
Neighborhood Property based Pattern
Selection For Support Vector Machines

Hyunjung Shin1,2

1 Department of Industrial & Information Systems Engineering,
Ajou University, San 5, Wonchun-dong, Yeoungtong-gu,

443–749, Suwon, Korea
2 Friedrich Miescher Laboratory, Max Planck Society,

Spemannstrasse. 37, 72076, Tübingen, Germany,
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Abstract

Support Vector Machine (SVM) has been spotlighted in the ma-
chine learning community thanks to its theoretical soundness and
practical performance. When applied to a large data set, however,
it requires a large memory and long time for training. To cope with
the practical difficulty, we propose a pattern selection algorithm based
on neighborhood properties. The idea is to select only the patterns
that are likely to be located near the decision boundary. Those pat-
terns are expected to be more informative than the randomly selected
patterns. The experimental results provide promising evidence that
it is possible to successfully employ the proposed algorithm ahead of
SVM training.
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1 Introduction

Support Vector Machine (SVM) has been spotlighted in the machine learning
community because of its theoretical soundness and practical performance.
SVM has been highly successful in practical applications as diverse as face
detection and recognition, handwritten character and digit recognition, text
detection and categorization, etc (Byun & Lee, 2002; Dumais, 1998; Heisele
et al., 2000; Joachims, 2002; Moghaddam & Yang, 2000; Osuna et al., 1997;
Schölkopf et al., 1999). However, when applied to a large data set, SVM
training can become computationally intractable. In the formulation of SVM
quadratic programming (QP), the dimension of the kernel matrix (M ×M)
is equal to the number of training patterns (M) (Vapnik, 1999). Thus, when
the dataset is huge, training cannot be finished in a reasonable time, even
if the kernel matrix could be loaded on the memory. Most standard SVM
QP solvers have a time complexity of O(M3): MINOS, CPLEX, LOQO and
MATLAB QP routines. And the solvers using decomposition methods have
a time complexity of I· O(Mq + q3), where I is the number of iterations and

q is the size of the working set: Chunking, SMO, SVMlight and SOR (Hearst
et al., 1997; Joachims, 2002; Schölkopf et al., 1999; Platt, 1999). Needless
to say, I increases as M increases. Empirical studies have estimated the
run time of common decomposition methods to be proportional to O(Mp)
where p varies from approximately 1.7 to 3.0 depending on the problem (Hush
et al., 2006; Laskov, 2002). Moreover, SVM requires heavy or repetitive com-
putation to find a satisfactory model: for instance, which kernel is favorable
over the others (among RBF, polynomial, sigmoid, and etc.), and addition-
ally how to choose the kernel parameters (width of basis function, polynomial
degree, offset and scale, respectively). There has been a considerable amount
of work related to this topic, called by kernel learning, hyper-kernels, kernel
alignment, etc. See Ong et al. (2005) and Sonnenburg et al. (2006), and the
references therein. But the most common approaches for parameter selection
are yet dependent on (cross–) validation. This implies one should train an
SVM model multiple times until a proper model is found.

One way to circumvent this computational burden might be to select
some of training patterns in advance. One of the distinguishable merits of
SVM theory is that it clarifies which patterns are of importance to training.
These patterns are distributed near the decision boundary, and fully and suc-
cinctly define the classification task at hand (Cauwenberghs & Poggio, 2001;
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Pontil & Verri, 1998; Vapnik, 1999). Furthermore, the subset of support vec-
tors (SVs) is almost identical regardless of which kernel function is opt for
training (Schölkopf et al., 1995). From a computational point of view, it is
therefore worth identifying a subset of would-be SVs in preprocessing, and
then training the SVM model with the smaller set.

There have been several approaches to pattern selection that reduce the
number of training patterns. Lyhyaoui et al. (1999) proposed the 1-nearest
neighbor searching from the opposite class after class-wise clustering. But
this method presumes no possible class overlap in the training set to properly
find the patterns near the decision boundary. On the other hand, Almeida
et al. (2000) conducted k-means clustering. A cluster is defined as homo-
geneous if it consists of the patterns from same class, while heterogeneous
otherwise. All the patterns from a homogeneous cluster are replaced by a
single centroid pattern, while the patterns from a heterogeneous cluster are
all selected. The drawback is that it is not clear how to determine the num-
ber of clusters. Koggalage & Halgamuge (2004) also employed clustering to
select the patterns from the training set. Their approach is quite similar to
Almeida et al. (2000)’s: clustering is conducted on the entire training set first,
and the patterns are chosen that belong to the heterogeneous clusters. For a
homogeneous cluster, on the contrary, the patterns along the rim of cluster
are selected instead of the centroid of Almeida et al. (2000)’s. It is relatively
a safer approach since even in homogeneous clusters, the patterns near the
decision boundary can exist if the cluster’s boundary is almost in contact
with the decision boundary. On the other hand, it has a relative shortcom-
ing as well in that the patterns far away from the decision boundary are also
picked as long as they lie along the rim. And further, the setting of the ra-
dius and defining of the width of the rim are still unclear. In the meantime,
for the reduced SVM (RSVM) of Lee & Mangasarian (2001), Zheng et al.
(2003) proposed to use the centroids of clusters instead of random samples.
It is more reasonable since the centroids are more representative than ran-
dom samples. However, these clustering-based algorithms have a common
weakness: the selected patterns are fully dependent on clustering perfor-
mance, which could be unstable. Liu & Nakagawa (2001) made a related
performance comparison. Sohn & Dagli (2001) suggested a slightly different
approach. It utilizes fuzzy class membership through k nearest neighbors.
The score of fuzzy class membership is translated as a probability that how
deeply a pattern belongs to a class. By the scores, the patterns having a
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weak probability are eliminated from the training set. However, it overlooks
the importance of the patterns near the decision boundary; they are equally
treated to outliers (noisy pattern far from the decision boundary).

Active learning shares this issue of significant pattern identification with
pattern selection (Brinker, 2003; Campbell et al., 2000; Schohn & Cohn,
2000). However, there are substantial differences between them. First, the
primary motivation of active learning comes from the high cost of “obtaining
labeled training patterns,” not from that of training itself. For instance, in
industrial process modeling, obtaining even a single training pattern may
require several days. In email-filtering, obtaining training patterns is not
expensive, but it takes many hours to label them. In pattern selection, on
the other hand, the labeled training patterns are assumed to already exist.
Second, active learning alternates between training with a newly introduced
pattern and making queries over the next pattern. On the contrary, pattern
selection runs only once before training as a preprocessor.

In this paper, we propose neighborhood property based pattern selection
algorithm (NPPS). The practical time complexity of NPPS is vM , where v
is the number of patterns in the overlap region around the decision bound-
ary. We utilize k nearest neighbors to look around the pattern’s periphery.
The first neighborhood property is that “a pattern located near the deci-
sion boundary tends to have more heterogeneous neighbors in their class-
membership.” The second neighborhood property dictates that “a noisy
pattern tends to belong to a different class from that of its neighbors.” And
the third neighborhood property is that “the neighbors of the decision bound-
ary pattern tend to be located near the decision boundary as well.” The first
property is used for identifying the patterns located near the decision bound-
ary. The second property is used for removing the patterns located on the
wrong side of the decision boundary. And the third property is used for
skipping unnecessary distance calculation, thus accelerating the pattern se-
lection procedure. The paper also provides how to choose k for the proposed
algorithm. Note that it has been skipped or dealt with as trivial in other
pattern selection methods that employ either k-means clustering or k-nearest
neighbor rule.

The remaining part of this paper is organized as follows. Section 2 briefly
explains the SVM theory, in particular, the patterns critically affecting the
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training. Section 3 presents the proposed method, NPPS, that selects the
patterns near the decision boundary. Section 4 explains how to choose the
number of neighbors, k–the parameter of the proposed method. Section 5
provides the experimental results on artificial datasets, real-world bench-
marking datasets, and a real-world marketing dataset. We conclude this
paper with some future work in Section 6.

2 Support Vector Machines and Critical Train-

ing Patterns

Support Vector Machines (SVMs) are a general class of statistical learning
architectures that perform structural risk minimization on a nested set struc-
ture of separating hyperplanes (Cristianini & Shawe-Taylor, 2000; Schölkopf
& Smola, 2002; Vapnik, 1999). Consider a binary classification problem with
M patterns (~xi, yi), i = 1, · · · ,M where ~xi ∈ <d and yi ∈ {−1, 1}. Let us
assume that patterns with yi = 1 belong to class 1 while those with yi = −1
belong to class 2. SVM training involves solving the following quadratic pro-
gramming problem, which yields the largest margin ( 2

‖w‖) between classes.

min Θ (~w, ξ) =
1

2
||~w||2 + C

M∑

i

ξi,

s. t. yi (~w · Φ(~xi) + b) ≥ 1− ξi, (1)

ξi ≥ 0, i = 1, . . . , M,

where ~w ∈ <d, b ∈ < (see Fig. 1), and an error tolerance parameter C ∈ <.
Eq.(1) is the most general SVM formulation allowing both non-separable and
nonlinear cases. The ξ’s are nonnegative slack variables which play a role
of allowing a certain level of misclassification for a non-separable case. The
Φ(·) is a mapping function for a nonlinear case that projects patterns from
the input space into a feature space. This nonlinear mapping is performed
implicitly by employing a kernel function K(~x, ~x′) to avoid the costly calcula-
tion of inner products, Φ(~x) ·Φ(~x). 1 There are three typical kernel functions,

1Aside from the computational efficiency by dot-product replacement, the kernels pro-
vide operational benefits as well: it is easy and natural to work on (or integrate) various
types of data, i.e., vectors, sequences, text, images, graphs, etc, and to detect very general
types of relations therein.
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Figure 1: SVM classification problem: Through a mapping function Φ(·),
the class patterns are linearly separated in a feature space. The patterns
determining both margin hyperplanes are outlined. The decision boundary
is the half-way hyperplane between margins.
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RBF, polynomial, and sigmoid in due order,

K (~x, ~x′) = exp
(
−||~x− ~x′||2/2σ2

)
, (2)

K (~x, ~x′) = (~x · ~x′ + 1)
p
,

K (~x, ~x′) = tanh (ρ(~x · ~x′) + δ) .

The optimal solution of Eq.(1) yields a decision function of the following
form,

f(~x) = sign (~w · Φ(~x) + b) = sign

(
M∑

i=1

yiαiΦ(~xi) · Φ(~x) + b

)

= sign

(
M∑

i=1

yiαiK(~xi, ~x) + b

)
, (3)

where αis are nonnegative Lagrange multipliers associated with training pat-
terns, respectively. The solutions, αis, are obtained from the dual problem
of Eq.(1), which minimizes the convex quadratic objective function under
constraints

min
0≤αi≤C

W (αi, b) =
1

2

M∑

i,j=1

αiαjyiyjK(~xi · ~xj)−
M∑

i=1

αi + b
M∑

i=1

yiαi.

The first-order conditions on W (αi, b) are reduced to the Karush-Kuhn-
Tucker (KKT) conditions,

∂W (αi,b)
∂αi

=
M∑

j=1

yiyjK(~xi, ~xj)αj + yib− 1 = yif̄(~xi)− 1 = gi, (4)

∂W (αi,b)
∂b

=
M∑

j=1

yjαj = 0,

where f̄(·) is the function inside the parentheses of sign in Eq.(3). The KKT
complementarity condition, Eq. (4), partitions the training pattern set into
three categories according to the corresponding αis.

(a) gi > 0 → αi = 0 : irrelevant patterns
(b) gi = 0 → 0 < αi < C : margin support vectors
(c) gi < 0 → αi = C : error support vectors
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Fig. 2 illustrates those categories (Cauwenberghs & Poggio, 2001; Pontil &
Verri, 1998). The patterns belonging to (a) are out of the margins, thus
irrelevant to training, while the patterns belonging to (b) and (c) are critical
ones directly affecting training. They are called support vectors (SVs). The
patterns of (b) are strictly on the margin hence they are called margin SVs.
The patterns of (c) lie between two margins hence they are called error SVs
but are not necessarily misclassified. (Note, that there is another type of SVs
belonging to the category of error SVs. They are incorrectly labeled patterns
that could be located very far from the decision boundary. We regard them
as outliers which do not contribute to margin construction. We focus only
on the SVs located around the decision boundary, not those located deep in
the realm of the opposite class.) Going back to Eq.(3), we can now see that
the decision function is a linear combination of kernels on only those critical
training patterns (denoted as SVs) because the patterns corresponding to
αi = 0 have no influence on the decision result:

f(~x) = sign

(
M∑

i=1

yiαiK(~xi, ~x) + b

)
= sign


 ∑

i∈SVs

yiαiK(~xi, ~x) + b


 . (5)

Eq.(5) leads us to an attempt that reduces the whole training set to a subset
of would-be SVs.

3 Neighborhood Property based Pattern Se-

lection

To circumvent memory- and time-demanding SVM training, we propose a
pre-processing algorithm, a neighborhood property based pattern selection
algorithm (NPPS). The idea of the algorithm is to select only those patterns
located around the decision boundary since they are the ones that contain
the most information. Contrary to a usually employed “random sampling,”
this approach can be viewed as “informative or intelligent sampling.” Fig. 3
conceptually shows the difference between NPPS and random sampling in
selecting a subset of the training data. NPPS selects the patterns in the
region around the decision boundary, while random sampling selects those
from the whole input space. Obviously, no one knows how close a pattern is
to the decision boundary until a classifier is built. However, we can infer the
proximity ahead of training by utilizing neighborhood properties. The first
neighborhood property is that “a pattern located near the decision boundary
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Figure 2: Three categories of training patterns
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a. NPPS

b. Random Sampling

Figure 3: NPPS and random sampling select different subsets: outlined cir-
cles and squares are the patterns belonging to class 1 and class 2, respectively.
Black solid circles and squares are the selected patterns.
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tends to have more heterogeneous neighbors in their class membership.” A
well-known entropy concept can be utilized for the measurement of hetero-
geneity of class labels among k-nearest neighbors. And the measure will lead
us to estimate the proximity accordingly. Here, we define a measure by using
(negative) entropy,

Neighbors Entropy (~x, k) =
J∑

j=1

Pj · logJ
1

Pj

,

where j indicates a particular class out of J classes, and Pj is defined as
kj/k, where kj is the number of the neighbors belonging to class j. In most
cases, a pattern with a positive value of “Neighbors Entropy (~x, k)” is close
to the decision boundary, thus selected. Those patterns are likely to be SVs,
which correspond to the margin SVs in Fig. 2.b or the error SVs in Fig. 2.c.
Among the patterns having a positive value of Neighbors Entropy (~x, k),
noisy patterns are also present. Here, let us define an overlap region as
a hypothetical region in feature space shared by both classes, and overlap
patterns as the patterns in that region. 2 A set of overlap patterns contains
the patterns not only located on the right side of the decision boundary but
also on the other side of it. The latter denotes noisy patterns, which should
be identified and removed as much as possible, because they are more likely
to be the error SVs that would be misclassified. To remove this noisy patters,
we take the second neighborhood property. “An overlap pattern or an outlier
tends to belong to a different class from its neighbors.” If a pattern’s own
label is different from the majority label of its neighbors, it is likely to be
incorrectly labelled. The measure “Neighbors Match (~x, k)” is defined as the
ratio of neighbors whose label matches that of ~x,

Neighbors Match (~x, k) =
|{~x′|label(~x′) = label(~x), ~x′ ∈ kNN(~x)}|

k
,

where kNN(~x) is the set of k nearest neighbors of ~x. The patterns with
a small Neighbors Match (~x, k) value are likely to be the ones incorrectly
labelled. In that point of view, Neighbors Match can be interpreted as a
confidence for k-nearest neighbor classification. Only the patterns satisfying
the two conditions, Neighbors Entropy (~x, k) > 0 and Neighbors Match (~x, k)
≥ 1

J
, are selected.

2We defer the finer definitions for overlap region and overlap patterns until Section 4.1.
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Figure 4: A toy example: The numbers scattered in the figure (i.e., 1, 2, and
3) stand for the class labels of the patterns. The parameters are assumed
to be J = 3 and k = 6. For representational simplicity, we consider only
six patterns (out of 29) marked by dotted circles. Table 1 shows the pat-
terns selected by the proposed measures presenting details; the values of Pj,
Neighbrs Entropy, and Neighbors Match.

Fig. 4 shows a toy example of how patterns are selected by the proposed
measures. The numbers scattered in the figure (i.e., 1, 2, and 3) stand for
the class labels of the patterns. We assume J = 3 and k = 6. For represen-
tational simplicity, we consider only six patterns marked by dotted circles.
Table 1 presents the values of Pj, Neighbrs Entropy, and Neighbors Match
for these marked patterns. Let us consider ~x1 first. ~x1 is remote from the
decision boundary belonging to class 1, and is thus surrounded by the neigh-
bors all belonging to class 1. ~x1 is not selected since it does not satisfy the
condition of Neighbors Entropy. Meanwhile, ~x2 resides in a deep region of
class 2, but it is a noise pattern labelled as class 1. Since the composition of
class membership of its neighbors is homogeneous (all of them belong to class
2), it also has a zero value of Neighbors Entropy. Therefore, it is excluded
from selection. However, the case of the pattern ~x2 is different from the case
of the pattern ~x1; for the pattern ~x2, all its neighbors belong to a different
class from the class of ~x2, while for the pattern ~x1, all its neighbors belong to
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Table 1: A toy example: The patterns selected by Neighbors Entropy and
Neighbors Match. j∗ is the class label of pattern ~xi, and jk is the label of its
kth nearest neighbor. Refer to Fig. 4.

j∗ j1 j2 j3 j4 j5 j6 P1 P2 P3 Neighbors Neighbors Selected

(Class Labels of Neighbors) Entropy Match Patterns

~x1
1 1 1 1 1 1 1 6/6 0/6 0/6 0 6/6 X

~x2
1 2 2 2 2 2 2 0/6 6/6 0/6 0 0/6 X

~x3
2 1 1 2 2 3 3 2/6 2/6 2/6 1 2/6 ©

~x4
3 3 3 2 2 3 1 1/6 2/6 3/6 0.9227 3/6 ©

~x5
3 3 3 3 3 3 2 0/6 1/6 5/6 0.4100 5/6 ©

~x6
2 3 3 3 3 3 2 0/6 1/6 5/6 0.4100 1/6 X

the same class that ~x1 belongs to. We can differentiate two cases by Neigh-
bors Match, which is 1 for ~x1 and 0 for ~x2. In any case, the remote patterns
from the decision boundary are screened out by the proposed measures. On
the other hand, the pattern ~x3 is close to the decision boundary, and the
composition of the neighbors shows heterogeneous class membership; two of
them belong to class 1, another two belong to class 2, and the rest belong
to class 3. This leads to Neighbors Entropy = 1 and Neighbors Match =
1/3, and consequently satisfies the conditions. Similarly, the patterns ~x4 and
~x5 are chosen. From the example we can see that the selected patterns are
distributed near the decision boundary and almost correctly labeled.

However, NPPS takes O(M2) to evaluate kNNs for M patterns, so the
pattern selection process itself can be time-consuming. To accelerate the pat-
tern selection procedure, we consider the third neighborhood property. “The
neighbors of a pattern located near the decision boundary tend to be located
near the decision boundary as well.” Assuming the property, one may narrow
the scope of computation from all the training patterns to the patterns near
the decision boundary. Only the neighbors of a pattern satisfying Neigh-
bors Entropy (~x, k) > 0 are evaluated in the next step. This lazy evaluation
can reduce the practical time complexity from O(M2) to O(vM) where v
is the number of patterns in the overlap region. In most practical prob-
lems, v < M holds. In addition, any algorithm on efficient nearest neighbor
searching can be incorporated into the proposed method in order for further
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Table 2: Notation

Symbol Meaning

D the original training set whose cardinality is M

Di
e the evaluation set at ith step

Di
o a subset of Di

e, the set of patterns to be “expanded” from Di
e

each element of which will compute its k nearest neighbors
to constitute the next evaluation set, Di+1

e

Di
x a subset of Di

e, the set of patterns “not to be expanded”
from Di

e, or Di
x = Di

e −Di
o

Di
s the set of “selected” patterns from Di

o at ith step

Si
o the accumulated set of expanded patterns,

i−1⋃
j=0

Dj
o

Si
x the accumulated set of non-expanded patterns,

i−1⋃
j=0

Dj
x

Si the accumulated set of selected patterns,
i−1⋃
j=0

Dj
s

the last of which SN is the reduced training pattern set
kNN(~x) the set of k nearest neighbors of ~x

reduction of the time complexity. There is a considerable amount of litera-
ture about efficient searching for nearest neighbors. Some of them attempt
to save distance computation time (Grother et al., 1997; Short & Fukunaga,
1981), while others attempt to avoid redundant searching time (Bentley,
1975; Friedman et al., 1977; Guttman, 1984; Masuyama et al., 1999). Apart
from them, there are many sophisticated NN classification algorithms such as
approximated (Arya et al., 1998; Indyk, 1998), condensed (Hart, 1968), and
reduced (Gates, 1972). See also (Berchtold et al., 1997; Borodin et al., 1999;
Ferri et al., 1999; Johnson et al., 2000; Kleingberg, 1997; Tsaparas, 1999).

The time complexity analysis for the fast NPPS can be found in http://

www.kyb.mpg.de/publication.html?user=shin and Shin & Cho (2003a),
and a brief empirical result in Appendix A. The algorithm and related no-
tations are shown in Fig. 5 and Table 2.
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NPPS (D, k) {
[0] Initialize D0

e with randomly chosen patterns from D.
Constants, k and J , are given. Initialize i and various sets as follows:
i ← 0, S0

o ← ∅, S0
x ← ∅, S0 ← ∅.

while Di
e 6= ∅ do

[1] Choose ~x satisfying [Expanding Criteria].
Di

o ← {~x | Neighbors Entropy (~x, k) > 0, ~x ∈ Di
e}.

Di
x ← Di

e −Di
o.

[2] Select ~x satisfying [Selecting Criteria].
Di

s ← {~x | Neighbors Match (~x, k) ≥ 1/J, ~x ∈ Di
o}.

[3] Update the pattern sets.
Si+1

o ← Si
o ∪Di

o : the expanded,
Si+1

x ← Si
x ∪Di

x : the non-expanded,
Si+1 ← Si ∪Di

s : the selected.

[4] Compute the next evaluation set Di+1
e .

Di+1
e ← ⋃

~x∈Di
o

kNN(~x)− (Si+1
o ∪ Si+1

x ).

[5] i ← i + 1.
end
return Si

}

Figure 5: NPPS
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4 How to Determine the Number of Neigh-

bors

In this section, we briefly introduce a heuristic for determining the value of
k. Too large a value of k results in too many patterns being selected. Conse-
quently, we will achieve little effect of pattern selection. Too small a value of
k, on the other hand, leads to few patterns selected. However, it may degrade
SVM accuracy since there are more chances to miss important patterns, i.e.,
the would-be support vectors. The dilemma about k will not be symmetrical
because a serious loss of accuracy is not likely to be well compensated for
by a benefit of down-sized training set. This point relates to our idea; the
selected pattern set should be large enough at least to contain the patterns
in the overlap region. Therefore, it is first required to estimate how many
training patterns reside in the overlap region. Based on the estimation, the
next step is to enlarge the value of k until the size of the corresponding set
covers the estimate. Under this condition, the minimum value of k will be
regarded as optimal unless SVM accuracy degrades.

In the following sub-sections, we will first identify the overlap region R
and the overlap set V. Second, an estimate of the lower bound on the
cardinality of V will be given. Third, we will define Neighbors Entropy set
Bk with respect to the value of k, and some related properties as well. Finally,
a systematic procedure for determining the value of k will be provided.

4.1 Overlap Region and Overlap Set

Consider a two-class classification problem (see Fig. 6),

f(~x) =
{ ~x → C1 if f(~x) > 0,

~x → C2 if f(~x) < 0,
(6)

where f(~x) is a classifier and f(~x) = 0 is the decision boundary. Let us define
noisy overlap patterns (NOPs) as the patterns that are located on the wrong
side of the decision boundary. They are shown in Fig. 6 as squares located
above f(~x) = 0 and circles located below f(~x) = 0. Let R denote overlap
region– a hypothetical region where NOPs reside, the convex-hull of NOPs,
enclosed by the dotted lines in Fig. 6. Similarly, let us define correct overlap
patterns (COPs) as the patterns that are enveloped by the convex hull, yet in
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Figure 6: Two class classification problem where the circles belong to class 1
while the squares belong to class 2. The area enclosed by the dotted lines is
defined as overlap region R. The area comprises the overlap set V of NOPs
and COPs.

the right class-side. Note that R is defined by NOPs, but it contains not only
NOPs but also COPs. Let V denote the overlap set defined as the intersection
of D and R, i.e. the subset of D which comprises NOPs and COPs. There are
six NOPs and six COPs in Fig. 6. The cardinality of V is denoted as v.

4.2 Size Estimation of Overlap Set

Now, we estimate v. Let PR(~x) denote the probability that a pattern ~x falls
in the region R. Then, we can calculate the expected value of v from the
given training set D as

v = MPR(~x), (7)

where M is the number of the training patterns, say, M = |D|. The proba-
bility PR(~x) can be dissected class-wise such as

PR(~x) =
2∑

j=1

P (~x ∈ R, Cj), (8)
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where P (~x ∈ R, Cj) is the joint probability of ~x belonging to class Cj and
lying in R. Note that PR(~x) also can be interpreted as the probability of ~x
being COPs or NOPs. Further, if the region R is divided into

R1 = {~x ∈ R | f(~x) ≥ 0} and R2 = {~x ∈ R | f(~x) < 0}, (9)

Eq. (8) can be rewritten as

PR(~x) = P (~x ∈ R, C1) + P (~x ∈ R, C2)

= P (~x ∈ R1 ∪R2, C1) + P (~x ∈ R1 ∪R2, C2)
= {P (~x ∈ R1, C2) + P (~x ∈ R2, C1)}︸ ︷︷ ︸

(a)

+ {P (~x ∈ R1, C1) + P (~x ∈ R2, C2)}︸ ︷︷ ︸
(b)

.

(10)

The parentheses (a) and (b) in the last row denote the probabilities of the
patterns located in R which are incorrectly and correctly classified– NOPs and
COPs, respectively. Since all NOPs are the incorrectly classified patterns, (a)
can be estimated from the misclassification error rate Perror of the classifier
f(~x). On the contrary, it is not easy to estimate (b).3 Therefore, what we
can do in practice is to infer the lower bound of it. Generally, the following
inequality holds,

P (~x ∈ Rj, Cj) ≥ P (~x ∈ Rj, Ci), j 6= i. (11)

Based on that, Eq. (10) can be simplified as

PR(~x) ≥ 2Perror (12)

and the lower bound of v becomes

v ≥ vLOW = 2MPerror (13)

from Eq. (7).

3Of course, if R1 and R2 contain roughly the same number of correct and incorrect
patterns, the probabilities of (a) and (b) become similar. But this assumption will only
work when both class distributions follow the uniform distribution.
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4.3 Pattern Set with Positive Neighbors Entropy

Let us define Bk given a specified value of k,

Bk = {~x | Neighbors Entropy(~x, k) > 0, ~x ∈ D}. (14)

Note that Bk is the union of Di
o’s, Bk =

N⋃
i=0

Do where N is the total number

of iterations in the algorithm NPPS (see Fig.5). The following property of
Bk leads to a simple procedure.

Lemma 1 A Neighbors Entropy set Bk is a subset of Bk+1:

Bk ⊆ Bk+1 2 ≤ k ≤ M − 2. (15)

Proof: Denote P k
j as the probability that kj out of k nearest neighbors

belong to class Cj. If ~x ∈ Bk , then it means Neighbors Entropy (~x, k) > 0.

A positive Neighbors Entropy is always accompanied with P k
j = kj

k
< 1, ∀j.

Therefore,
kj < k, ∀j.

Adding 1 to both sides yields

(kj + 1) < (k + 1), ∀j.
Suppose the (k+1)th nearest neighbor of ~x belongs to Cj∗ . Then, (kj∗ +1) <
(k + 1) holds for j∗ while kj < (k + 1) for j 6= j∗. The inequalities lead to
P k+1

j∗ < 1 and P k+1
j 6=j∗ < 1, respectively. As a consequence, we have a posi-

tive Neighbors Entropy of ~x in the case of the (k + 1)th nearest neighbor as
well. Therefore, Neighbors Entropy (~x, k+1) > 0 which indicates ~x ∈ Bk+1 .

From Lemma 1, it follows that bk, the cardinality of Bk, is an increasing
function of k.

4.4 Procedure for Determining the Number of Neigh-
bors

Bk larger than V merely increases the SVM training time by introducing
redundant training patterns. In contrast, Bk smaller than V could degrade
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[1] Estimate Perror:
P̂error is calculated based on the training error rate of 1-NN rule.

[2] Calculate the lower bound of v according to Eq. (13):
v ≥ vLOW = 2MP̂error.

[3] Find k∗ according to Eq. (16):
k∗ = arg min { |P svm

error(k)− P svm
error(k + 1)| ≤ ε, k ≥ kmin}.

where kmin = min {k | bk ≥ vLOW , k ≥ 2 }
and ε is a trivial value.

Figure 7: Procedure to determine the value of k.

the SVM accuracy. Therefore, our objective is to find the smallest Bk that
covers V.

Let us define kmin using the lower bound of v from Eq.(13),

kmin = min {k | bk ≥ vLOW , k ≥ 2 }.
From Lemma 1, we know that bk is an increasing function of k. Therefore, it
is not necessary to evaluate the values of k less than kmin. Instead, we check
the stabilization of SVM training error rate P svm

error only for the k’s larger than
kmin by increasing the value little by little. The optimal value of k is then
chosen as

k∗ = arg min { |P svm
error(k)− P svm

error(k + 1)| ≤ ε, k ≥ kmin}, (16)

where ε is set to a trivial value. Eq.(16) requires several dry-runs of SVM
training. However, the runs are not likely to impose heavy computational
burden since the strong inequality bk << M holds for the first smallest k’s
and hence the size of the training set (the selected pattern set) is small. The
procedure is summarized in Fig. 7. 4 The main contribution of the proposed
procedure is to limit the search space of k by means of the lower bound
estimation of the size of overlap set. More details can be found in Shin &
Cho (2003b) and some empirical results in Appendix B.

4There are several benefits of using 1-NN rule as a Perror estimator in step 1 since it
is a local learning algorithm, simple, and computationally efficient. One can skip the step
1 if an approximate Perror of the problem is given a priori.
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5 Experiments

We applied NPPS to various kinds of datasets: artificial datasets, bench-
marking datasets, and a real-world marketing dataset. The following three
sub-sections present the experimental results in order.

5.1 Artificial Datasets

The first problem was drawn from four Gaussian densities: the Continuous
XOR problem. A total of 600 training patterns, 300 from each class, were
generated. The classes, C1 and C2, were defined as

C1 =
{
~x | ~x ∈ N1A ∪N1B,

[ −3
−3

]
≤ ~x ≤

[
3
3

] }
,

C2 =
{
~x | ~x ∈ N2A ∪N2B,

[ −3
−3

]
≤ ~x ≤

[
3
3

] }
,

where

N1A =
{
~x|N

([
1
1

]
,
[

0.52 0
0 0.52

]) }
, N1B =

{
~x|N

([ −1
−1

]
,
[

0.52 0
0 0.52

]) }
,

N2A =
{
~x|N

([ −1
1

]
,
[

0.52 0
0 0.52

]) }
, N2B =

{
~x|N

([
1

−1

]
,
[

0.52 0
0 0.52

]) }
.

See also Fig.11.1.a. The second problem is the Sine Function problem. The
input patterns were generated from a two-dimensional uniform distribution,
and then the class labels were determined by whether the pattern was located
above or below a sine decision function:

C1 =
{
~x | x2 > sin (3x1 + 0.8)2 ,

[
0

−2.5

]
≤

[
x1

x2

]
≤

[
1

2.5

] }
,

C2 =
{
~x | x2 ≤ sin (3x1 + 0.8)2 ,

[
0

−2.5

]
≤

[
x1

x2

]
≤

[
1

2.5

] }
.

To make the density near the decision boundary thicker, four different Gaus-
sian noises were added along the decision boundary, i.e., N(~µ, s2I) where ~µ
is an arbitrary point on the decision boundary and s is a Gaussian width
parameter (s = 0.1, 0.3, 0.8, 1.0). A total of 500 training patterns were
generated including noises. Fig.11.1.b shows the problem.

For both problems, Fig. 8 presents the relationship between distance
from decision boundary to a pattern and its value of Neighbors Entropy.
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The closer to the decision boundary a pattern is, the higher value of Neigh-
bors Entropy it has. Both sub-figures of Fig. 8 assure that Neighbors Entropy
is pertinent to estimating the proximity to the decision boundary. Among
the patterns with positive Neighbors Entropy values, the ones which meet
the Neighbors Match condition are selected. They are depicted as solid cir-
cles against outlined ones. Note that the solid circles are distributed nearer
the decision boundary. The distribution of the selected patterns is shown in
Fig.11.3.a and Fig.11.3.b.

NPPS changes the size as well as the distribution of the training set.
Such changes may change the optimal value of hyper-parameter that brings
the best result. Thus, we first observed the effect of change of training set;
The SVM performance was measured under various combinations of hyper-
parameters such as (C, σ) ∈ {0.1, 1.0, 10, 100, 1000}×{0.25, 0.5, 1, 2, 3} where
C and σ indicate misclassification tolerance and Gaussian kernel width, re-
spectively. For each of the artificial problems, a total of 1000 test patterns
were generated from the statistically identical distributions to its original
training set. We compared the test error rates (%) of SVM when trained
with all patterns (ALL), trained with random patterns (RAN), and trained
with the selected patterns (SEL).

Fig. 9 depicts the test error rate over the hyper-parameter variation for
Continuous XOR problem. The most pronounced feature is the higher sen-
sitivity of SEL to hyper-parameter variation than before (ALL). It may be
caused by the fact that the patterns selected by NPPS are mostly distributed
in the “narrow” region along the decision boundary. In Fig.9.a, for instance,
SEL shows a sudden rise of the test error rate for σ larger than a certain
value when C is fixed, and similarly, a sharp descent after a certain value
of C when σ is fixed. An interesting point is that SEL can always reach a
performance comparable to that of ALL by adjusting the value of the hyper-
parameters. Now, we compare SEL and RAN from Fig.9.b. We used the
same number of random samples as that of the patterns selected by NPPS.
Therefore, there is no difference in the size of training set but only a differ-
ence in data distribution. When compared with SEL, RAN is less sensitive to
hyper-parameter variation because the patterns are distributed all over the
region. However, note that RAN never performs as well as ALL since random
sampling inevitably misses many patterns of importance to SVM training.
See the best result of RAN in Table 3. Fig.10 shows similar results for Sine
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a. Continuous XOR problem

b. Sine Function problem

Figure 8: The relationship between the distance from decision boundary and
Neighbors Entropy: The closer to the decision boundary a pattern is, the
higher value of Neighbors Entropy it has. The selected patterns are depicted
as solid circles against outlined ones.
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a. SEL vs. ALL

b. SEL vs. RAN

Figure 9: Performance comparison over hyper-parameter variation: Contin-
uous XOR problem
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Table 3: Best result comparison: ALL vs. RAN vs. SEL

Continuous XOR Sine Function
ALL RAN SEL ALL RAN SEL

(C, σ) (10, 0.5) (100, 1) (100, 0.25) (10, 0.5) (0.1, 0.25) (10, 0.5)

Execution Time (sec) 454.83 3.02 3.85 267.76 8.97 8.79
Num. of Training Patterns 600 180 180 500 264 264
Num. of Support Vectors 167 68 84 250 129 136

Test Error (%) 9.67 12.33 9.67 13.33 16.34 12.67
McNemar’s Test (p-value) – 0.08 1.00 – 0.12 0.89

Function problem.

Table 3 summarizes the best results of ALL, SEL, and RAN for both prob-
lems. First, compared with the training time of ALL, that of SEL is little
more than trivial because of the reduced size of training set. For both arti-
ficial problems, a standard QP solver, i.e., Gunn’s SVM MATLAB toolbox
was used. Considering that model selection always involves multiple trials,
an individual’s reduction in training time can amount to huge time-saving.
Second, compared with RAN, SEL achieved an accuracy on a similar level
to the best model of ALL while RAN could not. To show that there was no
significant difference between ALL and SEL, we conducted the McNemar’s
test (Dietterich, 1998). The p-values between ALL and RAN, and also be-
tween ALL and SEL are presented in the last row of the table. In principle,
the McNemar’s test determines whether classifier A is better than classifier
B. A p-value of zero indicates a significant difference between A and B, while
a value of one indicates no significant difference. Although the p-value be-
tween ALL and RAN is not less than 5% in each problem, one can still compare
its degree of difference from the p-value between ALL and SEL in statistical
terms.

Fig.11 visualizes the experimental results of Table 3 on both problems.
The sub-figures, 1, 2 and 3, indicate the results of ALL, RAN, and SEL in order.
The decision boundary is depicted as a solid line and the margin as a dotted
line. Support vectors are outlined. The decision boundary of ALL looks more
alike to that of SEL than to that of RAN. That explains why SEL produced
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a. SEL vs. ALL

b. SEL vs. RAN

Figure 10: Performance comparison over hyper-parameter variation: Sine
Function problem
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similar results to ALL.

5.2 Bench-Marking Datasets

The following Table 5.2 presents the summary of the comparison results on
various real-world bench-marking datasets (MNIST database; UCI reposi-
tory) including the artificial datasets in the previous section. Again, SEL is
compared with ALL and RAN. And another method is added as a competitor,
SVM-KM (Almeida et al., 2000), which is a preprocessing method that reduces
the training set based on k-means clustering algorithm.

The hyper-parameters of SVM were chosen based on the best results via
validation: C, σ, and p, indicate the misclassification tolerance, the width of
RBF kernel, and the order of polynomial kernel, respectively. The parameter
of SEL (NPPS), the number of neighbors k, was determined by the procedure
in Section 4 and Appendix B. See also Shin & Cho (2003b). And the param-
eter of SVM-KM, the number of clusters k, was set to 10% of the number of
training patterns as recommended in Almeida et al. (2000). For the MNIST
dataset, we chose three binary classification problems; they are known as
most difficult due to the similar shapes of the digits, for instance, digit ‘3’
looks similar with digit ‘8’. Most of the experiments were run on Pentium
4 with 1.9 GHz 512 RAM, whereas Pentium 4 with 3.0 GHz 1024 RAM for
the MNIST problems. A standard QP solver lacks of memory-capacity to
handle the real-world datasets. So we chose an iterative SVM solver, OSU
SVM Classifier Toolbox (Kernel Machines Organization) after brief compar-
ison about scalability with another candidate RSVM (Lee & Mangasarian,
2001). Refer to Appendix C for the comparison on OSU SVM Classifier vs.
RSVM.

In the table, N/A denotes ‘not available’ results. For ease of comparison,
the computational time, preprocessing or SVM training, is shown as a ratio
to the SVM training time of ALL. The best two results are represented as
boldface in test error rate. Similarly, the statistically most similar result
with ALL is represented as boldface in McNemar’s p-value. The results show
that the preprocessing either by SEL or by SVM-KM is of great benefit to
SVM training in reducing the training time. Particularly, if multiple running
of SVM is required one can take the benefit as multiple times as required.
However, SVM-KM took longer than SEL, and even worse it run out of memory

27



1.a. Continuous XOR: ALL 1.b. Sine Function: ALL

2.a. Continuous XOR: RAN 2.b. Sine Function: RAN

3.a. Continuous XOR: SEL 3.b. Sine Function: SEL

Figure 11: Patterns and SVM decision boundaries: decision boundary is
depicted as a solid line and the margins as the dotted lines. Support vectors
are outlined. The decision boundary of ALL looks more alike to that of
SEL than to that of RAN. This explains why SEL performed similarly to ALL.
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in large-sized problems. Also note that the pairwise test show that SEL shows
more similarity to ALL than any other method.

5.3 Real-world Marketing Dataset

The proposed algorithm was also applied to a marketing dataset from the Di-
rect Marketing Educational Foundation (DMEF: The Direct Marketing Asso-
ciation). The dataset DMEF4 has been used in various researches (Ha et al.,
2005; Malthouse, 2001, 2002). It is concerned with an up-scale gift business
that mails general or specialized catalogs to customers. The task predicts
a customer will response to the offering during the test period, 09/1992–
12/1992. If the customer who has received the catalog buys the product,
then he/she is labelled ‘+1’; otherwise, he/she is labelled ‘-1’. The train-
ing set is given based on the period, 12/1971–06/1992. There are 101,532
patterns in the dataset, each of which represents the purchase history infor-
mation of a customer. We derived 17 input variables out of 91 original ones
just as in (Ha et al., 2005; Malthouse, 2001).

To show the effectiveness of SEL, we compared it with seven RANs because
random sampling has most commonly been employed when researchers in
this field attempt to reduce the size of the training set. Table 5 shows the
models: RAN* denotes an SVM trained with random samples, where ‘*’ indi-
cates the ratio of random samples drawn without replacement. Each model
was trained and evaluated by using five-fold cross-validation. The hyper-
parameters of SVM were determined from (C, σ) = {0.1, 1, 10, 100, 1000} ×
{0.25, 0.5, 1, 2, 3}. The number of neighbors (k) for SEL was set to 4. The
OSU SVM Classifier was used as an SVM solver (Kernel Machines Organiza-
tion). Typically, a DMEF dataset has a severe class imbalance problem be-
cause the customers’ response rate for the retailer’s offer is very low, i.e., 9.4%
for DMEF4. In that case, an ordinary accuracy measure tends to mislead
us about the results by giving more weight to the heavily-represented class.
Thus, we used another accuracy measure, Balanced Correct-classification
Rate (BCR), defined as

Balanced Correct-classification Rate (BCR) = (m11

m1
) · (m22

m2
),

where mi denotes the size of class i and mii is the number of patterns correctly
classified into class i. Now, the performance measure is balanced between
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Table 4: Empirical result for bench-marking datasets

Num. of
Training
Patterns

Num. of
Support
Vectors

Preprocessing
Time
(Ratio)

Training
Time
(Ratio)

Test
Error
Rate (%)

McNemar’s
p-value

Continuous XOR: 1000 test patterns

ALL C = 10, σ = 0.5 600 167 – 1.00 9.67 –
RAN C = 100, σ = 1 180 68 – 0.10 12.33 0.08
SEL C = 100, σ = 0.25, k = 5 180 84 0.20 0.12 9.67 1.00

SVM-KM C = 1, σ = 0.25, k = 60 308 149 0.78 0.16 10.00 0.69

Sine Function: 1000 test patterns

ALL C = 10, σ = 0.50 500 250 – 1.00 13.33 –
RAN C = 0.1, σ = 0.25 264 129 – 0.31 16.34 0.12
SEL C = 10, σ = 0.5, k = 5 264 136 0.26 0.29 12.67 0.89

SVM-KM C = 50, σ = 0.25, k = 50 335 237 2.04 0.27 14.00 0.81

4x4 Checkerboard: 10000 test patterns

ALL C = 20, σ = 0.25 1000 172 – 1.00 4.03 –
RAN C = 50, σ = 0.5 275 75 – 0.42 8.44 0.00
SEL C = 50, σ = 0.25, k = 4 275 148 0.08 0.40 4.66 0.76

SVM-KM C = 20, σ = 0.25, k = 100 492 159 49.13 0.33 5.20 0.00

Pima Indian Diabetes: 153 test patterns (5-cv out of 768 patterns)

ALL C = 100, p = 2 615 330 – 1.00 29.90 –
RAN C = 1, p = 1 311 175 – 0.47 31.11 0.61
SEL C = 100, p = 2, k = 4 311 216 0.13 0.58 30.30 0.87

SVM-KM C = 100, p = 2, k = 62 561 352 0.48 0.98 28.75 0.72

Wisconsin Breast Cancer: 136 test patterns (5-cv out of 683 patterns)

ALL C = 5, p = 3 546 87 – 1.00 6.80 –
RAN C = 1, p = 1 96 27 – 0.05 12.33 0.60
SEL C = 10, p = 3, k = 6 96 41 0.01 0.06 6.70 0.94

SVM-KM C = 10, p = 3, k = 55 418 85 17.08 0.62 11.02 0.53

MNIST: 3–8: 1984 test patterns

ALL C = 10, p = 5 11982 1253 – 1.00 0.50 –
RAN C = 10, p = 5 4089 1024 – 0.15 0.86 0.19
SEL C = 50, p = 5, k = 50 4089 1024 0.21 0.10 0.45 0.42

SVM-KM k = 1198 N/A N/A N/A N/A N/A N/A

MNIST: 6–8: 1932 test patterns

ALL C = 10, p = 5 11769 594 – 1.00 0.25 –
RAN C = 10, p = 5 1135 185 – 0.03 0.83 0.01
SEL C = 20, p = 5, k = 50 1135 421 0.20 0.07 0.25 0.67

SVM-KM k = 1177 N/A N/A N/A N/A N/A N/A

MNIST: 9–8: 1983 test patterns

ALL C = 10, p = 5 11800 823 – 1.00 0.41 –
RAN C = 10, p = 5 1997 323 – 0.07 0.99 0.01
SEL C = 10, p = 5, k = 40 1997 631 0.19 0.09 0.43 0.57

SVM-KM k = 1180 N/A N/A N/A N/A N/A N/A
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Table 5: SVM models: RAN* denotes an SVM trained with random samples,
where ‘*’ indicates the ‘%’ of random sampling. And note that RAN100

corresponds to ALL . The number of patterns of SEL slightly varies with the
given set of each fold of 5-CV, and thus, it is represented as an average.

Model RAN05 RAN10 RAN20 RAN40 RAN60 RAN80 RAN100 SEL

(C, σ) (100, 1) (100, 1) (100, 0.5) (100, 0.5) (10, 1) (10, 0.5) (10, 0.5) (10, 0.5)
Number of 4060 8121 16244 32490 48734 64980 81226 8871
patterns (5%) (10%) (20%) (40%) (60%) (80%) (100%) avg.

two different class-sizes.

Fig. 12 shows the BCRs of the eight SVM models and Table 6 presents
the details. More patterns result in higher BCR among RAN*’s. However, the
training time also increases proportionally to the number of training patterns,
with the peak of 4,820 (sec) for RAN100. On the other hand, SEL takes only
68 (sec), and 129 (sec) if the NPPS running time is included. Note that one
should perform SVM training several times to find a set of optimal hyper-
parameters, but only once for NPPS ahead of the whole procedure of training.
In the last column of the table, the p-value of McNemar’s test is listed when
SEL is compared with an individual RAN*. There is a statistically significant
difference between SEL and RAN up to RAN60 in accuracy, but no difference
between SEL and RAN80 or RAN100. Overall, SEL achieves almost the same
accuracy as RAN80 or RAN100 only with the amount of training patterns
comparable to RAN10 or RAN20.

6 Conclusions and Discussions

In this paper, we introduced an informative sampling method for SVM clas-
sification task. By pre-selecting the patterns near the decision boundary, one
can relieve the computational burden during SVM training. In the exper-
iments, we compared the performance of the selected pattern set (SEL) by
NPPS with that of a random sample set (RAN) and that the original training
set (ALL). And also we compared the proposed method with a competing
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Figure 12: Balanced Correct-classification Rate (BCR): RAN* is depicted as
a solid circle while SEL is represented as a dotted reference line.

Table 6: Empirical result for a real-world marketing dataset–DMEF4

Num. of Num. of Training Correct Rate McNemar’s
Training Support Time BCR Test
Patterns Vectors (sec) (%) (p-value)

RAN05 4,060 1,975 13.72 49.49 0.00
RAN10 8,121 4,194 56.67 56.17 0.00
RAN20 16,244 7,463 149.42 58.05 0.00
RAN40 32,490 14,967 652.11 61.02 0.04
RAN60 48,734 22,193 1,622.06 63.86 0.08
RAN80 64,980 28,968 2,906.97 64.92 0.64
RAN100 81,226 35,529 4,820.06 65.17 0.87

SEL 8,871 6,624 68.29 64.92 –
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method, SVM-KM (Almeida et al., 2000). Through the comparison on syn-
thetic and real-world problems, we empirically validated the efficiency of the
proposed algorithm. SEL achieved an accuracy similar to that of ALL, while
the computational cost was still similar to that of RAN with 10% or 20% of
the samples. When compared with SVM-KM, SEL achieved better computa-
tional efficiency.

Here, we would like to address some future works. First, SVM solves a
multi-class problem by divide-and-combine strategy, which divides the multi-
class problem into several binary sub-problems (e.g., one-versus-others or
one-versus-one), and then, combines the outputs. This has led to the appli-
cation of NPPS to binary class problems. However, NPPS can readily be
extended to multi-class problems without major correction. Second, NPPS
can also be utilized to reduce the lengthy training time of neural network
classifiers. But it is necessary to add extra correct patterns to the selected
pattern set to enhance the overlap region near the decision boundary (Choi &
Rockett, 2002; Hara & Nakayama, 2000). The rationale is that “overlap pat-
terns” located on the “wrong” side of the decision boundary would lengthen
the MLP training time. The derivatives of the back-propagated errors will
be very small when evaluated at those patterns since they are grouped in a
narrow region on either side of the decision boundary. By means of adding
extra correct patterns, however, the network training will converge faster.
In the meantime, the idea of adding some randomly selected patterns to
SEL may also relieve the higher sensitivity of SEL to hyper-parameter varia-
tion (see Fig.9). If the high sensitivity is caused by “narrow” distribution of
the selected patterns, it can be relaxed by some random patterns from “over-
all” input space. But the mixing ratio of the patterns from SEL and from
RAN requires further study. Third, the current version of NPPS works for
classification problems only, and thus, is not applicable to regression prob-
lems. A straightforward idea for regression would be to use the mean (µ) and
variance (Σ) of k nearest neighbors’ outputs. A pattern having a small value
of Σ can be replaced by µ of its neighbors including itself. That is, k + 1
patterns can be replaced by one pattern. On the contrary, a pattern having
a large value of Σ can be totally eliminated since in a regression problem, the
patterns located away from major group, such as outliers, are less important
to learning. But its neighbors should be used to explore the next pattern.
A similar research based on ensemble neural network was conducted by Shin
& Cho (2001). Fourth, one of interesting future directions is the effort to
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extend NPPS for data with concept drift (Aha et al., 1991; Bartlett et al.,
2000; Helmbold & Long, 1994; Klinkenberg, 2004; Pratt & Tschapek, 2003;
Stanley, 2003; Widmer & Kubat, 1996). In concept drift, the decision bound-
ary changes as data arrive in the form of a stream. A naive approach would
be to employ a moving window over the data stream and then run NPPS
repeatedly. For better results, NPPS should be substantially modified and
rigorously tested.

Acknowledgements

HS was partially supported by the grant for Post Brain Korea 21. SC was
supported by grant No. R01-2005-000-103900-0 from Basic Research Pro-
gram of the Korea Science and Engineering Foundation, Brain Korea 21,
and Engineering Research Institute of SNU.

34



Appendix

A Empirical complexity analysis

We empirically show that NPPS runs in approximately vM where M is
the number of training patterns and v is the number of overlap patterns
(a full theoretical analysis is available in Shin & Cho (2003a)). A total of
M patterns, half from each class, were randomly generated from a pair of
two-dimensional uniform distributions:

C1 =
{
~x | U

([ −1
( 0− 1

2
v
M )

]
< ~x <

[
1

(1− 1
2

v
M )

]) }
,

C2 =
{
~x | U

([ −1
(−1 + 1

2
v
M )

]
< ~x <

[
1

(0 + 1
2

v
M )

]) }
.

We set v to every decile of M , i.e. v= 0, 0.1M , 0.2M , · · · , 0.9M , M .
Fig. 13 shows the distributions of v = 0.3M , v = 0.5M , and v = 0.7M .
The larger values of v correspond to more overlap patterns. We set out to
see how the computation time of NPPS works with the changing value of
v– in particular whether the computation time is linearly proportional to v
as aforementioned. Fig. 14.a shows the number of selected patterns through
evaluation when v grows from 0 up to M = 10, 000. In Fig. 14.b, one can
clearly see that the computation time is proportional to v.

B Experiments on the number of neighbors

Based on the procedure presented in Fig. 7, we briefly present experiments
on Pima Indian Diabetes and Wisconsin Breast Cancer. According to the
procedure, the lower bounds of v were estimated as 393 and 108 from the
training error rates, Perror = 32.0% and Perror = 9.9%, respectively. These
led to k∗ = 4 in Pima Indian Diabetes and k∗ = 6 in Wisconsin Breast
Cancer. (The values of kmin were also 4 and 6, respectively.) Fig.15 shows
that the test error rate stabilizes at about 30.0% for Pima Indian Diabetes
when k ≥ 4, and at about 6.7% for Wisconsin Breast Cancer when k ≥ 6.
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a. v = 0.3M

b. v = 0.5M

c. v = 0.7M

Figure 13: Two uniform distributions’ overlap: the dark gray area is the
overlap region which contains v patterns. The number of overlap patterns,
v, is set to every decile of training set size, M . (a), (b), and (c) depict when
v = 0.3M , v = 0.5M , and v = 0.7M , respectively.
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a. The number of selected patterns (%)

b. Computation time

Figure 14: Empirical complexity analysis: NPPS with increasing number of
overlap patterns v.
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a. Pima Indians Diabetes (k∗ = 4)

b. Wisconsin Breast Cancer (k∗ = 6)

Figure 15: SVM test error rates: the error rate is stabilized at about 30.0%
for Pima Indian Diabetes when k ≥ 4, and at about 6.7% for Wisconsin
Breast Cancer when k ≥ 6.
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C Empirical comparison on SVM solvers

We provide a short comparison between OSU-SVM (OSU SVM Classifier, Ker-
nel Machines Organization) and RSVM (Lee & Mangasarian, 2001), which are
known as the fastest SVM learning algorithms. All the experimental setting
was identical as in Section 5.2. The parameter of RSVM, the random sampling
ratio, was set to 5–10% of training patterns according to Lee & Mangasarian
(2001). In Table 7, the computational time of RSVM is shown as a ratio to the
SVM training time of OSU-SVM. The results show that both of the algorithms
are almost similar in accuracy. Also in training time, it is hard to tell which
is superior to the other. However, RSVM was not available for the MNIST
problems: it failed to load the the kernel matrix on the memory (note that
RSVM is not an iterative solver). Therefore, we chose to use OSU-SVM as a
base learner in our experiment because it is relatively more scalable and also
parameter-free.
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Table 7: Empirical comparison on different SVM solvers

Num. of
Training
Patterns

Time Ratio:
Training

Test Error
Rate (%)

McNemar’s
p-value

Continuous XOR: 1000 test patterns

OSU-SVM C = 10, σ = 0.5 600 1.00 9.67 –
RSVM C = 10, σ = 0.5 600 1.20 9.97 0.79

Sine Function: 1000 test patterns

OSU-SVM C = 10, σ = 0.50 500 1.00 13.33 –
RSVM C = 100, σ = 0.25 500 0.31 13.46 0.85

4x4 Checkerboard: 10000 test patterns

OSU-SVM C = 20, σ = 0.25 1000 1.00 4.03 –
RSVM C = 100, σ = 0.25 1000 1.87 3.88 0.00

Pima Indian Diabetes: 153 test patterns (5-cv out of 768 patterns)

OSU-SVM C = 100, p = 2 615 1.00 29.90 –
RSVM C = 10, p = 1 615 0.10 29.64 0.72

Wisconsin Breast Cancer: 136 test patterns (5-cv out of 683 patterns)

OSU-SVM C = 5, p = 3 546 1.00 6.80 –
RSVM C = 10, p = 3 546 1.65 8.02 0.45

MNIST: 3–8: 1984 test patterns

OSU-SVM C = 10, p = 5 11982 1.00 0.50 –
RSVM 11982 N/A N/A N/A

MNIST: 6–8: 1932 test patterns

OSU-SVM C = 10, p = 5 11769 1.00 0.25 –
RSVM 11769 N/A N/A N/A

MNIST: 9–8: 1983 test patterns

OSU-SVM C = 10, p = 5 11800 1.00 0.41 –
RSVM 11800 N/A N/A N/A
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