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Abstract

Prefetching has been shown to be an e�ective technique for reducing user perceived latency

in distributed systems. In this paper we show that even when prefetching adds no extra tra�c

to the network, it can have serious negative performance e�ects. Straightforward approaches to

prefetching increase the burstiness of individual sources, leading to increased average queue sizes

in network switches. However, we also show that applications can avoid the undesirable queueing

e�ects of prefetching. In fact, we show that applications employing prefetching can signi�cantly

improve network performance, to a level much better than that obtained without any prefetching

at all. This is because prefetching o�ers increased opportunities for tra�c shaping that are not

available in the absence of prefetching. Using a simple transport rate control mechanism, a

prefetching application can modify its behavior from a distinctly ON/OFF entity to one whose

data transfer rate changes less abruptly, while still delivering all data in advance of the user's

actual requests.

1 Introduction

Prefetching is an important technique for reducing latency in distributed systems. In distributed

information systems like the World Wide Web, prefetching techniques attempt to predict the future

requests of users based on past history, as observed at the client, server, or proxy [2, 12]. These

techniques are speculative, in the sense that if predictions are incorrect then additional useless tra�c
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is added to the network. Considerable previous work has evaluated the bene�ts of prefetching in

various distributed and parallel systems; most of that work has focused on the addition of useless

tra�c to the network as the principal cost of prefetching.

In this paper we focus on a di�erent cost of prefetching: increases in network delays. We show

that even when prefetching adds no useless tra�c to the network, it can have serious performance

e�ects. This occurs because prefetching changes the pattern of demands that the application places

on the network, leading to increased variability in the demands placed by individual sources, and

in network tra�c as a whole. Increases in tra�c variability (or \burstiness") directly results in

increased average packet delays, due to queueing e�ects. In general, the straightforward application

of prefetching can be seen to increase the coe�cient of variation of the arrival process of packets from

a single source. This is because prefetching will increase the length of long packet interarrivals while

increasing the number of short packet interarrivals. Increasing the coe�cient of variation naturally

increases queueing delays [9].

We focus on the World Wide Web as our application of interest; prefetching for the Web is

an active area of study that has considerable practical value. Starting from traces of Web client

activity, we simulate the performance of a simple network as it satis�es user requests, using a

detailed packet-level simulator that explicitly models the ow control algorithms of TCP Reno.

In the �rst part of this paper we show that straighforward prefetching algorithms for the Web,

even if they add no additional tra�c to the network, can increase packet delay considerably. Our

simulations indicate that aggressive prefetching can increase average packet delays by a factor of

two to four, depending on network con�guration.

For the case of the Web, these e�ects can be understood more precisely using the analytic

framework provided by self-similar tra�c models [11]. Such models have shown that if individual

applications exhibit ON/OFF behavior in generating tra�c, such that either ON or OFF periods

are drawn from a heavy-tailed distribution with � < 2, then the aggregate tra�c can be expected to

show self-similar scaling properties with scaling parameter H > 1=2 [16]. Recent evidence indicates

that the Web in particular seems to exhibit heavy-tailed ON periods, and that this may be due

to the sizes of �les transferred via the Web [3]. We show evidence that the e�ect of prefetching

in distributed information systems with heavy-tailed ON times is to lengthen the ON and OFF

periods, resulting in increased burstiness at a wide range of scales.

However, in the second part of this paper we show that an application like the Web can avoid the

undesirable queueing e�ects of prefetching. In fact, we show that applications employing prefetching
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in combination with a simple transport rate limiting mechanism can signi�cantly improve network

performance, to a level much better than that obtained without any prefetching at all. This

technique is possible for the same reasons that prefetching is useful: there is typically some \idle"

time between the completion of one data transfer and the user's initiation of the next transfer. This

time corresponds to the OFF time of the application in the ON/OFF framework.

Using a transport rate limiting mechanism, an application (such as a Web browser) can prefetch

in such a way so as to still obtain all data in advance of user requests, but in a manner that

extends the data transfer over the entire inter-request interval. When the accuracy of prefetch

prediction is high, this approach can radically decrease the application's contribution to queueing

delay. The reason that this strategy works can again be understood in terms of the ON/OFF

model for self-similarity in Web tra�c. Using rate-controlled prefetching, an intelligent application

can modify its behavior from a distinctly ON/OFF entity to one whose data transfer rate changes

less abruptly, leading to a smoother overall tra�c ow on the network, and signi�cantly increased

network performance.

We explore these ideas in the second half of the paper. Using our simulations, we show that

network performance in terms of queueing delay could be much better than the no prefetching case,

without missing a signi�cant fraction of deadlines, if browsers employ rate-controlled prefetching;

such performance improvements are based on perfect knowledge of the future sequence of requests to

be made by users. We then show more realistic strategies that correspond to prefetching techniques

that have been proposed in the literature, and we show that they can achieve results close to that

of the ideal case. Finally, we evaluate the degree to which prefetching must be e�ective in order

for our methods to succeed, and compare these with empirically measured prefetching e�ectiveness

for Web browsers.

Our results suggest that while simple prefetching (as is likely to be implemented in Web

browsers) can degrade network performance, rate-controlled prefetching has the potential to signif-

icantly smooth tra�c due to the World Wide Web. Since such tra�c appears to be quite bursty

without such controls [3], an understanding of the e�ects of prefetching on burstiness is important,

and in particular methods that allow Web applications to smooth their network demand are of

considerable interest.
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2 Background and Related Work

The literature on prefetching is large; a good example article is [15]. That article points out the

performance risks of prefetching due to increased data transfer tra�c.

More recent work on �le prefetching [10] presents a method which uses access trees to represent

�le usage patterns. Using that approach, measurements show that future �le accesses can be pre-

dicted with an accuracy of around 90%. Although we do not propose a mechanism for prefetching,

one such as this could be used as a means for prefetching in distributed information systems like

the Web. The high hit rate obtainable suggests that our rate-contolled prefetching policies could

have signi�cant payo� in practice.

A number of authors have presented prefetching methods speci�cally for the Web. In [4] the

notion of prefetching by Web clients is presented. In that work, Markov chains are proposed as a

mechanism for determining which �les to prefetch. The Markov chains are constructed based on

prior access patterns of individual users. Simulations suggest that this method can also provide

relatively high prefetching hit rates|between 80% and 90%.

In [2] the notion of speculative prefetching by Web servers is presented in the context of repli-

cation services. This work shows that server information can also be pro�tably be used to increase

prefetching hit rate. In addition, [12] simulates prefetching for the Web and shows that it can be

e�ective in reducing latency.

However, none of these proposals for Web prefetching consider the increase in burstiness of

tra�c caused by prefetching. Web tra�c has been shown to be bursty at a wide range of scales

(\self-similar") [3] and so this is an important issue. A number of previous papers have shown that

the e�ects of self-similarity on network performance is primarily to increase queueing delays [5, 13]

and so that is the network performance metric that we focus on in this paper.

There have been a number of studies of smoothing techniques for video streams, which are also

bursty sources [7]. In particular [14] presents an e�ective method for reducing the variability of

transmitted bit rates for stored video. That paper proposes a method for work-ahead smoothing

of tra�c through the use of knowledge of bu�er sizes and transmission schedules; as such it bears

some similarity to the concept of rate-controlled prefetching that we propose in this paper.

The self-similarity of network tra�c has been attributed to the behavior of individual sources.

If sources follow an ON/OFF behavior, in which they transmit packets during an ON period and

are silent during an OFF period, and if either ON or OFF periods (or both) are drawn from
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Figure 1: Simulated Network Con�guration

a heavy-tailed distribution (one whose tail follows a power-law with exponent less than 2) then

the aggregation of many such sources will lead to self-similar tra�c [16]. This model sheds light

on why the rate-controlled prefetching techniques we propose can be e�ective at smoothing self-

similar tra�c: under rate-controlled prefetching, sources are no longer either ON or OFF but rather

generate ows in which data constantly \trickles" into the application.

3 Experimental Environment

To study the network impacts of prefetching in the World Wide Web we used two principal tools:

a detailed network simulator, and previously captured traces of document transfers requests made

by Web users. In this section we describe these two tools.

3.1 Simulated Network

In order to assess the network e�ects of document transfers, we used the ns network simulator

(version 1.0), developed at LBNL [6]. Ns is an event-driven simulator that simulates individual

packets owing over a network of hosts, links, and gateways. It provides endpoint agents that can

use any of several types of TCP as their transport protocols; we used TCP Reno. In particular,

ns simulates TCP Reno's ow control features: Slow Start, Congestion Avoidance, and Fast Re-

transmit/Recovery. A test suite describing validation results from the simulator can be found in

[6].

This study used the simple network shown in Figure 1. The network nodes consist of 64 clients

(C0 through C63), two routers (R0 and R1), and two servers (S0 and S1). Links between the

servers and clients are con�gured to approximate Ethernet characteristics while the central link

is con�gured to have less bandwidth, and therefore to be the bottleneck in all our simulations.

The Figure shows the baseline con�guration of the bottleneck, which is 1.5Mbps; but some of the
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Hour Bytes Files Avg. No. of

Number Transferred Transferred Sessions Files Per Session

Hour 1 48.9M 3007 48 63

Hour 2 47.5M 1304 43 30

Hour 3 39.2M 2011 89 23

Hour 4 25.1M 2126 46 46

Hour 5 24.1M 1799 80 23

Table 1: Characteristics of Hourly Web Client Traces

experiments we report used bandwidths of 750kps or 150kpbs for this link. Although this network is

simple, it allowed us to simulate the e�ects of interest: the e�ects of ow control due to bandwidth

limitations at the bottleneck, and the queueing of packets in router bu�ers.

In our simulations, clients make requests for �les to be delivered from servers. As a result, the

vast majority of tra�c in the simulation ows from the servers to the clients, and therefore the

bu�ers that exhibit important queueing e�ects are those in router R1. In the baseline con�guration

R1 has 32KB of bu�er space; however some experiments increase this bu�ering, up to a maximum

of 512KB. We do not simulate any resources internal to the servers; therefore the only limitation

on server performance is the bandwidth of its outgoing link.

The default packet size is 1024 bytes, consisting of 1000 bytes of payload and 24 bytes of header.

Some simulations vary the payload size, but all packets have 24 byte headers.

3.2 Workload Characteristics

The workload used to simulate user requests from the Web was a set of traces of Web sessions made

at Boston University and available from the Internet Tra�c Archives [8]. Each line of a trace �le

contains a session ID, the size of the �le transferred, the start and �nish time of transfer (measured

to 10ms accuracy), and the URL of the �le requested (which was not used in our simulation). We

will refer to each line from a trace �le as a request and to the set of all requests made during one

execution of the browser as a session. Each trace �le consists of the all the Web requests made in a

local area network during the span of one hour. We studied �ve such hours, which are summarized

in Table 1.

To use these traces in our simulated network we assigned each session to a particular client-
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server pair. Sessions were distributed between servers to keep them in approximate balance, and

were distributed among clients to keep them in approximate balance as well. Within each session,

�le transfers were initiated from the server to the client based on the size and time recorded in the

trace.

Statistics were gathered during each experiment to measure the performance of the network.

The principal performance metric of interest was mean queue size at the bottleneck router (R1);

however we also tracked the number of bytes transferred over the bottleneck link and packet drops.

In addition, the capability to track the completion of transmission of individual �les was added to

the system so that deadlines for the transmission of �les could be established. Our intent was not

to compare deadlines that were measured in the traces to those measured in the test network, since

the environments are di�erent, but simply to use the trace deadlines for the arbitrary deadines

necessary when implementing rate controlled prefetching.

4 Prefetching

In this section our goal is to show the general e�ects of prefetching on network performance as

measured by mean queue size in the bottleneck router, and to explore the reasons behind the

e�ects we observe.

Since our goal is to demonstrate the general e�ects of prefetching on network performance, we

assume an idealized form of prefetching. At the start of each Web browser session, all �les to be

requested during the session are prefetched. This results in a transfer of a large number of �les;

the average number of �les per session for each hour is shown in Table 1 and varies between 23

and 63. This type of prefetching is unrealistic in at least two aspect: �rst, it assumes that all �les

to be requested by a user can be predicted with perfect accuracy, and second, it assumes that all

requests can be predicted based on the �rst request made by the user. The �rst aspect causes

our assessment of network e�ects of prefetching to appear overly optimistic, because any incorrect

predictions will add tra�c to the network. The second aspect causes our assessment of network

e�ects of prefetching to be pessimistic, since a more realistic policy would spread trasnsfers more

evenly through the session. As a result, the absolute performance impacts of this policy are not our

main focus in this section; rather we are concerned with demonstrating the e�ect and exploring the

reasons behind it. In the next section we explore more realistic policies that 1) do not assume that

more than one �le is prefetched at a time and 2) do not assume perfect prediction of user behavior.
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Figure 2: E�ect of Prefetching on Mean Queue Size

Our �rst results compare prefetching with the baseline request pattern for a typical con�guration

(bottleneck link speed = 1.5 Mbps, router bu�er = 32 KB). We compare the average queue length

in the router (R1) for all �ve of the trace hours, for both prefetching and for the baseline request

pattern, as measured in bytes. The results are shown in Figure 2. This �gure shows that over

a range of utilizations, and for all the sample traces we measured, that prefetching signi�cantly

increases the mean queue size, and thus the average delay experienced by a packet in transit.

To examine whether our results were particularly sensitive to network con�guration, we varied

network con�guration along two dimensions: bandwidth and bu�ering.

First, we adjusted the speed of the bottleneck (central) link in the network. The results are

shown in Figure 3, which plots the increase in mean queue size due to prefetching for a single hour

(Hour 1), as the bandwidth of the the bottleneck link is varied.

Figure 3 shows that as the bottleneck bandwidth decreases, the relative e�ects of prefetching

on queue size appear to moderate somewhat. This seems to occur because router bu�ers are kept

more uniformly full at a higher average level. Note that in the case of the 150kbps, average queue

length is about half of the total amount of bu�er space available (32KB); as a result when a burst

of packets arrives, instead of being stored, packets must be dropped and so do not contribute to

average queue length. As a result, the variability in the packet arrival process has a smaller relative

impact on average queue length. This conclusion is also supported by the sample coe�cient of

variation (Ĉ � �̂=�̂; sample standard deviation / sample mean) of the queue lengths. For example
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Figure 3: E�ect of Prefetching for Varying Bottleneck Speeds

for Hour 1, Ĉ declines from 4.9 for the 1.5 Mbps case, to 3.3 for the 750 kps case, to 0.8 for the

150 kbps case.

Second, using a 150kpbs bottleneck link, we adjusted the amount of bu�ering at the bottleneck

link from 32KB up to 512KB. The results are shown in Figure 4. This �gure shows that the

detrimental e�ects of prefetching return as we increase the bu�er size at the bottleneck router, even

with a relatively slow link. Thus, both the network modi�cation experiments support the notion

that the e�ects of prefetching will be greatest for network con�gurations with either relatively low

utilization or relatively large amounts of bu�ering.

To understand the reasons behind the increased queueing delays when prefetching is in e�ect we

examined the individual sessions as ON/OFF sources. As discussed in Section 2, the superimposi-

tion of heavy-tailed ON/OFF sources can produce self-similar tra�c that is bursty at a wide range

of scales. Previous work has suggested that the sessions present in these traces show heavy-tailed

ON/OFF behavior [3]. Thus we expect that distribution plots of ON and OFF time will show long,

power-law tails. In fact, these are evident in Figure 5.

Figure 5 shows complementary cumulative distribution (P [X > x]) plots of each client's trans-

mission and idles times in the baseline and prefetching cases. Durations of transfers of �les or

sets of �les (when prefetching) correspond to ON times in the ON/OFF framework, idle periods

when no transfers are taking place correspond to OFF times. The left side of the Figure shows the

distributions on linear axes; since we expect power-law behavior in the tails of distributions, the
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Figure 4: E�ect of Prefetching for Varying Bu�er Sizes

right side of the �gure presents the same data on log-log axes.

The �gures show how strongly aggressive prefetching a�ects the distribution of ON and OFF

times of the browser. In both cases the distributions are shifted strongly toward larger values. The

median ON time changes from 0.12 seconds for the baseline case to 4.2 seconds for prefetching;

while the median OFF time increases from 2.48 seconds to 755 seconds.

These results show that individual sources are becoming much burstier as a result of prefetching:

typical ON and OFF times are drastically increasing. Since ON and OFF times show heavy-tailed

distributions the increase in burstiness is evident at a wide range of scales, and a�ects queueing in

the router in a signi�cant way.

The increased burstiness of tra�c due to prefetching can be seen directly in Figure 6. This �gure

shows the counting process of tra�c owing over the bottleneck link (bytes per 10 ms interval). The

baseline tra�c pattern (left side of �gure) shows that aggregate tra�c over the link is bursty, but

that it takes on a wide range of values between 0 and its maximum as determined by the bandwidth

of the bottleneck link. On the other hand, prefetch tra�c shows a more drastic pattern: it nearly

always demands either the full bandwidth of the link, or none at all. This is borne out by the

statistics of the tra�c processes shown: while the mean is the same in both cases (approximately

1440 bytes / 10 ms interval) the standard deviation for the baseline tra�c is 4072 while for the

prefetched tra�c it is 4895 { an increase of over 20%.
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5 Rate Controlled Prefetching

The preceding section showed that the e�ect of prefetching on network performance is to increase

queueing in routers, and thus average packet delays. This may seem to decrease the incentive to

use prefetching in distributed information systems like the Web. However, in this section we show

that prefetching o�ers opportunities to improve network performance to a level much better than

that obtained without prefetching, by using rate-controlled prefetching. In particular, our results

suggest that rate-controlled prefetching might pro�tably be added to Web browsers to signi�cantly

smooth the burstiness of Web tra�c.

The feasibility of rate-controlled prefetching is based on the observation that when prefetching

a data object, it is not necessary to transfer the object at the maximum rate supported by the

network; rather, it is only necessary to transfer it at a rate su�cient to deliver it in advance of

the user's request. Thus the central idea of rate-controlled prefetching is to lower the transfer rate

during prefetching to a level such that (ideally) the prefetch is initiated as early as possible, while

the last byte of the data object is delivered just before the object is requested.

The success of rate-controlled prefetching is based on the fact that in distributed information

systems like the Web, user-induced delays are common between document transfers. User-induced

delays will be typically be quite long relative to document transfer times; as a result, prefetching

rates can be drastically reduced below the network's maximum. For example, in Hour 1 of the

traces we used, the aggregate ON time of all sessions was 651 seconds, while the aggegate OFF

time was 46886 seconds. The goal of rate-controlled prefetching is to spread the 651 seconds of

data transfers as smoothly as possible over the much larger span of 46886 seconds without missing

any deadlines for document delivery to the user.

Rate-controlled prefetching adds a new requirement to the prefetching algorithm: in addition to

a prediction of the next document to be requested, the algorithm must make some estimate of the

time until the next request will be made (OFF time duration). We think this is feasible; previous

research on prefetching has focused on predicting the identity of the next transfer, with reasonable

success. We expect that such algorithms could be likewise reasonably successful at addressing the

related problem of predicting OFF time duration. Explicitly evluating the potential for predicting

OFF time duration is treated in Section 6. We also show later in this section that our results are

not dependent on exact prediction of OFF time duration; approximate predictions (within a factor

of 2, for example) are quite su�cient to achieve signi�cant performance gains using rate-controlled
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prefetching.

In this section we assume a prefetching algorithm that is more realistic than was used in the

previous section. First, in all of the results in this section, documents are prefetched one at a time

| that is, all available knowledge of prior user requests is assumed to be used before deciding on a

document to prefetch. Thus, after each document is delivered to the user, the system attempts to

prefetch only the single next document that the user will request. Second, we do not assume that

the prefetching algorithm can predict future requests with perfect accuracy. Instead we evaluate

all of our results as a function of varying hit rate of the prefetching algorithm. The hit rate of

the prefetching algorithm is the percent of predictions that the algorithm makes correctly. If a

prediction is incorrect, then at the point the user makes the next request the correct document

is transferred without applying any rate controls (that is, at the maximum rate the network can

deliver at the time).

Evaluating varying hit rates means that network performance (as measured by mean queue

size) can degrade for two reasons: increased burstiness of the tra�c process (as before), and in-

creased network utilization due to wasted tra�c|caused by incorrect prefetch predictions. In our

simulations, incorrect predictions are made in the same way regardless of whether rate control is

in e�ect. Thus, in comparing rate-controlled prefetching with simple prefetching, the increase in

network tra�c due to hit rates less than 100% is the same in both cases.

5.1 Window Based Rate-Controlled Prefetching

To bound the rate at which transfers take place during prefetching we employed a simple method:

limiting the maximum window size that can be used by TCP. More sophisticated methods are pos-

sible, but were not needed to demonstrate our results. This is a method that could be implemented

in practice by causing the client to advertize a limited window at connection establishment.

We used a simple rule for moderating transfer rate via window size. We wish to approximate

a transfer rate determined by P=T where P is the number of packets necessary to transfer the

document, and T is the time between the end of the previous document request and the initiation

of the next document request. The window size W is then determined by

W = dP � R=T e (1)

where R is the round-trip time of the path between client and server. In general, R is unknown

at the start of the connection, but can be estimated quickly once the connection is established.
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Figure 7: E�ect of Rate-Controlled Prefetching on Mean Queue Length

In practice we did not model such an adaptive approach; instead we used a simpler method of

setting R based on the product of the known path round-trip delay and a factor that corrects for

congestion e�ects. Use of this factor also allowed us to test the method's senstitivity to accurate

prediction of OFF time, because increasing the factor caused transfers to terminate more quickly,

simulating increased burstiness due to an inaccurate OFF time prediction. We deal explicitly with

OFF time prediction in Section 6.

Thus, in our simulation, rate-controlled prefetching works as follows. At the completion of each

document transfer, the next document transfer is started, with maximum TCP window size W

determined by Equation 1. At the time when the next request is made by the user, the simulation

determines probabilistically whether that request will be considered a prefetch hit. That is, the

most recently prefetched document is considered to be the correct document with probability equal

to a predetermined prefetch hit rate. If the prediction is incorrect, the correct document is then

transferred at maximum rate as would be the case in the absence of prefetching. If the prediction

is correct, the simulation begins prefetching the next document.

The e�ects of rate-controlled prefetching on mean queue length can be seen in Figure 7. Hours

1, 2, and 3 are at the top; hours 4 and 5 are on the bottom. In each plot we have shown the e�ects

of three policies: Baseline: no prefetching at all; Simple Prefetching: prefetching at unlimited rate;
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Figure 8: Improvement Due to Rate Control in Prefetching

and Rate-Controlled Prefetching. The �gure shows that rate-controlled prefetching is always better

than simple prefetching. Interestingly, it also shows that rate-controlled prefetching is usually better

than no prefetching at all, even though rate-controlled prefetching generally adds additional tra�c

to the network (that is, when prefetching hit rate is less than 100%). Note that the minimum value

for the simple prefetching case corresponds to the baseline case: when prediction accuracy is 100%,

simple prefetching adds no additional tra�c to the network and does not change tra�c burstiness

signi�cantly.1 In fact, over all the hours we studied, if prefetching hit rate is above 80% then

queueing delay is lower for rate-controlled prefetching than for no prefetching at all. In addition,

for three out of the �ve hours we studied, queueing delay is lower for rate-controlled prefetching

even for very low prefetching hit rates|as low as 10-30%.

In general, the simple rate-controlled prefetching scheme we describe here seems to be able to

reduce mean queue size signi�cantly. In Figure 8 we plot the ratio of mean queue size without rate

control to mean queue size with rate control, as a function of prefetching hit rate, for all �ve hours.

The �gure shows that rate control seems to always improve the performance of prefetching, usually

by a factor of at least two, and usually fairly consistently over a range of prefetching hit rates.

The second bene�cial performance e�ect of rate-control we note is decreased variability in queue

length. Decrease in variability of queue length translates to decreased variability in packet delay,

which is perceived by the user as a more predictable, reliable system. Figure 9 shows the standard

deviation of queue length for the same set of experiments. The �gure shows that rate-controlled

1Unlike the previous section, in which multiple �les were prefetched, which increased the burstiness of individual

sources as well as overall tra�c.
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Figure 9: E�ect of Rate-Controlled Prefetching on Queue Length Variability

prefetching always decreases variability of queue length as compared to simple prefetching, and

that it often decreases variability of queue length as compared to no prefetching at all.

These results suggest that even relatively inaccurate prefetching, if rate-controlled, may be

a desirable feature of an application that is interested in reducing network induced delays, and

reducing the variability of such delays. In addition, these results suggest that if prefetching is to

be implemented in an application like a Web browser, then rate-control is a very desirable feature.

5.2 Payload Based Rate-Controlled Prefetching

One observation that can be made about the window-based rate control described in the last

subsection is that there is a minimum transfer rate for prefetching that is determined by D=R

where D is the data payload of a single packet. That is, transmission rate cannot easily be reduced

below that of one packet per round trip time. However it may be the case that ideal smoothing

of prefetched data requires a transfer rate less than this minimum. In fact, in our window-based

rate control simulations, we �nd that over 90% of the windows were one packet in length. In such

cases, it may be that performance would be even better if we could �nd a method to transfer data

at a rate less than 1000 bytes / round trip time, since our packet payload is �xed at 1000 bytes.

To test whether even slower transfer rates are helpful, we implemented an alternative rate-
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Figure 10: Comparison of Payload and Window Based Rate Control in Prefetching

control scheme, based on modifying the size of each packet's payload. In this scheme, we do not

limit window sizes, but the payload of each packet is scaled to reduce throughput. Just as in

the window-based case, the scaling is performed based on the estimated time until the next user

request. This method provide the opportunity for �ner control of transport rate, and for reducing

transport rate to a level much lower than the window-based method.

The results of this approach are shown in Figure 10. Note in this �gure that the hit rates

studied have been restricted to the range 80% to 100%. The �gure shows that for high prefetching

hit rates, payload based rate control has the potential to signi�cantly improve network queueing

delay|to an almost negligible level. This occurs because the packets being queued are quite small

and occupy much less bu�er space per packet. However the �gure also shows that for slightly lower

hit rates|in many cases, less than about 90%, that payload based rate control performs worse

than the window based approach.

The reason that the queueing characteristics of payload based rate control degrade so quickly is

that the payload method adds signi�cant additional tra�c to the network, even when prediction is

perfect. This is because the ratio of header data to payload data increases drastically for transfers

with highly limited rates. In our simulations, payload based rate control can as much as double the

total byte tra�c on the network; as a result, network queues can build up quickly when predictions
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are not perfectly accurate. Thus we conclude that while payload based rate control can result

in better queueing performance at high prefetching hit rates, the additional tra�c added by the

technique makes its use undesirable.

6 Estimating Transfer Rates

The keys to being able to use our rate throttling ideas is the implementation of:

1. a document prediction mechanism within a Web browser,

2. a transfer rate prediction mechanism within a Web browser.

A number of mechanisms for document prediction have been proposed; see Section 2 for examples.

Therefore in this section we concentrate on determining the feasibility of predicting necessary

transfer rates. The best transfer rate for the purpose of prefetching is dependent on the predicted

time between document requests (OFF times). OFF times in network tra�c have been analyzed

in [3, 16, 1]; however these studies have not related OFF times to an independent variable which

can be used for predictive purposes.

Our approach to the transfer rate prediction problem is to attempt to relate OFF times to the

size of the �le transfered immediately before the start of an OFF period. The document prediction

mechanism could also be used to extract �le size information; once it is known we could then predict

the length of the ensuing OFF period. Using the �ve busy studied in this work, we generated a

data set consisting of �le sizes and the OFF periods which followed their accesses. A simple least

squares regression on this data set results in the following model:

OFF = 9:78 � 10�5 � size+ 24:9 (2)

This formula gives an OFF time prediction in seconds based on �le size in bytes. Thus, there is

a 24.9 second minimum for predicted OFF times. The regression yielded an R2 of 0.14 so clearly

there is very low correlation between OFF times and �le sizes. However, there is a weak correlation

suggesting that there may be an opportunity for prediction. Therefore, we tested the e�ectiveness

of this method for the purpose of throttling data in simulation. Our goal is to transfer documents

with minimal network impact so what we evaluate is how well we can reduce queue sizes using this

formula for OFF time prediction with out missing document transfer deadlines.

In this set of simulations, instead of considering each �le independently (as was done in prior

simulations) we consider transfers of �les in terms of groups as follows. If the measured OFF times
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between consecutive transfers was less than a threshold value (one second in our case), then we

consider the aggregate of bytes as a single transfer. A deadline is the actual time at which the next

�le transfer was requested (preceded by an OFF time greater than the threshold). This was done

in order to more accurately model OFF times as the time that users \think" between �le accesses

(an attempt to exclude latency between in-line document transfers). Since the R2 for the regression

was so low, we decided to evaluated the e�ectiveness of the OFF time prediction model by including

scaling factors in the analysis. Each OFF time predicted by the model is simply divided by the

scaling factor. The e�ect of scaling is as follows: when the scaling factor is increased, it will result

in a shorter projected OFF time and thus would increase the TCP window (or payload) size for

prefetching (see formula 1). We would expect the e�ect of compressing the time for transfer as

the scaling factor is increased would be to increase queue sizes. However, the bene�t of the higher

scaling factor should be to reduce the number of transfer deadlines missed. Simulations were run

testing 1-ahead prefetching using projected OFF times with a 90% document hit rate accuracy. We

compare these results with those for 1-ahead prefetching with a 90% hit rate when using measured

OFF times as a baselines for these simulations.

Figure 11 shows the e�ect of varying scaling factor for predicted OFF times versus mean queue

size. Note that in this �gure, \Baseline" refers to the case in which �le sizes are known exactly,

as in Section 5. For all �ve hours there is still a signi�cant reduction in mean queue size using

predictive values for OFF times regardless of scaling factor used. As might be anticipated, when

the scaling factor is increased, the mean queue size generally increases since the TCP window size

is also increased. The scaling factor has an inverse e�ect on missed deadlines as can be seen in

Figure 12. The baseline case shows what might be expected as the best case in terms of percentage

of missed deadlines when actual OFF times are used to set the TCP window size. In all of the

predictive model experiments, the percentage of missed deadlines declines as the scaling factor is

increased (which again would be anticipated given our formula for setting TCP window size). In

absolute terms, the number of deadlines missed when using the predictive model for OFF times is

still a very small percentage of the overall number of �les transferred.

Based on these results, we feel that a routine which predicts OFF times based on �le sizes could

be easily implemented in a browser and using a scaling factor of 2 and an o� time threshold of 1

second. This would provide the best queue reduction e�ect while only missing a minimal number

of deadlines. This along with a mechanism for predicting document requests could then e�ectively

be used to implement rate throttling.
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Figure 11: E�ect of Predicted OFF times on Mean Queue Size
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Figure 12: E�ect of Predicted OFF times on Missed Deadlines
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7 Conclusions

In this paper we've shown how prefetching in a distributed information system like the World

Wide Web can a�ect the queueing behavior of the network it uses. We started by showing that

prefetching as it is usually implemented|that is, the transfer of multiple �les together in advance

of request|can create an undesirable increase in burstiness of individual sources. Because such

sources in a distributed information system like the World Wide Web may exhibit heavy-tailed

ON/OFF behavior, increases in source burstiness result in increases in variability of aggregate

tra�c at a wide range of scales. This makes straightfoward approaches to prefetching, even when

their predictions are quite accurate, less attractive from the standpoint of network performance.

However, we have also shown that prefetching o�ers an opportunity for tra�c shaping that can

improve network performance. The periods between document transfers at individual sources may

often be very long compared to the durations of transfers themselves. By prefetching documents at

a controlled rate during the in-between time, applications can exploit an opportunity to decrease

their individual burstiness as compared to the non-prefetching case. As a result, applications

employing rate-controlled prefetching can have the best of both worlds: data transfer in advance

of user request, and better network performance than is possible without prefetching.
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