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Abstract OCBIL theory aims to develop an integrated
series of hypotheses explaining the evolution and
ecology of, and best conservation practices for, biota
on very old, climatically buffered, infertile landscapes
(OCBILs). Conventional theory for ecology and evolu-
tionary and conservation biology has developed pri-
marily from data on species and communities from
young, often disturbed, fertile landscapes (YODFELs),
mainly in the Northern Hemisphere. OCBILs are rare,
but are prominent in the Southwest Australian Floristic
Region, South Africa’s Greater Cape, and Venezuela’s
Pantepui Highlands. They may have been more com-
mon globally before Pleistocene glaciations. Based on
the premise that natural selection has favoured limited
dispersability of sedentary organisms, OCBILs should
have elevated persistence of lineages (Gondwanan
Heritage Hypothesis) and long-lived individuals
(Ultimate Self Hypothesis), high numbers of localised

rare endemics and strongly differentiated population
systems. To counter such natural fragmentation and
inbreeding due to small population size, ecological,
cytogenetic and genetic mechanisms selecting for the
retention of heterozygosity should feature (the James
Effect). The climatic stability of OCBILs should be
paralleled by persistence of adjacent semi-arid areas,
conducive to speciation (Semiarid Cradle Hypothesis).
Special nutritional and other biological traits associated
with coping with infertile lands should be evident,
accentuated in plants, for example, through water-
foraging strategies, symbioses, carnivory, pollination
and parasitism. The uniquely flat landscapes of south-
western Australia have had prolonged presence of saline
lakes along palaeoriver systems favouring evolution of
accentuated tolerance to salinity. Lastly, unusual resil-
iences and vulnerabilities might be evident among
OCBIL organisms, such as enhanced abilities to persist
in small fragmented populations but great susceptibility
to major soil disturbances. In those places where it is
most pertinent, OCBIL theory hopefully lays a founda-
tion for future research and for better informed
conservation management.
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Introduction

Much was celebrated in 2007 regarding the tercentenary
of the birth of Linnaeus (e.g. Jarvis 2007; Knapp and
Wheeler 2009). The universal application of binomial
nomenclature over 250 years remains a fundamental
underpinning, providing names so necessary to orga-
nise biodiversity information and exchange ideas about
the use, relevance and conservation of life on Earth.

Through his students, Linnaeus helped focus upon
a global inventory of life as a key objective, still yet
to be realised, but tantalizingly now within our grasp
(Hopper 2007). At the same time, Linnaeus was a
product of his time, seeing biodiversity as a collection
of assets to be used for economic benefit for a
struggling post-war nation. He advocated schemes for
cultivating useful plants in Sweden often well beyond
ecological and practical reality (bananas for example),
but somehow managed to move effortlessly on to
other ideas that won favour with Sweden’s political
elite when previous schemes did not live up to their
early promise (Koerner 1999).

The Scandanavian lands traversed by Linnaeus are
underlain by ancient granitic rocks, scraped bare by
Quaternary glaciers, with soils rejuvenated through
glacial grinding to a high level of fertility character-
istic of much of those found on Eurasia and North
America (Carlgren and Mattsson 2001; Vidal Romani
and Twidale 2005; Fig. 1). Given that most people to
the present day occupy these northern continents,
including most biologists and conservation practi-
tioners, it is perhaps not surprising that theory
underpinning much of today’s ecology and evolution-
ary and conservation biology arises from these
relatively young, often disturbed, fertile landscapes
(YODFELs).

Indeed, the much-celebrated Charles Darwin, born
two centuries ago this year, was increasingly comfort-
able in comprehending evolutionary and ecological
processes at work on the YODFELs of temperate
South America, even though the biota was strange,
species-rich and new to him (Keynes 1988, 2002;
Thomson 2009). Concepts of natural selection and the
origin of species crystallised through Darwin’s obser-
vations on the volcanic YODFELs of the Galapagos
Islands (Grant and Grant 2008). As reviewed else-
where (Hopper and Lambers 2009), Darwin was less
insightful, if not indifferent and disparaging, to the
botanical wonders on the old, climatically buffered,

infertile landscapes (OCBILs) of the Southwest
Australian Floristic Region (sensu Hopper and Gioia
2004), the Blue Mountains inland from Sydney, and
the Greater Cape Floristic Region (Born et al. 2007).
Of course, Darwin’s view—‘Since leaving England I
do not think we have visited any one place so dull &
uninteresting as K[ing] George’s Sound’—was not
shared by all early visitors. The normally restrained
Robert Brown, in correspondence to Sir Joseph Banks
regarding Flinders’ Investigator expedition, enthused
that southwest Australia ‘would, I am convinc’d,
amply repay a second examination.’ (Vallance et al.
2001). Yet this region and the Greater Cape remain
problematic to this day for theorists, defying, for
example, the view that species-richness increases from
the poles to the Equator (Cowling et al. 1996).

The Southwest Australian Floristic Region and
Greater Cape continue to confound attempts to under-
stand the origins of species richness and are usually
ignored, overlooked or regarded as minor exceptions by
global modellers (e.g. Dynesius and Jansson 2000;
Jansson and Dynesius 2002; Jansson 2003; Ricklefs
2004; Wiens and Donoghue 2004; Lavers and Field
2006; Jansson and Davies 2008). This is of more than
academic interest, as there are also significant conser-
vation implications flowing from assumptions made in
global models that may well be inappropriate for
OCBILs (Hopper 1997, 2003; Hopper and Gioia
2004). Indeed, homogenizing the complex patterns of
diversity in space and time of OCBIL biota to fit global
analyses, even where focussed on mediterranean-
climate regions (e.g. Underwood et al. 2009a, b),
requires critical and close scrutiny before recommen-
dations are accepted and implemented. This problem
of scale, focus and approach is summarised in
Murphy’s (1989) succinct encapsulation regarding
nascent theory in conservation biology: “wrong spe-
cies, wrong scale, wrong conclusions”.

As the biota of the more insular and ancient
landscapes of the southern hemisphere have become
better understood (Lusk and Bellingham 2004),
ascertaining the limits to scientific generalization in
evolutionary and conservation biology has become a
significant challenge. The theory of island biogeog-
raphy illustrates this well, having to be modified
significantly as empirical testing has revealed greater
complexity and less predictability than first hoped for
(Gilbert 1980; Brown and Lomolino 2000; Whittaker
et al. 2005). Some authors argue that there are few (if

50 Plant Soil (2009) 322:49–86



any) general principles applicable globally to biodi-
versity, other than natural selection. Rare v/s common
species, for example, seem to display idiosyncratic
biological attributes (Fiedler 1986; Gitzendanner and
Soltis 2000; Poot and Lambers 2003), as do fossil
species (Willis and Niklas 2004). Attempts to gener-
alise above the species-level in conservation biology
may be futile (Ronce et al. 2000). Use of easily
sampled groups of plants or animals as surrogates for
others or for all biodiversity in conservation bioge-
ography may or may not be fundamentally flawed
(e.g. Keighery et al. 2004 v/s Sauberer et al. 2004).
Whittaker et al. (2005) advocated cogently for
renewed efforts in development of theory in conser-

vation biogeography given the obvious complexity,
scale dependencies and uncertainties in predictive
analysis evident in the literature.

The present paper proposes that some generalities for
the theory of evolution, ecology and conservation
biology arise from a consideration of landscape age,
climatic buffering and soil fertility. The formation of
landscapes on Earth is a process of continual renewal,
intimately linked to plate tectonics and their consequen-
ces. However, rates of renewal vary significantly across
the globe. Some landscapes—OCBILS—exhibit greater
antiquity and stability, and their biota offer exciting
challenges to evolutionary and conservation biologists,
in every way as interesting as YODFELs where

Fig. 1 European extent of maximum and last glaciation, and
the distribution of relict weathering mantles (saprolites), with
their most likely ages. Question marks indicate ages inferred
from circumstantial evidence such as long-distance correlations
with saprolites of known ages or morphostratigraphic dating.
Excluding the Cretaceous, the Mesozoic (251–65.5 Ma) and
Palaeogene or Early-Mid Tertiary (65.5–23 Ma) in Europe were
generally characterised by ‘tectonic stability within low relief

surfaces’, perhaps identical to those characterizing today’s
surviving OCBILs. Thus, saprolites mapped as Mesozoic or
Early Tertiary with prolonged oceanic climatic buffering may
well have constituted old climatically buffered infertile land-
scapes (OCBILs) prior to glaciation and the increased tectonism,
marine inundation, uplift and extensive denudation on uplands of
the Cretaceous (145.5–65.5 Ma) and Neogene (23–0 Ma). From
Migoń and Lidmar-Bergström (2002), with permission
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evolution has occurred on new landscapes freshly
exposed by volcanism, glacial retreat, mountain-
building or altered sea levels.

My aim here is to explore a widely scattered literature
and develop new theory pertinent to patterns and
processes that characterise evolution, ecology and
conservation on OCBILs as compared with YODFELs.
Included among the more significant areas on Earth that
have OCBILs are three: the Southwest Australian
Floristic Region (Hopper and Gioia 2004), the Greater
Cape Floristic Region of South Africa (comprising
the fynbos dominated Cape Floristic Region and the
Succulent Karoo Biome—Born et al. 2007), and the
Pantepui region of the Guyana Shield in South
America (Berry and Riina 2005).

Prior to Pleistocene glaciations, many other regions
on Earth probably had landscapes similar to today’s
OCBILs (King 1962; Pillans 2007; Fig. 1), and the
ghosts of evolutionary processes past may persist in
taxa that survived in glacial or periglacial refuges
(Knowles 2001; Migoń and Lidmar-Bergström 2002;
Petit et al. 2003; Willis and Niklas 2004; Schonswetter
et al. 2005; García 2008; Brundu et al. 2008). In
northern Europe, for example (Fig. 1), and in North
America (Swenson and Howard 2005; Soltis et al.
2006), postglacial lands have cryptic refugia or
relictual saprolitic soils located in small microenvir-
onmentally favourable sites. In these refugia, small
populations persisted through glaciation. These pop-
ulations included habitat generalist trees with small
seeds and prone to vegetative propagation, and habitat
generalist mammals (Rowe et al. 2004; Bhagwat and
Willis 2008). Rare plants on Californian serpentine
outcrops (Harrison et al. 2008) and elsewhere (Jansson
and Dynesius 2002; Jansson 2003) persisted through
the Quaternary where climate is most benign and has
been stable. The existence of double the number of
Chinese species in plant taxa compared with sisters in
eastern North America has been correlated with greater
topographic heterogeneity and therefore more local
refugia in China (Qian and Ricklefs 2000).

In the three Mediterranean climate regions domi-
nated by YODFELs (the Mediterranean, California
and Chile), mesic refugial habitat is created through
facilitation by other plant species for recruitment of
drought-intolerant species rather than through favour-
able hydrogeomorphological factors (Valiente-Banuet
et al. 2006). Woody, evergreen, resprouting, late-
successional, Tertiary-relict species with fleshy fruits

and large seeds recruit far more commonly in localised,
mesic, shaded refuges beneath nurse plants of early-
succession, deciduous, dry-fruited species adapted to
semi-arid conditions. While this ecological process is
well-established, Valiente-Banuet et al.’s (2006) asser-
tion that the woody, evergreen resprouters are recently-
evolved following the Neogene onset of Mediterranean
climate is not supported by fossil studies in California
of the Eocene or earlier Madro-Tertiary flora (Raven
and Axlerod (1978). Another example of refugia is
seen in Australian deserts where multiple localised
refugia occur that persisted over several Pleistocene
glacial maxima (Byrne et al. 2008).

Large clonal stands of aspen (Populus) in North
America and Eurasia (e.g. Brundu et al. 2008) could
be the product of selective regimes in extensive past
OCBILs rather than of the more recent YODFELs in
which they are found growing today. Molecular
phylogenetic studies on which are analysed ancestral
ecological niches (e.g. Hardy and Linder 2005) would
provide a useful test of such hypotheses. Hence the
theory proposed herein for OCBILs may have wider
applicability than for the biota of just the three regions
of primary focus in this paper.

On first principles, prolonged opportunities for
evolution to run its course should result in sophisti-
cated, complex and ongoing biological adaptations for
lineages able to persist on OCBILs. Also likely to be
particularly evidenced in OCBILs is phylogenetic
niche conservatism, the tendency of species to retain
ancestral ecological characteristics (Harvey and Pagel
1991; Wiens and Graham 2005; Tiffney 2008; Crisp
et al. 2009), a phenomenon used to help explain high
species richness in tropical regions (Wiens and
Donoghue 2004; Donoghue 2008), and the persis-
tence of rare species in climatically stable refugia
(Stebbins and Major 1965; Hopper 1979; Hopper
et al. 1996; Goldblatt and Manning 2002; Jansson and
Dynesius 2002; Jansson 2003; Harrison et al. 2008).
Is this so? What special environmental attributes
characterise these landscapes? How have components
of their biota evolved in response? Are there special
mechanisms and processes at work, or are they simply
those by now well documented but developed and
matured through time? Is what we see today much
more the result of historical contingency (sensu Gould
1988; Herrera 1992) than adaptation to contemporary
environments? What are the implications for conserv-
ing biota on old, climatically buffered landscapes?
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As we shall see, such questions sometimes have
been asked, usually in the context of theory developed
elsewhere on biota from much younger northern
landscapes (e.g. Dodson and Westoby 1985; the
“Cape Special Feature” issue of Diversity and
Distributions, volume 12, published in 2006). Perhaps
an attempt to construct theory directly pertinent to
OCBILs will open new research perspectives. It is
certain that much remains to be explored before
satisfying answers are in hand. However, a growing
literature is not without its highlights and significant
insights. In such an auspicious year, celebrating the
bicentenary of the birth of Charles Darwin and the
sesquicentenary of the publication of The Origin of
Species (Darwin 1859), it is opportune to make a start
on OCBIL theory and hopefully lay a foundation for
future research.

The approach here to formulation of theory is based
on qualitative reasoning in order to cover the breadth and
depth of the subject succinctly. Ghiselin (1969, pg 21)
outlines the scientific legitimacy of such an approach,
so powerfully used by Darwin and others: ‘Scientific
inferences should be accepted because the premises are
true and because the conclusions follow logically. The
truth does not derive from the jargon [such as mathe-
matical equations] in which it is expressed’. Ghiselin
cautions against the ‘superstition of numerology’—the
belief that scientific work must employ mathematics and
quantification. To quantify sometimes helps, as I have
found in various studies (e.g. Hopper and Campbell
1977; Hopper 1978; Campbell et al. 2000; Hopper and
Gioia 2004; Krauss et al. 2007; Hopper et al. 2009), but
it may not make conclusions any closer an approxima-
tion to the truth than those drawn from qualitative logic.
In this review, space does not allow for detailed
quantitative modeling and statistical testing of each
hypothesis proposed. Rather, the aim is to present a
coherent overview and sufficient examples and litera-
ture citations to enable the reader to explore the subject
further and devise appropriate field studies or experi-
ments to test hypotheses of interest.

Identifying old, climatically buffered, infertile
landscapes (OCBILs)

Applying the terms ‘old’ and ‘young’ to landscape
age clearly alludes to relative positions along a
quantitatively varying parameter. Hence, landscape

age cannot be defined in any absolute way. Boundaries
will be fuzzy and some exclusions and inclusions will
seem arbitrary. Still, as I hope to demonstrate, there is
much of value conceptually and scientifically embodied
in these terms. It is not too difficult to define OCBILs
and YODFELs as end points in multivariate space and
identify some regions that unequivocally fit such
definitions.

How might very old landscapes be identified? The
term ‘palaeosurface’ is pertinent here, defined by
Widdowson (1997, pg 5) as “an identifiable topo-
graphic surface of either endogenic or exogenic
origin, recognizable as part of the geological record
or otherwise of demonstrable antiquity, which is, or
was, originally of regional significance, and which as
a consequence of its evolution, displays the effects of
surface alteration resulting from a prolonged period of
weathering, erosion, or non-deposition”. Hence, we
are looking for landscapes that are regional in scale,
with evidence of prolonged weathering and non-
deposition, of demonstrable geological antiquity.

Weathering never stops; old soils erode and new
soils form (e.g. Vitousek et al. 2003; Turkington et al.
2005; Lambers et al. 2008; Viles et al. 2008).
Nonetheless there are places on Earth where these
processes have slowed and the general form of the
landscape has persisted for tens of millions of years.
Good starting points are geological shields or orogens
containing old crystalline rocks and mountain chains
(Fig. 2). These are found on all continents and some
larger islands, usually on passive plate margins well
away from zones of plate collision where orogeny and
vulcanism create new landscapes constantly (Twidale
1982; Vidal Romani and Twidale 2005).

The field of potentially oldest terrains narrows as
other processes responsible for landscape rejuvenation
are considered. Marine inundation, highest in the mid-
Cretaceous (100–90 Ma—Miller et al. 2005), except
for the anomalous earlier flooding of Australia at
110 Ma (Gurnis et al. 1998), covered many shield
areas (Fig. 3). Similar high levels were attained again
in the early Eocene (50 Ma—Miller et al. 2005).
Flooding by rivers and inland lakes has continued to
do so in lowlands, and most extensive of all have been
the two monumental outcomes of Neogene climate
change that transformed vast areas—glaciation and the
formation of desert dune systems with associated dust
storms (Chen and Barton 1991; Zachos et al. 2001;
Hesse and McTainsh 2003; Jahn et al. 2003). Plants,
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Southwest
Australian
Floristic
region

Pantepui Highlands
(mainly Venezuela)

South Africa’s 
Greater Cape

Highest
seas at
90 Ma

Fig. 3 At least three geologically stable, unglaciated regions
persist today, as old landscapes with prolonged oceanically
buffered climates since the early Cretaceous (140 Ma), from
land that was above water when sea levels were close to the
highest known 90 Ma. These three regions represent today’s

OCBILs. Similar sea levels were attained in the early Eocene
(50 Ma), further reducing the global extent of OCBILs. Late-
Cretaceous reconstruction courtesy of Ronald C Blakey
Northern Arizona University

Fig. 2 Geological shields or orogens form the ancient stable
cores of continents and large islands and therefore form the
starting points in the search for OCBILs. However, their old

rocks are often overlain by younger sediments due to
inundation, glaciation, dust storms, volcanism and other factors.
From Smith (1989)
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cryptogamic soil crusts and bioturbation by animals
add additional complexity to landscape change and
rejuvenation (Viles et al. 2008).

We are left with a very small selection of old shield
landscapes, fortuitously placed away from the poles
continuously since the early Cretaceous, adjacent to
oceans that buffered the land from climatic extremes
since the Jurassic. Such old, stable, climatically
buffered landscapes have endured weathering ever
since, their soils rendered almost devoid of nutrients
essential for plant and animal life (Lindsay 1985;
Orians and Milewski 2007). They are phosphorus-
limited systems (Lambers et al. 2008). OCBILs best
meeting these criteria (Figs. 3, 4) are prominent and
widespread in the Southwest Australian Floristic Region,
South Africa’s Greater Cape, and Venezuela’s Pantepui
Highlands (the inspiration for Conan Doyle’s “The Lost
World”). Other places could also be considered (King

1962; Pillans 2007), such as parts of Brazil, east and
west Africa, Madagascar and New Caledonia, as well
as many regions in Australia (Twidale 1976, 2007), but
the first three listed above will suffice to draw out the
evolutionary theory and conservation implications
arising from a focus on OCBILs.

Within regions where OCBILs dominate, there will
also be YODFELs. Floodplains and other wetland
margins, coastlines, steep slopes, dune systems etc. are
interspersed among classic OCBILs in complex
mosaics. Similarly, on continents like Australia, where
many old landscapes are evident (Twidale 1976; Gale
1992; Pillans 2007; Branagan 2008; Fig. 5), such old
landscapes will vary in their relative age. As in northern
Europe (Fig. 1) and parts of Australia (Twidale 1976,
2007), old landscapes may be overlain by younger
landscapes and subsequently exhumed, adding further
context-specific local complexity (Pillans 2007).

a e

b c d

Fig. 4 OCBILs are confined primarily to three regions,
although there are other possible candidates and OCBILs may
have been more common prior to Quaternary glaciations
(photos by the author unless otherwise stated): a high granite
plateau of the Kamiesberg, Namaqualand, South Africa; b
looking east from Cape Point across False Bay to the

Kogelberg World Heritage of the sandstone SW Cape Fold
Mountains, South Africa; c Lesueur National Park lateritic
uplands, Southwest Australian Floristic Region; d McDermid
Rock and subdued granitic plain, inland Southwest Australian
Floristic Region; e sandstone Cerro de la Neblina, Pantepui,
Venezuela-Brazil border (photo D. Bruce Means)
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Hence the following account needs to be interpreted
critically integrating landscape processes and relative
age within regions when attempting to implement
conservation management derived from OCBIL theory.
Bierman (1994), Widdowson (1997), Twidale (1976,
1997, 2007), Duller (2000), Migoń and Lidmar-
Bergström (2002) and Reiners and Brandon (2006)
provide useful introductions to the field of ascertaining
relative landscape age.

Location of OCBILs within three regions

To help future workers ensure their research is
appropriately located, a brief discussion of where
OCBILs are to be found in the three regions of interest

is warranted. Gross comparisons of regions, though
often done (e.g. Cowling et al. 1996; Hopper and Gioia
2004; Underwood et al. 2009a, b), are not strictly apt,
as geomorphological and climatic histories differ, as
does the dispersion of OCBILs and YODFELs within
each region.

Southwest Australia

OCBILs in the Southwest Australian Floristic Region
are most common inland of the Meckering Line
(Mulcahy 1967; Fig. 5). OCBILs predominate on
high points in the subdued topography of the region,
such as on lateritic hilltops (Brown 1989), granite
outcrops (Hopper et al. 1997; Barthlott and Porembski
2000; Nikulinsky and Hopper 2008), and high

Fig. 5 Australia, showing the boundary between inland areas
of low relief, low denudation rates and ancient landsurfaces,
and coastal areas of higher relief, higher denudation rates and
more recent landscapes, where YODFELs predominate.
OCBILs exist today primarily in southwest Australia, where
prolonged maritime influence has buffered climate. Elsewhere
in Australia, the mid-late Tertiary onset of aridity has rendered
many past OCBILs ineffective, turning them into regions

dominated by YODFELs, where greater extinction rates have
prevailed. The Meckering Line (Mulcahy 1967) distinguishes
the significant drainage divide in the Southwest Australian
Floristic Region between active westward-flowing river sys-
tems and inland unco-ordinated drainage associated with
Tertiary palaeoriver valleys now occupied by extensive salt
lakes that rarely link and flow. From Gale (1992), with
permission
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sandplains. Salt lake systems lining palaeorivers are
also of considerable antiquity and qualify as OCBILs.
YODFELs occur within this matrix, on steep slopes
(e.g. ‘breakaways’ on the escarpments of mesas) and
in the form of alluvial sand and terraces or as aeolian
dunes flanking salt lakes. West of the Meckering Line
OCBILs are also to be found, e.g., in the lateritic hills
and sandplains of the Darling Plateau, or on granite
outcrops. Fluvial denudation is greater here, however,
so that incised river valleys are clearly YODFELs, as are
the richer slopes occupied by York gum (Eucalyptus
loxophleba) and wandoo (E. wandoo).

The Greater Cape

Miocene-Pliocene uplift andQuaternary sea level changes
reduced the extent of OCBILs in parts of the Greater Cape
(Deacon et al. 1992; Cowling et al. 2009). However,
OCBILs are prevalent on persisting African Surface
plateaux and mountain regions such as the Kamiesberg
in Namaqualand and in flatter reaches of the Cape Fold
mountains (Fig. 4). The summits of classic flat-topped
mountains including the Matsikamma and Table Moun-
tain are obvious OCBILs. YODFELs are complexly
interspersed on steep slopes, incised river valleys,
renosterveld and coastal plains, as well as dune systems
such as are found on the Knersvlakte of southern
Namaqualand. Fluvial terraces and plains associated
with wetlands also are seen as YODFELs in the region.

Pantepui

The summits of tepui are OCBILs edged by sheer-walled
YODFELs and talus slopes. Flowing water also creates
YODFELs on tepuis, whereas pools, seeps and peat-bogs
with uncoordinated drainage are OCBILs. Shallow soils
on persistent, flat to gently-sloping sandstone outcrops
supporting herbfields and stunted shrublands dominated
by species of Bonnetia are replete with organisms of
OCBILs. Huber (1995a, 2006) summarised information
on the non-gramineous broad-leaved herbaceous mead-
ow communities on Pantepui OCBILs constituted by
endemic genera of the Rapateaceae, Bromeliaceae,
Xyridaceae, Eriocaulaceae and Cyperaceae. Huber
(2006, pg 465), suggested that: “non-gramineous
meadows representing ancient species pools of
Guayana-centred families had evolved successful colo-
nization strategies in occupying extremely nutrient poor
sites at all altitudinal levels”. Hence, OCBILs may also

be found below the tepui summits in appropriate
geomorphological contexts of low disturbance and
deeply weathered soils.

YODFELs and conservation

It is evident that today, YODFELs dominate the Earth,
and are the places where most humans live (Figs. 1, 2, 3).
Sequestration of nutrients for living and reproduction is
a fundamental challenge for all species. Ours has come
to dominate the globe from this perspective (Wack-
ernagel et al. 2002). Only the poorest people and/or
those marginalised through military or cultural domi-
nation are pushed into occupying OCBILs. Noongar
Aboriginal people occupied the relatively fertile and
localised YODFELs of the Southwest Australian
Floristic Region until usurped by colonial Europeans
(Hallam 1975; Carter 2006), as did the Khoi-San and
Nama in the Greater Cape of South Africa (Mountain
2003; Carstens 2007). In a few cases, as in the soldier-
settlement schemes promoted after the two World Wars
in southwest Australia (Beresford 2001), have reason-
ably affluent people come to occupy OCBILs. This
occupation seems temporary, however, based on recent
episodes of farmers struggling to make ends meet and
abandonment of badly degraded and salinised land in
favour of urban jobs (Allison and Hobbs 2004).

Those organisms able to rapidly occupy YODFELs
inherit the Earth. Plants of YODFELs, for example,
have many biological attributes regarded as charac-
teristic of weedy organisms, or classic r-selected
species (Table 1; Gadgil and Solbrig 1972). They
exhibit attributes of the ‘ruderal strategy’ (Grimes
1977) or aspects of the ‘coloniser syndrome’ (Baker
and Stebbins 1965), although such concepts should be
used with considerable caution as their generality is

Table 1 Theoretical attributes of plants from young, often
disturbed, fertile landscapes (YODFELs)

Good dispersal mechanisms

Good colonisers

Common and widespread

Recently evolved rather than relictual

Nutritional and biological generalists

Tolerant of human disturbance

Intolerant of prolonged fragmentation and rarity

Low or high population-genetic and species diversity

Plant Soil (2009) 322:49–86 57



questionable (Ronce et al. 2000). Usually, these
organisms are able to disperse rapidly and widely,
and therefore are successful colonisers of new territory
(Petit et al. 2003; Lavergne et al. 2004). Consequently,
given the abundance of YODFELs worldwide, suc-
cessful colonisers tend to be common and widespread,
unless the YODFELs are constrained geographically
such as on volcanic islands (Carlquist 1974). Organ-
isms on YODFELs are often from young lineages with
many sister taxa, and tend to dominate in communities
of low species richness (e.g. Darwin’s finches on the
Galapagos—Grant and Grant 2008).

Contrary to earlier hypotheses, widespread common
species do not routinely exhibit higher intrapopulational
genetic variability and relatively low divergence be-
tween populations compared with rarer congeners
(Gitzendanner and Soltis 2000). They can exhibit either
high or low variation. Being a generalist in terms of
nutrition (especially in nitrogen-limited soils—Clark
and Tilman 2008) and other biological attributes helps
in occupying YODFELs, as does tolerance of ecolog-
ical disturbance by humans (Lambers et al. 1998; Hill
et al. 2002). Lastly, when their populations are
fragmented and the species becomes rare, classic
inbreeding effects and population decline to extinction
become evident (Keller and Waller 2002; Ouborg et al.
2006), unless such local populations are located in
refugial habitat favouring persistence (Jansson &
Dynesius 2002; Jansson 2003; Harrison et al. 2008).
Such an array of attributes has consequences in terms
of land use and conservation management for species
of YODFELs (Tables 2, 3).

The widespread and common occurrence of
YODFELs, especially in the Northern Hemisphere,
means that many land-use practices are widely
transferable. As old-field succession theory predicts,
agricultural and urbanized people have to suppress
and clear native vegetation continuously, as it con-
tains many species with weedy tendencies able to
establish self-sustaining populations if given a chance
(Cramer and Hobbs 2007). Human disturbances such
as land clearing, tilling and the application of fertilizers
that mimic the natural disturbance regimes of YODFELs
will conserve native species. Furthermore introduction
of most exotic organisms is relatively benign, because
native species tend to be adapted to intense competition
and can usually persist against exotics. Occasionally, this
is not so, e.g., the hybrid/introgressed Rhododendron
ponticum in Ireland has become a major weed that
suppresses the growth of all native species (Erfmeier
and Bruelheide 2004). Another example is seen with
Californian YODFELs, where intensive grazing by
cattle and sheep combined with reduced fire frequency
and increased soil disturbance have drastically de-
creased the abundance of native herbaceous species
and increased exotic invasives such as annual grasses
from the Mediterranean (Minnich 2008).

An attempt to distil key conservation principles
from the above theoretical consideration of YODFEL
organisms leads to the conclusion that it is sufficient to
provide space, preferably in large amounts, on lands
that bear characteristic ongoing human disturbance.
Significant opportunities for ecological restoration and
reconciliation are effectively global, allowing the

Table 2 Implications for land-use on YODFELs

Land-use practices are widely transferable

Native vegetation must be constantly suppressed to make way—old field succession theory

Within reason, Earth-moving, tilling, mining, logging, nutrient addition and removing groundwater are environmentally
inconsequential

Introducing exotic organisms for human purposes is benign

Providing space for preserves is enough (plants will colonise lands left unused)

Individual remnants of wild vegetation are interchangeable due to low endemism

Bigger is better (Single Large Or Several Small nature reserves debate)

Ongoing forms of human disturbance are helpful (mimicking natural disturbances)

Connecting fragmented populations with corridors is desirable

Sourcing seeds from wide areas for restoration is fine

Table 3 Conservation prin-
ciples for plant diversity on
YODFELs
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coexistence of native biodiversity and humans in
YODFELs if disturbance regimes are appropriate
(Whittaker et al. 2005; Miller 2006).

Do the same conservation principles apply to plant
diversity as people move into marginal habitats that
are old, geologically and climatically stable, much
less regularly disturbed and relatively infertile? What
can OCBIL theory tell us? Fundamental differences in
natural selection for dispersal, conspicuous domi-
nance and rarity in OCBILs exist compared with
those observed in YODFELs.

OCBIL theory

OCBIL theory aims to develop an integrated series of
hypotheses explaining the evolution and ecology of,
and best conservation practices for, biota on globally
very old landscapes. From first principles, the
opportunity for continuous existence on ancient
weathered infertile landscapes (Fig. 4) would be
expected to select for biological traits that are in
contrast to those favoured on YODFELs.

It is important to note in such a discussion that the
evolution of biological traits is a complex process
influenced by many factors. As Darwin (1862, 1875a,
1875b) so eloquently illustrated for orchids, carnivorous
plants and climbing plants, the path towards similar
structures may follow many convergent routes, where
descent with modification builds upon existing frame-
works through natural selection.

A significant trap for ecologists and evolutionary
biologists is to infer adaptation where there has been
none—to confuse an effect or correlation with evolu-
tionary function (Williams 1966; Ghiselin 1969). For
example, resprouting after fire is a common pattern
observed in seasonally arid environments (Bellingham
and Sparrow 2000; Bond and Midgley 2001), and
therefore has been assumed to be an adaptation to fire
regimes (Gill 1977; Wisheu et al. 2000; Orians and
Milewski 2007). Yet rigorous tests of this hypothesis
are difficult to devise, requiring the demonstration of
function, heritability, natural selection and phylogenetic
context (Ghiselin 1969; Whelan 1995; Mishler 2000;
Horton 2000; Hopper 2003). Bond and Keeley (2005)
surmised: ‘There are few studies of the evolution of
fire-adaptive traits, and many plant traits have been
uncritically labelled as ‘fire adaptations’ without any
rigorous analysis either as to the functional importance

of the trait, or its phylogenetic origin.’ Indeed,
resprouting could evolve in response to diverse
processes other than fire that kill aerial plant parts,
including drought, frost, grazing, flood damage, land-
slide and strong wind (Main 1996; Hopper 2003).

Gould and Vrba (1982) coined the term ‘exaptation’
to account for situations in which an obvious adapted
state appears not to have evolved in situ through the
action of natural selection, but rather to be the
consequence of selection for another purpose in a
separate environment. An exapted trait thus may have
evolved, for example, in response to infertile soils that
then confers survival value in a subsequent arid fire-
prone environment. For example, on face value, tough
fibrous foliage (sclerophylly) appears to function to
conserve moisture in arid or semi-arid environments.
However, there is a fundamental difference between
sclerophylly and xerophylly, the latter alluding to specific
adaptations for coping with drought such as sunken pores
(stomata) for gas and moisture exchange (Seddon 1974).
Sclerophylly appeared in many Australian plant families
well before the onset of aridity from 30 Ma (Byrne et al.
2008) and its intensification over the past 10 Ma. This is
evident by the presence of sclerophyllous fossil leaves
aged at 50–60 Ma, covered in epiphyllous rainforest
fungi (indicative of moist environments), lacking
xerophyllous adaptations (Hill 1998; Hill and Brodribb
2001). Selection for sclerophylly occurred under mesic
conditions, as a consequence of excessive accumulation
of carbon from nutrient poor soils (Read et al. 2009).
Only afterwards did sclerophylly become an exaptation
to aridity. In this light, careful experiments and rigorous
attempts at falsification are needed to ascertain the
merits of the hypotheses on the evolution of traits
elaborated below.

OCBIL theory proposes specific adaptations arising
frommultifactorial selective regimes on old, climatically-
buffered infertile landscapes. Attempts to account for
attributes of OCBIL biota from a single cause such as
adaptation to soil types (Beard et al. 2000) or fire (see
below) are fraught. Alternative hypotheses rarely are
addressed in such narrowly focused approaches. Con-
current with recent literature (e.g. Cowling et al. 2009;
van der Niet and Johnson 2009), OCBIL theory
proposes a more complex interplay of contributing
causes, varying in importance from taxon to taxon, but
sufficiently tractable experimentally to enable falsifica-
tion of competing hypotheses in any given case (e.g.
James et al. 1999; Bussell et al. 2002; Yates et al.
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2007a). Thus, seven pertinent predictions may be
derived from OCBIL theory (Table 4).

1. Reduced dispersability, increased local endemism
and common rarity

OCBIL organisms should exhibit reduced dispersability,
high numbers of localised rare endemics and strongly
differentiated population systems Effective dispersal
involves transport of seeds or vegetative propagules
some distance from the mother plant, followed by
germination and successful establishment to form a
breeding population at a new site (Carlquist 1974).
One of the most significant discoveries revealed by
dating molecular phylogenetic data through calibra-
tion with fossils has been confirmation of Darwin’s
hypothesis that long-distance transoceanic dispersal
has been common in the history of plant life (e.g.
Donoghue et al. 2001; Crisp et al. 2009). At a more
local scale, it is evident from molecular phylogenetic
studies that multiple dispersals have occurred to, from
and within the Southwest Australian Floristic Region
(Hopper and Gioia 2004).

However, dispersal from parental habitat has high
risks on OCBILs, with few attendant rewards, as are
found, for example, by those rapid dispersers able to first
colonise YODFELs through long-distance dispersal,
e.g., when glaciers, deserts, oceans, or floodwaters
retreat or volcanic oceanic islands form (Carlquist
1974; Cain et al. 2000; Petit et al. 2003). A perusal of
the seed morphology of Southwest Australian Floristic
Region plant genera highlights how few have wings or
fleshy arils to aid with wind or animal-mediated
dispersal (Sweedman and Merrit 2006). This phenom-
enon does not apply so extensively in the Greater Cape,
which is replete with local endemics, but also supports
a greater component of fleshy-fruited Afromontane
rainforest elements intermixed with endemic fynbos

and succulent karoo taxa, and families with wind-
dispersed seed like Asteraceae are more prominently
represented (Goldblatt and Manning 2002). Exceptional
of course are the mesembs (Aizoaceae), which have
radiated extensively in semi-arid succulent karoo
vegetation, and have seeds mostly dispersed short
distances by rainwater (Klak et al. 2004; Ellis et al.
2006). The Pantepui flora remains to be investigated
from the dispersal perspective.

One striking aspect of the majority of the Southwest
Australian Floristic Region’s 8000 native plant species
is the absence of obvious means of seed dispersal.
Except for orchids, daisies, some native grasses,
Banksia (Fig. 6), Hakea (Proteaceae) and she-oaks
(Casuarina and Allocasuarina, Casuarinaceae), few
species have large wings or light-weight seeds for
wind dispersal. The seeds of most eucalypts, kangaroo
paws (Anigozanthos, Haemodoraceae), or most shrubs
and perennial herbs that dominate Southwest Austra-
lian Floristic Region plant communities are unlikely to
disperse from the maternal plant more than a few
metres unless picked up by cyclonic winds, firestorms,
sheet-flooding or animals (see He et al. (2004) for such
an exception in Banksia). A typical example of limited
dispersability emerged in a study of the confinement of
hybrid kangaroo paws in a narrow ecotone between the
habitats of the parental species (Hopper 1977).

Another significant deficiency in the southwest flora
are berries, drupes and other fleshy fruits encasing seeds
as an enticement for birds and mammals to consume and
disperse seeds in their droppings. Exceptions are semi-
parasitic quandongs and sandalwoods (Santalum, Santa-
laceae), mistletoes (Loranthaceae) and many southern
heaths (Ericaceae—Calviño-Cancela et al. 2006).
Legumes, including wattles (Acacia, Mimosaceae),
may carry a fleshy aril or elaiosome attached to
individual seeds (Sweedman and Merritt 2006). These
seeds are usually gathered by ants and dispersed short

Table 4 Seven predictions derived from OCBIL theory

1. Reduced dispersability, increased local endemism and common rarity

2. Accentuated persistence—old lineages (Gondwanan Heritage Hypothesis), old individuals (Ultimate Self Hypothesis)

3. The James Effect (pursuit of heterozygosity, e.g., bird pollination, genomic coalescence)

4. Prolonged speciation at the margins (Semiarid Cradle Hypothesis)

5. Adaptation to saline soils (only flat lands such as the Southwest Australian Floristic Region)

6. Nutritional and other biological specialisation

7. Special vulnerability (e.g. to soil removal) and enhanced resilience (e.g. to fragmentation)
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distances (averaging 1–2 m), often to underground
caches (Berg 1975; Krauss and He 2006; Gomez and
Espadaler 1998; He et al. 2009). In the Greater Cape,
myrmecochory also is common (Bond et al. 1991;
Cowling et al. 1994). In a few species, such as the
coastal wattle Acacia cyclops, the aril is big and bright
red, attracting birds as dispersal agents. However, the
vast majority of Southwest Australian Floristic Region
plants lack such enticements for dispersal.

Nevertheless, occasional long distance dispersal of
myrmecochorous seeds by storms or secondary, free-
ranging, generalists granivores has been documented
over distances of a kilometre or two (e.g. Daviesia
triflora, Fabaceae—He et al. 2009). However, such

long distance dispersal in these and other OCBIL
species studied (He et al. 2004) applies to only 2–7%
of seed, compared with estimated long distance
dispersal for 18–40% of seeds for YODFEL species
(He et al. 2009). It is therefore hypothesized that, in
the Southwest Australian Floristic Region, staying
close to the maternal plant has been the safest bet for
most seeds and propagules for millions of years. In
many situations, moving even tens of metres away
increases the likelihood of germination on a different
soil type or seral stage and therefore being at a
competitive disadvantage to species of another soil
preference or seral stage. A few recent studies explore
this theme—e.g. granite inselberg populations of

a b d
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Fig. 6 Examples of old lineagesmentioned in the text that are extant
in the Southwest Australian Floristic Region (photos by the author
unless otherwise stated): a Dasypogon hookeri (Dasypogonaceae);
b Dasypogon bromeliifolius (Dasypogonaceae) with honey possum

(Tarsipes rostratus); c Calectasia narragara (Dasypogonaceae—
photo RL Barrett); d Agonis flexuosa (Myrtaceae); e Banksia
coccinea (Proteaceae) with honey possum (Tarsipes rostratus); f
Cephalotus follicularis (Cephalotaceae—photo AP Brown)
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Myrtaceae (Verticordia staminosa, Yates et al. 2007a;
Eucalyptus caesia, Byrne and Hopper 2008; Fig. 7).

Contrast this with being a plant in a coniferous
forest on the edge of a retreating ice-age glacier in
North America, Eurasia or New Zealand (Willson
et al. 1990; Petit et al. 2003; Willis and Niklas 2004;
Bhagwat and Willis 2008). Vast areas of rejuvenated
bare fertile soil are available to those species able to
disperse their seeds long distances, albeit through
occasional events rarely evident in contemporary
ecological or genetic studies (e.g. Cain et al. 2000;
Johansen and Latta 2003). It is little wonder that
adaptations such as small-seededness, prominent wings
on seeds or berry fruits are prevalent in these
postglacial habitats (Brundu et al. 2008). For example,
vertebrate dispersal ranges up to 60% of the flora in
New Zealand forests, and wind dispersal ranges as
high as 70% of the flora in Alaska (Willson et al.
1990).

Reduced dispersability also should encourage local
genetic divergence and allopatric speciation, resulting
in a proliferation of ancient population systems
displaying unusually high levels of interpopulational
genetic divergence. In turn, given the time involved to
persist on OCBILs, prolonged interpopulational di-
vergence should lead to the evolution of suites of
local endemic species, assuming positive covariation
of these two factors in response to selection (He et al.
2008). Studies of the population genetics, cytogenetics
and phylogeography of Southwest Australian Floristic

Region species have indeed affirmed such pronounced
interpopulational divergence patterns in many species
(Coates 2000; James 2000; Hopper and Gioia 2004;
Byrne 2007), with occasional exceptions (e.g. Swarts
et al. 2009). In the Cape region, few detailed studies
along these lines have been reported (but see Goldblatt’s
(1986) chromosomal work on Moraea fugax). Future
studies for the Cape region are needed applying
molecular analysis to population phylogeography, as
well as traditional chromosome and breeding system
work (Hopper et al. 2009). Similarly, the Pantepui
biota remains virtually an open book for such work,
although a promising start has been made in a few
genera (e.g. Givnish et al. 2000).

The three OCBIL regions are rich in local endemic
species as predicted (Table 5), extraordinarily so for
continental areas (Carlquist 1974; Cowling et al.
1996; Hopper and Gioia 2004). Indeed, the anomaly
of species-rich temperate regions in the Southwest
Australian Floristic Region and Greater Cape continues
to challenge global modellers focussed on latitudinal
gradients in the world’s biota (Dynesius and Jansson
2000; Jansson 2003; Rickleffs 2004; Wiens and
Donoghue 2004; Lavers and Field 2006; Jansson and
Davies 2008). Warm and wet environments are not the
exclusive zones of high endemism and species
richness. A comprehensive theory of diversity needs
to embrace a historical perspective (Ricklefs 2004;
Wiens and Donoghue 2004) if it is to help explain
exceptional richness, especially in present-day low-

Fig. 7 Eucalyptus caesia
(Myrtaceae), pollinated by
birds such as the Brown
Honeyeater (Lichmera
indistincta, Meliphagidae),
exemplifies a species with
genetically isolated disjunct
populations persistent for
millions of years on
OCBILs in the Southwest
Australian Floristic Region
(Boyagin Rock—photos by
the author)
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moisture and low-energy environments (Hopper 1979;
Cowling 1992).

Besides exceptional local endemism and high
species-richness, OCBILs also display extraordinarily
high beta and gamma diversity (Cowling et al. 1996;
Hopper and Gioia 2004). Rapid geographical replace-
ment of taxa and vegetation types occurs to the point
where useful sampling and predictive ecological
approaches in YODFELS such as digital terrain
modelling account for very little of the observed
geographical pattern in OCBIL plant life (e.g.
Dirnböck et al. 2002). Simplification of the complex
geographical pattern of OCBIL biota with surrogates
such as broad vegetation types (e.g. Underwood et al.
2009a, b) is similarly unhelpful, leading to conservation
recommendations that ignore where the real major
problems and priorities for biodiversity conservation
lie (i.e. in the imperilled species-rich shrublands and
herbfields of OCBILs rather than the more extensive
relatively species-poor woodlands of YODFELs in the
Southwest Australian Floristic Region). Apart from
reduced dispersability, other plant traits and evolution-
ary processes contribute to the observed complexity in
spatial patterning in OCBIL biota.

2. Accentuated persistence—old lineages (Gondwanan
Heritage hypothesis), old individuals (Ultimate Self
Hypothesis)

Based on the premise that natural selection has
favoured limited dispersability of sedentary organisms
(see 1 above), OCBILs should have elevated persistence
of lineages and long-lived individuals Given that the
three OCBIL regions have not been glaciated since at least
the Permian, and they have been exposed to oceanic
moderation of climate since the Jurassic, it is hypothesised
that some lineages that arose during Gondwanan times or
soon thereafter have had the opportunity to persist to the
present day—a proposition known as the Gondwanan
Heritage Hypothesis (Hopper et al. 1996). If the same

applies to northern continents, an equivalent Laurasian
Heritage Hypothesis would pertain. For example, mid-
Jurassic fossils of Torreya are known (Donoghue et al.
2001) and some Angiosperm families and orders
endemic to the Northern Hemisphere have Cretaceous
origins (Magallón and Castillo 2009).

Fortunately, we can test for old lineages using
molecular phylogenies calibrated with fossils of
known age or through the record of occupation of
islands of known age. The three OCBIL regions do
indeed have significant representation of ancient plant
lineages (Table 6). Indeed, the Southwest Australian
Floristic Region’s Dasypogonales (APG II 2003;
Janssen and Bremer 2004—both treat the Dasypogo-
naceae as an unplaced family) are the world’s most
localised plant order (one species of Calectasia is
found in South Australia/Victoria but all other taxa are
confined to the Southwest Australian Floristic Region;
Fig. 6). The same applies to some animal groups (e.g.
the marsupial Tarsipes rostratus (Tarsipideae), endemic
to the Southwest Australian Floristic Region—Nilsson
et al. 2004; Fig. 6). The fossil record in the Southwest
Australian Floristic Region affirms the prolonged
persistence of some plant genera such as Banksia
(Proteaceae, 40 Ma) and Agonis (Myrtaceae, 30 Ma—
Hopper and Gioia 2004; Fig. 6).

Recent attention to such phylogenetic information
has been drawn by Forest et al. (2007), who demon-
strated that it is now possible to assess phylogenetic
diversity at generic level across the Cape flora using
molecular tools, and to show that different conserva-
tion priorities for regions within the Cape emerge from
a consideration of raw species richness alone. Research
currently is underway to ascertain if a similar pattern
applies to the Southwest Australian Floristic Region
(Forest et al., unpublished).

Ancient population systems also are evident in
OCBILs, especially the Southwest Australian Floristic
Region (Coates 2000; Yates et al. 2007a). For example,
the Chiddarcooping population of Eucalyptus caesia

Table 5 Number of plant species and endemics in OCBIL floristic regions

Area (km2) OCBIL Region # species present # (%) species endemic Authority

5,000 Pantepui 2,447 1034 (42%) Berry and Riina (2005)

90,000 Cape 9,030 6208 (68.7) Goldblatt and Manning (2000)

100,250 Succulent karoo 4,849 1954 (40.3) Hilton-Taylor (1996)

302,630 Southwest Australian Floristic Region 6,759 3370 (49) Hopper and Gioia (2004)
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(Fig. 7), characterised by a highly divergent chloroplast
haplotype of 10 unique mutations, has an estimated
late Pliocene age of 1.76 My (Byrne and Hopper
2008). Similarly, two allopatric population clusters of
the endangered shrub Lambertia orbifolia (Proteaceae)
are estimated to have diverged more than two million
years ago (Byrne et al. 1999), and an isolated
population of Acacia verricula (Mimosaceae) in the
Ravensthorpe Range of southern southwest Australia
diverged from its sisters about 900 Ka (Byrne 2007).

Concerning individual organisms, long-term survival
on old, stable, infertile environments places strong
selection pressures on strategies for persistence. Acqui-
sition of biomass is so difficult that all sorts of
mechanisms to retain it should evolve (Orians and
Milewski 2007; Read et al. 2009). It is no coincidence
that the concept of the persistence niche arose from
workers based in the Greater Cape (Bond and Midgley
2001). Extreme clonality and the virtual abandonment
of genetic variation, as seen in the Wollemi pine
Wollemia nobilis (Peakall et al. 2003), a rare endemic
of the old landscapes of Sydney’s BlueMountains, were
an interest of the University of Western Australia’s Sid
James, who coined the ‘Ultimate Self Hypothesis’ to
describe this phenomenon (Hopper and Barlow 2000).
James’ idea is that persistent lineages are ‘recombina-
tionally capable with low allelic diversity’ (James
2000, pg 341). In some taxa a genotype evolves (the
ultimate self) that is eminently suited to all challenges
that environments through time pose for them. There-
fore, they have no need for genetic variation to cope

with and evolve through environmental change as
conventional theory proposes. Hence, the Ultimate Self
Hypothesis is the OCBIL equivalent of, and therefore
complements, Baker’s (1965) ‘general-purpose geno-
type’ hypothesis proposed for invasive weeds of and
from YODFELs (Lynch 1984). In developing the
Ultimate Self Hypothesis, James explored clonality in
taxa in southwest Australia ranging from Drosera
(Chen et al. 1997) to Eucalyptus (Kennington and
James 1997) and seagrasses (Waycott et al. 1996).
Extending the ultimate self through parthenogenesis
(Hörandl 2006) might also be expected in OCBILs but,
as yet, little detailed information exists on asexual
reproduction in our areas of interest.

Various molecular tools and age estimates enable
James’ predictions to be tested. In the case of mallee
eucalypts in the Southwest Australian Floristic Region,
estimates for the single known clone of Eucalyptus
phylacis place it as ca. 6,380 years old (Rossetto et al.
1997). Clonality in other mallee eucalypts is increas-
ingly evident (e.g. Byrne and Hopper 2008). Persistence
through resprouting from underground structures is a
noteworthy feature of plants in OCBIL regions
(Bellingham and Sparrow 2000; Bond and Midgley
2001). Persistence of long-lived adult plants was
regarded by Yates et al. (2007a) as fundamental to the
prolonged presence of the rare subshrub Verticordia
staminosa (Myrtaceae) on isolated granite outcrops in
the Southwest Australian Floristic Region.

The southwest flora today is dominated by families
rich in woody long-lived perennials (Hopper and Gioia

Table 6 Persistence exemplified by endemic plant families and the Order Dasypogonales in OCBIL floristic regions

OCBIL Region (data source) Area
(km2)

# families
present

# (%) families
endemic

Endemic family and
Order names

Authority

Pantepui 5,000 158 1 (0.5) Tepuianthaceae Berry and Riina (2005)

Cape 90,000 173 4 (3) Penaeaceae Goldblatt and Manning (2002)
Grubbiaceae

Roridulaceae

Geissolomataceae

Succulent karoo 100,250 n.a. 0 (0) n.a. Hilton-Taylor (1996)

Southwest Australian Floristic Region 302,630 143 6 (4) Cephalotaceae Hopper and Gioia (2004)
Eremosynaceae

Emblingiaceae

Dasypogonales

Anarthriaceae

Ecdeiocoleaceae
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2004) such as Myrtaceae (1,283 species/subspecies),
Proteaceae (859), Fabaceae (540), Mimosaceae (503),
and Ericaceae (297). Resprouting shrubs and trees
dominate many communities, perhaps in response to
recurrent fire, but the origins of their persistent
perennial habit may have predated modern fire regimes
and arisen from one or more multiple causes that
damage above-ground parts (Main 1996; Hopper
2003). Photographic evidence is accumulating of long-
term persistence of woody individuals in the South
West Australian Floristic Region (e.g. Gibson 2007). Of
course, shorter-lived, non-sprouting woody plants are
also to be found in OCBILs, especially where
appropriate fire regimes prevail (Cowling 1987, 1992;
Hopper et al. 1990).

3. The James Effect (selection for heterozygosity in
small populations, e.g., through bird pollination,
genomic coalescence)

The James Effect refers to natural selection for
genetic, cytogenetic or phenotypic adaptations that
conserve heterozygosity in the face of inbreeding due
to small population size This process is named for
Associate Professor Sid James (1933–1998) of The
University of Western Australia, who devoted his
research career to exploring hypotheses in the field of
genetic system responses to small population size and
inbreeding (James 1992, 2000; Hopper and Barlow
2000). If selection favours ‘staying put’ in OCBILs,
inbreeding through small population size is likely.
Various adaptations enable an escape from the
debilitating effects of inbreeding, as the pioneering
work of Darwin (1862, 1876) demonstrated.

While seed may not disperse often or widely, pollen
might through the help of strong-flying animals,
notably birds (Byrne et al. 2007; Yates et al. 2007b;
Phillips et al. in press; Krauss et al. 2009). The
Southwest Australian Floristic Region has the highest
proportion of vertebrate-pollinated plants in the world
(15%), a figure that escalates to 40% when only the
rarest component of the flora is considered (Hopper et
al. 1990, Hopper and Gioia 2004). Vertebrate pollina-
tion also features in the Greater Cape, although
proportionately less so than for the Southwest Austra-
lian Floristic Region (Rebelo 1987). Similarly, there
are certainly hummingbird-pollinated plants on the
Pantepui, but an analysis of reproductive biology of
plants of the Gran Sabana suggests that bird-pollinated

species are likely to account for less than 10% of the
flora (Ramirez 1993). Perhaps strong flying insects,
which account for most pollinator activity in all three
OCBILs, play the main role in the Pantepui (e.g.
Renner 1989). Some remarkable insect-pollinated
systems have evolved in the Greater Cape, including
the suite of genera that have adapted to pollination by
strong-flying long-tongued flies, oil-collecting bees,
butterflies and hopliine beetles (Goldblatt and Manning
2000; Johnson and Steiner 2003; Pauw 2007). Simi-
larly in the Southwest Australian Floristic Region, the
evolution of terrestrial orchids has involved multiple
shifts from food-rewarding pollination to pollination
by sexual deception of male wasps, followed by
speciation within clades so-adapted (Hopper and
Brown 2007; Brown et al. 2008).

Alternatively, various cytogenetic processes have
the effect of conserving heterozygosity despite in-
breeding, embraced in the concept of genomic
coalescence (James 1992, 2000). James (1992) argued
that strong selection for genic and chromosomal
mechanisms that prevent loss of genetic variation or
adapted gene complexes occurred in small inbred
populations. These genetic mechanisms include trans-
location heterozygosity, dysploidy, polyploidy (Leitch
and Leitch 2008) and the evolution of B chromosome
systems. An increase in genome size, known to be
correlated positively with rarity (Vinogradov 2003;
Knight et al. 2005), is hypothesized to reflect the
acquisition of increasingly complex genetic system
control mechanisms associated with such cytoevolution.
Larger genomes are therefore predicted to be evident in
OCBIL biota.

The evolution of sex-forms may achieve the same
outcome, although evidence for enhanced dioecy is
not apparent for OCBILs—‘geographic distribution
has no strong effect on the presence or absence of
dioecy’ (Renner and Ricklefs 1995, pg 605). About
6% of angiosperms are dioecious, and this mating
system is positively correlated with monecy, abiotic
pollination and climbing habit (Renner and Ricklefs
1995). In the Southwest Australian Floristic Region,
4% of flowering plants are dioecious (McComb
1966). A similar proportion has been recorded for
the Gran Sabana of the Pantepui (Ramirez 1993). In
the Cape Flora dioecy is 6.6%, with the Proteaceae
and Restionaceae disproportionately represented
among dioecious species (Steiner 1987). Countries
dominated by YODFELs vary in the proportion of
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dioecious species, from 4–6% for the British Isles,
northeast USA and Alaska, to 12% in New Zealand
and as high as 28% for the tropical volcanics of
Hawaii (references in Steiner 1987).

Some lineages may be able to purge deleterious
recessive genes and thereafter not endure the effects of
deleterious recessives in inbred populations that persist
for long periods of time. The Wollemi pine, occupying
the ancient landscapes of the Blue Mountains near
Sydney (Twidale 2007), provides such an example
(Peakall et al. 2003). Similarly, a few taxa in the
Southwest Australian Floristic Region display surpris-
ingly little or no detectable genetic divergence among
populations, yet persist in healthy populations of
considerable antiquity, e.g. the seagrass Amphibolus
antarcticus (Waycott et al. 1996). Small populations of
Eucalyptus caesia (Fig. 7) persisting on isolated
granite outcrops for millions of years do not display
the effects of inbreeding depression, suggesting that
deleterious recessives have been purged by natural
selection (Byrne and Hopper 2008). This aspect of the
population genetic architecture of plants in the Greater
Cape and Pantepui awaits investigation.

A significant consequence of the James Effect,
especially when cytogenetic responses to inbreeding
are involved, is the incidental evolution of reproductive
barriers between daughter and parental populations—
speciation. OCBIL theory predicts that such modes of
speciation are more common than previously appreci-
ated, and account for species flocks (Cowling and
Lamont 1998) much more so than ecological modes of
speciation. Indeed, phylogenetic niche conservatism is
very common, and biome shifts are rare among sister
species (Crisp et al. 2009). Modes of speciation
involving genetic system change need more attention,
especially in the Greater Cape and Pantepui, where
hitherto they remain largely uninvestigated.

Geitonogamous pollination is the most common
mating event in hermaphroditic plants, given that
pollinators usually work several flowers within a plant
before moving to another. As James (2000) empha-
sized, apparent outbreeders in such cases are habitual
inbreeders in terms of pollen flow. Conservation of
heterozygosity becomes a powerful target of selection
in such circumstances, and the James Effect brings in
to focus that an especially diverse array of compen-
sating genetic system responses is likely to be evident
in OCBILs.

4. Prolonged speciation at the margins (Semiarid
Cradle Hypothesis)

The relative climatic stability of OCBILs should be
paralleled by variable climate in adjacent semi-arid
areas enhancing prolonged speciation This idea
received early attention from Californian plant evolu-
tionary biologists (Stebbins 1952; Stebbins and Major
1965; Axelrod 1967, 1972) and was recently named
the Semiarid Cradle Hypothesis (Hopper 2005). It has
been embraced for the Southwest Australian Floristic
Region (Hopper 1979; Hopper and Gioia 2004) but,
interestingly, less so for the Greater Cape Region until
recently (e.g. Verboom et al. 2009). The evidence
from molecular systematics is now beginning to
support the hypothesis in a range of genera. It is
rather early to offer comment for the Pantepui, but
some promising work on plant speciation is underway
(Givnish et al. 2000).

Where in the Greater Cape region have recurrent
episodes of speciation occurred? Several genera in the
Cape flora have remarkable numbers of species—
Erica (Ericaceae) with 658, Aspalathus (Fabaceae)
with 272, Moraea (Iridaceae) with 250, Pelargonium
(Geraniaceae) with 148 etc (Goldblatt and Manning
2002). Large genera of Aizoaceae in the adjacent
succulent karoo include Lampranthus with 227
species and Ruschia with 220 (Klak et al. 2004).

It is becoming clear that, as in California and the
Southwest Australian Floristic Region, speciation has
been pronounced in the transitional rainfall zone
between mesic refugia in the Cape Fold mountains
and adjacent semi-arid slopes and lowlands extending
inland, to the Eastern Cape and northwards to the
Namib Desert. Recent species-level molecular analysis
of Pelargonium (Bakker et al. 1998; 2005), Moraea
(Goldblatt et al. 2002), and Ehrharta (Poaceae—
Verboom et al. 2003) all demonstrate the importance
of the semi-arid transitional rainfall belt, ranging from
the drier slopes of the Cape Fold mountains up the
west coast lowlands of the Cape region and adjacent
Namaqualand, as a centre of accentuated species
richness and diversification. Molecular phylogenetics
of large genera of the 4,750 species of the succulent
karoo, especially of Aizoaceae (Klak et al. 2004; Ellis
et al. 2006) and daisies (Asteraceae), has revealed
extraordinary speciation rates (Verboom et al. 2009).
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These two families together comprise the two largest in
this spectacularly rich succulent flora.

The Namib is estimated to be of Cretaceous age
(Goudie and Eckardt 1999), and, save for some
Neogene uplift (Cowling et al. 2009), the Cape Fold
mountains have been geologically stable and climat-
ically buffered by adjacent oceans since the Jurassic.
Only the subdued flat landscape of the Southwest
Australian Floristic Region is of comparable age and
greater climatic stability (Cowling et al. 2005a) and
also has experienced prolonged absence of glaciation,
but the Australian deserts are of mid-late Tertiary age
(Hopper 2005; Byrne et al. 2008), considerably
younger than the Namib. Hence there has been a much
longer period available for speciation in the semiarid
cradle of the Greater Cape than in the Southwest
Australian Floristic Region. Indeed, the oldest lineages
in the Namib speciating southwards through semiarid
Namaqualand (Fig. 4) to the Cape are evident in recent
studies of insect groups such as the remarkable new
order of Heelwalkers (Mantophasmatodea; Damgaard et
al. 2008) and in lizards (e.g. Southern Rock Agama—
Swart et al. 2009). Similar arguments apply to the
semiarid Little Karoo and eastern Cape regions, the
latter in particular reknown for its rich subtropical
thicket flora with pronounced phylogenetic diversity
(Cowling et al. 2005b; Forest et al. 2007).

The contrary conclusion that the Namaqualand region
is a site of more recent speciation than the Cape is correct
for a number of species-rich genera (Verboom et al.
2009). However, these authors did not distinguish
mesic refugia in the Cape from semiarid slopes. Such
a distinction is needed to test the Semiarid Cradle
Hypothesis. Moreover, sampling of taxa was directed at
species-rich genera. A random sample of clades across
the flora is needed to ascertain whether or not older
lineages are to be found commonly in the semiarid
cradle habitats. Forest et al. (2007) did not sample
Namaqualand in their study of phylogenetic diversity.
OCBIL theory predicts an approximately even disper-
sion of phylogenetic richness from the mesic refugia of
the Cape to the semiarid transitional areas adjacent on
slopes and north into Namaqualand. A test for even
phylogenetic diversity pattern across similar mesic to
transitional areas in the Southwest Australian Floristic
Region is underway currently (Forest et al., in prep.).

Knowledge of modes of speciation in the Greater
Cape flora remains fragmentary and speculative. One

focus is on ecological modes. Contemporary authors
(e.g. Linder 2005) emphasize divergence due to
aridification, edaphic and topographic complexity,
fire-created niches and pollinator shifts. Many other
comparable areas of the world characterised by these
environmental attributes do not approach the species
richness of the Greater Cape, especially three of the
four with a mediterranean climate (the Southwest
Australian Floristic Region, of course, lacks signifi-
cant mountains). Consequently, other factors must be
central to explain the Greater Cape’s extraordinary
floristic richness (Hopper and Gioia 2004; Cowling
et al. 2009).

If recurrent speciation among old lineages has
occurred in the semiarid cradle of the Greater Cape,
new environmental factors emerge as significant—
those emphasised in OCBIL theory—including un-
paralleled opportunities for population persistence,
isolation, and highly tuned adaptation to local circum-
stances (see also Cowling et al. 2009). However,
ecological factors alone do not necessarily lead to
speciation, as is evident in many countries where
widespread generalists occupy a broad range of soil
types, topographies and climatic zones (e.g. species of
boreal conifer forests—Petit et al. 2003). Of equal
relevance is evidence highlighted above that phylo-
genetic niche conservatism is much more common
than previously understood, indicating that ecological
speciation may not be as important as given recent
credence.

Alternatively, then, contemporary theory out-
lined in the preceding section indicates the impor-
tance of genetic and cytogenetic processes that
ultimately result in the fixation of reproductive or
ecological isolating barriers with speciation as an
incidental byproduct. Chromosomal change is one
of the more obvious adaptive genetic system
responses in such circumstances. In the Greater
Cape region, OCBIL theory brings sharply into
focus the need for future studies to apply molec-
ular analysis, as well as traditional chromosome
and breeding system work to population phylo-
geography. The power of this approach to help
unravel evolutionary processes at the population
level has been demonstrated for taxa of the
Southwest Australian Floristic Region (e.g. James
1992, 2000; James et al. 1999; Bussell et al. 2002;
Coates et al. 2003; Watanabe et al. 2006).
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5. Nutritional and other biological specialisation

Special nutritional and other biological traits associated
with coping with infertile lands should be evident in
OCBILs, accentuated in plants with water-foraging
strategies, unusual life histories, symbioses, carnivory,
pollination and parasitism etc (e.g. Pate 1989; Pate
et al. 1984; Cowling and Richardson 1995; Cowling
and Pierce 1999; Lambers and Shane 2007; Orians
and Milewski 2007; Phillips et al. in press).

The nutritional challenge posed by deeply weath-
ered, highly infertile soils will have pervasive
biological outcomes, especially given the tens of
millions of years that OCBIL organisms have had to
evolve in situ. Accentuated development of ecophys-
iological adaptations in roots and other underground
structures is evident (Lamont 1982). Cluster roots
(Shane and Lambers 2005), dauciform roots (Shane
et al. 2005), geophytism (Parsons and Hopper 2003;
Proches et al. 2005a) and extensive water-foraging
strategies (Poot and Lambers 2008) are evident in the
Southwest Australian Floristic Region and the Greater
Cape. Removal of perennial native vegetation in these
regions has required massive importation of nutrients
to sustain cereal agriculture (Cordell et al. 2009).
Superphosphate is spread annually on paddocks, often
aerially, where wind drift into adjacent remnants of
native vegetation causes phosphate poisoning of
native plants and invasion of YODFELs and OCBILs
alike by non-native weedy species (Hobbs and Atkins
1991). Aerial deposition of nutrient-enriched dust
storms is an additional background factor that may have
enhanced Greater Cape soils historically (Soderberg and
Compton 2007). The more impoverished soils of the
Southwest Australian Floristic Region appear not to
have received such geologically exogenous enrichment
due to prevailing oceanic westerly winds (Hesse and
McTainsh 2003).

Mycorrhizal and bacterial symbioses are found in
the Southwest Australian Floristic Region and the
Greater Cape, though usually in taxa common on less
infertile soils than those of OCBILs (Lamont 1982;
Brundrett 2004, 2009; Lambers et al. 2008). In
southwest Australia, ectomycorrhizal partnerships
are five times more frequent than expected, associated
in particular with Myrtaceae and Fabaceae (Brundrett
2009). Microbial symbioses also are seen among
marsupial herbivores and termites in these two

regions (Kinnear et al. 1979; Kinnear and Main
1979; Douglas 2009).

Sophisticated mechanisms for mining and remobi-
lisation of P are especially marked on OCBILs, for
example, in Banksia (Denton et al. 2007; Lambers
et al. 2008). Intriguingly, such adaptations have been
hypothesised as phytotaria—agents of soil bioengi-
neering leading to ‘the formation of silicon- or iron-
based linings of vertical channels and pores, binding of
sand on roots, generation of organically derived hydro-
phobicity, development of clay-based hardpans and
texture-contrast seals, precipitation of silcrete, calcrete
and ferricrete pavements, effective accessing and con-
servation of P resources, including mining by microbes
and the biological cycling of Si and Al via plants and
micro-organisms’ which create phytotaria…’the collec-
tive outcomes of the above biotic influences in construc-
tion and maintenance of niches peculiar to specific
vegetation types (Verboom and Pate 2006a, pg 71; see
also Pate et al. 2001; Verboom and Pate 2003, 2006b;
Pate and Verboom 2009). Thus, plants with traits
conducive to long-term persistence in OCBILs have
modified their edaphic environment to further enhance
their persistence and keep competitors at bay.

A range of other biological adaptations may be
predicted for OCBILs. For example, mechanical and
chemical defences of plant parts will be accentuated
in OCBILs, given the scarcity of essential nutrients in
impoverished soils (Orians and Milewski 2007; Read
et al. 2009). Deciduous leaves are rarely seen for the
same reason in the Southwest Australian Floristic
Region, where infertility is greatest (Dallman 1998).
Deciduous shrubs are more evident in the Greater
Cape, especially in the succulent karoo vegetation of
Namaqualand where soils are less infertile.

As discussed earlier, an accentuated degree of
myrmecochory and seed burial will be evident.
Underground caching of seeds by animals other than
ants has been documented, though this is a process at
great threat due to local extinction of relevant
marsupials in the Southwest Australian Floristic
Region and beyond (Murphy et al. 2005).

Parasitism (Press and Graves 1995; Nickrent et al.
1998) would be expected to be highly developed in
OCBIL plants, providing an alternative to evolving
direct nutrient scavenging adaptations in highly
infertile soils. Curiously, this does not seem to be
the case, at least in terms of numbers of species of
parasitic plants in the South West Australian Floristic
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Region (Brundrett 2009). However, generic diversity
of parasites and hemiparisites is high, indicating that
persistence of old clades has been favoured. Nuytsia
floribunda, for example, an arborescent monotypic
genus endemic to the Southwest Australian Floristic
Region, is sister to all other Loranthaceae (Wilson and
Calvin 2007). The Greater Cape is similarly rich in
parasitic plants at generic level, though species-poor
relative to tropical regions (Visser 1981; Polhill and
Wiens 1998).

Adaptations for long distance pollination by strong
flying animals is another prediction for OCBILs
discussed above (see the James Effect). Nectar is
energetically inexpensive for plants to produce in
environments impoverished of nutrients. Discovery of
new adaptive traits in pollination ecology has been
especially prominent and ongoing for OCBIL biotas
(Johnson 2006; Phillips et al. 2009). Intriguingly,
some species in Namaqualand have diverged in floral
morphology without obvious differences in pollina-
tion ecology, revealing a level of complexity in trait
evolution hitherto unsuspected (Ellis and Johnson
2009). A rich field for future enquiry undoubtedly
exists in the pollination ecology of OCBIL plants.

The world’s greatest diversity of carnivorous plant
genera (Ellison and Gotelli 2009) is seen in the
Pantepui (Givnish et al. 2000), whereas explosive
radiation of sundews (Drosera) and an unexpectedly
high proportion of carnivorous plants is evident in the
Southwest Australian Floristic Region (Chen et al.
1997; Rivadavia et al. 2003; Heubl et al. 2006;
Brundrett 2009). That this is an ancient solution to the
nutritional challenges of OCBILs is seen in the
presence of the Albany pitcher plant, Cephalotus
folliularis (Cephalotaceae—Fig. 6f), a monotypic
relict family of carnivores endemic to the high rainfall
swamps of the Southwest Australian Floristic Region
(Hopper and Gioia 2004; Ellison and Gotelli 2009).

6. Adaptation to saline soils (only on flat inland
topography such as in the Southwest Australian
Floristic Region)

The uniquely flat landscapes of the Southwest
Australian Floristic Region have had prolonged
presence of saline palaeoriver systems favouring
evolution of accentuated tolerance to salinity (George
et al. 2006) Halophyte diversity is extraordinary in
the Southwest Australian Floristic Region, evolving

in many phylogenetically independent lineages, from
the usual and expected families such as Chenopodiaceae
(Shepherd et al. 2004) to the most dominant trees, such
as individual species and series of eucalypts (Brooker
and Hopper 1989). Such radiations date back at least to
the late Miocene, with subsequent acceleration associ-
ated with increasing aridity (Martin 2006). The more
mountainous OCBIL terrains of the Greater Cape and
Pantepui have resulted in better flushing of salts from
the landscape by rainfall, and special salt tolerance
consequently is found rarely.

A suite of plants has evolved that are endemic to
slightly elevated sandy rises embedded within southwest
Australian salt lakes. These plants derive moisture from
fresh water lenses narrowly perched above saline
groundwater, and are especially vulnerable to landscape
salinisation (Beresford 2001; George et al. 2006).
Tribonanthes minor, for example, appears to have
originated some 10 my ago (Hopper et al. 2009).
Caladenia drakeoides is a critically endangered species
with a similar ecology (Hopper et al. 1990; Brown et al.
1998). These examples bring us to a consideration of
other special conservation challenges and opportunities
predicted from OCBIL theory.

7. Special vulnerability (e.g. to soil removal) and
enhanced resilience (e.g. to fragmentation)

Unusual resiliences and vulnerabilities might be
evident among OCBIL organisms, such as enhanced
abilities to persist in small fragmented populations
but great susceptibility to major soil disturbances The
biological responses arising from evolution in local-
ised places subjected to minor soil disturbance and
oceanically modulated stable climatic buffering will
be profound. Organisms that have evolved for
millions of years in fragmented population systems
may well display unexpected persistence and resil-
ience to modern fragmentation caused by human
habitat clearance for agriculture, urbanisation and
industry. Persistence of small populations on isolated
granite outcrops in the Southwest Australian Floristic
Region has been mentioned above. In the Greater
Cape the principle of retaining small remnants of
OCBIL vegetation is well established (Bond et al.
1988; Cowling and Bond 1991; Kemper et al. 1999;
Cowling et al. 2003; Pressey et al. 2003). An
interesting example concerns several orchids, including
the common but disjunct populations of Pterygodium
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catholicum, specialized for pollination by the oil
collecting mellitid bee Rediviva peringueyi (Pauw
2007). Small nature reserves averaging 30 ha (ranging
from 4 ha to 609 ha) supported high capsule set in P.
catholicum in rural areas, even where fragmented by
agriculture. Only in small urban areas where most
indigenous vegetation in the surrounding landscape
matrix had been removed was capsule set significantly
depressed, and the pollinators presumably were rendered
locally extinct. This study also demonstrated in early
postfire successional vegetation almost complete repro-
ductive impairment for populations of P. catholicum on
sandy soils occupied by fynbos, irrespective of reserve
size, compared with 25–100% capsule set for popula-
tions on clay-based soils occupied by renosterveld.
Natural selection favouring disjunct populations con-
fined to specific soils mixed in fine-scale mosaics with
other soil types underlies the natural fragmentation of
many OCBIL organisms.

Because wholesale topsoil removal or replacement
by glaciation, inundation, volcanism, orogeny, dust
storms etc has not occurred frequently on OCBILs,
unusual vulnerability to soil removal and/or even
minor forms of disturbance is to be expected. Work
by Rokich et al. (2000) has demonstrated that the top
5 cm of soil in Southwest Australian Floristic Region
Banksia woodlands contains 90% of all seed and
micro-organisms that sustain the above ground vas-
cular plant communities. The next 5 cm deeper
contains a further 5%. Removal of this thin layer of
topsoil compromises the ability of the community to
persist and recover from other disturbances for very
long periods of time. The opportunity in space and
time is opened for invasive organisms, usually from
YODFEL regions, to colonise the bare depleted soil.

This soil phenomenon leads to a prediction that
OCBIL regions should display high levels of invasi-
bility. A test of this hypothesis in a global inventory
of the proportion of non-native weed species on
granite outcrops provides some support (Fig. 8).
Regions of eastern Australia, South Africa and the
USA where glacial activity, orogeny, marine inunda-
tion or prolonged soil disturbance by animals have
occurred support resilient native floras able to
compete with exotic species under ongoing soil
disturbance regimes. In contrast, native plant species
on the ancient Australian landscapes unaffected by
glacial, eustatic, orogenic or extensive soil distur-
bance by animals, such as the Southwest Australian

Floristic Region or South Australia’s Eyre Peninsula,
are much less resilient to non-native species’ invasion,
particularly where contemporary disturbance coincides
with artificially elevated soil fertility causing P toxicity
and other effects (Cramer and Hobbs 2007).

Invasibility of Cape plant communities by species
of Hakea, Acacia, Eucalyptus and Pinus is exacer-
bated by fire regimes (e.g. Holmes et al. 2000).
Reciprocally, Greater Cape geophytes and grasses
such as Ehrharta calycina and Eragrostis curvula
invade nutrient-enriched and frequently burnt Southwest
Australian Floristic Region plant communities (e.g.
Fisher et al. 2006). However, interpreting the evolution-
ary significance of fire in OCBILs is challenging
indeed, and deserves brief comment.

The evolutionary conundrum of fire

Fire today is a common agent of disturbance in the
Southwest Australian Floristic Region and in the
Greater Cape, producing complex ecological out-
comes because of the great variability in components
of the fire regime such as frequency, intensity,
seasonality and areal extent (Cowling 1992; Whelan
1995; Bond and van Wilgen 1996; Abbott and
Burrows 2003; Hopper 2003). Its role in the Pantepui
is less conspicuous and somewhat controversial,
although occasional fire does occur (Givnish et al.
1986; Huber 1995b, 2006; Rull 1999).

There is a need for caution in reference to fire as a
major evolutionary force in OCBILs, primarily
because current evidence supporting such a hypothesis
is equivocal at best. Many authors hold an alternative
view, arguing for a central role of fire on the evolution
of OCBIL biota (e.g. Cowling 1987, 1992; Wisheu
et al. 2000; Orians and Milewski 2007). As explained
earlier, the literature on plant traits inferred to be
adaptations to fire (or fire regimes) is replete with
confusion between adaptations and exaptations (Whelan
1995; Hopper 2003). Multiple evolutionary selective
forces other than fire may be invoked as causes of traits
that function today in coping with fire, including such
traits as resprouting, obligate seed regeneration, brady-
spory (less precisely named ‘serotiny’ by many),
ethylene-induced post-fire flowering, hard-seededness,
smoke-stimulated germination, myrmecochory and
flammability of plant parts. Of course, increases in
fitness and response to fire regimes for such traits
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might exist. However, there is a need for a more
critical approach to the question of adaptation in
relation to fire regimes. Careful experimentation
demonstrating function, inheritance, natural selection
and phylogenetic context would furnish convincing
evidence testing the evolutionary importance of fire
regimes in OCBILs as a selective force on plant traits.

Conservation implications for biodiversity
of OCBILS

The above attempt to achieve an integration of ideas
pertaining to OCBIL theory leads to a series of
hypotheses about conservation strategies, several of
which are the converse of what conservation theory
developed from studies of YODFEL organisms has
proposed (Table 7). These are discussed briefly in the
following text.

Providing space—small and isolated
may be sufficient for persistence, edge-effects aside

Every remnant of native vegetation, no matter how
small, is worth retaining. Remnants will have popula-
tions of some OCBIL organisms exhibiting unexpected
persistence and enhanced resilience, despite massive
fragmentation and loss of surrounding vegetation. In
short, OCBIL biota can and do persist in unusually
small fragments for longer than YODFEL biota would

last under similar circumstances. Work on fragmenta-
tion effects in the Cape best illustrate the principle of
not discounting small remnants of OCBIL vegetation
(Bond et al. 1988; Cowling and Bond 1991; Kemper
et al. 1999; Cowling et al. 2003; Pressey et al. 2003;
Pauw 2007). Similar evidence exists in studies within
the Southwest Australian Floristic Region (e.g. Yates
et al. 2007c).

The above conclusion regarding the value of small
remnants goes against the grain of coventional conser-
vation theory, and brings into sharp focus the need for
caution in applying methodological approaches and
theory developed primarily on YODFELs to OCBIL
biota. For example, the so-called SLOSS debate (single
large versus several small) on nature reserve design
reasonably concluded that larger was better in most
cases studied (usually YODFELs, or on mobile compo-
nents of OCBIL biota—Murphy 1989; Whittaker et al.
2005). Murphy (1989, pg 83) asserted: “… no
competent biologist has ever suggested that reserves
should not be as large as possible. Statements that
small reserves could be designed that would protect
more species than certain single large reserves led to
the illogical suggestion that the fragmentation of intact
habitat areas could be beneficial … their conclusions
are what every land developer and every timber
industry representative wants to hear—chopping up
natural habitats does not really put species at risk.” Yet,
for OCBILs, there is a converse to Murphy’s line of
argument. Fragmentation of the broader matrix of

native

weed
NASA
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Fig. 8 The proportions of native plants versus exotic invasive
non-native weeds on granite outcrop systems in selected
OCBILs (piecharts labelled O) and YODFELs (Hopper

2002). Outcrops in South Africa’s Greater Cape are embedded
in landscapes of variable age, from old to young
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intact vegetation, threatening as it is, may have little
impact on naturally disjunct OCBIL biota if their
population systems remain intact and provided edge
effects are minimal. Significant edge effects from
invasive species, altered hydrogeomorphological pro-
cesses, wind-drift of fertilizers, increased human access
and disturbance etc. clearly will negate this statement.
However, of greatest risk to OCBIL biota is the
conclusion that because fragments are small, they are
worthless for conservation. The same threat also
applies for some YODFEL fragments of great conser-
vation value—Arroyo-Rodriguez et al. (2009).

All remnants provide invaluable and irreplaceable
nuclei for the future repair and restoration of OCBIL
biota. We should certainly be wary of views that
remnants are ‘too small to be viable’. Such statements
are drawn from theory pertinent to YODFEL organ-
isms, which would not have enough space (resources)
to persist in the small remnants that are possible for
OCBIL organisms to occupy and continue in their
accentuated persistence. In a world where a fifth of
carbon emissions still arise from ongoing destruction
and burning of remaining wild vegetation (Houghton
2004), retaining remnants is especially critical in
OCBIL regions, where the chances of repair and
restoration are significantly more challenging than
they are for YODFEL regions.

Providing space for organisms on OCBILs is as
fundamental as it is for organisms on YODFELs. The
major difference is that organisms of OCBILs rarely

will colonise space previously cleared of native
vegetation of their own accord (Cramer and Hobbs
2007). Attempts at restoration and repair of disturbed
and depleted OCBIL communities are in their infancy
(Rokich et al. 2000), with the exception of more than
three decades’ work on post-mining restoration in
jarrah (Eucalyptus marginata) forest occupying
OCBILs of the Darling Range near Perth (Koch and
Hobbs 2007). Much more success has occurred with
restoration of YODFEL communities, given that they
are full of good dispersers and colonisers that can
largely regenerate producing self-sustaining popula-
tions if space is provided.

Linking fragmented remnants of native vegetation
with revegetated corridors is a perfectly appropriate
strategy in YODFELs, but something we should be
wary of for OCBILs. This conservation strategy,
driven from a focus on mobile mammals and birds
of YODFELs (Saunders et al. 1990), has significant
drawbacks with OCBIL biota. The natural fragmen-
tation and insularity of OCBIL communities should
be understood and respected when devising revegeta-
tion strategies. At worst, revegetated corridors linking
OCBIL communities become invasion portals for
weeds (Proches et al. 2005b), feral animals and exotic
diseases such as dieback due to root-rot (Shearer et al.
2004). The controversial suggestion that: ‘many
native species of conservation concern have limited
dispersal abilities and therefore would be more likely
to benefit from corridors’ (Levy et al. 2005, pg 780)

Table 7 Conserving OCBIL biodiversity—hypotheses and strategies

• Every native vegetation remnant on OCBILs is valuable, no matter how small, and may have unique persisting communities—they
are not interchangeable as often are those of YODFELs

• Small insular areas are often as good as large connected areas for OCBIL biota, edge-effects aside

• Connecting isolated OCBIL communities through revegetated corridors is often unnecessary and might foster weed, feral animal and
disease invasions

• Human disturbance is often detrimental. There is a need in OCBILs to:

- Focus human disturbance on YODFELS, away from OCBILs—e.g. on less infertile soils along coastal/wetland margins

- Provide space for the biodiversity of OCBILs

- Minimise soil removal via bulldozing etc

- Minimise importation of nutrients

- Minimise pollution causing climate change

- Minimise importation of alien plants, animals and diseases, and control where possible

- Minimise groundwater extraction

- Minimise logging and removal of long-lived adult plants

- Store seeds and other propagules

• In restoration of OCBIL vegetation, plant local seeds or cuttings
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as a counter to concerns about corridors as portals for
invasives raised by Greater Cape botanists (Proches
et al. 2005b) illustrates how contrasting perspectives
have developed from foci on YODFEL v/s OCBIL
biota.

The criticality of leaving topsoil intact

Bulldozing and removal of the thin layer of topsoil
covering OCBILs has major negative consequences,
whereas on YODFELs it is arguably little different from
other erosional or depositional forces of nature arising
from glaciation, flooding, wind storms, volcanism or
orogeny. There are, of course, exceptions onYODFELs,
but many species can survive such disturbances
(Whittaker et al. 2005). Destruction of native biota on
OCBILs followed the rapid and extensive clearance of
native vegetation for cereal agriculture by bulldozers
since World War II in the Southwest Australian
Floristic Region (Beresford 2001). The flat subdued
landscape has been relatively easy to work with heavy
machinery, despite the rich covering of hardwood
forest and shrubby vegetation. Removal of this
perennial vegetation has required massive importation
of readily available nutrients (superphosphate and trace
elements) to sustain cereal agriculture. Moreover, the
saline water-tables kept deep below the surface by
water use of the native perennial vegetation have risen,
extending ancient natural salt lake systems outwards
and upwards across the landscape. Loss of a third of
the current productive agricultural land due to rising
salinity, as well as extensive damage to town and farm
buildings, roads and other infrastructure in vulnerable
parts of the landscape are increasingly evident or
predicted (George et al. 2006). Replacing annual crops
with deep-rooted perennials will be part of the solution
to this significant environmental challenge.

Some segments of the Southwest Australian
Floristic Region OCBILs have been so unattractive
or impossible to work for agriculture that they have
been spared from conversion by heavy machinery
(e.g. rock outcrops and other hills, salt lake systems).
These segments retain invaluable remnants of the
native biota that will be of use in future repair and
restoration. Similarly, OCBILs of the Greater Cape
and Pantepui have been protected from the worst
excesses of human disturbance because of their
mountainous terrain. OCBIL communities in these
regions are more intact comparatively, with a few

exceptions (e.g. the Cape Flats and renosterveld), than
those in the Southwest Australian Floristic Region.

Sensitivity to soil removal is less pronounced in
YODFELs embedded within OCBIL regions. Given
the extensive Neogene uplift of mountains in the
Greater Cape (Cowling et al. 2009), the area of
YODFELs is greater than in the Southwest Australian
Floristic Region and Pantepui. Nevertheless, the
extensive occurrence of geophytes (Proches et al.
2005a) and resprouting shrubs in YODFELs occupied
by fynbos, renosterveld and succulent karoo suggests
that wholesale topsoil removal would be detrimental
even for these landscapes so regularly disturbed by
erosional and other processes.

Climate change and OCBILs

Given that climatic buffering over tens of millions of
years has been important to the persistence of OCBIL
communities, the spectre of rapid global warming in
our time is particularly worrying for the world’s
OCBIL regions (Malcolm et al. 2006; Midgley and
Thuiller 2005; Rull and Vegas-Vilarrubia 2006).
However, present modeling based on climatic enve-
lope approaches does not take account of the
fundamental biological differences between organ-
isms of OCBILs and YODFELs. Climatic envelope
modeling seems more appropriate for easily-dispersed
YODFEL biota than for that of OCBILs, but even
with such YODFEL biota some caution is also needed
in applying climatic envelope analysis (Hampe 2004;
Whittaker et al. 2005; Ohlemüller et al. 2006; Millar
et al. 2007).

An appreciation of the limited seed dispersal
capabilities of most Southwest Australian Floristic
Region plants suggests that tracking climate change
by organisms is an unlikely option. Some dispersal
might occur along local YODFELs such as coastal
dunes, drainage lines and relatively fertile gentle
slopes. The converse seems likely for plants of most
other habitats, however. Much more likely for OCBIL
plants under a drying climate scenario is that
populations would die out in marginal habitat and
persist only in refugial wetter habitat in the landscape.
Evidence for historical contraction to small disjunct
refugial sites is conspicuous in the Southwest Australian
Floristic Region and in the adjacent arid zone (Hopper
1979; Hopper and Gioia 2004; Byrne et al. 2008).
Many rare relictual species are found in locally wet
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habitat such as on granite outcrops (e.g. Byrne and
Hopper 2008; Fig. 7), on the southern slopes of
breakaways (escarpments flanking mesas), on seeps
and in ephemeral swamps (Brown et al. 1998).
Conservation of such seasonally wet habitats will be
a key strategy as the climate warms (Horwitz et al.
2008).

It is biologically naïve to assume in climatic
modelling that OCBIL species are capable of colonising
most patches of preferred soil within a given climatic
envelope. Decades of searching for rare and poorly
known plant species in the Southwest Australian
Floristic Region (Hopper et al. 1990) has impressed
upon me that occupation of all or even most of the
available preferred soil patches occurs rarely. It is far
more common for species to occur sporadically in
localised patches even if their preferred soil is quite
abundant and continuous over many kilometres. This
reflects millions of years of population flux, local
adaptation and local extinction, superbly illustrated
recently for the granite outcrop shrub Verticordia
staminosa (Yates et al. 2007a).

One only has to reflect upon the recent death of
many plants on shallow soils adjacent to granite
outcrops in the jarrah forest, wheatbelt and goldfields
during summer heatwaves (Hopper unpublished;
Yates et al. 2003) to appreciate that persistent global
warming will have immediate and dramatic impact
locally. It is the accelerated pace of present climate
change, unprecedented in geological time, that poses
such a significant threat to OCBIL floras that have
persisted in climatically buffered regions for tens of
millions of years. Moreover, given the severe limi-
tations on seed dispersal of most native plants and
relatively high proportion of non-native weeds now in
disturbed and fertilised sites in the Southwest Australian
Floristic Region, plant deaths associated with global
warming may well exacerbate weed invasion and
establishment.

Invasion biology

Left undisturbed, OCBILs are exceptionally resilient
to invasion by non-native exotic organisms. However,
this resilience tips over to extreme vulnerability when
disturbance regimes are altered. A classic example is
seen with clearing of native vegetation followed by
application of fertilisers or altered hydrological regimes

for cereal agriculture, pasture production or horticulture.
Then the impacts of importation of alien plants,
animals and diseases are profound. Vast areas of
OCBILs in the Southwest Australian Floristic Region
have been occupied by European and South African
non-native exotic weeds associated with agricultural
and related landscape disturbances (Hussey et al.
2007). The sheer diversity of invasive weeds and
numerical abundance of the most pernicious species
in the Region (e.g. the grasses Briza maxima and
Avena fatua from the Mediterranean or Ehrharta
longiflora from South Africa) indicate an unusual
level of vulnerability for OCBILs v/s YODFELs).
Strict controls are needed, both with importation and
in dealing with those invasives that already have
become established.

Groves (1991) and Groves and Kilby (1993)
considered the non-native floras of California, South
Australia, Chile and South Africa, noting close to an
order of magnitude more weed species recorded for
the former two regions compared with those recorded
for the latter two. No explanatory hypothesis for this
striking difference in invasive floras was offered.
However, it was noted for all four mediterranean
climate regions that the majority of weed species had
European origins, were either grasses or composites,
were annuals or biennials and had been introduced
deliberately as ornamental plants. Pre-adaptation to
fire, low nutrients and grazing were suggested as
attributes favouring establishment of weeds in the
four regions. Of these factors, low nutrients are a
hallmark of South African fynbos and South Austra-
lian mallee-heath weathered soils, but the younger
soils of California and Chile are much richer.

In an attempt to control for geological variation
across some of these regions, a cross-continental
study of native v/s non-native exotic weeds on granite
outcrops established that: ‘Regions of eastern Aus-
tralia, South Africa and the USA where glacial
activity, orogeny, marine inundation or prolonged soil
disturbance by animals have occurred have resilient
native floras able to compete with exotics under
ongoing soil disturbance regimes. In contrast, native
plants on the ancient Australian landscapes unaffected
by glacial, eustatic, orogenic or extensive soil
disturbance by animals, such as southern WA or Eyre
Peninsula, are much less resilient to weed invasion,
particularly where contemporary disturbance coin-
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cides with elevated soil fertility.’ (Hopper 2002, pg
96; see Fig. 8).

Repair and restoration of OCBIL communities
should include control of exotics to have any chance
of success (Cramer and Hobbs 2007). Major pro-
grammes for fox control and veld grass (Ehrharta
calycina) control in the Southwest Australian Floristic
Region have yielded extraordinary conservation ben-
efits (Fisher et al. 2006; Kinnear et al. 1998). In the
Greater Cape, the Working for Water Programme has
achieved similar outcomes, creating jobs and deliver-
ing improved water supplies for human consumption
as well as sources of fuelwood for impoverished
people through the removal of invasive woody plants
(van Wilgen et al. 1998). Fortunately thus far, the
inaccessibility of the Pantepui has obviated the need
for control of exotic species as few exotics have
gained a foothold (Huber 1995b).

Minimising human disturbance

An overarching strategy is wherever possible to
contain and minimise human disturbance of OCBILs
and their rich endemic biota (Table 7). First peoples in
the Southwest Australian Floristic Region and Greater
Cape did just that, focussing on the more fertile and
productive YODFELs embedded in these regions.
Their numbers and impact remained low over long
periods of time, at least 45,000 years in the Southwest
Australian Floristic Region (Allen and O’Connell
2003), and more than double that for early modern
humans in the Greater Cape (Parkington 2006). The
remaining biota of OCBILs that persist are the legacy
of the relatively sustainable life styles of Aboriginal
people. The Pantepui appear not to have been
colonised by first peoples because of inaccessibility
as well as the lack of sizable game and few edible
plants (Huber 1995b).

Today, despite vastly increased populations and
consumption levels, the focus of human land-use
remains much the same, with most cities, towns and
agriculture located on YODFELs embedded within
the Southwest Australian Floristic Region and Greater
Cape—i.e. fertile valley floors and slopes, along the
margins of wetlands and the coast. However, other
human-mediated activities show no such localisation,
intruding extensively into OCBILs—grazing, urbani-
zation, infrastructure corridors for transport and

energy transmission, logging, fire, some forms of
intensive agriculture, wildflower picking for cutflower
sales, and the increasingly demanding search for fresh
water and mineral resources to support contemporary
economies.

The fundamental importance of minimising human
impact can be illustrated with the extensive investigation
into the causes of rarity of Verticordia staminosa subsp.
staminosa (Yates et al. 2007a). It was discovered that
removal of long-lived adult plants was the single most
significant threat facing this rare endemic known from
a thriving but highly localised population on a single
granite inselberg in the Southwest Australian Floristic
Region. We would do well to leave such global
treasures alone, to carry on as they have done for
millions of years (Byrne and Hopper 2008), and reduce
our impact to opportunities for minimal-impact research
and tourism. When resources are so rare and essential
for local human quality of life, some additional
disturbance may be required.

Repair and restoration of OCBILS—an infant science
and practice

The extraordinary limitations on seed dispersal for
most Southwest Australian Floristic Region, Greater
Cape and Pantepui plant species indicate that using
local seed and planting to soil type for revegetation
are critical—more so than anywhere else on Earth
(Hopper 1997; Holmes and Richardson 1999). These
two practices will ensure the conservation of the full
range of biodiversity, including all the local animals
that track floristic differences over short distances.

Naturally there will be differences in what constitutes
local seed depending upon the species of concern.
Research currently is underway in the Southwest
Australian Floristic Region to help put some prove-
nance figures for local gene pools on a range of plant
species of different biology and life-form (Bussell et al.
2006; Krauss and He 2006). Already we know that
forest and major woodland trees in the Southwest
Australian Floristic Region having continuous large
populations are more genetically uniform across their
geographical range than their understorey plants such
as triggerplants (Stylidium, Stylidiaceae), kangaroo
paws (Anigozanthos, Haemodoraceae), or mallee
eucalypt species distributed on isolated granite out-
crops. Until such research is well advanced, however,
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the precautionary approach is to stay as local as
possible in seed collecting within the soil type being
revegetated. A similar strategy would seem desirable
for repairing OCBIL vegetation in the Greater Cape
(Holmes and Richardson 1999), but knowledge there
of population genetic architecture and seed provenance
needs much more research.

A recent review of sourcing seed for broadscale
restoration argues against the wisdom of applying the
precautionary principle to seed provenance (Broadhurst
et al. 2008). It is proposed that local seed are often
difficult or impossible to source in quantity in a
reasonable time, that they are often inbred, that the
scientific evidence for local adaptation is rarely
available and, even if it were, climate change would
render local adaptation meaningless in a rapidly
warming world. As suggested above, there may well
be greater latitude for sourcing seeds of species of
YODFELs or for certain plant life histories generally,
but to apply the same logic to all species of OCBILs
poses grave risks indeed of creating genetically
homogenised populations doomed to reproductive
failure for many taxa (see also James 2000; Krauss
and He 2006). There is mounting evidence that
evolutionary responses of plant species to past
(Cenozoic) climate change have involved contracting
to local disjunct refugia both in peri-glacial environ-
ments and in aridifying environments (references
above). Such local refugial populations are fundamen-
tally important sources of seed or germplasm for
restoration in OCBILs at least, and perhaps should
not be ignored or homogenised. This debate exempli-
fies the pitfalls of attempts at global prescriptions in
restoration ecology. As I have proposed above,
echoing James (1992, 2000) and Main (1996), OCBIL
biota may have biological attributes contrary to
mainstream thinking in population genetics developed
primarily from studies on YODFEL organisms. This
view is reinforced by some surprising discoveries
recently regarding the ability of myrtaceous trees such
as eucalypts and shrubs to produce high quality seeds,
albeit in reduced quantity, in very small populations
(Krauss et al. 2007; Yates et al. 2007b; Ottewell et al.
2009).

There is similarly a fundamental need for caution
and to rethink how agriculture is conducted on
OCBILs if sustainability is a goal (Walker et al.

2001; Cramer and Hobbs 2007). It is evident that
mainstream agricultural practice on OCBILs leads to
desertification, salinization, soil acidification, non-
native weed invasion and extensive loss of valuable
topsoil through erosion and wind storms. Farmers
from OCBIL regions are learning from each other
through comparative studies and communication. For
example, strip farming as practised by Nama people
and others in the Greater Cape provides an example
of an agricultural system that has lasted at least
2000 years (Fig. 9). Strip farming or alley cropping
thus enables persistence of native biota in narrow bands
interspersed with cereal crops. In contrast, extensive
clearing of native vegetation for cereal or horticultural
crops has been widely and rapidly practised in the
Southwest Australian Floristic Region (Beresford 2001),
except recently where greater attention to leaving
vegetated buffers along drainage lines has become
common (Watson 1991). Researchers and farmers have
developed appropriate concepts for OCBILs such as
minimum tillage to retain the fragile structure of top
soil (Hobbs et al. 2008). In the Cape, protocols
developed for restoration of fynbos illustrate many of
the above principles (Holmes and Richardson 1999).

Where decisions are taken to abandon agricultural
land in favour of local biodiversity, it is clear that old
field succession theory developed primarily for
YODFELs has limitations in regions dominated by
OCBILs (Walker and Reddell 2007; Cramer et al.
2008). Aspects of community dynamics may differ
fundamentally. In cases of self-recovering YODFELs
with relatively intact biogeochemical attributes, virtu-
ally no management of old fields would be required.
Old fields in fragmented native vegetation or whose
hydrogeomorphological circumstances have been al-
tered may need greater intervention to secure restora-
tion of native biodiversity.

Much more problematic are old fields of OCBILs,
to the point that recent reviewers have advocated
abandonment of the concept of full restoration: ‘The
restoration of old fields stuck in a persistent, degraded
state poses an ecological, philosophical and policy
challenge. The most appropriate and achievable goal
for these old fields will be the restoration of a plant
community that fulfils some biodiversity goals, but
which is largely focused on the provision of ecosys-
tem services. If the ecological future is to be one
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without an analog in the past, then restoration of old
fields will incorporate novel elements of species
composition and vegetation structure, so that ecolog-
ical function can be restored. Approaching old-field
restoration from this perspective will probably be
challenging for restoration ecologists and local com-
munities who have a strong preference for historical
vegetation states.’ Cramer et al. (2008, pg 110).

I prefer a more optimistic view—that restoration
on OCBILs is indeed possible, as evidenced, for
example, by work on post-mining sites in the
Southwest Australian Floristic Region’s jarrah forest
(Koch and Hobbs 2007). It could be argued that
Cramer et al. (2008) are overly pessimistic. It may be
more possible than seems likely now that a step
change upwards will occur in the future globally in
the scale of resources that will be applied to address
the present decline of carbon sinks and loss of
biodiversity. If so, understanding the fundamental
differences in biota and processes involved in
restoration between OCBILs and YODFELs will be
of considerable significance indeed.

Conclusion

While evidence exists to support several of the above
predictions for evolution and conservation of OCBIL
biodiversity, much remains to be done before under-
standing of processes approaches that for the much
more common YODFELs in which most people live.
The overarching thesis explored herein is embodied,
with a twist, in a contemporary environmental mantra—
act globally, think locally. We all have just one planet
on which to live and we desperately need to devise
new ways of living to ensure a sustainable and
reasonable future quality of life. If we are to continue
to share the Earth with the biodiversity so much
celebrated and studied through Linnean collections
over three centuries, conservation biology and restora-
tion ecology need to mature and develop a firm
theoretical underpinning with as much predictive
power as is possible given the wonderful complexity
of life and its evolution. It is hoped that the present
contribution, in a small way, will stimulate further
research and improvements to theory pertaining to

Fig. 9 Aerial photo illustrating alternative approaches to
agricultural land use in the Greater Cape of South Africa, from
more sustainable traditional strip or alley farming retaining
darker strands of native vegetation, to paler areas where
unsustainable wholesale clearing and transformation of the

native vegetation has occurred. Circular clearings are of
irrigated horticulture (potato farming). Inset shows seasonal
annual wildflowers on a strip left fallow between wheat crop
strips in Namaqualand. Photos by the author
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evolution, ecology and conservation of OCBIL and
YODFEL biota.
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