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Abstract— The Organic Grid is a biologically inspired
and fully-decentralized approach to the organization of
computation that is based on the autonomous scheduling
of strongly mobile agents on a peer-to-peer network.
Through the careful design of agent behavior, the emerging
organization of the computation can be customized for
different classes of applications.

In this paper we report our experience in adapting the
general framework to run two representative applications
on our Organic Grid prototype: the NCBI BLAST code for
sequence alignment, and the Cannon’s algorithm for ma-
trix multiplication. The first is an example of independent
task application, a type of application commonly used for
grid scheduling research because of its easily decomposable
nature and absence of intra-node communication. The
second is a popular block algorithm for parallel matrix
multiplication, and represents a challenging application
for grid platforms because of its highly structured and
synchronous communication pattern.

Agent behavior completely determines the way compu-
tation is organized on the Organic Grid. We intentionally
chose two applications at opposite ends of the distributed
computing spectrum having very different requirements
in terms of communication topology, resource use, and re-
sponse to faults. We detail the design of the agent behavior
and show how the different requirements can be satisfied.
By encapsulating application code and scheduling func-
tionality into mobile agents, we decouple both computation
and scheduling from the underlying grid infrastructure. In
the resulting system every node can inject a computation
onto the grid; the computation naturally organizes itself
around available resources.

I. INTRODUCTION

Many scientific fields, such as genomics, phyloge-
netics, astrophysics, geophysics, computational neuro-
science, or bioinformatics, require massive computa-
tional power and resources, which might exceed those
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available on a single supercomputer. There are two dras-
tically different approaches for harnessing the combined
resources of distributed collection of machines: tradi-
tional grid computing schemes and centralized master-
worker schemes.

Research on Grid scheduling has focused on algo-
rithms to determine an optimal computation schedule
based on the assumption that sufficiently detailed and
up to date knowledge of the systems state is available
to a single entity (the metascheduler) [1]–[4]. While
this approach results in a very efficient utilization of
the resources, it does not scale to large numbers of
machines. Maintaining a global view of the system
becomes prohibitively expensive and unreliable networks
might even make it impossible.

A number of large-scale systems are based on variants
of the master/workers model [5]–[16]. The fact that some
of these systems have resulted in commercial enterprises
shows the level of technical maturity reached by the
technology. However, the obtainable computing power
is constrained by the performance of the single master
(especially for data-intensive applications) and by the
difficulty of deploying the supporting software on a large
number of workers.

At a very large scale much of the conventional wisdom
we have relied upon in the past is no longer valid,
and new design principles must be developed. First,
very few assumptions (if any) can be made about the
systems, in particular about the amount of knowledge
available about the system. Second, since the system is
constantly changing (in terms of operating parameters,
resource availability), self-adaption is the normal mode
of operation and must be built in from the start. Third,
the deployment of the components of an infrastructure
is a non-trivial issue, and should be one of the funda-
mental aspects of the design. Fourth, any dependence on
specialized entities such as schedulers, masters nodes,
etc., needs to be avoided unless such entities can be



easily replicated in a way that scales with the size of
the system.

We propose a completely new approach to large scale
computations that addresses all these points simultane-
ously with a unified design methodology. While known
method of organizing computation on large systems can
be traced to techniques that were first developed in the
context of parallel computing on traditional supercom-
puters, our approach is inspired by the organization of
complex systems. Nature provides numerous examples
of the emergence of complex patterns derived from
the interactions of millions of organisms that organize
themselves in an autonomous, adaptive way by following
relatively simple behavioral rules. In order to apply this
approach to the organization of computation over large
complex systems, a computation must be broken into
small self-contained chunks, each capable of expressing
autonomous behavior in its interaction with other chunks.

The notion that complex systems can be organized
according to local rules is not new. Montresor et al. [17]
showed how an ant algorithm could be used to solve
the problem of dispersing tasks uniformly over a net-
work. Similarly, the RIP routing table update protocol
uses simple local rules that result in good overall rout-
ing behavior. Other examples include autonomous grid
scheduling protocols [18] and peer-to-peer file sharing
networks [19], [20].

Our approach is to encapsulate computation and be-
havior into mobile agents, which deliver the computation
to available machines. These mobile agents then commu-
nicate with one another and organize themselves in order
to use the resources effectively. We envision a system
where every node is capable of contributing resources
for ongoing computations, and starting its own arbitrarily
large computation. Once an application is started at a
node, e.g., the user’s laptop, other nodes are called in
to contribute resources. New mobile agents are created
that, under their autonomous control, readily colonizes
the available resources and start computing.

Only minimal support software is required on each
node, since most of the scheduling infrastructure is
encapsulated along with the application code inside an
agent. In our experiments we only deployed a JVM and a
mobile agent environment on each node. The scheduling
framework that is the object of this paper is provided as
a library that a developer may adapt for his/her purposes.

Computation organizes itself on the available nodes
according to a pattern that emerges from agent-agent
interaction. In the simplest case, this pattern is an overlay
tree rooted at the starting node; in the case of a data

intensive application, the tree can be rooted at one or
more separate, presumably well-connected machines at
a supercomputer center. More complex patterns can be
developed as required by the applications requirements,
either by using different topologies than the tree, and/or
by having multiple overlay networks each specialized for
a different task.

In our system, the only knowledge each agent relies
upon is what it can derive from its interaction with
its neighbor and with the environment, plus an initial
friends list needed to bootstrap the system. The nature
of the information required for successful operation
is application dependent and can be customized. E.g.,
for our first (data-intensive) application, both neighbor
computing rate and communication bandwidth of the
intervening link were important; this information was
obtained using feedback from the ongoing computation.

Agent behavior completely determines the way com-
putation is organized. In order to demonstrate the fea-
sibility and generality of this approach, we report our
experience in designing agent behavior for running two
representative applications on an Organic Grid: the NCBI
BLAST code for sequence alignment, and Cannon’s
algorithm for matrix multiplication.

The first is an example of independent task appli-
cation, a type of application commonly used for grid
scheduling research because of its easily decomposable
nature and absence of intra-node communication. The
second is a popular block algorithm for parallel matrix
multiplication, and represents a challenging application
for grid platforms because of its highly structured and
synchronous communication pattern.

The main contribution of this paper is the demonstra-
tion of how the very different requirements in terms of
communication topology, resource use, and response to
faults of each of these two applications at the opposite
ends of the distributed computing spectrum can be
satisfied by the careful design of agent behavior in an
Organic Grid context.

II. BACKGROUND AND RELATED WORK

A. Peer-to-Peer and Internet Computing

The goal of utilizing the CPU cycles of idle machines
was first realized by the Worm project [21] at Xerox
PARC. Further progress was made by academic projects
such as Condor [11]. The growth of the Internet made
large-scale efforts like GIMPS [6], SETI@home [7]
and folding@home [9] feasible. Recently, commercial
solutions such as Entropia [10] and United Devices [22]
have also been developed.



The idea of combining Internet and peer-to-peer com-
puting is attractive because of the potential for almost
unlimited computational power, low cost, ease and uni-
versality of access — the dream of a true Computational
Grid. Among the technical challenges posed by such an
architecture, scheduling is one of the most formidable
— how to organize computation on a highly dynamic
system at a planetary scale while relying on a negligible
amount of knowledge about its state.

B. Scheduling

Decentralized scheduling has recently attracted con-
siderable attention. Two-level scheduling schemes have
been considered [23], [24], but these are not scalable
enough for the Internet. In the scheduling heuristic
described by Leangsuksun et al. [25], every machine
attempts to map tasks on to itself as well as its K best
neighbors. This appears to require that each machine
have an estimate of the execution time of subtasks on
each of its neighbors, as well as of the bandwidth of
the links to these other machines. It is not clear that
their scheme is practical in large-scale and dynamic
environments.

G-Commerce was a study of dynamic resource allo-
cation on the Grid in terms of computational market
economies in which applications must buy resources
at a market price influenced by demand [26]. While
conceptually decentralized, if implemented this scheme
would require the equivalent of centralized commodity
markets (or banks, auction houses, etc.) where offer and
demand meet, and commodity prices can be determined.

Recently, a new autonomous and decentralized ap-
proach to scheduling has been proposed to address
specifically the needs of large grid and peer-to-peer
platforms. In this bandwidth-centric protocol, the com-
putation is organized around a tree-structured overlay
network with the origin of the tasks at the root [18].
Each node sends tasks to and receives results from its
K best neighbors, according to bandwidth constraints.
One shortcoming of this scheme is that the structure
of the tree, and consequently the performance of the
system, depends completely on the initial structure of
the overlay network. This lack of dynamism is bound
to affect the performance of the scheme and might also
limit the number of machines that can participate in a
computation.

C. Self-Organization of Complex Systems

The organization of many complex biological and
social systems has been explained in terms of the ag-

gregations of a large number of autonomous entities
that behave according to simple rules. According to
this theory, complicated patterns can emerge from the
interplay of many agents — despite the simplicity of
the rules [27], [28]. The existence of this mechanism,
often referred to as emergence, has been proposed to
explain patterns such as shell motifs, animal coats, neural
structures, and social behavior. In particular, certain
complex behaviors of social insects such as ants and
bees have been studied in detail, and their applications
to the solution of specific computer science problems
has been proposed [17], [29]. In a departure from the
methodological approach followed in previous projects,
we did not try to accurately reproduce a naturally oc-
curring behavior. Rather, we started with a problem and
then designed a completely artificial behavior that would
result in a satisfactory solution to it.

Our work was inspired by a particular version of the
emergence principle called Local Activation, Long-range
Inhibition (LALI) [30]. The LALI rule is based on two
types of interactions: a positive, reinforcing one that
works over a short range, and a negative, destructive one
that works over longer distances. We retain the LALI
principle but in a different form: we use a definition of
distance which is based on a performance-based metric.
Nodes are initially recruited using a friends list (a list
of some other peers on the network) in a way that is
completely oblivious of distance, therefore propagating
computation on distant nodes with same probability as
close ones. During the course of the computation agents
behavior encourages the propagation of computation
among well-connected nodes while discouraging the
inclusion of distant (i.e. less responsive) agents.

III. APPLICATIONS

The first demonstration of our decentralized approach
was done using a class of applications that is commonly
used in grid scheduling research, namely an independent
task application (or ITA) [31], The specific application
we used was BLAST, a popular sequence alignment tool.

In order to demonstrate the generality of the auto-
nomic approach and the flexibility of the Organic Grid
scheduling framework, for our second set of experiments
we then selected an application at the opposite end of
the spectrum, characterized by a highly regular and syn-
chronous pattern of communication — Cannon’s matrix
multiplication algorithm [32]. In the following section
we will emphasize the differences between these two
applications and how the Organic Grid framework can
be specialized to accommodate them.



For an ITA, the computation spreads out from its
source in the form of a tree. The source distributes
the data in the form of computational subtasks that
flow down the tree; results flow towards the root. This
same tree structure was used as the overlay network for
making scheduling decisions. The tree is continuously
restructured during the execution of the application, such
that high-throughput nodes are always near the root.

In general, there could be separate overlay networks:
for data distribution, for scheduling, and for communi-
cation between subtasks. In the case of an ITA, there is
no communication between subtasks while the overlay
trees for data distribution and scheduling overlap.

The data distribution and communication overlay net-
works are entirely application specific. On the other
hand, the mechanisms for restructuring the scheduling
overlay tree can be adapted to a wide variety of ap-
plications. There are two key aspects that determine the
scheduling behavior: The cost metric used for measuring
the performance of individual nodes determines which
nodes are moved up or down the tree, whereas the width
of the tree is constrained by resource availability. Both
of these aspects are again specific to the application.

We have factored out the scheduling mechanism into
an object-oriented framework, which an application can
extend by providing application-specific metrics and
resource constraints.

Cannon’s matrix multiplication algorithm is charac-
terized by a highly regular and synchronous pattern of
communication. This application employs three different
overlay networks: a star topology for data distribution, a
torus for the communication between subtasks, and the
tree overlay of the scheduling framework. The metric
used for restructuring the tree was the time to multiply
two matrix tiles. While for the ITA the resource con-
straint was the communication bandwidth of the root, for
the Cannon application it was the number of machines
that belong to the torus.

IV. INDEPENDENT TASK APPLICATION: SCHEDULING

A. Overview

One of the works that inspired our project was the
bandwidth-centric protocol proposed by Kreaseck et
al. [18], in which a grid computation is organized around
a tree-structured overlay network with the origin of the
tasks at the root. A tree overlay network represents
a natural and intuitive way of distributing tasks and
collecting results. The drawback of the original scheme
is that the performance and the degree of utilization of

the system depend entirely on the initial assignment of
the overlay network.

In contrast, we have developed our systems to be
adaptive in the absence of any knowledge about machine
configurations, connection bandwidths, network topol-
ogy, and assuming only a minimal amount of initial
information. While our scheme is also based on a tree,
our overlay network keeps changing to adapt to system
conditions. Our tree adaptation mechanism is driven by
the perceived performance of a node’s children, mea-
sured passively as part of the ongoing computation [33].
From the point of view of network topology, our system
starts with a small amount of knowledge in the form
of a friends list, and then keeps building its own overlay
network on the fly. Information from each node’s friends
list is shared with other nodes so the initial configuration
of the lists is not critical. The only assumption we rely
upon is that a friends list is available initially on each
node to prime the system; solutions for the construction
of such lists have been developed in the context of peer-
to-peer file-sharing [19], [34] and will not be addressed
in this paper.

The Local Activation, Long-range Inhibition (LALI)
rule is based on two types of interactions: a positive,
reinforcing one that works over a short range, and a neg-
ative, destructive one that works over longer distances.
We retain the LALI principle but in a different form:
we use a definition of distance which is based on a
performance-based metric. In our experiment, distance is
based on the perceived throughput which is some func-
tion of communication bandwidth and computational
throughput. Nodes are initially recruited using the friends
list in a way that is completely oblivious of distance,
therefore propagating computation on distant nodes with
the same probability as close ones. During the course
of the computation the agents’ behavior encourages
the propagation of computation among well-connected
nodes while discouraging the inclusion of distant (i.e.,
less responsive) agents.

The methodology we followed to design the agent
behavior is as follows. We selected a tree-structured
overlay network as the desirable pattern of execution. We
then empirically determined the simplest behavior that
would organize the communication and task distribution
among mobile agents according to that pattern. We then
augmented the basic behavior in a way that introduced
other desirable properties. With the total computation
time as the performance metric, every addition to the
basic scheme was separately evaluated and its contribu-
tion to the total performance quantitatively assessed.



One such property is the continuous monitoring of
the performance of the child nodes. We assumed that no
knowledge is initially available on the system, instead
passive feedback from child nodes is used to measure
their effective performance, e.g., the product of compu-
tational speed and communication bandwidth.

Another property is continuous, on-the-fly adaptation
using the restructuring algorithm presented in Section
IV-D. Basically, the overlay tree is incrementally restruc-
tured while the computation is in progress by pushing
fast nodes up towards the root of the tree. Other functions
that were found to be critical for performance were the
automatic determination of parameters such as prefetch-
ing and task size, the detection of cycles, the detection
of dead nodes and the end of the computation.

B. Basic Agent Design

A large computational task is encapsulated in a
strongly mobile agent [35]. This task should be divisible
into a number of independent subtasks. A user starts the
computation agent on his/her machine. One thread of the
agent begins executing subtasks sequentially. The agent
is also prepared to receive requests for work from other
machines. If the machine has any uncomputed subtasks,
and receives a request for work from another machine,
it sends a clone of itself to the requesting machine. The
requester is now this machine’s child.

The clone asks its parent for a certain number of
subtasks to work on, � . A thread begins to compute the
subtasks. Other threads are created — when required —
to communicate with the parent or other machines. When
work requests are received, the agent dispatches its own
clone to the requester. The computation spreads in this
manner. The topology of the resulting overlay network
is a tree with the originating machine at the root node.

An agent requests its parent for more work when it has
executed its own subtasks. Even if the parent does not
have the requested number of subtasks, it will respond
and send its child what it can. The parent keeps a record
of the number of subtasks that remain to be sent, and
sends a request to its own parent. Every time a node of
the tree obtains � results, either computed by itself or
obtained from a child, it sends them to its parent. This
message includes a request for all pending subtasks.

C. Maintenance of Child-lists

Each node has up to � active children, and up to �
potential children. Ideally, ����� is chosen so as to strike
a balance between a tree that is too deep (long delays

in data propagation) and one that is too wide (inefficient
distribution of data).

The active children are ranked on the basis of their
performance. The performance metric is application-
dependent. For an ITA, a child is evaluated on the basis
of the rate at which it sends in results. When a child
sends � results, the node measures the time-interval since
the last time it sent � results. The final result-rate of this
child is calculated as an average of the last 	 such time-
intervals. This ranking is a reflection of the performance
of not just a child, but of the entire subtree with the child
node at its root.

Potential children are the ones which the current node
has not yet been able to evaluate. A potential child is
added to the active child-list once it has sent enough
results to the current node. If the node now has more
than � children, the slowest child, � � , is removed from
the child-list. As described below, � � is then given a list
of other nodes, which it can contact to try and get back
into the tree. The current node keeps a record of the
last 
 former children, and � � is now placed in this list.
Nodes are purged from this list once a sufficient, user-
defined time period elapses. During that interval of time,
messages from � � will be ignored. This avoids thrashing
and excessive dynamism in the tree.

D. Restructuring of the Overlay Network

The topology of the overlay network is a tree, and it
is desirable for the best-performing nodes to be close
to the root. In the case of an ITA, both computational
speed and link bandwidth contribute to a node’s effective
performance. Having well connected nodes close to the
top enhances the extraction of subtasks from the root
and minimizes the communication delay between the
root and the best nodes. Therefore the overlay network
is constantly being restructured so that the nodes with
the highest throughput migrate toward the root, pushing
those with low throughput towards the leaves [33].

A node periodically informs its parent about its best-
performing child. The parent checks whether its grand-
child is present in its list of former children. If not,
it adds the grandchild to its list of potential children
and tells this node that it is willing to consider the
grandchild. The node then instructs its child to contact its
grandparent directly. If the contact ends in a promotion,
the entire subtree rooted at the child node will move
one level higher in the tree. This constant restructuring
results in fast nodes percolating towards the root of the
tree. The checking of a promising child against a list of
former children prevents the occurrence of thrashing due



to consecutive promotions and demotions of the same
node.

When a node updates its child-list and decides to
remove its slowest child, � � , it does not simply discard
the child. It prepares a list of its children in descending
order of performance, i.e., slowest node first. The list is
sent to � � , which attempts to contact those nodes in turn.
Since the first nodes that are contacted are the slower
ones, the tree is sought to be kept balanced.

E. Fault Tolerance

If the parent of a node were to become inaccessible
due to machine or link failures, the node and its own
descendants would be disconnected from the tree. The
application might require that a node remain in the tree
at all times. In this scenario, the node must be able to
contact its parent’s ancestors. Every node keeps a (con-
stant size) list of � of its ancestors. This list is updated
every time its parent sends it a message. The updates to
the ancestor-list take into account the possibility of the
topology of the overlay network changing frequently.

In case of failure (detected by a simple time-out
mechanism) a child sends a message to its parent — the
� -th node in its ancestor-list. If it is unable to contact
the parent, it sends a message to the ( ���� )-st node in
that list. This goes on until an ancestor responds to this
node’s request. The ancestor becomes the parent of the
current node and normal operation resumes.

If a node’s ancestor-list goes down to size 0, it
attempts to obtain the address of some other agent
by checking its data distribution and communication
overlays. If these are the same as the scheduling tree, the
node has no means of obtaining any more work to do.
The mobile agent informs the agent environment that no
useful work is being done by this machine, before self-
destructing. The environment begins to send out requests
for work to a list of friends.

In order to recover from the loss of tasks by failing
nodes, every node keeps track of unfinished subtasks
that were sent to children. If a child requests additional
work and no new task can be obtained from the parent,
unfinished tasks are handed out again.

V. INDEPENDENT TASK APPLICATION:
MEASUREMENTS

We have conducted experiments to evaluate the per-
formance of each aspect of our scheduling scheme. The
experiments were performed on a cluster of eighteen
heterogeneous machines at different locations around

TABLE I
ORIGINAL PARAMETERS

Parameter Name Parameter Value
Maximum children 5
Maximum potential children 5
Result-burst size 3
Self-adjustment linear
Number of subtasks 1
initially requested
Child-propagation On

Ohio. The machines ran the Aglets weak mobility
agent environment on top of either Linux or Solaris.

The application we used to test our system was the
gene sequence similarity search tool, NCBI’s nucleotide-
nucleotide BLAST [36] — a representative independent-
task application. The mobile agents started up a BLAST
executable to perform the actual computation. The task
was to match a 256KB sequence against 320 data
chunks, each of size 512KB. Each subtask was to match
the sequence against one chunk. Chunks flow down the
overlay tree whereas results flow up to the root. An agent
cannot migrate during the execution of the BLAST code;
since our experiments do not require strong mobility, this
limitation is irrelevant to our measurements.

All eighteen machines would have offered good per-
formance as they all had fast connections to the Internet,
high processor speeds and large memories. In order
to obtain more heterogeneity in their performance, we
introduced delays in the application code so that we
could simulate the effect of slower machines and slower
network connections. We divided the machines into fast,
medium and slow categories by introducing delays in the
application code.

As shown in Figure 1, the nodes were initially orga-
nized randomly. The dotted arrows indicate the directions
in which request messages for work were sent to friends.
The only thing a machine knew about a friend was
its URL. We ran the computation with the parameters
described in Table I. Linear self-adjustment means that
the increasing and decreasing functions of the number
of subtasks requested at each node are linear. The time
required for the code and the first subtask to arrive at
the different nodes can be seen in Figure 2. This is the
same for all the experiments.

A. Comparison with Knowledge-based Scheme

The purpose of these tests is to evaluate the quality of
the configuration which is autonomously determined by
our scheme for different initial conditions.
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Fig. 2. Code Ramp-up

Two experiments were conducted using the parameters
in Table I. In the first, we manually created a good initial
configuration assuming a priori knowledge of system
parameters. We then ran the application, and verified that
the final configuration did not substantially depart from
the initial one. We consider a good configuration to be
one in which fast nodes are nearer the root. The final
tree configuration shows that fast nodes are kept near
the root and that the system is constantly re-evaluating
every node for possible relocation (as shown by the three
rightmost children which are under evaluation by the
root).

We began the second experiment with the completely
random configuration shown in Figure 1. The resulting
configuration shown in Figure 3 is substantially similar
to the good configurations of the previous experiment;
if the execution time had been longer, the migration
towards the root of the two fast nodes at depths 2 and 3
would have been complete.

TABLE II
EFFECT OF PRIOR KNOWLEDGE

Configuration Running
Time (sec)

original 2294
good 1781

TABLE III
EFFECT OF CHILD PROPAGATION

Scheme Running
Time (sec)

With 2294
Without 3035

B. Effect of Child Propagation

We performed our computation with the child-
propagation aspect of the scheduling scheme disabled.
Comparisons of the running times and topologies are
in Table III and Figures 3 and 4. The child-propagation
mechanism results in a 32% improvement in the running
time. The reason for this improvement is the difference
in the topologies. With child-propagation turned on, the
best-performing nodes are closer to the root. Subtasks
and results travel to and from these nodes at a faster
rate, thus improving system throughput and preventing
the root from becoming a bottleneck. This mechanism is
the most effective aspect of our scheduling scheme.

C. Number of Children

We experimented with different child-list sizes and
found that the data ramp-up time with the maximum
number of children set to 5 was less than that with the
maximum number of children set to 10 or 20. These
results are in Table IV. The root is able to take on more
children in the latter cases and the spread of subtasks to
nodes that were originally far from the root takes less
time.

Instead of exhibiting better performance, the runs
where large numbers of children were allowed, had
approximately the same total running time as the run
with the maximum number of children set to 5. This is
because children have to wait for a longer time for their
requests to be satisfied.

In order to obtain a better idea of the effect of several
children waiting for their requests to be satisfied, we ran
two experiments: one with the good initial configuration
and the other using a star topology — every non-root
node was adjacent to the root at the beginning of the
experiment itself. The maximum sizes of the child-lists
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were set to 5 and 20, respectively. Since the overlay
networks were already organized such that there would
be little change in their topology as the computation
progressed, there was minimal impact of these changes
on the overall running time. The effect of the size of
the child-list was then clearly observed as in Table V.
Similar results were observed even when the child-
propagation mechanisms were turned off.

VI. CANNON’S ALGORITHM: SCHEDULING

ITAs easily lend themselves to purely decentralized
scheduling over the Organic Grid. However, running
Cannon’s matrix multiplication algorithm on a desktop
grid reveals one point at which centralization is needed:
the matrix multiplication stages should begin only after a
grid of ��������������� machines is available for computa-
tion; a central entity is necessary to count the number of
nodes that have been recruited by the computation and
to signal the start of the matrix multiplication.

TABLE IV
EFFECT OF NO. OF

CHILDREN ON DATA

RAMP-UP

Max. No. of Time
Children (sec)

5 1068
10 760
20 778

TABLE V
EFFECT OF NO. OF

CHILDREN ON RUNNING

TIME

Max. No. of Time
Children (sec)

5 1781
20 2041

A. Overlay Networks

Our systems are designed to operate on large-scale
unstructured networks, assuming no knowledge of ma-
chine configurations, connection bandwidths, network
topology, etc. The only assumption we rely upon is that
a friends list is available initially on each node to prime
the system; research has been conducted on constructing
such lists for peer-to-peer file-sharing [19], [34] and the
problem will not be addressed in this paper.

We selected a tree-structured overlay network as the
desirable pattern of execution in our previous work [31],
[33]. Mobile agents spread out over a desktop grid
and formed a tree overlay. The tree restructured itself
continuously while computation was in progress, so as
to adjust to the performance of the individual nodes and
bring high-performance nodes close to the root.

Nodes involved in a Cannon matrix multiplication are
organized as a torus. The behavior of the Organic Grid’s
agents was augmented with matrix multiplication logic,
including that for torus formation and maintenance. Of
the � nodes recruited by the overlay tree, � were involved
in the matrix multiplication. The system thus contained
two overlay networks: a tree of all � nodes, and a torus
composed of � of these nodes [37].

B. Basic Implementation

A user decides to use a desktop grid to multiply two
matrices, � and � , to produce a result matrix, � . These
matrices may be located at a central location (forming
a star), or distributed or replicated across several remote
data servers. He/she also decides on the size of tiles the
matrices will be divided into. Based on the size of the
matrices and tiles, the user can determine the number of
machines, � , required to multiply the matrices.

The user starts up an agent environment on his/her
machine, and creates two agents: a distribution agent,
which is also the central entity that will signal the
beginning of the multiplication, and a computation agent.
The computation agent registers with the distribution



agent and obtains a position on the agent grid, before
reading one tile each of the � and � matrices from a
data server.

Whenever other machines on the desktop grid become
idle, they send requests to a list of URLs (friends), where
a URL consists of an IP address and port number. If
such a request arrives at a machine that is running the
computation agent, the agent creates a clone of itself and
dispatches the clone to the idle machine. On arrival, the
clone also registers with the distribution agent, obtains a
position on the agent grid, and reads its own � and �
tiles. The topology of the resulting overlay network is a
tree with the user’s machine at the root node.

When the distribution agent has been contacted by
� computation agents, it forms a torus with � machines
along each dimension, where � �"! � . Each computation
agent is sent a start message to inform it of its left and
upper neighbors. These connections to left and upper
neighbors form the torus overlay network. Also included
in the start messages are the addresses of the nodes to
which tiles should be sent during the initialization phase
of the algorithm.

Phase one of the algorithm is the initialization phase,
where nodes send and receive � and � tiles to and
from each other. Different threads within each agent are
started up to carry out these operations. As soon as a
node has obtained the � and � tiles, it begins phase
two to actually multiply the matrices.

C. Adaptive Tree

Unlike most dedicated clusters, desktop grids could
contain a set of heterogeneous machines of varying
configurations and performance. The distribution agent
will create a torus overlay network of the first � machines
it finds. The tree overlay network may spread out to
cover a much larger number of nodes, � , but only � of
them will be part of the torus. The �#�$���%� extra nodes
might include faster machines than those in the torus.
The application will benefit from a selection of the �
best machines.

Each node has some active children, and some po-
tential children. The active children are ranked on the
basis of an application-specific performance metric. The
ranking is a reflection of the performance of the entire
subtree with the child node at its root. Potential children
are those that have not sent any results. If one of them
does and performs better than an active child, it replaces
that child in the list of active children.

A node periodically informs its parent about its best-
performing child. The parent checks whether the grand-

child was its child in the recent past. If not, it is willing
to consider the grandchild and makes it a potential child
instead. The node then instructs its child to contact its
grandparent directly.

In this manner, the tree overlay network dynamically
adjusts to changing conditions so as to maximize ap-
plication performance. Each node continuously receives
feedback from its children and attempts to propagate its
fastest child up the tree. Slow children, on the other hand,
are demoted towards the leaves.

In the case of the Cannon application, tree nodes
rank their children on the basis of the time required
for the last & tile multiplications. This is a a reasonable
metric because we assume that computation dominates
communication. The �#�'�(�%� tree nodes that are not in
the torus carry out dummy tile multiplications so that
they can be evaluated by their parents.

D. Role Reversal

The overlay tree contains � regular nodes that are in
the torus, and �#� �)�%� extra nodes. As the tree structure
changes dynamically, fast, extra nodes get pushed up the
tree. When one of these becomes the parent of a slow,
regular node, it recognizes that it should be in the torus
instead of its slow child. The parent, * , initiates a role
reversal with the child, � .

At the end of its current tile multiplication stage, �
informs the nodes to its right and bottom on the torus
that they should contact * in future. � transfers its own
tiles to * , so that * seamlessly replaces it in the torus.
� is now an extra node. Thus, application performance
is maximized by including the fastest tree nodes in the
torus.

E. Fault Tolerance

A desktop grid is more prone to failure than a reliable
dedicated cluster. We focus on the problem of crash
faults in this paper. As mentioned previously, a tree
overlay network of � nodes is constructed. � of these
are part of a torus, and the remaining �#�+�,�%� nodes
function as spares.

1) Fault Tolerance on Tree: If the parent of a node
were to become inaccessible due to machine or link
failures, the node and its own descendants would be
disconnected from the tree. A node must be able to
contact its parent’s ancestors if necessary. Every node
keeps a list of � of its ancestors. This list is updated
every time its parent sends it a message.

A child sends a message to its parent — the � -th node
in its ancestor-list. If it unable to contact the parent, it



sends a message to the ( ���+� )-th node in that list. This
goes on until an ancestor responds to this node’s request.
The ancestor becomes the parent of the current node
and normal operation resumes. If a node’s ancestor-list
goes down to size 0, the computation agent on that node
self-destructs and a stationary agent begins to send out
requests for work to a list of friends.

2) Fault Tolerance on Torus: Fault tolerance is a
much more difficult problem for the torus because a
failure will cause the entire distributed computation to
stall. We define the requirements of a failure detection
and recovery mechanism as: i) detect failure, ii) find
replacement node, iii) insert replacement at correct posi-
tion in torus, iv) provide replacement with the state nec-
essary to continue predecessor’s computation, v) provide
replacement with the information needed to recompute
tiles lost to the crash.

A fundamental aspect of our fault tolerance algorithm
for the torus is that every torus node knows who its
left neighbor is at all times. Nodes take responsibility
for detecting crashes to their immediate left and for
replacing the crashed nodes. A crash is detected when
one node, � , attempts to contact the node to its left and
finds that it is unable to do so.

The rest of the system system does not stall while
failed nodes are being replaced. Instead, a node will
timeout if it has not received � or � tiles from its right or
bottom neighbors, and the node will read the necessary
tiles directly from a data server.

Spare nodes periodically publish their availability to
information servers. � queries one of these servers which
responds with the URL of machine - . � contacts - and
gives it three necessary pieces of information: - ’s position
on the torus, the matrix multiplication stage that � — and
hence - — is on, and the URL of - ’s neighbors. - then
reads its � and � tiles from the data servers.

The matrix multiplication stages then proceed as de-
scribed before. When the stages have been completed,
the nodes write their � tiles to the appropriate data
server. Nodes that were inserted as replacements now
need to compute the state that was lost due to their pre-
decessor’s crash. They do this by reading the necessary
� and � tiles from the data servers, multiplying the tiles,
and writing the complete � tiles back to the repositories.

The failure detection and recovery algorithm makes
two assumptions:
. Enough extra nodes are present to act as spares

throughout the duration of the computation. The
number of failures that the application can tolerate
is the same as the number of extra machines:

�#�/�0�%� . Since it is the distribution agent that signals
the start of the computation, it is easy for it to
postpone this signaling until a large number of extra
machines have been recruited by the application.
The overlay tree can also keep growing, even after
the matrix multiplication has begun. This increases
the number of failures that can be tolerated, as well
as the probability of the application finding high-
performance machines.. Five of the replacement’s new neighbors — to its
right, top-right, top, top-left and left — are running
when the replacement node is inserted, so that the
new node can discover its top and left neighbors
before computation proceeds. This restriction may
be removed by requiring that each node periodically
publish its torus position and URL. This information
could be published to multiple servers and even the
distribution agent itself. New additions to the torus
can query these servers and discover their left and
top neighbors. The interval at which this publishing
occurs needs to be set carefully so that the time for
which the computation stalls is minimized.

VII. CANNON’S ALGORITHM: MEASUREMENTS

Three aspects of the Organic Grid implementation of
Cannon’s matrix multiplication were sought to be eval-
uated: i) performance and scalability, ii) fault-tolerance
and iii) decentralized selection of compute nodes.

A good evaluation of this application required tight
control over the experimental parameters. The experi-
ments were therefore performed on a Beowulf cluster
of homogeneous Linux machines, each with dual AMD
Athlon MP processors (1.533 GHz) and 2 GB of mem-
ory, and with a Myrinet interconnect. When necessary,
artificial delays were introduced to simulate a heteroge-
neous environment. The accuracy of the experiments was
improved by multiplying the matrices 16 times instead
of just once.

A. Scalability

We performed a scalability evaluation by running the
application on various sizes of tori and matrices. The tree
adaptation mechanism was disabled in order to eliminate
its effect on the experiments. The agent behavior has
been described in Table VI.

Tables VIII and IX, and Figure 6 present a comparison
of the running times of 16 rounds of matrix multiplica-
tions on tori with 1, 2 and 4 agents along each dimension.

Superlinear speedups are observed with larger num-
bers of nodes because of the reduction in cache effects



TABLE VI
AGENT BEHAVIOR, WITHOUT ADAPTATION

Parameter Name Parameter Value
Maximum children 2
Maximum potential children 2
Feedback from children Off
Child-propagation Off

TABLE VII
AGENT BEHAVIOR, WITH ADAPTATION

Parameter Name Parameter Value
Maximum children 2
Maximum potential children 2
Result-burst Average of last 2

tile multiplications
Number of subtasks 0
requested
Child-propagation On

with a decrease in the size of the tiles stored at each
machine. A better scalability evaluation was carried out
by using tiling on single agents as well.

B. Adaptive Tree Mechanism

We then made use of the adaptive tree mechanism
to select the best available machines for the torus in a
decentralized manner. The behavior of each agent was
as in Table VII. The feedback sent by each child to its
parent was the time taken by the child to complete its
two previous tile multiplications.

We experimented with a desktop grid of 20 agents in
Figure 5. These 20 agents then formed a tree overlay
network, of which the first 16 to contact the distribution
agent were included in a torus with 4 agents along each
dimension; the remaining agents acted as extras in case
any faults occurred. The initial tree and torus can be seen
in Figures 7 and 8 with 4 slow nodes in the torus and
4 extra, fast nodes.

The structure of the tree continually changed and the
high-performance nodes were pushed up towards the
root. When a fast, extra node found that one of its
children was slower than itself and part of the torus, it
initiated a swap of roles. Figure 9 shows the tree before
the first swap, with the nodes to be swapped having been
circled. The effect of this swap on the torus is shown in
Figure 10.

Similarly, the topology of the tree and the torus before
and after the last swap are in Figures 11 and 12.

Each matrix multiplication on the 13241 agent grid had

TABLE VIII
RUNNING TIME ON 1 AND 4 MACHINES, 16 ROUNDS

Matrix Single Agent 57685 Agent Grid
Size Tile Time Tile Time Speedup

(MB) (MB) (sec) (MB) (sec)
1 1 75 0.25 22 3.4
4 4 846 1 225 3.8

16 16 14029 4 2535 5.5

TABLE IX
RUNNING TIME ON 1 AND 16 MACHINES, 16 ROUNDS

Matrix Single Agent 9�6:9 Agent Grid
Size Tile Time Tile Time Speedup

(MB) (MB) (sec) (MB) (sec)
1 1 75 0.0625 34 2.2
4 4 846 0.25 43 19.7

16 16 14029 1 454 30.9

4 tile multiplication stages; our experiment consisted of
16 rounds — 64 stages. A tile multiplication took 7 sec.
on a fast node and 14 sec. on a slow one. Table XII
presents the average execution time of these stages. This
began at 10 sec., then increased to 13 sec. before the first
swap took place. The fast nodes were inserted into the
torus on stages 4, 6 and 43. Once the slow nodes had
been swapped out, the system required 4 rounds until
all the 16 agents sped up and reached high steady-state
performance. The effect of this on overall running time
can be seen in Table X.

While the adaptive tree mechanism undoubtedly re-
sults in a performance improvement in the presence of
high-performance extra nodes, it also introduces some
overhead when no such extra nodes are present. Nodes
still provide feedback to their parents who, in turn,
rank their children and propagate the best ones. We
first ran the Cannon application without any extra nodes
present, and then disabled the adaptive tree mechanism
for a second set of experiments. The overhead of this
mechanism was negligible, as can be seen in Table XIII.

C. Fault-Tolerance

We introduce crash failures by bringing down some
machines during application execution. We were inter-
ested in observing the amount of time that the system
would stall in the presence of failures. Different numbers
of failures were introduced at different positions on
the torus. When multiple nodes on the same column
crash, they are replaced in parallel. The replacements
for crashes on a diagonal occur sequentially.
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The system recovers rapidly from failures on the same
column and diagonal, as can be seen in Table XIV. For a
small number of crashes (1 or 2), there is little difference
in the penalty of crashes on columns or diagonals. This
difference increases for 3 crashes, and we expect it to
increase further for larger numbers of crashes on larger
tori.

VIII. CONCLUSIONS AND FUTURE WORK

We have designed a desktop grid in which mobile
agents are used to deliver applications to idle machines.
The agents also contain a scheduling algorithm that
decides which task to run on which machine. Using
simple scheduling rules in each agent, a tree-structured
overlay network is formed and restructured dynamically,
such that well performing nodes are brought closer to
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TABLE X
RUNNING TIME OF 16 ROUNDS ON 4X4 GRID, 16MB MATRIX,

1MB TILES, ADAPTIVE TREE

Slow Nodes Extra Nodes Time (sec)
4 0 898
0 0 462
4 4 759

important resources, thus improving the performance of
the overall system.

We have demonstrated the applicability of our
scheduling scheme with two very different styles of
applications, an independent task application (a BLAST
executable) and an applications in which individual
nodes need to communicate, a Cannon-style matrix mul-
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TABLE XI
RUNNING TIME OF 16 ROUNDS ON 2X2 GRID, 4MB MATRIX,

1MB TILES, ADAPTIVE TREE

Slow Nodes Extra Nodes Time (sec)
2 0 417
0 0 226
2 2 343

tiplication application.
Because of the unpredictability of a desktop grid,

the scheduler does not have any a priori knowledge
of the capabilities of the machines or the network
connections. For restructuring the overlay network, the
scheduler relies on measurements of the performance
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of the individual nodes and makes scheduling decisions
using application-specific cost functions. In the case of
BLAST, where the data was propagated along the same
overlay tree, nodes with higher throughput were moved
closer to the root to minimize congestion. In the case of
Cannon’s algorithm, where the data came from a separate
data center, the fastest nodes were moved closer to the
root, to prevent individual slow nodes from slowing
down the entire application.

The common aspect in scheduling the tasks for these
very different applications is that access to a resource
needs to be managed. In the case of BLAST, the critical
resource is the available communication bandwidth at
the root and at intermediate nodes in the tree. If a
node has too many children, communication becomes



TABLE XII
PERFORMANCE AT DIFFERENT STAGES OF EXPERIMENT, 4X4

AGENT GRID

Stage Swap position Avg. Tile
on Torus Mult. Time (sec)

1–3 - 10
4 12 13
5 - 15
6 13,15 15

7–42 - 14
43 14 14

44–47 - 13
48-64 - 7

TABLE XIII
OVERHEAD OF ADAPTIVE TREE, 16 ROUNDS, 4X4 GRID, 16MB

MATRIX, 1MB TILES

No Adaptation Adaptation
Slow Extra Time Slow Extra Time

Nodes Nodes (sec) Nodes Nodes (sec)
4 0 898 4 0 899
0 0 454 0 0 462

a bottleneck. Conversely, if a node has too few children,
the tree becomes too deep and the communication delay
between the root and the leaves too long. The goal for
BLAST was, therefore, to limit the width of the tree
and to propagate high-throughput nodes closer to the
root. In the case of Cannon’s algorithm, the critical
resource is the communication torus. Since any slow
node participating in the torus would slow down the
entire application, the goal is to propagate the fast nodes
closer to the root and to keep the slower nodes further
from the root.

By selecting the appropriate parameters to our
scheduling algorithm, an application developer can tune
the scheduling algorithm to the characteristics of an
individual application. This choice of parameters in-
cludes constraints on how the overlay tree should be
formed, e.g., the maximum width of the tree, and a
metric with which the performance of individual nodes
can be compared to decide which nodes to propagate
up in the tree. Our scheduling scheme is inherently
fault tolerant. If a node in the overlay tree fails, the
tree will be restructured to allow other nodes to continue
participating in the application. If a task is lost because
of a failing node, it will eventually be assigned to another
node. However, in the case of communication between
tasks, such as in Cannon’s algorithm, it is necessary

TABLE XIV
RUNNING TIME OF 16 ROUNDS ON 4X4 GRID, 16MB MATRIX,

1MB TILES

Failures Failures on Column Failures on Diagonal
Positions Time (sec) Positions Time (sec)

0 - 454 - 454
1 5 466 5 466
2 5, 9 479 6, 9 464
3 5, 9, 13 486 6, 9, 12 540

for the application developer to write application-specific
code to recover from a failed node and to reestablish the
communication overlay network.

In the near future we plan to harness the computing
power of idle machines by running the agent platform
inside a screen saver. Since computing resources can
become unavailable (e.g., if a user wiggles the mouse
to terminate the screen saver), we are planning to
extend our scheduling cost functions appropriately to
allow agents to migrate a running computation, while
continuing the communication with other agents.

We are also planning to investigate combinations of
distributed, zero-knowledge scheduling with more cen-
tralized scheduling schemes to improve the performance
for parts of the grid with known machine character-
istics. Similar as in networking, where decentralized
routing table update protocols such as RIP coexist with
more centralized protocols such as OSPF, we envision a
grid in which a decentralized scheduler would be used
for unpredictable desktop machines, while centralized
schedulers would be used for, say, a Globus host.

The system described in this paper is a small scale
proof-of-concept implementation. Clearly our results
need to be validated on full scale system. In addition to
a screensaver-based implementation, we are planning the
construction of a simulator. Some important aspects of
the Organic Grid approach that remain to be investigated
are more advanced forms of fault detection and recovery,
the dynamic behavior of the system in relation to changes
in the underlying system, and the the management of the
friends lists.
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