the cost
per page of a random read. We assume that we will not encounter any “false hits” while searching
the R-tree. This means that we do not have to read any nodes beyond those accounted for in the
above formula. Notice that, for typical values of m, the number of internal R-tree nodes read will
be very small.

The filtering step has to test all the entries in each R-tree node read from the disk for overlap
with the query window MBR. Since each node contains, on average, m entries, the CPU cost of this
step can be estimated by

1 1
CFopurtree = K—> <1 - T) * sppr* T+ 1| % m * carBRest
m—1 m

3.2 Refinement

The refinement step has to retrieve the exact representation of all the candidate polygons identified
by the filtering step. We estimate the I/O cost of reading a polygon by two components. The first
component is a fixed cost independent of the size of the polygon, which we call ¢pgyi0o. The second
component is a variable cost that depends on the number of vertices of the polygon. The number
of vertices of a polygon is referred to as its complexity. We estimate this component of the cost by
Vcand * Cuertios Where cyertio 18 the per vertex I1/0 cost of reading a polygon and v.qpg is the average
number of vertices in the candidate polygons. Thus, the I/O cost of the refinement step, CR;o, can
be estimated by

CRi0 = smBr*T * (Cpoyio + Veand * Cvertio)

The CPU cost of the refinement step depends on the algorithm used for testing overlap. Detecting
if two general polygons overlap can be done in O(nlogn) using a plane sweep algorithm, where n is
the total number of vertices in both polygons [dBvKOS97]. We therefore use the following formula
to estimate the CPU cost of the refinement step

CRcpy = smBr*T * (Uq + Ucand) log (Uq + Ucand) * Cpolytest

where v, is the number of vertices in the query polygon, and cyeytest i a proportionality constant.
Database systems may use algorithms other than plane sweep to test for overlap between polygons.
However, since the complexity of almost all overlap testing algorithms is a function of the number of
vertices of the polygons, variations of the above formula can typically be used. Each system should
replace the nlogn term in the formula with the complexity of the overlap testing algorithm it uses.

3.3 Notes

e Estimating the cost of a window query does not require knowing its actual selectivity. It
only requires knowing the selectivity of the filtering step, the MBR selectivity. All candidate
polygons identified by the filtering step have to be tested in the refinement step, whether or
not they appear in the final result of the query.

e The parameters required by the cost model are obtained from several sources (Table 1). N, T,
m, and h should be available in the system catalogs. csegios Crandios Cpolyios Cvertios CM BRtests and
Cpolytest are calibration constants that must be provided by the system implementer at system
development or installation time. These constants depend on the specific database system and
its run-time environment. v, is known at query optimization time. Finally, sy/pr and vegna
must be estimated. The next section introduces histograms that can be used to accurately
estimate these two parameters.

e The cost model we have presented here is, like all estimation models used in query optimization,
a simplification of reality. For example, it does not capture such things as the degree to which
the system is able to overlap the CPU time of the refinement step on some polygons with
the I/O time to fetch others. Certainly, variants of the equations we have given are possible,
and different variants may be more accurate for different systems. Nevertheless, the key point
remains that any reasonable model must involve the parameters sy;pr and vegnq-

4 SQ-histograms

In this section, we introduce a novel approach to building histograms that represent the distribution
of polygon data. These histograms capture information not only about the location of the data
polygons, but also about their size and complexity. We call these histograms S@Q-histograms, for
structural quadtree histograms, because they capture the structure of the data polygons and are
based on a quadtree partitioning of the space.

In this paper, we use SQ-histograms to estimate the MBR selectivity of window queries, sy Br,
and the average number of vertices in candidate polygons identified by the filtering step, veang. SQ-
histograms can also be used in any application that requires an approximate representation of the
spatial data distribution.

SQ-histograms partition the space into possibly overlapping rectangular buckets. The partitioning
is based on the object MBRs, and tries to group similar objects together in the same buckets. Each
object is assigned to one histogram bucket, and each bucket stores information about the number of
objects it represents, their size, and their average complexity. The data within a bucket is assumed to
be uniformly distributed. SQ-histograms are built off-line as part of updating the database statistics,
and they should be rebuilt periodically to ensure their accuracy in the presence of database updates.

4.1 Partitioning the Data into Buckets

The goal of partitioning the data into buckets is to have each bucket represent a “homogeneous”
set of objects. This makes assuming uniformity within a bucket accurate and results in an accurate
overall representation of the data distribution. Minimizing variation within a bucket is a common
goal for all histogram techniques. The properties of the data that should be taken into account by
the partitioning algorithm are:

e The location of the objects. A bucket should represent objects that are close to each other
in the space. This minimizes the “dead space” within a bucket. Similar rules are used for
histograms for traditional data.

e The size (area) of the objects. The size of the objects in a bucket determines the expected
number of objects in this bucket that overlap a query window. The larger the objects in a
bucket, the more likely they are to overlap a query window. Accurate estimation therefore
requires that the average size of the objects in a bucket be as close as possible to the true
size of these objects. This means that grouping objects with widely varying sizes in the same
bucket should be avoided.

e The complexity of the objects. Estimating the cost of the refinement step requires knowing
Veand, the average complexity of the candidate polygons. It is therefore desirable for estimation
accuracy that the average number of vertices per object in a bucket be a close approximation
of the true number of vertices. Grouping objects with widely varying complexities in the same
bucket should be avoided.

SQ-histograms are built using a quadtree data structure [Sam84]. A quadtree is a recursive
data structure in which each node represents a rectangular region of the space. A node can have
up to four children, each representing a quadrant of the region that the parent node represents.
Thus, a quadtree partitions the input space into four quadrants, and allows each quadrant to be
further partitioned recursively into more quadrants (Figure 1). SQ-histograms partition the space
into buckets using this quadtree partitioning.

The algorithm for building an SQ-histogram starts by building a complete quadtree with [levels
for the space containing the data, where [is a parameter of the histogram construction algorithm.
The different levels of this complete quadtree represent different sized partitionings of the space.
Thus, the quadtree partitions the space at several different resolutions. We use this property to
separate the data polygons according to size and location. Each polygon is assigned to a quadtree
node. The quadtree level to which a polygon is assigned is the maximum level (i.e., the furthest from
the root) such that the width and height of the MBR of the polygon are less than or equal to the
width and height of the quadtree nodes at this level. Informally stated, this means that the polygon
“fits” in a quadtree node at this level but not at higher levels. After choosing a quadtree level for
a polygon, we choose the quadtree node at this level that contains the center of the polygon MBR.
The polygon is assigned to this node. Figure 1 demonstrates assigning polygons to quadtree nodes.
For the purpose of illustration, the quadtree in this figure is not a complete quadtree.

After assigning all the polygons to quadtree nodes, the complete quadtree can be used as an
accurate histogram. FEach quadtree node represents a number of polygons with similar location
and size. Polygons that are far from each other will have MBRs whose centers lie within different
quadtree nodes, and polygons with widely varying sizes will be assigned to nodes at different levels
of the quadtree.

The algorithm for assigning polygons to quadtree nodes does not take into account the complexity
of the polygons. The algorithm assumes that polygons in the same vicinity and with similar sizes

NW NE

SNV-NW | SW-NE £

SW-SW SW-SE

Figure 1: A quadtree partitioning and the assignment of polygons to quadtree nodes

(and therefore assigned to the same quadtree node) will have similar complexities. In the next
section, we present a solution for cases in which this assumption does not hold.

The problem with the complete quadtree built by the initial phase of the SQ-histogram construc-
tion algorithm is that it may take too much memory. Database systems typically limit the amount
of memory available to histograms, and an algorithm for building histograms must guarantee that
they fit in the assigned memory. This constraint translates to an upper bound on the number of
buckets that a histogram can have. In our case, we can reduce the number of buckets by reducing
the number of levels of the complete quadtree. However, this limits the granularity at which the
space is partitioned. Instead, we want to start with a complete quadtree with as many levels as we
wish, but still guarantee that the final histogram will fit in the assigned memory.

To satisfy this requirement, we start with a histogram in which the buckets correspond to the
non-empty nodes of the complete quadtree. We repeatedly merge buckets corresponding to sibling
quadtree nodes among which the data distribution has little variation, until the number of buckets
drops to the required bound. We must choose a method of measuring the variation in data distribu-
tion among four histogram buckets (corresponding to sibling nodes in the quadtree). For example,
we could use the variance of the number of polygons represented by the buckets. We could also use
the maximum difference in the number of polygons represented by any two buckets. We use this
measure to compute the variation in data distribution among every set of four buckets corresponding
to four sibling nodes of the quadtree. Sets of siblings nodes at all levels of the quadtree are considered
in this computation. After this computation, we merge the histogram buckets corresponding to the
four sibling quadtree nodes with the least variation in data distribution.

To merge these buckets, we replace them with one new bucket that represents all the objects that
they currently represent. The new bucket represents the same region of the space that is represented
by the parent node of the quadtree nodes corresponding to the buckets being merged. Hence, the
new bucket will correspond to this parent quadtree node. If, before merging, the parent quadtree
node corresponded to one histogram bucket, after merging it will correspond to two buckets. It is
important to note that these two buckets are kept separate, even though they represent the same
region of the space, because they represent objects of different sizes that were assigned to different
levels of the quadtree. After an object is assigned to a quadtree level, it is only combined with other
objects from the same quadtree level. This guarantees that objects in a histogram bucket always
have similar sizes.

algorithm BuildSQ-histogram

Build a complete quadtree of height [representing the data space;
Scan the data and assign polygons to quadtree nodes according to size and location;
Set the histogram buckets to correspond to the quadtree nodes that contain data;
while Current number of buckets > Required number of buckets do

Merge the buckets corresponding to sibling quadtree nodes

that have the minimum variation in data distribution;

end while;

end BuildSQ-histogram;

Figure 2: Algorithm for building SQ-histograms

The merging operation is repeated as many times as needed to bring the number of histogram
buckets down to the required number. At each merging step, we compute the variation in data dis-
tribution among buckets that correspond to sibling quadtree nodes and that contain objects assigned
to the same quadtree level. We always merge the buckets with the minimum variation?. Since we
only merge buckets corresponding to sibling quadtree nodes, the partitioning of the space always
remains a quadtree partitioning, and the same merging procedure can be repeated as many times as
needed.

After choosing the histogram buckets, the boundaries of each bucket are set to the MBR of all the
objects that it represents. This step is required because polygons can extend beyond the boundaries
of the quadtree nodes to which they are assigned. It produces histogram buckets that may represent
overlapping regions of the space. After this step, the regions represented by the histogram buckets
no longer correspond exactly to the regions represented by the quadtree nodes. Thus, the quadtree
cannot be used as an index to search for buckets that overlap a given query window. We use the
quadtree only to build the SQ-histogram, not to search it at cost estimation time. At cost estimation
time, a sequential search is used to determine the buckets that overlap the query window. Figure 2
presents an outline of the algorithm for building SQ-histograms. Note that this algorithm requires
only one scan of the data.

4.2 Handling Objects With Varying Complexities

The above algorithm does not take into account the complexity of the polygons when creating the
histogram buckets. To handle data sets in which polygons with similar sizes and locations may have
widely varying complexities, we should build not one but several quadtrees, one for “low complexity”
objects, one for “medium complexity” objects, and so on.

To build an SQ-histogram using this approach, we determine the minimum and maximum number
of vertices of all the polygons in the data set. This requires an extra scan of the data. We also specify
the number of quadtrees to build as a parameter to the algorithm. The range of vertices in the data
set is divided into sub-ranges of equal width, where the number of sub-ranges is equal to the required
number of quadtrees. Each quadtree represents all the objects with a number of vertices in one of
these sub-ranges. Next, we build the required number of complete quadtrees, and assign the data
objects to quadtree nodes according to location, size, and complexity. We decide the quadtree to
which an object is assigned based on the number of vertices in this object. As before, we start with
buckets corresponding to all non-empty nodes in all quadtrees, and we repeatedly merge until we
get the required number of buckets. When merging, we only merge buckets corresponding to sibling

2Repeatedly choosing the buckets with the least variation can be done in O(nlogn) using a priority queue.

Ox

Cy

Figure 3: The MBRs of a query and an object within a bucket

nodes of the same quadtree. We merge the buckets with the least variation in data distribution
among all sibling nodes of all quadtrees.

4.3 Assuming Uniformity Within a Bucket

In estimating the parameters required by the window query cost model, sy;pr and veqnq, We assume
a uniform distribution within the histogram buckets. Figure 3 presents the MBR of a query window,
g, and the MBR of an object, o, in a bucket, b. ¢ overlaps o only if the upper left corner of ¢ lies

in the shaded region. Hence, under the uniformity assumption, the probability of a query window
(ge+02)*(qy+0y)

baxb

and b, are the width and height of ¢, o, and b, respectively [AS94]. This formula ignores the fact

that the query window may extend beyond the bounds of the bucket. To partly take this possibility
min[(qbz +0z),ba }*min[(qb +0y),by]

MBR, g, overlapping an object, o, in a bucket, b, is given by , where gy, qy, 0z, 0y, by,

into account, we modify the previous formula to
the width and height of the rectangular overlap region between q and b.

Accordingly, we estimate f;, the fraction of the objects in bucket ¢ that appear in the result of
the filtering step of a given window query, by the formula

, where gb, and g¢b, are

f; = min((qe; + MBRy;), by, | * min[(qy, + MBRy,), by, (1)

bz, * by,

where ¢, and g,; are the width and height of the rectangular overlap region between the query
window MBR and the bucket, M BR,, and M BR,, are the average width and height of the MBRs
of the objects represented by this bucket, and b,; and by, are the width and height of the bucket.

Hence, each histogram bucket must store the number of objects that it represents, the average
width and height of the MBRs of these objects, and the average number of vertices in these objects.
Each bucket must also store the coordinates of the lower left and upper right corners of the region
of the space that it represents.

4.4 Estimation Using SQ-histograms

To estimate spyrpr and vqq,q, We use a sequential search of the histogram buckets to identify the
buckets that overlap the MBR of the query window. We estimate the required quantities using the

Query Data

@ (b)

Figure 4: The difficulty of estimating actual selectivities. The query polygon overlaps the data
polygons in (a) but not in (b).

following formulas:

sur = Y [il;
1€B
. ZzerzNsz

where B is the set of indices in the histogram of buckets overlapping the query window MBR, N; is
the number of objects in bucket i, and V; is the average number of vertices per object in bucket 7.

SQ-histograms provide an estimate for the MBR selectivity of window queries, but not for their
actual selectivity. We do not attempt to estimate the actual selectivity of window queries, as this
would require information about the exact layout of the vertices of the query and data polygons. One
cannot estimate whether or not two general polygons overlap based only on their MBRs, areas, or
number of vertices. To demonstrate this, consider the two cases presented in Figure 4. The first case
is a query polygon that overlaps two data polygons. The polygons in the second case are identical to
the ones in the first case, except that the query polygon is flipped vertically. In the second case, the
query polygon does not overlap either of the data polygons, despite the MBRs, areas, shapes and
number of vertices being the same as in the first case.

The query optimizer can use the MBR selectivity estimated using an SQ-histogram as an upper
bound on the actual selectivity of the query. This estimate may prove to be useful, especially since
it is based on an accurate representation of the data distribution. Alternately, the actual selectivity
of the query can be estimated using sampling (Section 5.6).

4.5 Comparison with MinSkew Partitioning

Acharya, Poosala, and Ramaswamy recently proposed a partitioning scheme for building histograms
for spatial data called MinSkew partitioning [APR99]. Like SQ-histograms, MinSkew partitioning is
based on the MBRs of the data objects. Partitioning starts by building a uniform grid that covers
the input space and determining the number of objects that overlap each grid cell. This grid is
an approximation of the data distribution, and is used by MinSkew partitioning to construct the
histogram. During construction, the algorithm maintains a set of buckets currently in the histogram.
Initially, this set contains one bucket representing the whole space. The algorithm repeatedly chooses
a bucket from this set and splits it into two buckets until the number of buckets in the histogram

10

reaches the required number. The bucket to split and the split point are chosen to give the maximum
reduction in spatial skew. Spatial skew is defined as the variance of the number of objects in the grid
cells constituting the buckets. The algorithm considers the space at multiple resolutions by building
several grids at different resolutions and generating an equal number of histogram buckets from
each grid. To reduce computation time, the splitting decision is based on the marginal frequency
distributions of the grid cells in the buckets.

Both MinSkew partitioning and SQ-histograms have to choose a partitioning of the space from an
intractably large number of possibilities. SQ-histograms deal with this problem by considering only
quadtree partitionings of the space. MinSkew partitioning restricts itself to binary space partition-
ings along the grid lines, which is a more general set than quadtree partitionings. However, MinSkew
partitioning based on the marginal frequency distribution uses a one-dimensional measure of varia-
tion to construct the multi-dimensional partitioning, while SQ-histograms use a multi-dimensional
measure of variation.

A key advantage of SQ-histograms is taking the variation in object sizes into account. MinSkew
partitioning only considers the number of objects that overlap a grid cell, and not the sizes of these
objects. SQ-histograms, on the other hand, assign small and large objects to different quadtree levels
and thus place them in different buckets.

The most important issue in comparing SQ-histograms and MinSkew partitioning is that SQ-
histograms contain information about the complexity of the objects. This information is essential for
accurate cost estimation. Our experiments in the next section demonstrate that SQ-histograms are
more accurate than MinSkew partitioning, even if we add the number of vertices to the information
stored in the MinSkew buckets.

5 Experimental Evaluation

In this section, we present an experimental evaluation of different cost estimation techniques using
polygonal window queries on real and synthetic polygon data sets. We study the performance of
SQ-histograms, MinSkew partitioning, and sampling in estimating sy;pr and v.q.nq- Each bucket of
the MinSkew partitioning stores the average complexity of the objects that it represents, in addition
to the information required in [APR99]. This allows us to use MinSkew partitioning to estimate

Veand-

5.1 Generating Synthetic Polygons

In our experiments, we need to generate random polygons for the test queries and the synthetic
data sets. To generate a polygon, we start by choosing a rectangle in the space within which the
polygon is generated. This rectangle specifies the size and location of the polygon. We then choose
a number of points at random inside this rectangle. These points are the vertices of the polygon.
Next, we choose a random horizontal line that cuts through the rectangle, and divide the points into
two groups: points that lie above this line and points that lie below it. The points in each of the
groups are sorted by their x (horizontal) coordinate, and connected in the sorted order to create
two “chains” of points. The leftmost and rightmost points of the two chains are moved vertically
so that they lie on the splitting line. This is done to avoid generating self-intersecting polygons.
Next, the two chains of points are connected at their end-points, forming a polygon. Finally, we
rotate the polygon by a random angle to avoid generating polygons that are all horizontally aligned.
This algorithm generates monotone polygons [O’R98|, which are a very general class of polygons.
Figure 5 gives an example of a polygon generated by this algorithm. Figure 5(a) shows the initial

11

N\

@ (b)

Figure 5: A synthetically generated polygon

rectangle, the split line, and the two chains of points. Figure 5(b) shows the final polygon generated
by connecting the two chains and rotating.

5.2 Experimental Setup
5.2.1 Data Sets

In this paper, we present results for one real and one synthetic data set. Results on other synthetic
data sets corroborate the conclusions drawn here.

The real data set we use is the set of polygons representing land use in the state of California from
the Sequoia 2000 benchmark [SFGM93]. This data set consists of 58,586 polygons having between
4 and 5583 vertices, with an average of 56 vertices per polygon.

The synthetic data set we present here consists of 10,000 polygons generated using the above
procedure. The polygons have between 3 and 100 vertices, with an average of 20 vertices per polygon.
30% of the polygons are distributed uniformly throughout the space, and 70% of the polygons are
distributed in three clusters at different parts of the space. The rectangles in which the points of the
polygons were generated have areas between 0.0025% and 0.75% of the area of the space, and aspect
ratios uniformly distributed in the range 1-3.

5.2.2 Query Workloads

The number of vertices for the polygonal query windows is randomly chosen from the range 3-15.
The polygons are generated inside rectangles of 9 different sizes, with areas ranging from 0.01% to
10% of the area of the space. Each workload contains 50 queries at each size, for a total of 450
queries.

When issuing a workload on some data set, we choose the centers of the rectangles in which the
query polygons are generated at random from the centers of the MBRs of the data objects (i.e., the
rectangles follow a distribution similar to the data [PSTW93]). We also experimented with workloads
in which the queries are uniformly distributed in the space. The conclusions are the same for both
types of workloads, but the query selectivities are much lower in the uniform workloads. In this
paper, we use the same workload for each data set in all the experiments. For the Sequoia data set,
the average selectivities of the queries of different sizes are shown in Figure 6. The figure shows both
the MBR selectivity (the selectivity of the filtering step) and the actual selectivity (the selectivity of
the whole query after both filtering and refinement). The selectivities are defined in the usual way
as the fraction of objects in the result.

12

20%
—e— MBR Selectivity
18% r _a Actual Selectivity

16% r
14% r

ity

12%

10% r

Selectivi

8%
6%
4% r

2%

0%

0% 2% 4% 6% 8% 10%
Query Size (% of space)

Figure 6: Query selectivity (Sequoia data set)

5.2.3 Run-time Environment

Our experiments were conducted on a Pentium Pro 200 MHz machine with 128 Mbytes of RAM
running Solaris 2.6. We used one disk for the database, another disk for the log, and a third disk for
the software (the database system and our test programs). Our experiments were conducted on the
university version of the Paradise object-relational database system [P97]. Both the server and the
client programs were run on the same machine, and the server buffer pool size was set to 32 Mbytes.

5.2.4 Error Metric

In measuring the estimation accuracy of the various techniques, we use the average relative estimation
error as our error metric. The relative error in estimating a quantity, x, for one query, g, is defined
as

lestimated value of # — measured value of x|

€ =
q measured value of x

For a set of M queries, the average relative estimation error is defined as

Zi]\il €
M

E:

Queries with a result size of zero are ignored when computing this error metric (i.e., removed from
the test run). Since the query distribution is similar to the data distribution, we encounter very few
queries with a result size of zero.

5.3 Estimation Accuracy Using SQ-histograms

In this section, we demonstrate the accuracy of SQ-histograms in estimating sp;pr and veqpqg com-
pared to MinSkew partitioning and assuming uniformity. We compare to MinSkew partitioning
because it is identified as a winner among several techniques in [APR99]. We compare to assum-
ing uniformity because it is the simplest approach in the absence of information about the data
distribution.

The SQ-histograms are given 5 Kbytes of memory. They are built starting with 10 complete
quadtrees of 8 levels each. We use 10 quadtrees to accommodate the varying complexities of the
data objects. The histograms are built using the “maximum difference in the number of objects”
to measure the variation in distribution among the quadtree nodes (Section 5.5 provides a detailed

13

100% e 100%

) A . —e— SQ-histogram) —e— SQ-histogram
90% ’ H - - MinSkew 90% - - #-MinSkew
80% ;‘ --4-- Uniformity 80% | -~~~ Uniformity
70%

260%
I
.az-’SO%
S40%
@
30%
20%
10%
0% 0%
0% 2% 4% 6% 8% 10% 0% 2% 4% 6% 8% 10%
Query Size (% of space) Query Size (% of space)
(a) smBR (b) Veand
Figure 7: Estimation error (Sequoia data set)
100% 100%
—e— SQ-histogram —e— SQ-histogram
90% T - #--MinSkew 90% [- &--MinSkew
80% --4-- Uniformity 80% --4-- Uniformity
70% f 70% B
S60% 260% | e
i]
250% L50% |
3 8
< 40% T40% |
@ @
30% 30%
20% 20%
10% 10%
0%

0%

0% 2% 4% 6% 8% 10% 0% 2% 4% 6% 8% 10%
Query Size (% of space) Query Size (% of space)
(a) SMBR (b) Veand

Figure 8: Estimation error (Synthetic data set)

study of the effect of the different parameters of histogram construction). MinSkew partitioning is
also given 5 Kbytes of memory. We start the MinSkew partitioning with a 25 x 25 grid. This grid is
progressively refined two times, so that the final buckets are generated from a 100 x 100 grid.

Figures 7 and 8 present the error in estimating sjy;pr and v.q,q for the Sequoia and synthetic
data sets, respectively. Each point in the figures represents the average relative estimation error for
50 queries of a particular size. The figures show that using a histogram is always more accurate
than assuming uniformity, and that SQ-histograms are generally more accurate than MinSkew par-
titioning. The figures also show that SQ-histograms are accurate enough in the absolute sense to be
useful to a query optimizer. The irregularities in Figure 7(a) are due to a small number of queries
that have estimation errors greater than 90% (fewer than five queries per test).

5.4 Accuracy of the Window Query Cost Model

Table 2 shows two sets of calibration constants for the window query cost model presented in Sec-
tion 3. One set of constants is for a cold buffer pool and the other is for a warm buffer pool. These

14

H Parameter ‘ Cold Buffer Pool ‘ Warm Buffer Pool H
Csegio 5x 103 8 x 104
Crandio 1.5 x 1072 8 x 10°*
Cpolyio 5x 1077 5% 107
Cyertio 2.5 x 1077 8 x 1076
CM BRtest 0 0
Cpotytest (log base 10) | 1.5 x 1077 1.5x10°°

Table 2: Calibration constants

60

—e— Actual Time
- #--Estimated Time

30

25

—e— Actual Time
- - Estimated Time

20 | -

15 t

Seconds
Seconds

10

2% 4% 6% 0% 2% 4% 6% 8%

Query Size (% of space) Query Size (% of space)
(a) Cold buffer pool (b) Warm buffer pool

Figure 9: Execution times (Sequoia data set)

8% 10%

constants calibrate the cost model for use with Paradise in our run-time environment.

Figures 9 and 10 show the actual execution times of the workloads on the Sequoia and synthetic
data sets, respectively. The figures show the execution times when we start with a cold buffer pool
for every query (i.e., when the buffer pool is flushed between queries), and when the buffer pool is
kept warm (i.e., not flushed between queries). An R-tree index is available, but the query optimizer
may choose not to use it for queries with large areas and, hence, a large expected selectivity. The
figures also show the estimated execution times using the calibration constants in Table 2 and with
sy Br and vgqpnq estimated using SQ-histograms built using the parameters described in the previous
section. Each point in the figures is the average execution time for 50 queries of a particular size.

The figures show that, even with the variability in execution time, with the simplifying assump-
tions made by the cost model, and with the estimation errors introduced by histograms, the cost
model still estimates the overall execution times of the window queries relatively accurately. While
the estimated time does not, in general, match the actual time exactly, it is likely to be good enough
for query optimization.

The cost model is more accurate for a warm buffer pool than it is for a cold buffer pool. A warm
buffer pool reduces the variability in query execution time, making cost estimation easier. The cost
model is also more accurate for the Sequoia data set than it is for the synthetic data set. Queries
on the Sequoia data set have longer execution times, so estimation accuracy is more important for
this data set. On the other hand, the short execution times of the queries on the synthetic data set
make small estimation errors appear more pronounced.

15

10%

—e— Actual Time
| -=-Estimated Time

Seconds

Seconds

0% 2%

4% 6% 8% 10%

Query Size (% of spcae)

(a) Cold buffer pool

Figure 10: Execution times

1.4
—e— Actual Time
| - Estimated Time

12

0% 2% 4% 6%
Query Size (% of space)

(b) Warm buffer pool
(Synthetic data set)

8% 10%

70%
—e— SQ-histogram

60% r - #--MinSkew

50% r

40%

30% -

Relative Error

20% r

10%

0%
0 2 4 6 8 10 12 14 16 18 20
Memory (KBytes)

Figure 11: Effect of available memory on the accuracy of estimating sy;pr (Sequoia data set)

5.5 Parameters of Histogram Construction

Next, we turn our attention to the effect of the different parameters of the SQ-histogram construction
algorithm. The default histogram for this experiment uses 5 Kbytes of memory, and is built starting
with one 10-level quadtree using “maximum difference in the number of objects” to measure the
variation in data distribution. We vary each of the histogram construction parameters in turn and
show that the histogram is robust under all these variations. The errors shown in this section are
average errors for all the queries of the workload.

Figure 11 shows the effect of the amount of memory available to a histogram on its accuracy.
The figure shows the error in estimating sp;pr for the Sequoia data set using SQ-histograms and
MinSkew partitioning occupying the same amount of memory. SQ-histograms are more accurate
than MinSkew partitioning for the whole range of available memory. As expected, more available
memory results in more estimation accuracy. Notice, though, that the error at 5 Kbytes is already
reasonable, and that the slope of the error beyond this point is small.

Figure 12 shows the effect of the number of levels in the initial complete quadtree on the accu-
racy of SQ-histograms in estimating sp;pr for the Sequoia and synthetic data sets. Starting with

16

45%

—e— Sequoia
40%

- & Synthetic

35% -

30% -

25% -

20% -

Relative Error

15% r

10%

5% r

0%
4 5 6 7 8 9 10
Number of Levels

Figure 12: Effect of the number of levels in the initial quadtree on estimating sy/gr

more quadtree levels is generally better, as it allows the histogram to consider the space at a finer
granularity. Furthermore, using more levels allows for better separation of objects according to size.
However, having too many levels may actually increase the error by creating a histogram with an un-
necessarily large number of small buckets. The most important observation, though, is that the error
is relatively flat for a wide range of initial quadtree levels. The histogram construction algorithm is
not overly sensitive to this parameter.

Next, we compare SQ-histograms constructed using different measures of variation in the data
distribution. We experiment with three different measures of variation. The first is the maximum
difference between the number of objects in the different buckets. The second is the maximum
difference between the number of objects in the different buckets relative to the maximum number
of objects any of the buckets. The third is the variance of the number of objects in the buckets. We
also try choosing the buckets to merge based on the total number of objects in these buckets. Under
this scheme, we merge the buckets in which the total number of objects is minimum. This scheme
tries to construct histograms where the buckets all have the same number of objects, similar to equi-
depth histograms for traditional data [PIHS96]. Figure 13 presents the error in estimating sy pr
using SQ-histograms constructed using the different measures of variation. Maximum difference is
the winner by a tiny margin. More importantly, we notice that the histogram is robust across three
of the four methods.

In the interest of space, we do not present the results for starting with different numbers of
quadtrees for different object complexities. The number of quadtrees does affect histogram accuracy,
but the effect is small.

5.6 Sampling

In this section, we consider sampling for selectivity estimation. Figure 14 presents the accuracy
of using sampling to estimate the MBR selectivity and the actual selectivity for the Sequoia and
synthetic data sets. The figure presents the errors for sample sizes of 100 and 200. Sampling is very
inaccurate for queries with low selectivity because most of the samples taken are negative samples
(i.e., do not satisfy the selection predicate). Thus, the figure present the average errors for all queries
in the workloads with actual selectivities > 1%.

Sampling is less accurate than SQ-histograms for estimating MBR selectivities. The key ad-
vantage of sampling is that, since it accesses and tests the actual data objects, it can be used to

17

70%

Variance

W Total Number

Maximum Difference

B Relative Maximum Difference

60%

50%

40% r

ive Error

30%

Relat

20%

10% r

0%
Sequoia Synthetic

Figure 13: Effect of the measure of variation on estimating sy/gr

120% 120%
100 samples 100 samples
0 W 200 samples o W 200 samples
100% 71 SQ-histogram 100% - 73 SQ-histogram
_80% 80% -
e e
o i
260% £60%
= =
2 g
Ta0% | 40%
20% 20% +
0% 0% -
MBR Selectivity Actual Selectivity MBR Selectivity Actual Selectivity
(a) Sequoia (b) Synthetic

Figure 14: Estimation using sampling

accurately estimate actual selectivities. Histograms provide only summary information that does not
reflect the exact layout of the data objects, and hence cannot be used to estimate actual selectivities.
Using the MBR selectivities estimated using the histograms as estimates of the actual selectivities
leads to large errors (shown in the figures).

The disadvantage of sampling is its cost. Sampling involves the I/O cost of fetching the sampled
tuples, as well as the high CPU cost of the exact geometry test for all the objects in the sample.
In our experiments, we found that taking a positive sample of one polygon (i.e., a sample where
the polygon does overlap the query window) takes up to 25 ms when all the required indexes are
buffered. A negative sample can often be detected by testing the MBRs of the query and polygon.
In this case, the sample usually takes less than 1 ms if the indexes are in the buffer pool. Thus, the
argument that sampling is expensive, which is often made in the context of traditional data, is more
pronounced in the context of spatial data.

As expected, estimation accuracy increases with increasing the number of samples. Hence, one
can reduce the error as desired by increasing the number of samples.

18

6 Conclusions

Accurate estimation of the cost of spatial selections requires taking into account the I/O and CPU
costs of the refinement step. This requires estimating the MBR selectivity of the query and the
average number of vertices in the candidate polygons identified by the filtering step.

SQ-histograms effectively estimate these two quantities and can be used to provide reasonably
accurate cost estimates. SQ-histograms are also robust for a wide range of histogram parameters.

Sampling can also be used to estimate these two quantities. Sampling does not work well for very
selective queries. For other queries, sampling offers the additional benefit of accurately estimating
the actual selectivity of the query in addition to its MBR selectivity. However, sampling from spatial
databases is expensive because each sample requires an expensive polygon overlap test.

Estimating the cost of spatial operations, in general, requires information about the location,
size, and complexity of the data objects. In this paper, we demonstrated how to effectively capture
these properties using SQ-histograms, and how to use them for accurate estimation of the cost of
spatial selections.

References

[Aok99] Paul Aoki. How to avoid building DataBlades that know the value of everything and the
cost of nothing. In Proc. Int. Conf. on Scientific and Statistical Database Management,
Cleveland, Ohio, July 1999.

[APR99Y] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. Selectivity estimation
in spatial databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 13-24, June 1999.

[AS94] Walid G. Aref and Hanan Samet. A cost model for query optimization using R-trees.
ACM Workshop on Advances in Geographic Information Systems, December 1994.

[BF95] Alberto Belussi and Christos Faloutsos. Estimating the selectivity of spatial queries
using the ‘correlation’ fractal dimension. In Proc. Int. Conf. on Very Large Data Bases,
pages 299 310, Zurich, Switzerland, September 1995.

[BKSS94] Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. Multi-
step processing of spatial joins. Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 197 208, May 1994.

[dBvKOS97] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-
ometry — Algorithms and Applications. Springer-Verlag, 1997.

[FK94] Christos Faloutsos and Tbrahim Kamel. Beyond uniformity and independence: Analysis
of R-trees using the concept of fractal dimension. In Proc. ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), pages 4-13, Min-
neapolis, Minnesota, May 1994.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 47-54, June 1984.

[HNP95] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized search trees
for database systems. In Proc. Int. Conf. on Very Large Data Bases, pages 562 573,
Zurich, Switzerland, September 1995.

19

[KF93]

[LNS90]

[MD88]

[O’RYS]

[Ore86]

[P+97]

[PDY6]

[P197]

[PIHS96]

[PSTWY3]

[Sam84]

[SFGMY3]

[TS96]

Ibrahim Kamel and Christos Faloutsos. On packing R-trees. In Proc. 2nd Int. Con-
ference on Information and Knowledge Management, pages 490-499, Washington, DC,
November 1993.

R.J. Lipton, J.F. Naughton, and D.A. Schneider. Practical selectivity estimation
through adaptive sampling. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 1 11, May 1990.

M. Muralikrishna and David J. DeWitt. Equi-depth histograms for estimating se-
lectivity factors for multi-dimensional queries. Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 28-36, June 1988.

Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, second
edition, 1998.

Jack A. Orenstein. Spatial query processing in an object-oriented database system. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 326 336, May 1986.

Jignesh Patel et al. Building a scalable geo-spatial database system: Technology, im-
plementation, and evaluation. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, May 1997.

Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 259 270, June 1996.

Viswanath Poosala and Yannis Ioannidis. Selectivity estimation without the attribute
value independence assumption. In Proc. Int. Conf. on Very Large Data Bases, pages
486 495, Athens, Greece, August 1997.

V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for selectivity
estimation of range predicates. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 294-305, May 1996.

Bernd-Uwe Pagel, Hans-Werner Six, Heinrich Toben, and Peter Widmayer. Towards
an analysis of range query performance in spatial data structures. In Proc. ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS),
pages 214 221, Washington, DC, May 1993.

Hanan Samet. The quadtree and related hierarchical data structures. ACM Computing
Surveys, 16(2):187 260, June 1984.

Michael Stonebraker, Jim Frew, Kenn Gardels, and Jeff Meredith. The SEQUOIA
2000 storage benchmark. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 2 11, May 1993.

Yannis Theodoridis and Timos Sellis. A model for the prediction of R-tree performance.
In Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 161-171, Montreal, Canada, June 1996.

20

