
Keynote Address: The design of TEX and METAFONT: A retrospective

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

This article looks back at the design of TEX and METAFONT, and analyzes how
they were affected by architectures, operating systems, programming languages,
and resource limits of the computing world at the time of their creation by a
remarkable programmer and human being, Donald E. Knuth. This paper is dedi-
cated to him, with deep gratitude for the continued inspiration and learning that
I’ve received from his software, his scientific writing, and our occasional personal
encounters over the last 25+ years.

1 Introduction 1001

2 Computers and people 1002

3 The DEC PDP-10 1002

4 Resource limits 1005

5 Choosing a programming language 1006

6 Switching programming languages 1010

7 Switching languages, again 1013

8 TEX’s progeny 1014

9 METAFONT’s progeny 1014

10 Wrapping up 1015

11 Bibliography 1015

1 Introduction

More than a quarter century has elapsed since Don-
ald Knuth took his sabbatical year of 1977–78 at
Stanford University to tackle the problem of improv-
ing the quality of computer-based typesetting of his
famous book series, The Art of Computer Program-
ming [50–55, 57, 62–64].

When the first volume appeared in 1968, most
typesetting was still done by the hot-lead process,
and expert human typographers with decades of ex-

perience handled line breaking, page breaking, and
page layout. By the mid 1970s, proprietary compu-
ter-based typesetting systems had entered the mar-
ket, and in the view of Donald Knuth, had seriously
degraded quality. When the first page proofs of part
of the second edition of Volume 2 arrived, he was so
disappointed that he wrote [65, p. 5]:

I didn’t know what to do. I had spent 15 years
writing those books, but if they were going to
look awful I didn’t want to write any more.
How could I be proud of such a product?

A few months later, he learned of some new devices
that used digital techniques to create letter images,
and the close connection to the 0’s and 1’s of com-
puter science led him to think about how he himself
might design systems to place characters on a page,
and draw the individual characters as a matrix of
black and white dots. The sabbatical-year project
produced working prototypes of two software pro-
grams for that purpose that were described in the
book TEX and METAFONT: New Directions in Typeset-
ting [56].

The rest is of course history [6] .. . the digi-
tal typesetting project lasted about a decade, pro-
duced several more books [61, 65–70], Ph.D. de-
grees for Frank Liang [76, 77], John Hobby [33],
Michael Plass [85], Lynn Ruggles [89], and Ignacio
Zabala Salelles [110], and had spinoffs in the com-
mercial document-formatting industry and in the
first laser printers. TEX, and the LATEX system built

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1001

Nelson H. F. Beebe

on top of it [20–22, 73, 74, 80], became the stan-
dard markup and typesetting system in the computer
science, mathematics, and physics communities, and
have been widely used in many other fields.

The purpose of this article is to look back at TEX
and METAFONT and examine how they were shaped
by the attitudes and computing environment of the
time.

2 Computers and people

Now that computers are widely available through-
out much of the developed world, and when embed-
ded systems are counted, are more numerous than
humans, it is probably difficult for younger people to
imagine a world without computers readily at hand.
Yet not so long ago, this was not the case.

Until the desktop computers of the 1980s, a
‘computer’ usually meant a large expensive box, at
least as long as an automobile, residing in a climate-
controlled machine room with raised flooring, and
fed electricity by power cables as thick as your wrist.
At many universities, these systems had their own
buildings, or at least entire building floors, called
Computer Centers. The hardware usually cost hun-
dreds of thousands to millions of dollars (where ac-
cording to the US Consumer Price Index, a million
dollars in 1968 is roughly the same as five million in
2000), and required a full-time professional staff of
managers, systems programmers, and operators.

At most computer installations, the costs were
passed on to users in the form of charges, such as
the US$1500 per hour for CPU time and US$0.50 to
open a file that I suffered with as a graduate student
earning US$1.50 per hour. At my site, there weren’t
any disk-storage charges, because it was forbidden
to store files on disk: they had to reside either on
punched cards, or on reels of magnetic tape. A cou-
ple of years ago, I came across a bill from the early
1980s for a 200MB disk: the device was the size
of a washing machine, and cost US$15 000. Today,
that amount of storage is about fifty thousand times
cheaper, and disk-storage costs are likely to continue
to drop.

I have cited these costs to show that, until desk-
top computers became widespread, it was people
who worked for computers, not the reverse. When
a two-hour run cost as much as your year’s salary,
you had to spend a lot of time thinking about your
programs, instead of just running them to see if they
worked.

When I came to Utah in 1978, the College of Sci-
ence that I joined had just purchased a DECSYSTEM
20, a medium-sized timesharing computer based on
the DEC PDP-10 processor, and the Department of

Computer Science bought one too on the same order.
Ours ultimately cost about $750 000, and supplied
many of the computing needs of the College of Sci-
ence for more than a dozen years, often supporting
50–100 interactive login sessions. Its total physi-
cal memory was just over three megabytes, but we
called it three quarters of a megaword. We started
in 1978 with 400MB of disk storage, and ended in
1990 with 1.8GB for the entire College. Although
computer time was still a chargeable item, we man-
aged to recover costs by getting each Department
to contribute a yearly portion of the expenses as a
flat fee. The operating system’s class scheduler guar-
anteed departmental users a share of the machine
in proportion to their fraction of the budget. Thus,
most individual users didn’t worry about computer
charges.

3 The DEC PDP-10

The PDP-10, first released in 1967, ran at least ten
or eleven different operating systems:

• BBN TENEX,
• Compuserve modified 4S72,
• DEC TOPS-10 (sometimes humorously called

BOTTOMS-10 by TOPS-20 users), and just
called the MONITOR before it was trademarked,

• DEC TOPS-20 (a modified TENEX affection-
ately called TWENEX by some users),

• MIT ITS (Incompatible Timesharing System),
• Carnegie-Mellon University (CMU) modified

TOPS-10,
• On-Line Systems’ OLS-10,
• Stanford WAITS (Westcoast Alternative to

ITS),
• Tymshare AUGUST (a modified TENEX),
• Tymshare TYMCOM-X, and on the smaller

DECSYSTEM 20/20 model, TYMCOM-XX.

Although the operating systems differed, it was usu-
ally possible to move source-code programs among
them with few if any changes, and some binaries
compiled on TOPS-10 in 1975 still run just fine on
TOPS-20 three decades later (see Section 3).

Our machines at Utah both used TOPS-20, but
Donald Knuth’s work on TEX and METAFONT was
done on WAITS. That system was a research op-
erating system, with frequent changes that resulted
in bugs, causing many crashes and much downtime.
Don told me earlier this year that the O/S was aptly
named, since he wrote much of the draft of the
TEXbook while he was waiting in the Computer Cen-
ter for WAITS to come back up. By contrast, apart
from hardware-maintenance sessions in a four-hour

1002 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

block each week, the Utah TOPS-20 systems were
rarely down.

For about a decade, PDP-10 computers formed
the backbone of the Arpanet, which began with
just five nodes, at the University of California cam-
puses at Berkeley, Los Angeles, and Santa Barbara,
plus SRI (Stanford Research Institute) and Utah,
and later evolved into the world-wide Internet [24,
p. 48]. PDP-10 machines were adopted by major
computer-science departments, and hosted or con-
tributed to many important developments, including
at least these:

• Bob Metcalf’s Ethernet [Xerox PARC, Intel, and
DEC];

• Vinton Cerf’s and Robert Kahn’s invention of the
Transmission Control Protocol and the Internet
Protocol (TCP/IP);

• the MACSYMA [MIT], REDUCE [Utah] and
MAPLE [Waterloo] symbolic-algebra languages;

• several dialects of LISP, including MACLISP
[MIT] and PSL (Portable Standard Lisp)
[Utah];

• the systems-programming language BLISS [DEC
and CMU];

• the shell-scripting and systems-programming
language PCL (Programmable Command Lan-
guage) [DEC, CMU, and FUNDP] [91];

• Dan Swinehart’s and Bob Sproull’s SAIL (Stan-
ford Artificial Intelligence Language) Algol-
family programming language in which TEX and
METAFONT were first implemented;

• an excellent compiler for PASCAL [Hamburg/
Rutgers/Sandia], the language in which TEX
and METAFONT were next implemented;

• Larry Tesler’s PUB document formatting sys-
tem [98] [PUB was written in SAIL, and had a
macro language based on a SAIL subset];

• Brian Reid’s document-formatting and bib-
liographic system, SCRIBE [86, 87] [CMU],
that heavily influenced the design of LATEX and
BIBTEX [although SAIL co-architect Bob Sproull
was Brian’s thesis advisor, Brian wrote SCRIBE

in the locally-developed BLISS language];
• Richard Stallman’s extensible and customizable

text editor, emacs [MIT];
• Jay Lepreau’s port, pcc20 [Utah], of Steve John-

son’s Portable C Compiler, pcc [Bell Labs];
• Kok Chen’s and Ken Harrenstien’s kcc20 native

C compiler [SRI];
• Ralph Gorin’s spell, one of the first sophisticated

interactive spelling checkers [Stanford];

• Mark Crispin’s mail client, mm, still one of the
best around [Stanford];

• Will Crowther’s adventure, Don Daglow’s base-
ball and dungeon, Walter Bright’s empire, and
University of Utah student Nolan Bushnell’s
pong, all developed on PDP-10s, were some of
the earliest computer games [Bushnell went on
to found Atari, Inc., and computer games are
now a multi-billion-dollar world-wide business
driving the computer-chip industry to ever-
higher performance];

• part of the 1982 DISNEY science-fiction film
TRON was rendered on a PDP-10 clone [cu-
riously, that architecture has a TRON instruc-
tion (Test Right-halfword Ones and skip if Not
masked) with the numeric operation code 666,
leading some to suggest a connection with the
name of the film, or the significance of that
number in the occult];

• Frank da Cruz’s transport- and platform-inde-
pendent interactive and scriptable communica-
tions software kermit [Columbia];

• Gary Kildall’s [105] CP/M, the first commercial
operating system for the Intel 8080, was devel-
oped using Intel’s 8080 simulator on the PDP-
10 at the Naval Postgraduate School in Mon-
terey, California;

• Harvard University student Paul Allen’s Intel
8080 simulator on the PDP-10 was used by
fellow student Bill Gates to develop a BASIC-
language interpreter before Intel hardware was
available to them. [Both had worked on PDP-
10 systems in Seattle and Portland in the late
1960s and early 1970s while they were still in
school. They later founded Microsoft Corpora-
tion, and borrowed ideas from a subset of Kil-
dall’s CP/M for their MS-DOS. While IBM ini-
tially planned to offer both systems on its per-
sonal computer that was introduced in August
1981, pricing differences soon led to its drop-
ping CP/M.]
Notably absent from this list is the Bell Labora-

tories project that led to the creation of the UNIX op-
erating system: they wanted to buy or lease a PDP-
10, but couldn’t get the funding [90, Chapter 5].

The PDP-10 and its operating systems is men-
tioned in about 170 of the now nearly 4000 Request
for Comments (RFC) documents that informally de-
fine the protocols and behavior of the Internet.

The PDP-10 had compilers for ALGOL 60, BA-
SIC, BLISS, C, COBOL 74, FORTH, FORTRAN 66,
FORTRAN 77, LISP, PASCAL, SAIL, SIMULA 67, and
SNOBOL, plus three assemblers called MACRO, MI-
DAS, and FAIL (fast one-pass assembler). A lot of

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1003

Nelson H. F. Beebe

programming was done in assembly code, including
that for most of the operating systems. Indeed, the
abstract of the FAIL manual [108] notes:

Although FAIL uses substantially more main
memory than MACRO-10, it assembles typ-
ical programs about five times faster. FAIL
assembles the entire Stanford time-sharing
operating system (two million characters) in
less than four minutes of CPU time on a KA-
10 processor.

The KA-10 was one of the early PDP-10 models, so
such performance was quite impressive. The high-
level BLISS language [9, 10, 109] might have been
preferred for such work, but it was comparatively
expensive to license, and few sites had it. Anyway,
Ralph Gorin’s book on assembly language and sys-
tems programming [23] provided an outstanding re-
source for programmers.

Given the complexity of most assembly lan-
guages, it is instructive to look at the short example
in Figure 1 that helps to illustrate why the PDP-10
assembly language was so popular among its users.

MOVE 4, B ; load B into register 4
CAML 4, FOO ; IF (b >= foo) THEN
PUSHJ P, [; BEGIN

HRROI A, [ASCIZ/.LT./] ; message = ".LT.";
SETOM LESS ; less = -1;
AOS (P) ; END (skip around ELSE)
POPJ P,] ; ELSE

PUSHJ P, [; BEGIN
HRROI A, [ASCIZ/.GE./] ; message = ".GE.";
SETZM LESS ; less = 0;
POPJ P,] ; END;

PSOUT ; PRINT message;

Figure 1: MACRO-10 assembly language for the PDP-10
and its high-level pseudo-language equivalent, adapted
from [15].
You can understand the assembly code once you know
the instruction mnemonics: CAML (Compare Accumula-
tor with Memory and skip if Low) handles the conditional,
HRROI (Half word Right to Right, Ones, Immediate) con-
structs a 7-bit byte pointer in an 18-bit address space, SE-
TOM (Set to Ones Memory) stores a negative integer one,
SETZM (Set to Zeros Memory) stores a zero, AOS (Add
One to Self) increments the stack pointer (P), PUSHJ and
POPJ handle stack-based call and return, and PSOUT is a
system call to print a string. Brackets delimit remote code
and data blocks.
The prevalence of instructions that manipulate 18-bit ad-
dresses makes it hard to generalize assembly code for 30-
bit extended addressing, but tricks with 18-bit memory
segments alleviated this somewhat.

Document formatting was provided by runoff,
which shared a common ancestor roff with UNIX

troff, and by PUB. Later, SCRIBE became commer-
cially available, but required an annual license fee,
and ran only on the PDP-10, so it too had limited
availability, and I refused to use it for that reason.

The PDP-10 had 36-bit words, with five seven-
bit ASCII characters stored in each word. This left
the low-order (rightmost) bit unused. It was nor-
mally zero, but when set to one, indicated that the
preceding five characters were a line number that
some editors used, and compilers could report in di-
agnostics.

Although seven-bit ASCII was the usual PDP-
10 text representation, the hardware instruction set
had general byte-pointer instructions that could ref-
erence bytes of any size from 1 to 36 bits, and the
kcc20 compiler provided easy access to them in C.
For interfacing with 32-bit UNIX and VMS systems,
8-bit bytes were used, with four bits wasted at the
low end of each word.

The PDP-10 filesystems recorded the byte count
and byte size for every file, so in principle, text-
processing software at least could have handled both
7-bit and 8-bit byte sizes. Indeed, Mark Crispin pro-
posed that Unicode could be nicely handled in 9-
bit UTF-9 and 18-bit UTF-18 encodings [13]. Alas,
most PDP-10 systems were retired before this gen-
erality could be widely implemented.

One convenient feature of the PDP-10 operat-
ing systems was the ability to define directory search
paths as values of logical names. For example, in
TOPS-20, the command

@define TEXINPUTS: TEXINPUTS:,
ps:<jones.tex.inputs>

would add a user’s personal subdirectory to the end
of the system-wide definition of the search path. The
@ character was the normal prompt from the EXEC
command interpreter. A subsequent reference to
texinputs:myfile.tex was all that it took to locate
the file in the search path.

Since the directory search was handled inside
the operating system, it was trivially available to
all programs, no matter what language they were
written in, unlike other operating systems where
such searching has to be implemented by each pro-
gram that requires it. In this respect, and many
others, to paraphrase ACM Turing Award laureate
Tony Hoare’s famous remark about ALGOL 60 [28],
TOPS-20 “was so far ahead of its time that it was not
only an improvement on its predecessors, but also on
nearly all its successors.”

In addition, a manager could readily change the
system-wide definition by a single privileged com-
mand:

1004 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

$^Edefine TEXINPUTS: ps:<tex.inputs>,
ps:<tex.new>

The new definition was immediately available to all
users, including those who had included the name
TEXINPUTS: in their own search paths. The $ was the
EXEC prompt when a suitably-privileged user had
enabled management capabilities.

The great convenience of this facility encour-
aged those who ported TEX and METAFONT to pro-
vide something similar. Today, users of the TEX Live
distributions are familiar with the kpathsea library,
which provides an even more powerful, and cus-
tomizable, mechanism for path searching.

The original PDP-10 instruction set had an 18-
bit address field, giving a memory space of 218 =
262 144 words, or about 1.25MB. Later designs ex-
tended the address space to 30 bits (5GB), but only
23 were ever implemented in DEC hardware, giving
a practical limit of 40MB. That was still much more
than most customers could afford in 1983 when the
PDP-10 product line was terminated, and VAX VMS
became the DEC flagship architecture and operating
system.

The next generation of the PDP-10 was an-
nounced to be about ten to fifteen times faster than
existing models, but early in 1983, rumors of trouble
at DEC had reached the PDP-10 user community.
At the Fall 1983 DECUS (DEC User Group) Sympo-
sium in Las Vegas, Nevada, that I attended, several
PDP-10 devotees sported T-shirts emblazoned with

I don’t care what they say,
36 bits are here to stay!

They were not entirely wrong, as we shall see.
DEC had products based on the KA-10, KI-10,

and KL-10 versions of the PDP-10 processor. Later,
other companies produced competing systems that
ran one or more of the existing operating systems:
Foonly (F1, F2, and F3), Systems Concepts (SC-
40), Xerox PARC (MAXC) [16], and XKL Systems
Corporation (TOAD-1 for Ten On A Desk). Some of
these implemented up to 30 address bits (1GW, or
4.5GB). XKL even made a major porting effort of
GNU and UNIX utilities, and got the X11 WINDOW
SYSTEM running. Ultimately, none enjoyed contin-
ued commercial success.

The PDP-10 lives on among hobbyists, thanks
to Ken Harrenstien’s superb KLH10 simulator [27]
with 23-bit addressing, and the vendor’s generosity
in providing the operating system, compilers, docu-
mentation, and utilities for noncommercial use. On
a fast modern desktop workstation, TOPS-20 runs
several times faster than the original hardware ever
did. It has been fun revisiting this environment that
was such a leap forward from its predecessors, and

I now generally have a TOPS-20 window or two
open on my UNIX workstation. I even carried this
virtual PDP-10 in a laptop to the Practical TEX 2005
conference, and it fits nicely in a memory stick the
size of a pocket knife.

4 Resource limits

The limited memory of the PDP-10 forced many
economizations in the design of TEX and META-
FONT. In order to facilitate possible reimplementa-
tion in other languages, all memory management is
handled by the programs themselves, and sizes of
internal tables are fixed at compile time. Table 1
shows the sizes of those tables, then and now. To fur-
ther economize, many data structures were stored
compactly with redundant information elided. For
example, while TEX fonts could have up to 128 char-
acters (later increased to 256), there are only 16
different widths and heights allowed, and one of
those 16 is required to be zero. Also, although hun-
dreds of text fonts are allowed, only 16 mathemat-
ical fonts are supported. Ulrik Vieth has provided a
good summary of this topic [103].

Table 1: TEX table sizes on TOPS-20 in 1984 and in
TEX Live on UNIX in 2004, as reported in the trip test.

Table 1984 2004 Growth
strings 1819 98002 53.9
string characters 9287 1221682 131.5
memory words 3001 1500022 499.8
control sequences 2100 60000 28.6
font info words 20000 1000000 50.0
fonts 75 2000 26.7
hyphen. exceptions 307 1000 3.3
stack positions (i) 200 5000 25.0
stack positions (n) 40 500 12.5
stack positions (p) 60 6000 100.0
stack positions (b) 500 200000 400.0
stack positions (s) 600 40000 66.7

Instead of supporting scores of accented char-
acters, TEX expected to compose them dynamically
from an accent positioned on a base letter. That in
turn meant that words with accented letters could
not be hyphenated automatically, an intolerable situ-
ation for many European languages. That restriction
was finally removed in late 1989 [60] with the re-
lease of TEX version 3.0 and METAFONT version 2.0,
when those programs were extended to fully sup-
port 8-bit characters, and provide up to 256 hyphen-
ation tables to handle multilingual documents. Ex-
amination of source-code difference listings shows

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1005

Nelson H. F. Beebe

that about 7% of TEX was changed in this essential
upgrade.

The TEX DVI and METAFONT GF and TFM files
were designed to be compact binary files that re-
quire special software tools to process. Recall from
p. 1002 that disk storage cost around US$100 per
MB, so file compactness mattered! In contrast, in
UNIX troff, the corresponding files are generally sim-
ple, albeit compact and cryptic, text files to facilitate
use of filters in data-processing pipelines. Indeed,
the UNIX approach of small-is-beautiful encouraged
the use of separate tools for typesetting mathematics
[40], pictures [38], and tables [36], each filtering
the troff input stream, instead of the monolithic ap-
proach that TEX uses.

In any computer program, when things go awry,
before the problem can be fixed, it is essential to
know where the failure occurred. The same applies
when a change in program behavior is called for:
you first have to find the code that must be modified.

In either case, to better understand what is hap-
pening, it is very helpful to have a traceback of
the routine calls that led to the failure or point of
change, and a report of the source-code location
where every step in the call history is defined. Unfor-
tunately, PDP-10 memory limitations prevented TEX
and METAFONT from recording the provenance of
every built-in operator and run-time macro, yet ev-
ery programmer who has written code for these sys-
tems has often asked: where is that macro defined,
and why is it behaving that way? Although both pro-
grams offer several levels of execution tracing, the
output trace is often voluminous and opaque, and no
macro-level debugger exists for either program.

The need for a record of source-code prove-
nance is particularly felt in the LATEX world, where
it is common for documents to depend on dozens
of complex macro packages collectively containing
many tens of thousands of lines of code, and some-
times redefining macros that other loaded packages
expect to redefine differently for their own purposes.
During the course of writing this article, I discov-
ered, tracked down, and fixed three errors in the
underlying LATEX style files for the TEX User Group
conference proceedings. Each time, the repairs took
much longer than should have been necessary, be-
cause I could not find the faulty code quickly.

Finally, error diagnostics and error recovery re-
flect past technology and resource limits. Robin Fair-
bairns remarked in a May 2005 TEXhax list posting:

Any TEX-based errors are pretty ghastly. This
is characteristic of the age in which it was
developed, and of the fiendishly feeble ma-
chines we had to play with back then. But

they’re a lot better than the first ALGOL 68
compiler I played with, which had a single
syntax diagnostic “not a program!”

5 Choosing a programming language

When Donald Knuth began to think about the prob-
lem of designing and implementing a typesetting
system and a companion font-creation system, he
was faced with the need to select a programming
language for the task. We have already summarized
what was available on the PDP-10.

COBOL was too horrid to contemplate: imag-
ine writing code in a language with hundreds of re-
served words, and such verbose syntax that a simple
arithmetic operation and assignment c = a*b be-
comes

MULTIPLY A BY B GIVING C.

More complex expressions require every subexpres-
sion to be given a name and assigned to.

FORTRAN 66 was the only language with any
hope of portability to many other systems. However,
its omission of recursion, absence of data structures
beyond arrays, lack of memory management, defi-
cient control structures, record-oriented I/O, primi-
tive Hollerith strings (12HHELLO, WORLD) that could
be used only in DATA and FORMAT statements and as
routine arguments, and its restriction to six-char-
acter variable names, made it distinctly unsuitable.
Nevertheless, METAFONT was later translated to
FORTRAN elsewhere for a port to Harris computers
[82].

PASCAL only became available on the PDP-10
in late 1978, more than a year after Don began his
sabbatical year. We shall return to it in Section 6.

BLISS was an expensive commercial product
that was available only on DEC PDP-10, PDP-11,
and later, VAX, computers. Although DEC subse-
quently defined COMMON BLISS to be used across
those very different 16-bit, 32-bit, and 36-bit sys-
tems, in practice, BLISS exposed too much of the un-
derlying architecture, and the compilers were nei-
ther portable [9, 10] nor freely available. Brian Reid
commented [87, p. 106]:

BLISS proved to be an extremely difficult lan-
guage in which to get started on such a proj-
ect [SCRIBE], since it has utterly no low-
level support for any data types besides scalar
words and stack-allocated vectors.

I began an implementation on the PDP-
10 in September 1976, spending the first
six months building a programming environ-
ment in which the rest of the development

1006 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

could take place. This programming environ-
ment included runtime and diagnostic sup-
port for strings, lists, and heap-allocated vec-
tors, as well as an operating-system interface
intended to be portable across machines.

Inside DEC, later absorbed by Compaq and then by
Hewlett-Packard, BLISS was ported to 32-bit and
64-bit ALPHA in the early 1990s, to Intel IA-32 in
1995, and recently, to IA-64 [10], but has remained
largely unknown and unused outside those corpo-
rate environments.

LISP would have been attractive and powerful,
and in retrospect, would have made TEX and META-
FONT far more extensible than they are, because
any part of them could have been rewritten in LISP,
and they would not have needed to have macro lan-
guages at all! Unfortunately, until the advent of
COMMON LISP in 1984 [93, 94], and for some time
after, the LISP world suffered from having about
as many dialects as there were LISP programmers,
making it impossible to select a language flavor that
worked everywhere.

The only viable approach would have been to
write a LISP compiler or interpreter, bringing one
back to the original problem of picking a language
to write that in. The one point in favor of this ap-
proach is that LISP is syntactically the simplest of all
programming languages, so workable interpreters
could be done in a few hundred lines, instead of the
10K to 100K lines that were needed for languages
like PASCAL and FORTRAN. However, we have to re-
member that computer use cost a lot of money, and
comparatively few people outside computer-science
departments had the luxury of ignoring the substan-
tial run-time costs of interpreted languages. A type-
setting system is expected to receive heavy use, and
efficiency and fast turnaround are essential.

PDP-10 assembly language had been used for
many other programming projects, including the
operating systems and the three assemblers them-
selves. However, Don had worked on several differ-
ent machines since 1959, and he knew that all com-
puters eventually get replaced, often by new ones
with radically-different instruction sets, operating
systems, and programming languages. Thus, this
avenue was not attractive either, since he had to be
able to use his typesetting program for all of his fu-
ture writing.

There was only one viable choice left, and that
was SAIL. That language was developed at Stan-
ford, and that is probably one of the reasons why
Don chose it over SIMULA 67, its Norwegian cousin,
despite his own Norwegian heritage; both languages
are descendents of ALGOL 60. SIMULA 67 did how-

ever strongly influence Bjarne Stroustrup’s design
of C++ [95, Chapter 1]. Although SAIL had an
offspring, MAINSAIL (Machine Independent SAIL),
that might have been more attractive, that lan-
guage was not born until 1979, two years after the
sabbatical-year project. Figure 2 shows a small sam-
ple of SAIL, taken from the METAFONT source file
mfntrp.sai. A detailed description of the language
can be found in the first good book on computer
graphics [83, Appendix IV], co-written by one of
SAIL’s architects.

internal saf string array fname[0:2]
file name, extension, and directory;

internal simp procedure scanfilename
sets up fname[0:2];
begin integer j,c;
fname[0]_fname[1]_fname[2]_null;
j_0;
while curbuf and chartype[curbuf]=space

do c_lop(curbuf);
loop begin c_chartype[curbuf];

case c of begin
[pnt] j_1;
[lbrack] j_2;
[comma][wxy][rbrack][digit][letter];
else done

end;
fname[j]_fname[j]&lop(curbuf);
end;

end;

Figure 2: Filename scanning in SAIL, formatted as orig-
inally written by Donald Knuth, except for the move-
ment of comments to separate lines. The square-bracketed
names are symbolic integer constants declared earlier in
the program.

The underscore operator in SAIL source-code
assignments printed as a left arrow in the Stanford
variant of ASCII, but PDP-10 sites elsewhere just
saw it as a plain underscore. However, its use as
the assignment operator meant that it could not be
used as an extended letter to make compound names
more readable, as is now common in many other
programming languages.

The left arrow in the Stanford variant of ASCII
was not the only unusual character. Table 2 shows
graphics assigned to the normally glyphless control
characters. The existence of seven Greek letters in
the control-character region may explain why TEX’s
default text-font layout packs Greek letters into the
first ten slots.

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1007

Nelson H. F. Beebe

Table 2: The Stanford extended ASCII character set, with
table positions in octal. This table from RFC 698 [81]
disagrees in a few slots with a similar table in the first book
about TEX [56, p. 169]. CMU, MIT, and the University
of Southern California also had their own incompatible
modified versions of ASCII.
Although ASCII was first standardized in 1963, got lower-
case letters in 1965, and reached its current form in 1967,
the character set Babel has lasted far too long, with hun-
dreds of variants of 7-bit and 8-bit sets still in use around
the world. See Mackenzie’s book [78] for a comprehensive
history up to 1980, and the Unicode Standard [102] for
what the future may look like.

000 · 001 ↓ 002 α 003 β
004 ∧ 005 ¬ 006 ε 007 π
010 λ 011 γ 012 δ 013

R

014 ± 015 ⊕ 016 ∞ 017 ∇
020 ⊂ 021 ⊃ 022 ∩ 023 ∪
024 ∀ 025 ∃ 026 ⊗ 027 ↔
030 _ 031 → 032 ~ 033 6=
034 ≤ 035 ≥ 036 ≡ 037 ∨

040–135 as in standard ASCII
136 ↑ 137 ←

140–174 as in standard ASCII
175 ˚ 176 } 177 ^

Besides being a high-level language with good
control and data structures, and recursion, SAIL had
the advantage of having a good debugger. Symbolic
debuggers are common today, sometimes even with
fancy GUI front ends that some users like. In 1977,
window systems had mostly not yet made it out
of Xerox PARC, and the few interactive debuggers
available generally worked at the level of assem-
bly language. Figure 3 shows a small example of a
session with the low-level Dynamic Debugging Tool/
Technique, ddt, that otherwise would have been nec-
essary for debugging most programming languages
other than SAIL (ALGOL, COBOL, and FORTRAN, and
later, PASCAL, also had source-level debuggers).

SAIL had a useful conditional compilation fea-
ture, allowing Don to write the keyword definitions
shown in Figure 4, and inject a bit of humor into the
code.

A scan of the SAIL source code for METAFONT

shows several other instances of how the imple-
mentation language and host computer affected the
METAFONT code:

• 19 buffers for disk files;

• no more than 150 input characters/line;

• initialization handled by a separate program
module to save memory;

@type hello.pas
program hello(output);
begin

writeln(’Hello, world’)
end.

@load hello
PASCAL: HELLO
LINK: Loading

@ddt
DDT
hello$b hello+62$b $g
$1B>>HELLO/ TDZA 0 $x

0/ 0 0/ 0
<SKIP>
HELLO+2/ MOVEM %CCLSW $x

0/ 0 %CCLSW/ 0
HELLO+3/ MOVE %CCLDN $x

0/ 0 %CCLDN/ 0
HELLO+4/ JUMPN HELLO+11 $x

0/ 0 HELLO+11
HELLO+5/ MOVEM 1,%RNNAM $p

OUTPUT : tty:
$2B>>HELLO+62/ JRST .MAIN. $$x
Hello, world

Figure 3: Debugging a PASCAL program with ddt. The
at signs are the default TOPS-20 command prompt. The
dollar signs are the echo of ASCII ESCAPE characters.
Breakpoints ($b) are set at the start of the program, and
just before the call to the runtime-library file initialization.
Execution starts with $g, proceeds after a breakpoint with
$p, steps single instructions with $x, and steps until the
next breakpoint with $$x.

• bias of 4 added to case statement index to avoid
illegal negative cases;

• character raster allocated dynamically to avoid
128K-word limit on core image;

• magic TENEX-dependent code to allocate buf-
fers between the METAFONT code and the SAIL
disk buffers because, as Don wrote in a com-
ment in the code, there is all this nifty core sitting
up in the high seg .. . that is just begging to be
used.

Another feature of the PDP-10 that strongly
influenced the design of TEX and METAFONT was
the way the loader worked. On most other operat-
ing systems, the linker or loader reads object files,
finds the required libraries, patches unresolved ref-
erences, and writes an executable image to a disk
file. The PDP-10 loader left the program image in
memory, relegating the job of copying the memory

1008 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

changed to ^P^Q when debugging METAFONT;
define DEBUGONLY = ^Pcomment^Q
...
used when an array is believed to require
no bounds checks;
define saf = ^Psafe^Q

used when SAIL can save time implementing
this procedure;
define simp = ^Psimple^Q

when debugging, belief turns to disbelief;
DEBUGONLY redefine saf = ^P^Q

and simplicity dies too;
DEBUGONLY redefine simp = ^P^Q

Figure 4: SAIL conditional compilation for generating
additional debugging support. The two control characters
displayed as ⊂ and ⊃ at Stanford (octal values 020 and
021 in Table 2).

image to disk to the save command. If the image
was not required again, the user could simply start
the program without saving it. If the program was
started, but then interrupted at a quiescent point,
such as waiting for input, the memory image could
be saved to disk.

Since some of the features of TEX and META-
FONT are implemented in their own programming
languages, they each need to read that code on every
execution. For LATEX, the startup code can amount
to tens of thousands of lines. Thus, for small user
input files, the startup actions may be significantly
more costly than the work needed for the user files.
Don therefore divided both programs into two parts:
the first parts, called initex and inimf, read the startup
code and write their internal tables to a special com-
pact binary file called a format file. The second parts,
called virtex and virmf, can then read those format
files at high speed. If they are then interrupted when
they are ready for user input, they can be saved to
disk as programs that can later be run with all of this
startup processing already done [69, §1203], [67,
§1331]. While this sounds complex, in practice, it
takes just six lines of user input, shown in Figure 5.
This normally only needs to be done by a system
manager when new versions of the startup files are
installed. It is worth nothing that installers of both
PDP-10 emacs and modern GNU emacs do a very
similar preparation of a dumped-memory image to
reduce program-startup cost.

On most other architectures, the two-part split
is preserved, but the virtex and virmf programs are

@initex lplain

*\dump
@virtex &lplain

*^C
@save latex
@rename lplain.fmt texformats:

Figure 5: Creating a preloaded LATEX executable on TOPS-
20.
The initex stage reads lplain.tex and dumps the precom-
piled result to lplain.fmt.
The leading ampersand in the virtex stage requests reading
of the binary format file, instead of a normal TEX text file.
The keyboard interrupt suspends the process, and the next
command saves latex.exe.
The final command moves the format file to its standard
location where it can be found should it be needed again.
On TOPS-20, it normally is not read again unless a user
wishes to preload further customizations to create another
executable program.
The procedure for METAFONT is essentially the same;
only the filenames have to be changed.

then wrapped in scripts that act as the tex and mf
programs. On UNIX systems, the script wrappers
are not needed: instead, virtex, tex, and latex are
filesystem links to the same file, and the name of the
program is used internally to determine what for-
mat file needs to be automatically loaded. Modern
systems are fast enough that the extra economiza-
tion of preloading the format file into the executable
program is relatively unimportant: the fastest sys-
tems can now typeset the TEXbook at nearly 900
pages/sec, compared to several seconds per page
when TEX was first written. In any event, preloading
is difficult to accomplish outside the PDP-10 world.
It can be done portably, but much less flexibly, if the
preloaded tables are written out as source-code data
initializers, and then compiled into the program, as
the GNU bc and dc calculators do for their library
code.

TEX and METAFONT distributions come with the
devious trip and trap torture tests that Don devised
to test whether the programs are behaving prop-
erly. One of the drawbacks of the two-part split is
that these tests are run with initex and inimf respec-
tively, rather than with the separately-compiled vir-
tex and virmf, which are the programs that users run
as tex and mf. I have encountered at least one sys-
tem where the torture tests passed, yet virtex aborted
at run time because of a compiler code-generation
error. Fortunately, the error was eliminated when
virtex was recompiled with a different optimization
level.

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1009

Nelson H. F. Beebe

Although TEX and METAFONT were designed
with great care and attention to detail, and pro-
grammed to give identical line-breaking and page-
breaking decisions on all platforms, it would have
been better if their user communities had collabo-
rated on development of a much more extensive test
suite, designed with the help of test-coverage ana-
lyzers to ensure that as much of the source code as
possible is exercised. These compiler-based tools in-
strument software in such a way that program ex-
ecution produces a data file that leads to a report
of the number of times that each line of code is
reached. This identifies the hot spots in the code, but
it also reveals the unused, and therefore, untested
and untrusted, parts of the program.

When I did such an analysis of runs with the
trip and trap tests, I was surprised to find that just
under 49% of all lines of code were executed. I re-
ported these results to the TEX Live mailing list on
18 March 2004, in the hope of initiating a project
to use the test-coverage feedback to devise addi-
tional tests that will exercise most of the other half
of the code. It will never be possible to test all of
it: there are more than 50 locations in the TEX and
METAFONT source code where there is a test for a
supposedly-impossible situation, at which point sec-
tion 95 of TEX (section 90 in METAFONT) is invoked
to issue a message prefixed with This can’t happen
and terminate execution.

6 Switching programming languages

Donald Knuth initially expected that TEX and META-
FONT would be useful primarily for his own books
and papers, but other people were soon clamoring
for access, and many of them did not have a PDP-
10 computer to run those programs on. The Ameri-
can Mathematical Society did have a PDP-10, and
was interested in evaluating TEX and METAFONT

for its own extensive mathematical-publishing activ-
ities, but it could make an investment in switching
from the proprietary commercial typesetting system
that it was then using only if it could be satisfied with
the quality, the longevity, and the portability of these
new programs.

Researchers at Xerox PARC had translated the
SAIL version of TEX to MESA, but that language ran
only on Xerox workstations, which, while full of
great ideas, were too expensive ever to make any
significant market penetration.

It was clear that keeping TEX and METAFONT

tied to SAIL and the PDP-10 would ultimately doom
them to oblivion. It was also evident that some of
the program-design decisions, and the early versions

of the Computer Modern fonts, did not produce the
high quality that their author demanded of himself.

A new implementation language, and new pro-
gram designs, were needed, and in 1979–1980,
when Don and Ignacio produced prototype code for
the new design, there was really only one possibil-
ity: PASCAL. However, before you rise to this provo-
cation, why not C instead, since it has become the
lingua franca for writing portable software?

UNIX had reached the 16-bit DEC PDP-11 com-
puters at the University of California at Berkeley in
1974. By 1977, researchers there had it running
on the new 32-bit DEC VAX, but the C language in
which much of UNIX is written was only rarely avail-
able outside that environment. Jay Lepreau’s pcc20
work was going on in the Computer Science Depart-
ment at Utah in 1981–82, but it wasn’t until about
1983 that TOPS-20 users elsewhere began to get
access to it. Our filesystem archives show my first
major porting attempt of a C-language UNIX utility
to TOPS-20 on 11 February 1983.

PASCAL, a descendant of ALGOL 60 [5], was de-
signed by Niklaus Wirth at ETH in Zürich, Switzer-
land in 1968. His first attempt at writing a compiler
for it in FORTRAN failed, but he then wrote a com-
piler for a subset of PASCAL in that subset, translated
it by hand to assembly language, and was finally able
to bootstrap the compiler by getting it to compile
itself [106].

Urs Ammann later wrote a completely new com-
piler [2] in PASCAL for the PASCAL language on the
60-bit CDC 6600 at ETH, a machine class that
I myself worked extensively and productively on for
nearly four years. That compiler generated ma-
chine code directly, instead of producing assembly
code, and ran faster, and produced faster code, than
Wirth’s original bootstrap compiler. Ammann’s com-
piler was the parent of several others, including the
one on the PDP-10.

PASCAL is a small language intended for teach-
ing introductory computer-programming skills, and
Wirth’s book with the great title Algorithms + Data
Structures = Programs [107] is a classic that is still
worthy of study. However, PASCAL is not a language
that is suitable for larger projects. A fragment of the
language is shown in Figure 6, and much more can
be seen in the source code for TEX [67] and META-
FONT [69].

PASCAL’s flaws are well chronicled in a famous
article by Brian Kernighan [37, 39]. That paper was
written to record the pain that PASCAL caused in im-
plementing a moderate-sized, but influential, pro-
gramming project [41]. He wrote in his article:

1010 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

PROCEDURE Scanfilename;
LABEL 30;
BEGIN
beginname;
WHILE buffer[curinput.locfield] = 32 DO
curinput.locfield := curinput.locfield+1;
WHILE true DO
BEGIN
IF (buffer[curinput.locfield] = 59) OR

(buffer[curinput.locfield] = 37) THEN
GOTO 30;

IF NOT morename(buffer[curinput.locfield])
THEN GOTO 30;
curinput.locfield := curinput.locfield+1;
END;
30:

endname;
END;

Figure 6: Filename scanning in PASCAL, after manual
prettyprinting. The statements beginname and endname
are calls to procedures without arguments. The magic
constants 32, 37, and 59 would normally have been given
symbolic names, but this code is output by the tangle pre-
processor which already replaced those names by their nu-
meric values. The lack of statements to exit loops and
return from procedures forces programmers to resort to
the infamous goto statements, which are required to have
predeclared numeric labels in PASCAL.

PASCAL, at least in its standard form, is just
plain not suitable for serious programming.
. . . This botch [confusion of size and type]
is the biggest single problem in PASCAL. . . .
I feel that it is a mistake to use PASCAL for any-
thing much beyond its original target. In its
pure form, PASCAL is a toy language, suitable
for teaching but not for real programming.

There is also a good survey by Welsh, Sneeringer,
and Hoare [104] of PASCAL’s ambiguities and inse-
curities.

Donald Knuth had co-written a compiler for a
subset of ALGOL 60 two decades earlier [4], and
had written extensively about that language [44–
46, 48, 49, 72]. Moreover, he had developed the
fundamental theory of parsing that is used in com-
pilers [47]. He was therefore acutely aware of the
limitations of PASCAL, and to enhance portability of
TEX and METAFONT, and presciently (see Section 7),
to facilitate future translation to other languages,
sharply restricted his use of features of that language
[67, Part 1].

PASCAL has new() and dispose() functions for
allocating and freeing memory, but implementa-

tions were allowed to ignore the latter, resulting in
continuously-growing memory use. Therefore, as
with the original versions in SAIL, TEX and META-
FONT in PASCAL handle their own memory manage-
ment from large arrays allocated at compile time.

One interesting PASCAL feature is sets, which
are collections of user-definable objects. The op-
erations of set difference, intersection, membership
tests, and union are expected to be fast, since sets
can be internally represented as bit strings. For the
character processing that TEX carries out, it is very
convenient to be able to classify characters accord-
ing to their function. TEX assigns each input char-
acter a category code, or catcode for short, that rep-
resents these classifications. Regrettably, the PAS-
CAL language definition permitted implementors to
choose the maximum allowable set size, and many
compilers therefore limited sets to the number of bits
in a single machine word, which could be as few as
16. This made sets of characters impossible, even
though Wirth and Ammann had used exactly that
feature in their PASCAL compilers for the 60-bit CDC
6600. The PDP-10 PASCAL compiler limited sets to
72 elements, fewer than needed for sets of ASCII
characters.

A peculiarity of PASCAL is that it does not fol-
low the conventional open-process-close model of
file handling. Instead, for input files it combines the
open and read of the first item in a single action,
called the reset statement. Since most implemen-
tations provide standard input and output files that
are processed before the first statement of the user’s
main program is executed, this means that the pro-
gram must read the first item from the user termi-
nal, or input file, before a prompt can even be is-
sued for that input. While some compilers provided
workarounds for this dreadful deadlock, not all did,
and Don was forced to declare this part of TEX and
METAFONT to be system dependent, with each im-
plementor having to find a way to deal with it.

The botch that Brian Kernighan criticized has
to do with the fact that, because PASCAL is strongly
typed, the size of an object is part of its type. If you
declare a variable to hold ten characters, then it is
illegal to assign a string of any other length to it. If it
appears as a routine parameter, then all calls to that
routine must pass an argument string of exactly the
correct length.

Donald Knuth’s solution to this extremely vex-
ing problem for programs like TEX and METAFONT

that mainly deal with streams of input characters
was to not use PASCAL directly, but rather, to dele-
gate the problem of character-string management,
and other tasks, to a preprocessor, called tangle. This

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1011

Nelson H. F. Beebe

tool, and its companion weave, are fundamental for
the notion of literate programming that he developed
during this work [61, 71, 92].

The input to these literate-programming tools is
called a WEB, and a fragment of TEX’s own WEB code is
illustrated in Figure 7. The output of the two utilities
is shown in Figures 8 and 9, and the typeset output
for the programmer is given in Figure 10.

@ The |scan_optional_equals| routine looks
for an optional ‘\.=’ sign preceded by
optional spaces; ‘\.{\\relax}’ is not
ignored here.

@p procedure scan_optional_equals;
begin
@<Get the next non-blank non-call token@>;
if cur_tok<>other_token+"=" then back_input;
end;

Figure 7: Fragment of tex.web corresponding to sec-
tion 405 of TEX: The Program [67, p. 167]. The vertical
bars are a WEB shorthand that requests indexing of the en-
closed text. The prose description begins with the com-
mand @, and the PASCAL code begins with the command
@p. The text @<...> represents a block of code that is de-
fined elsewhere.

PROCEDURE SCANOPTIONAL;BEGIN{406:} REPEAT
GETXTOKEN;UNTIL CURCMD<>10{:406};IF CURTOK<>3133
THEN BACKINPUT;END;{:405}{407:}

Figure 8: PASCAL code produced from the WEB fragment
in Figure 7 by tangle. All superfluous spaces are elimi-
nated on the assumption that humans never need to read
the code, even though that may occasionally be necessary
during development. Without postprocessing by a PASCAL

prettyprinter, such as pform, it is nearly impossible for a
human to make sense of the dense run-together PASCAL

code from a large WEB file, or to set sensible debugger
breakpoints.
To conform to the original definition of PASCAL, and adapt
to limitations of various compilers, all identifiers are up-
percased, stripped of underscores, and truncated to 12
characters, of which the first 7 must be unambiguous.
Notice that the remote code from the @<...> input frag-
ment has been inserted, and that symbolic constants have
been expanded to their numeric values. The braced com-
ments indicate sectional cross references, and no other
comments survive in the output PASCAL code.

In order to keep a stable source-code base, the
WEB files are never edited directly when the code is
ported to a new platform. Instead, tangle and weave
accept simple change files with input blocks

\M405. The \\{scan_optional_equals}
routine looks for an optional ‘\.=’ sign
preceded by optional spaces; ‘\.{\\relax}’
is not ignored here.

\Y\P\4\&{procedure}\1\
\37\\{scan_optional_equals};\2\6
\&{begin} \37\X406:Get the next non-blank
non-call token\X;\6 \&{if}
$\\{cur_tok}\I\\{other_token}+\.{"="}$
\1\&{then}\5 \\{back_input};\2\6
\&{end};\par \fi

Figure 9: TEX typesetter input produced from the WEB
fragment in Figure 7 by weave.

405. The scan_optional_equals routine looks for an op-
tional ‘=’ sign preceded by optional spaces; ‘\relax’ is not
ignored here.

procedure scan_optional_equals;
begin <Get the next non-blank non-call token 406>;
if cur_tok 6= other_token + "=" then back_input;
end;

Figure 10: Typeset output from TEX for the weave frag-
ment in Figure 9. Notice that the remote code block is
referenced by name, with a trailing section number that
indicates its location in the output listing. Not shown here
is the mini-index that is typeset in a footnote, showing
the locations elsewhere in the program of variables and
procedures mentioned on this output page.

@x
old code
@y
new code
@z

where the old-code sections must match their or-
der in the WEB file. For TEX and METAFONT, these
change files are typically of the order of 5% of the
size of the WEB files, and the changes are almost ex-
clusively in the system-dependent parts of those pro-
grams, and in the handling of command-line and
startup files.

Because PASCAL permits only one source-code
file per program, WEB files are also monolithic. How-
ever, to reduce the size of the typeset program
listing, change files normally include a statement
\let \maybe = \iffalse near the beginning to dis-
able DVI output of unmodified code sections. Hav-
ing a single source file simplified building the pro-
grams on the PDP-10, which didn’t have a UNIX-like

1012 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

make utility until I wrote one in 1988. Figure 11
shows how initex was built on TOPS-20.

@tangle
WEBFILE : TeX.web
CHANGEFILE : TeX.tops20-changes
PASCALFILE : TeX.pas
POOL : TeX.pool
@rename TeX.pool TeX:

@set no default compile-switches pas
@load %"ERRORLEVEL:10 -

INITEX/SAVE/RUNAME:INITEX" TeX.pas
@rename iniTeX.exe TeX:
@delete TeX.rel, TeX.pas
@expunge

Figure 11: Building and installing initex on TOPS-20.
A similar procedure handled virtex: only the filenames
change, and in both cases, the procedure was encapsu-
lated in a command file that allowed a one-line command
to do the entire job.
The last command shows a wonderful feature of TOPS-
20: deleted files could be undeleted at any time until they
were expunged from the filesystem.
Comments from 1986 in the command file noted that on
the fastest DEC PDP-10 model, tangle took 102 seconds,
and PASCAL compilation, 80 seconds.
When this build was repeated using the KLH10 simulator
running on a 2.4GHz AMD64 processor, tangle took only
5 seconds, and PASCAL only 2.6 seconds.
For comparison with a modern TEX build on GNU/LINUX,
I used the same AMD64 system for a fresh build. PAS-
CAL generation with tangle took 0.09 seconds, the WEB-
to-C conversion (see Section 7) took 0.08 seconds, and
compilation of the 14 C-code files took 2.24 seconds. The
KLH10 simulator times are clearly outstanding.
The change file on the PDP-10 inserted special compiler
directives in a leading comment to select extended ad-
dressing. The memory footprint of TEX after typesetting its
own source code is 614 pages of 512 words each, or just
1.4MB.
On GNU/ LINUX on AMD64 with the 2004 TEX Live re-
lease, TEX needs 11MB of memory to typeset itself, al-
though of course its tables are much larger, as shown in
Table 1.

In the early 1980s, few users had terminals ca-
pable of on-screen display of typeset output, so one
of the system-dependent changes that was made in
the PDP-10 implementations of TEX was the gener-
ation of a candidate command for printing the out-
put. A typical run then looked like the sample in
Figure 12.

Because PASCAL had mainly been used for small
programs, few compilers for that language were pre-
pared to handle programs as large and complex as

@tex hello.tex
This is TeX, Tops-20 Version 2.991
(preloaded format=plain 5.1.14)
(PS:<BEEBE>HELLO.TEX.1 [1])
Output written on PS:<BEEBE>HELLO.DVI.1
(1 page, 212 bytes).
Transcript written on PS:<BEEBE>HELLO.LST.1.
@TeXspool: PS:<BEEBE>HELLO.DVI.1

Figure 12: A TEX run on TOPS-20. The user typed only
the first command, and in interactive use, TEX provided the
second command, leaving the cursor at the end of the line,
so the user could then type a carriage return to accept the
command, or a Ctl-U or Ctl-C interrupt character to erase
or cancel it.
This feature was implemented via a TOPS-20 system call
that allowed a program to simulate terminal input. TEX
thereby saved humans some keystrokes, and users could
predefine the logical name TeXspool with a suitable value
to select their preferred DVI translator. This shortcut is
probably infeasible on most other operating systems.

TEX and METAFONT. Their PASCAL source code pro-
duced by tangle amounts to about 20 000 lines each
when prettyprinted. A dozen or so supporting tools
amount to another 20 000 lines of code, the largest
of which is weave.

Ports of TEX and METAFONT to new systems fre-
quently uncovered compiler bugs or resource limits
that had to be fixed before the programs could op-
erate. The 16-bit computers were particularly chal-
lenging because of their limited address space, and it
was a remarkable achievement when Lance Carnes
announced TEX on the HP3000 in 1981 [11], fol-
lowed not long after by his port to the IBM PC with
the wretched 64KB memory segments of the Intel
8086 processor. He later founded a company, Per-
sonal TEX, Inc. About the same time, David Fuchs
completed an independent port to the IBM PC, and
that effort was briefly available commercially. David
Kellerman and Barry Smith left Oregon Software,
where they worked on PASCAL compilers, to found
the company Kellerman & Smith to support TEX in
the VAX VMS environment. Barry later started Blue
Sky Research to support TEX on the Apple MAC-
INTOSH, and David founded Northlake Software to
continue support of TEX on VMS.

7 Switching languages, again

Because of compiler problems, UNIX users suffered
a delay in getting TEX and METAFONT. Pavel Curtis
and Howard Trickey first announced a port in 1983,
and lamented [14]:

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1013

Nelson H. F. Beebe

Unhappily, the pc [PASCAL] compiler has more
deficiencies than one might wish.

Their project at the University of California, Berke-
ley, took several months, and ultimately, they had
to make several changes and extensions to the UNIX
PASCAL compiler.

In 1986–1987, Pat Monardo, also at Berkeley,
did the UNIX community a great service when he un-
dertook a translation, partly machine assisted, and
partly manual, of TEX from PASCAL to C, the result
of which he called COMMON TEX. That work ulti-
mately led to the WEB2C project to which many peo-
ple have contributed, and today, virtually all UNIX
installations, and indeed, the entire TEX Live distri-
bution for UNIX, Apple MAC OS, and Microsoft WIN-
DOWS, is based on the completely-automated trans-
lation of the master source files of all TEXware and
METAFONTware from the WEB sources to PASCAL and
then to C.

8 TEX’s progeny

The limitations that stem from the resources and
technologies that were available when TEX was de-
veloped have since been addressed in various ways.
As we showed in Table 1, some of the internal table
sizes are relatively easy to expand, as long as the
host platform has enough addressable memory.

Growing tables whose indexes are limited to a
small number of bits requires deeper changes, and
combined with the addition of a small number of
new primitives, and several useful extensions, re-
sulted in e-TEX [97]. Its change file is about a quarter
the size of tex.web.

TEX has been extended beyond the limitations of
eight-bit characters in significant projects for type-
setting with the UNICODE character set: OMEGA (Ω)
[84, 96], ALEPH (ℵ) [7], and XeTEX [42, 43]. Each
is implemented with change files for the TEX or e-TEX
WEB sources. For OMEGA, the change files are about
as large as tex.web itself, reflecting modification of
about half of TEX, and suggesting that a new base-
line, or a complete rewrite, may be desirable.

With few exceptions other than GNU groff (a
reimplementation of UNIX troff), TEX’s DVI file for-
mat is not widely known outside the TEX world. In-
deed, commercial vendors usurped the DVI acronym
to mean Digital Video Interactive and Digital Visual
Interface. Today, electronic representation of typeset
documents as page images in PDF format [1] is com-
mon. While this format is readily reachable from TEX
with translation from DVI to POSTSCRIPT to PDF, or
directly to PDF, there are some advantages to be-
ing able to access advanced features of PDF such
as hypertext links and transparency from within TEX

itself. Hán Thé̂ Thánh’s pdfTEX [101] is therefore an
important extension of TEX that provides PDF out-
put directly, and allows fine control of typography
with new features like dynamic font scaling and mar-
gin kerning [99, 100]. The change file for pdfTEX is
about a third the size of tex.web.

It is worth noting that yet another programming
language has since been used to reimplement TEX:
Karel Skoupý’s work with JAVA [25]. One of the
goals of this project was to remove most of the in-
terdependence of the internals of TEX to make it eas-
ier to produce TEX-like variants for experiments with
new ideas in typography.

Another interesting project is Achim Blumen-
sath’s ANT: A Typesetting System [8], where the re-
cursive acronym means ANT is not TEX. The first ver-
sion was done in the modern LISP dialect SCHEME,
and the current version is in OCAML. Input is very
similar to TEX markup, and output can be DVI, POST-
SCRIPT, or PDF.

Hong Feng’s NeoTEX is a recent development
in Wuhan, China, of a typesetting system based on
the algorithms of TEX, but completely rewritten in
SCHEME, and outputting PDF. Perhaps this work will
bring TEX back to its origins, allowing it to be reborn
in a truly extensible language.

Although most users view TEX as a document
compiler, Jonathan Fine has shown how, with small
modifications, TEX can be turned into a daemon [17]:
a permanently-running program that responds to
service requests, providing typesetting-on-demand
for other programs. At Apple [3], IBM [35], Mi-
crosoft [79], SIL [12], and elsewhere, rendering of
UNICODE strings is being developed as a common
library layer available to all software. These design-
ers have recognized that typesetting is indeed a core
service, and many programmers would prefer it to
be standardized and made universally available on
all computers.

9 METAFONT’s progeny

Unlike TEX, METAFONT has so far had only one
significant offspring: METAPOST, written by Don’s
doctoral student John Hobby [33], to whom META-
FONT: The Program is dedicated. METAPOST is de-
rived from METAFONT, and like that program, is
written as a PASCAL WEB. METAPOST normally pro-
duces pictures, although it can also generate data
for outline font files, and it supports direct output in
POSTSCRIPT. METAPOST is described in its manuals
[29–32] and parts of two books [22, Chapter 3], [34,
Chapter 13].

Although METAFONT, METAPOST, and POST-
SCRIPT offer only a two-dimensional drawing model,

1014 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

the 3DLDF program developed by Laurence Finston
[18] and the FEATPOST program written by Luis
Nobre Gonçalves [19] provide three-dimensional
drawing front ends that use METAPOST at the back
end. Denis Roegel’s 3d.mp package [88] offers a sim-
ilar extension using the METAPOST programming
language.

The recent ASYMPTOTE program [26] credits in-
spiration from METAPOST, but is a completely inde-
pendent package for creating high-quality technical
drawings, with an input language similar to that of
METAPOST.

10 Wrapping up

In this article, I have described how architecture,
operating systems, programming languages, and re-
source limits influenced the design of TEX and META-
FONT, and then briefly summarized what has been
done in their descendants to expand their capabili-
ties. This analysis is in no way intended to be critical,
but instead, to offer a historical retrospective that
is, I believe, helpful to think about for other widely-
used software packages as well.

TEX and METAFONT, and the literate program-
ming system in which they are written, are truly
remarkable projects in software engineering. Their
flexibility, power, reliability, and stability, and their
unfettered availability, have allowed them to be
widely used and relied upon in academia, industry,
and government. Donald Knuth expects to use them
for the rest of his career, and so do many others, in-
cluding this author. Don’s willingness to expose his
programs to public scrutiny by publishing them as
books [67, 69, 71], to further admit to errors in them
[58, 59] in order to learn how we might become bet-
ter programmers, and then to pay monetary rewards
(doubled annually for several years) for the report of
each new bug, are traits too seldom found in others.

11 Bibliography
[1] Adobe Systems Incorporated. PDF reference:

Adobe portable document format, version 1.3.
Addison-Wesley, Reading, MA, USA, second
edition, 2000. ISBN 0-201-61588-6. URL
http://partners.adobe.com/asn/developer/
acrosdk/DOCS/PDFRef.pdf.

[2] Urs Ammann. On code generation in a PASCAL
compiler. Software—Practice and Experience, 7(3):
391–423, May/June 1977. ISSN 0038-0644.

[3] Apple Computer, Inc. Apple Type Services for
Unicode Imaging [ATSUI]. World-Wide Web
document., 2005. URL http://developer.apple.
com/intl/atsui.html;http://developer.apple.
com/fonts/TTRefMan/RM06/Chap6AATIntro.html.
Apple Type Services for Unicode Imaging (ATSUI)

is a set of services for rendering Unicode-encoded
text.

[4] G. A. Bachelor, J. R. H. Dempster, D. E. Knuth, and
J. Speroni. SMALGOL-61. Communications of the
Association for Computing Machinery, 4(11):499–
502, November 1961. ISSN 0001-0782. URL http:
//doi.acm.org/10.1145/366813.366843.

[5] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. Mc-
Carthy, A. J. Perlis, H. Rutishauser, K. Samelson,
B. Vauquois, J. H. Wegstein, A. van Wijngaarden,
and M. Woodger. Revised report on the algorithmic
language Algol 60. Communications of the Asso-
ciation for Computing Machinery, 6(1):1–17, Jan-
uary 1963. ISSN 0001-0782. URL http://doi.
acm.org/10.1145/366193.366201. Edited by Peter
Naur. Dedicated to the memory of William Turan-
ski.

[6] Nelson H. F. Beebe. 25 years of TEX and
METAFONT: Looking back and looking forward:
TUG’2003 keynote address. TUGboat, 25(1):
7–30, 2004. URL http://www.math.utah.edu/
~beebe/talks/tug2003/. Due to a journal
production error, this article did not appear in the
TUG’2003 proceedings volumes, even though it
was ready months in advance.

[7] Giuseppe Bilotta. Aleph extended TEX. World-
Wide Web document and software, December
2004. URL http://ctan.tug.org/tex-archive/
help/Catalogue/entries/aleph.html.

[8] Achim Blumensath. ANT: A typesetting system.
World-Wide Web document and software, Octo-
ber 2004. URL http://www-mgi.informatik.
rwth-aachen.de/~blume/Download.html.

[9] Ronald F. Brender. Generation of BLISSes. IEEE
Transactions on Software Engineering, SE-6(6):
553–563, November 1980. ISSN 0098-5589.
Based on Carnegie-Mellon University Computer
Science Report CMU-CS-79-125 May 1979.

[10] Ronald F. Brender. The BLISS programming lan-
guage: a history. Software—Practice and Experi-
ence, 32(10):955–981, August 2002. ISSN 0038-
0644. doi: http://dx.doi.org/10.1002/spe.470.

[11] Lance Carnes. TEX for the HP3000. TUGboat, 2(3):
25–26, November 1981. ISSN 0896-3207.

[12] Sharon Correll. Graphite. World-Wide Web docu-
ment and software, November 2004. URL http://
scripts.sil.org/RenderingGraphite. Graphite
is a project under development within SIL’s Non-
Roman Script Initiative and Language Software De-
velopment groups to provide rendering capabilities
for complex non-Roman writing systems.

[13] M. Crispin. RFC 4042: UTF-9 and UTF-18
efficient transformation formats of Unicode,
April 2005. URL ftp://ftp.internic.net/rfc/
rfc4042.txt,ftp://ftp.math.utah.edu/pub/
rfc/rfc4042.txt.

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1015

Nelson H. F. Beebe

[14] Pavel Curtis and Howard Trickey. Porting TEX to
VAX/UNIX. TUGboat, 4(1):18–20, April 1983. ISSN
0896-3207.

[15] Frank da Cruz and Christine Gianone. The
DECSYSTEM-20 at Columbia University (1977–
1988). Technical report, The Kermit Project,
Columbia University, New York, NY, USA, De-
cember 1988. URL http://www.columbia.edu/
kermit/dec20.html.

[16] Edward R. Fiala. MAXC systems. Computer, 11
(5):57–67, May 1978. ISSN 0018-9162. URL
http://research.microsoft.com/~lampson/
Systems.html#maxc.

[17] Jonathan Fine. Instant Preview and the TEX dae-
mon. TUGboat, 22(4):292–298, December 2001.
ISSN 0896-3207.

[18] Laurence D. Finston. 3DLDF user and reference
manual: 3-dimensional drawing with METAPOST

output, 2004. URL http://dante.ctan.org/
CTAN/graphics/3DLDF/3DLDF.pdf. Manual edition
1.1.5.1 for 3DLDF version 1.1.5.1 January 2004.

[19] Luis Nobre Gonçalves. FEATPOST and a re-
view of 3D METAPOST packages. In Aposto-
los Syropoulos, Karl Berry, Yannis Haralambous,
Baden Hughes, Steven Peter, and John Plaice, ed-
itors, TEX, XML, and Digital Typography: Inter-
national Conference on TEX, XML, and Digital Ty-
pography, held jointly with the 25th Annual Meet-
ing of the TeX Users Group, TUG 2004, Xanthi,
Greece, August 30–September 3, 2004 : Proceed-
ings, volume 3130 of Lecture Notes in Computer Sci-
ence, pages 112–124, Berlin, Germany / Heidel-
berg, Germany / London, UK / etc., 2004. Spring-
er-Verlag. ISBN 3-540-22801-2. doi: 10.1007/
b99374. URL http://link.springer-ny.com/
link/service/series/0558/tocs/t3130.htm.

[20] Michel Goossens, Frank Mittelbach, and Alexander
Samarin. The LATEX Companion. Tools and Tech-
niques for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, 1994. ISBN 0-201-54199-8.

[21] Michel Goossens and Sebastian Rahtz. The LATEX
Web companion: integrating TEX, HTML, and XML.
Tools and Techniques for Computer Typesetting.
Addison-Wesley Longman, Harlow, Essex CM20
2JE, England, 1999. ISBN 0-201-43311-7. With
Eitan M. Gurari, Ross Moore, and Robert S. Sutor.

[22] Michel Goossens, Sebastian Rahtz, and Frank Mit-
telbach. The LATEX Graphics Companion: Illustrating
Documents with TEX and PostScript. Tools and Tech-
niques for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, 1997. ISBN 0-201-85469-4.

[23] Ralph E. Gorin. Introduction to DECSYSTEM-20
Assembly Language Programming. Digital Press,
12 Crosby Drive, Bedford, MA 01730, USA, 1981.
ISBN 0-932376-12-6.

[24] Katie Hafner and Matthew Lyon. Where wizards
stay up late: the origins of the Internet. Simon and

Schuster, New York, NY, USA, 1996. ISBN 0-684-
81201-0.

[25] Hans Hagen. The status quo of the NTS project.
TUGboat, 22(1/2):58–66, March 2001. ISSN 0896-
3207.

[26] Andy Hammerlindl, John Bowman, and Tom
Prince. ASYMPTOTE: a script-based vector
graphics language. Faculty of Science, University
of Alberta, Edmonton, AB, Canada, 2004.
URL http://asymptote.sourceforge.net/.
ASYMPTOTE is powerful script-based vector
graphics language for technical drawing, inspired
by METAPOST but with an improved C++-like
syntax. ASYMPTOTE provides for figures the same
high-quality level of typesetting that LATEX does for
scientific text.

[27] Ken Harrenstien. KLH10 PDP-10 emulator. World-
Wide Web document and software, 2001. URL
http://klh10.trailing-edge.com/. This is a
highly-portable simulator that allows TOPS-20 to
run on most modern Unix workstations.

[28] C. A. R. Hoare. Hints on programming language
design. In Conference record of ACM Symposium
on Principles of Programming Languages: papers
presented at the symposium, Boston, Massachusetts,
October 1–3, 1973, pages iv + 242, New
York, NY 10036, USA, 1973. ACM Press. URL
ftp://db.stanford.edu/pub/cstr/reports/cs/
tr/73/403/CS-TR-73-403.pdf. Keynote address.
Also available as Stanford University Computer
Science Department Report CS-TR-73-403 1973.

[29] John D. Hobby. Introduction to METAPOST.
In Jǐŕı Zlatuška, editor, EuroTEX 92: Proceed-
ings of the 7th European TEX Conference, pages
21–36, Brno, Czechoslovakia, September 1992.
Masarykova Universita. ISBN 80-210-0480-0. In-
vited talk.

[30] John D. Hobby. Drawing Graphs with METAPOST.
AT&T Bell Laboratories, Murray Hill, NJ, USA,
1995. URL http://ctan.tug.org/tex-archive/
macros/latex/contrib/pdfslide/mpgraph.pdf.

[31] John D. Hobby. The METAPOST System, De-
cember 1997. URL file:///texlive-2004-11/
texmf-dist/doc/metapost/base/mpintro.pdf.

[32] John D. Hobby. A User’s Manual for META-
POST, 2004. URL file:///texlive-2004-11/
texmf-dist/doc/metapost/base/mpman.pdf.

[33] John Douglas Hobby. Digitized Brush Trajecto-
ries. Ph.D. dissertation, Department of Com-
puter Science, Stanford University, Stanford, CA,
USA, June 1986. URL http://wwwlib.umi.com/
dissertations/fullcit/8602484. Also published
as report STAN-CS-1070 (1985).

[34] Alan Hoenig. TEX Unbound: LATEX and TEX Strate-
gies for Fonts, Graphics, & More. Oxford Univer-
sity Press, Walton Street, Oxford OX2 6DP, UK,

1016 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

1998. ISBN 0-19-509686-X (paperback), 0-19-
509685-1 (hardcover). URL http://www.oup-usa.
org/gcdocs/gc_0195096851.html.

[35] IBM Corporation. International Component for
Unicode (ICU). World-Wide Web document.,
2005. URL http://www-306.ibm.com/software/
globalization/icu/index.jsp. ICU is a ma-
ture, widely used set of C/C++ and Java libraries
for Unicode support, software internationalization
and globalization (i18n and g11n).

[36] B. W. Kernighan and M. E. Lesk. UNIX docu-
ment preparation. In J. Nievergelt, G. Coray, J.-D.
Nicoud, and A. C. Shaw, editors, Document Prepa-
ration Systems: A Collection of Survey Articles, pages
1–20. Elsevier North-Holland, Inc., New York, NY,
USA, 1982. ISBN 0-444-86493-8.

[37] Brian W. Kernighan. Why Pascal is not my favorite
programming language. Computer Science Report
100, AT&T Bell Laboratories, Murray Hill, NJ, USA,
July 1981. URL http://cm.bell-labs.com/cm/
cs/cstr/100.ps.gz. Published in [39].

[38] Brian W. Kernighan. PIC: A language for typeset-
ting graphics. Software—Practice and Experience,
12(1):1–21, January 1982. ISSN 0038-0644.

[39] Brian W. Kernighan. Why Pascal is not my fa-
vorite programming language. In Alan R. Feuer
and Narain Gehani, editors, Comparing and as-
sessing programming languages: Ada, C, and Pas-
cal, Prentice-Hall software series, pages 170–186.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1984.
ISBN 0-13-154840-9 (paperback), 0-13-154857-3
(hardcover). See also [37].

[40] Brian W. Kernighan and Lorinda L. Cherry. A sys-
tem for typesetting mathematics. Communications
of the Association for Computing Machinery, 18(3):
151–156, March 1975. ISSN 0001-0782.

[41] Brian W. Kernighan and P. J. Plauger. Software
Tools in Pascal. Addison-Wesley, Reading, MA, USA,
1981. ISBN 0-201-10342-7.

[42] Jonathan Kew. The XeTEX typesetting system.
World-Wide Web document., March 2004. URL
http://scripts.sil.org/xetex.

[43] Jonathan Kew. The multilingual lion: TEX learns to
speak Unicode. In Twenty-seventh Internationaliza-
tion and Unicode Conference (IUC27). Unicode, Cul-
tural Diversity, and Multilingual Computing April 6–
8, 2005 Berlin, Germany, pages n+1–n+17, San
Jose, CA, USA, 2005. The Unicode Consortium.

[44] D. E. Knuth, L. L. Bumgarner, D. E. Hamilton, P. Z.
Ingerman, M. P. Lietzke, J. N. Merner, and D. T.
Ross. A proposal for input-output conventions
in ALGOL 60. Communications of the Associa-
tion for Computing Machinery, 7(5):273–283, May
1964. ISSN 0001-0782. URL http://doi.acm.
org/10.1145/364099.364222. Russian translation
by M. I. Ageev in Sovremennoe Programmirovanie
1 (Moscow: Soviet Radio, 1966), 73–107.

[45] Donald E. Knuth. Man or boy? Algol Bulletin
(Amsterdam: Mathematisch Centrum), 17:7, Jan-
uary 1964. ISSN 0084-6198.

[46] Donald E. Knuth. Man or boy? Algol Bulletin
(Amsterdam: Mathematisch Centrum), 19(7):8–9,
January 1965. ISSN 0084-6198.

[47] Donald E. Knuth. On the translation of languages
from left to right. Information and Control, 8
(6):607–639, December 1965. ISSN 0019-9958.
Reprinted in [75].

[48] Donald E. Knuth. Teaching ALGOL 60. Algol Bul-
letin (Amsterdam: Mathematisch Centrum), 19:4–
6, January 1965. ISSN 0084-6198.

[49] Donald E. Knuth. The remaining trouble spots
in ALGOL 60. Communications of the Association
for Computing Machinery, 10(10):611–618, Octo-
ber 1967. ISSN 0001-0782. URL http://doi.
acm.org/10.1145/363717.363743. Reprinted in E.
Horowitz, Programming Languages: A Grand Tour
(Computer Science Press, 1982), 61–68.

[50] Donald E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming. Addi-
son-Wesley, Reading, MA, USA, 1968. ISBN 0-201-
03803-X. Second printing, revised, July 1969.

[51] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Addi-
son-Wesley, Reading, MA, USA, 1969. ISBN 0-201-
03802-1.

[52] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, 1971. ISBN 0-
201-03802-1. Second printing, revised, November
1971.

[53] Donald E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, second edition,
1973. ISBN 0-201-03809-9. Second printing, re-
vised, February 1975.

[54] Donald E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-Wes-
ley, Reading, MA, USA, 1973. ISBN 0-201-03803-X.

[55] Donald E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-Wes-
ley, Reading, MA, USA, March 1975. ISBN 0-201-
03803-X. Second printing, revised.

[56] Donald E. Knuth. TEX and METAFONT—New Direc-
tions in Typesetting. Digital Press, 12 Crosby Drive,
Bedford, MA 01730, USA, 1979. ISBN 0-932376-
02-9.

[57] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, second edition,
1981. ISBN 0-201-03822-6.

[58] Donald E. Knuth. The errors of TEX. Technical
Report STAN-CS-88-1223, Stanford University, De-
partment of Computer Science, September 1988.
See [59].

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1017

Nelson H. F. Beebe

[59] Donald E. Knuth. The errors of TEX. Software—
Practice and Experience, 19(7):607–685, July 1989.
ISSN 0038-0644. This is an updated version of
[58]. Reprinted with additions and corrections in
[61, pp. 243–339].

[60] Donald E. Knuth. The new versions of TEX and
METAFONT. TUGboat, 10(3):325–328, November
1989. ISSN 0896-3207.

[61] Donald E. Knuth. Literate Programming. CSLI Lec-
ture Notes Number 27. Stanford University Center
for the Study of Language and Information, Stan-
ford, CA, USA, 1992. ISBN 0-937073-80-6 (paper),
0-937073-81-4 (cloth).

[62] Donald E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming. Addi-
son-Wesley, Reading, MA, USA, third edition, 1997.
ISBN 0-201-89683-4.

[63] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Addi-
son-Wesley, Reading, MA, USA, third edition, 1997.
ISBN 0-201-89684-2.

[64] Donald E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-Wes-
ley, Reading, MA, USA, second edition, 1998. ISBN
0-201-89685-0.

[65] Donald E. Knuth. Digital Typography. CSLI Publi-
cations, Stanford, CA, USA, 1999. ISBN 1-57586-
011-2 (cloth), 1-57586-010-4 (paperback).

[66] Donald E. Knuth. The TEXbook, volume A of Com-
puters and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ISBN 0-201-13447-0.

[67] Donald E. Knuth. TEX: The Program, volume B of
Computers and Typesetting. Addison-Wesley, Read-
ing, MA, USA, 1986. ISBN 0-201-13437-3.

[68] Donald E. Knuth. The METAFONTbook, volume C
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13445-4.

[69] Donald E. Knuth. METAFONT: The Program, vol-
ume D of Computers and Typesetting. Addison-Wes-
ley, Reading, MA, USA, 1986. ISBN 0-201-13438-1.

[70] Donald E. Knuth. Computer Modern Typefaces, vol-
ume E of Computers and Typesetting. Addison-Wes-
ley, Reading, MA, USA, 1986. ISBN 0-201-13446-2.

[71] Donald E. Knuth and Silvio Levy. The CWEB System
of Structured Documentation, Version 3.0. Addi-
son-Wesley, Reading, MA, USA, 1993. ISBN 0-201-
57569-8.

[72] Donald E. Knuth and Jack N. Merner. ALGOL 60
confidential. Communications of the Association for
Computing Machinery, 4(6):268–272, June 1961.
ISSN 0001-0782. URL http://doi.acm.org/10.
1145/366573.366599.

[73] Leslie Lamport. LATEX—A Document Preparation
System—User’s Guide and Reference Manual. Addi-
son-Wesley, Reading, MA, USA, 1985. ISBN 0-201-
15790-X.

[74] Leslie Lamport. LATEX: A Document Preparation Sys-
tem: User’s Guide and Reference Manual. Addison-
Wesley, Reading, MA, USA, second edition, 1994.
ISBN 0-201-52983-1.

[75] Phillip Laplante, editor. Great papers in computer
science. IEEE Computer Society Press, 1109 Spring
Street, Suite 300, Silver Spring, MD 20910, USA,
1996. ISBN 0-314-06365-X (paperback), 0-7803-
1112-4 (hardcover). URL http://bit.csc.lsu.
edu/~chen/GreatPapers.html.

[76] Franklin Mark Liang. Word hy-phen-a-tion by com-
pu-ter. Technical Report STAN-CS-83-977, Stan-
ford University, Stanford, CA, USA, August 1983.

[77] Franklin Mark Liang. Word Hy-phen-a-tion by
Com-pu-ter. Ph.D. dissertation, Computer Sci-
ence Department, Stanford University, Stanford,
CA, USA, March 1984. URL http://wwwlib.umi.
com/dissertations/fullcit/8329742.

[78] Charles E. Mackenzie. Coded Character Sets: His-
tory and Development. The Systems Programming
Series. Addison-Wesley, Reading, MA, USA, 1980.
ISBN 0-201-14460-3.

[79] Microsoft Corporation. Unicode and character
sets. World-Wide Web document., 2005. URL
http://msdn.microsoft.com/library/en-us/
intl/unicode_6bqr.asp.

[80] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley, Christine
Detig, and Joachim Schrod. The LATEX Companion.
Tools and Techniques for Computer Typesetting.
Addison-Wesley, Reading, MA, USA, second
edition, 2004. ISBN 0-201-36299-6.

[81] T. Mock. RFC 698: Telnet extended ASCII option,
July 1975. URL ftp://ftp.internic.net/rfc/
rfc698.txt,ftp://ftp.math.utah.edu/pub/
rfc/rfc698.txt. Status: PROPOSED STANDARD.
Not online.

[82] Sao Khai Mong. A Fortran version of METAFONT.
TUGboat, 3(2):25–25, October 1982. ISSN 0896-
3207.

[83] William M. Newman and Robert F. Sproull. Prin-
ciples of Interactive Computer Graphics. McGraw-
Hill Computer Science Series, Editors: Richard W.
Hamming and Edward A. Feigenbaum. McGraw-
Hill, New York, NY, USA, 1973. ISBN 0-07-046337-
9.

[84] John Plaice and Yannis Haralambous. The lat-
est developments in Ω. TUGboat, 17(2):181–183,
June 1996. ISSN 0896-3207.

[85] Michael F. Plass. Optimal pagination techniques
for automatic typesetting systems. Ph.D.
dissertation, Computer Science Department,
Stanford University, Stanford, CA, USA, 1981.
URL http://wwwlib.umi.com/dissertations/
fullcit/8124134.

[86] Brian K. Reid. A high-level approach to com-
puter document formatting. In Conference record

1018 TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference

Keynote Address: The design of TEX and METAFONT: A retrospective

of the seventh annual ACM Symposium on Princi-
ples of Programming Languages. Las Vegas, Nevada,
January 28–30, 1980, pages 24–31, New York, NY
10036, USA, 1980. ACM Press. ISBN 0-89791-011-
7. ACM order no. 549800.

[87] Brian Keith Reid. Scribe: a document specification
language and its compiler. Ph.D. dissertation,
Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA, December 1980.
URL http://wwwlib.umi.com/dissertations/
fullcit/8114634. Also issued as Report CMU-CS-
81-100.

[88] Denis Roegel. Creating 3D animations with
METAPOST. TUGboat, 18(4):274–283, December
1997. ISSN 0896-3207. URL http://ctan.tug.
org/tex-archive/graphics/metapost/contrib/
macros/3d/doc/paper1997corrected.pdf.

[89] Lynn Elizabeth Ruggles. Paragon, an interactive,
extensible, environment for typeface design. Ph.D.
dissertation, University of Massachusetts Amherst,
Amherst, MA, USA, 1987. URL http://wwwlib.
umi.com/dissertations/fullcit/8805968.

[90] Peter H. Salus. A quarter century of UNIX. Addi-
son-Wesley, Reading, MA, USA, 1994. ISBN 0-201-
54777-5.

[91] Ray Scott and Michel E. Debar. TOPS-20 extended
Programmable Command Language user’s guide
and reference manual. Technical report, Carnegie
Mellon University Computation Center and FNDP
Computing Centre, Pittsburgh, PA, USA and Na-
mur, Belgium, January 1983. URL http://www.
math.utah.edu/~bowman/pcl.txt.

[92] E. Wayne Sewell. Weaving a Program: Literate
Programming in WEB. Van Nostrand Reinhold, New
York, NY, USA, 1989. ISBN 0-442-31946-0.

[93] Guy L. Steele Jr. Common Lisp—The Language.
Digital Press, 12 Crosby Drive, Bedford, MA 01730,
USA, 1984. ISBN 0-932376-41-X.

[94] Guy L. Steele Jr. Common Lisp—The Language.
Digital Press, 12 Crosby Drive, Bedford, MA 01730,
USA, second edition, 1990. ISBN 1-55558-041-
6 (paperback), 1-55558-042-4 (hardcover), 0-13-
152414-3 (Prentice-Hall). See also [93].

[95] Bjarne Stroustrup. The Design and Evolution of
C++. Addison-Wesley, Reading, MA, USA, 1994.
ISBN 0-201-54330-3.

[96] Apostolos Syropoulos, Antonis Tsolomitis, and
Nick Sofroniou. Digital typography using LATEX.
Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 2003. ISBN
0-387-95217-9.

[97] Phil Taylor. ε-TEX V2: a peek into the future. TUG-
boat, 18(4):239–242, December 1997. ISSN 0896-
3207.

[98] Larry Tesler. PUB: The document compiler. Stan-
ford AI Project Operating Note 70, Department of
Computer Science, Stanford University, Stanford,

CA, USA, September 1972. URL http://www.
nomodes.com/pub_manual.html.

[99] Hàn Thế Thành. Improving TEX’s Typeset Layout.
TUGboat, 19(3):284–288, September 1998. ISSN
0896-3207.

[100] Hán Thế Thánh. Margin kerning and font ex-
pansion with pdfTEX. TUGboat, 22(3):146–148,
September 2001. ISSN 0896-3207.

[101] Hán Thế Thánh and Sebastian Rahtz. The pdfTEX
user manual. TUGboat, 18(4):249–254, December
1997. ISSN 0896-3207.

[102] The Unicode Consortium. The Unicode Standard,
Version 4.0. Addison-Wesley, Reading, MA, USA,
2003. ISBN 0-321-18578-1. URL http://www.
unicode.org/versions/Unicode4.0.0/. Includes
CD-ROM.

[103] Ulrik Vieth. Math typesetting in TEX: The good, the
bad, the ugly. World-Wide Web document, Septem-
ber 2001. URL http://www.ntg.nl/eurotex/
vieth.pdf. Lecture slides for EuroTEX 2001 Con-
ference, Kerkrade, The Netherlands.

[104] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare. Am-
biguities and insecurities in Pascal. Software—Prac-
tice and Experience, 7(6):685–696, November/De-
cember 1977. ISSN 0038-0644.

[105] John Wharton. Gary Kildall, industry pioneer,
dead at 52 created first microcomputer languages,
disk operating systems. Microprocessor Report, 8
(10):1–2, August 1994. ISSN 0899-9341. URL
http://www.ece.umd.edu/courses/enee759m.
S2002/papers/wharton1994-kildall.pdf;http:
//en.wikipedia.org/wiki/Gary_Kildall.
This obituary nicely describes the very many
accomplishments of this industry pioneer.

[106] Niklaus Wirth. The design of a PASCAL compiler.
Software—Practice and Experience, 1(4):309–333,
October/December 1971. ISSN 0038-0644.

[107] Niklaus Wirth. Algorithms + Data Structures = Pro-
grams. Prentice-Hall Series in Automatic Compu-
tation. Prentice-Hall, Englewood Cliffs, NJ, USA,
1976. ISBN 0-13-022418-9.

[108] F. H. G. Wright II and R. E. Gorin. FAIL. Computer
Science Department, Stanford University, Stanford,
CA, USA, May 1974. Stanford Artificial Intelligence
Laboratory Memo AIM-226 and Computer Science
Department Report STAN-CS-74-407.

[109] W. A. (William A.) Wulf, D. B. Russell, and A. N.
Habermann. BLISS: A language for systems pro-
gramming. Communications of the Association for
Computing Machinery, 14(12):780–790, December
1971. ISSN 0001-0782. URL http://doi.acm.
org/10.1145/362919.362936.

[110] Ignacio Andres Zabala Salelles. Interfacing with
graphics objects. PhD thesis, Department of Com-
puter Science, Stanford University, Stanford, CA,
USA, December 1982. URL http://wwwlib.umi.
com/dissertations/fullcit/8314505.

TUGboat, Volume ?? (2005), No. 0 — Proceedings of the Practical TEX 2005 Conference 1019

