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Abstract

We prove that any regular resolution proof for the weak pigeon hole principle, with
n holes and any number of pigeons, is of length Ω(2nǫ

), (for some global constant ǫ > 0).

1 Introduction

In the last three decades, a tremendous amount of research has been directed towards un-
derstanding the mathematical structure of the satisfiability problem, and towards developing
algorithms for satisfiability testing and propositional theorem proving. Much of this research
has centered around the method of resolution.

The resolution principle says that if C and D are two clauses and xi is a variable then any
assignment that satisfies both of the clauses, C ∨ xi and D ∨ ¬xi, also satisfies C ∨ D. The
clause C ∨ D is called the resolvent of the clauses C ∨ xi and D ∨ ¬xi on the variable xi. A
resolution refutation for a CNF formula F is a sequence of clauses C1, C2, . . . , Cs, such that:
(1) Each clause Cj is either a clause of F or a resolvent of two previous clauses in the sequence.
(2) The last clause, Cs, is the empty clause (and hence it has no satisfying assignments). We
can represent a resolution refutation as an acyclic directed graph on vertices C1, . . . , Cs, where
each clause of F has out-degree 0, and any other clause has two edges pointing to the two
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clauses that were used to produce it. It is well known that resolution is a sound and complete
propositional proof system, i.e., a formula F is unsatisfiable if and only if there exists a
resolution refutation for F . We think of a refutation for an unsatisfiable formula F also as a
proof for the tautology ¬F . Resolution is the most widely studied approach to propositional
theorem proving, and there is a large body of research exploring resolution algorithms, i.e.,
algorithms that on input an unsatisfiable formula F , output a resolution refutation for F . A
well-known and widely studied restricted version of resolution (that is still complete) is called
regular resolution. In a regular resolution refutation, along any path in the directed acyclic
graph, each variable is resolved upon at most once.

One of the main directions of research in propositional proof theory is proving lower bounds
for the length of proofs for different tautologies in different proof systems [CR]. One of the most
widely studied tautologies in this context is the Pigeon Hole Principle (PHP). The tautology
PHPn is a DNF encoding of the following statement: There is no one to one mapping from
n + 1 pigeons to n holes. The Weak Pigeon Hole Principle (WPHP) is a version of the pigeon
hole principle that allows a larger number of pigeons. The tautology WPHP m

n (for m ≥ n+1)
is a DNF encoding of the following statement: There is no one to one mapping from m pigeons
to n holes. For m > n + 1, the weak pigeon hole principle is a weaker statement than the
pigeon hole principle. Hence, it may have much shorter proofs in certain proof systems.

The weak pigeon hole principle is a fundamental combinatorial principle that underlies
the induction principle and is used in many mathematical proofs. In particular, it is used in
most probabilistic counting arguments and hence in many combinatorial proofs. In addition,
much of elementary number theory (including the existence of infinitely many primes) can be
formalized in weak systems with the weak pigeon hole principle [PWW].

Moreover, as observed by Razborov, there are certain connections between the weak pigeon
hole principle and the problem of P 6= NP [Razb]. Indeed, the weak pigeon hole principle
(with relatively large number of pigeons m) can be interpreted as an encoding of the following
statement: There are no small DNF formulas for SAT. Hence, in most proof systems, a short
proof for a certain formulation of the statement NP 6⊂ P/poly can be translated into a short
proof for the weak pigeon hole principle. That is, a lower bound for the length of proofs for
the weak pigeon hole principle implies a lower bound for the length of proofs for a certain
formulation of the statement NP 6⊂ P/poly. While we do not regard our result as a step
towards understanding the problem of P 6= NP , we do believe that the above connection
demonstrates the usefulness and the generality of the weak pigeon hole principle.

There are trivial resolution proofs (and regular resolution proofs) of length 2n · poly(n) for
the pigeon hole principle and for the weak pigeon hole principle. In a seminal paper, Haken
proved that for the pigeon hole principle, the trivial proof is (almost) the best possible [Hak].
More specifically, Haken proved that any resolution proof (or regular resolution proof) for
the tautology PHPn is of length 2Ω(n). Haken’s argument was further developed in several
other papers (e.g., [Urq, BeP, BSW]). It was shown that a similar argument gives lower
bounds also for the weak pigeon hole principle, for small values of m. More specifically, super-
polynomial lower bounds were proved for any resolution proof (or regular resolution proof)
for the tautology WPHP m

n , for m < c · n2/ log n (for some constant c) [BT].
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For the weak pigeon hole principle with large values of m, there do exist resolution proofs
which are much shorter than the trivial ones. In particular, it was proved by Buss and Pitassi
that for m > c

√
n log n (for some constant c), there are resolution proofs of length poly(m) for

the tautology WPHP m
n [BuP]. Can these upper bounds be further improved ? We believe

that for any m, any resolution proof (or regular resolution proof) for the tautology WPHP m
n is

of length exponential in n. However, for m ≥ n2, no non-trivial lower bounds are known. The
only partial progress was made by Razborov, Wigderson and Yao, who proved exponential
lower bounds for regular resolution proofs, but only when the (regular resolution) proof is of
a certain restricted form [RWY].

In this paper, we prove that for any m, any regular resolution proof for the weak pigeon
hole principle WPHP m

n is of length Ω(2nǫ

), (where ǫ > 0 is some global constant).

2 Preliminaries

A literal is either an atom (i.e., a variable xi) or the negation of an atom. A clause is a
disjunction of literals. As mentioned in the introduction, a resolution refutation of a CNF
formula F is a sequence of clauses, such that, each clause is either a clause of F or is derived
from two previous clauses by the resolution rule, and such that, the final clause is the empty
clause. We think of a resolution refutation for F also as a proof for ¬F . The length of
a resolution proof is the number of clauses in it. A resolution proof is regular if (in the
corresponding graph) along any path from an initial clause (i.e., a clause of F ) to the final
clause, every atom is resolved upon at most once.

To prove our lower bound, we will exploit the equivalence between regular resolution proofs
and read-once branching programs [Kra]. For any unsatisfiable formula F = C1(x1, . . . , xl) ∧
. . .∧Ck(x1, . . . , xl), let us consider the following search problem SF : Given a truth assignment
a ∈ {0, 1}l, find v such that Cv(a) = 0.

A Boolean branching program in l variables is a directed acyclic graph with nodes of out-
degrees 0 or 2, such that: (1) There is only one source node (i.e., only one node of in-degree 0),
called, the root. (2) Every non-sink node (i.e., every node of out-degree 2) is labeled by one
of the variables x1, . . . , xl, and the two out-going edges are labeled 0 and 1 respectively. If a
node v is labeled by xi we say that xi is queried at v. Each input string a ∈ {0, 1}l determines
a path from the root to a sink node of the branching program. A Boolean branching program
solves a search problem S (with inputs in {0, 1}l) if for every a ∈ {0, 1}l, the path determined
by a leads to a sink labeled by a valid solution for the search problem S on the input a. The
size of a branching program is the number of nodes in it. A branching program is read-once
if along any path on it, each variable is queried at most once.

A read-once branching program is uniform if the following holds: (1) For a path p beginning
at the root, the set of variables queried along p depends only on the terminal node of p. (2)
For any path p beginning at the root and terminating at a sink node, the set of variables
queried along p is the set of all variables. It is not hard to see that any read-once branching
program can be made uniform with little increase in its size:
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Proposition 2.1 Any branching program in l variables can be simulated by a uniform branch-
ing program whose size is larger by at most a factor of l.

The following Lemma, due to Kraj́ıček , gives the connection between branching programs
and regular resolution.

Lemma 2.1 Let F be an unsatisfiable CNF formula. Then, the minimum length of a regular
resolution refutation for F is equal to the minimum size of a read-once branching program
solving the search problem SF .

The propositional weak pigeon hole principle, WPHP m
n , states that there is no one-to-one

mapping from m pigeons to n holes. The underlying Boolean variables, xi,j , for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, represent whether or not pigeon i is mapped to hole j. The negation of
the pigeonhole principle, ¬WPHP m

n , is expressed in conjunctive normal form (CNF) as the

conjunction of m pigeon clauses and
(

m
2

)

·n hole clauses. For every 1 ≤ i ≤ m, we have a pigeon

clauses, (xi,1 ∨ . . .∨ xi,n), stating that pigeon i maps to some hole. For every 1 ≤ i1 < i2 ≤ m
and every 1 ≤ j ≤ n, we have a hole clauses, (¬xi1,j ∨ ¬xi2,j), stating that pigeons i1 and i2
are not both map to hole j. We refer to the pigeon clauses and the hole clauses also as pigeon
axioms and hole axioms.

A branching program for the weak pigeon hole principle queries the variables xi,j and finds
either a pigeon clause that is not satisfied or a hole clause that is not satisfied.

3 The Lower Bound for Branching Programs

3.1 Basic notations

In this section we prove our lower bound on the size of read-once branching programs for the
weak pigeon hole principle. We denote by n the number of holes, and by m the number of
pigeons. We denote by Holes the set of holes, and by Pigeons the set of pigeons. That is,

Holes = {1, ..., n}.

Pigeons = {1, ..., m}.

We will usually denote a hole by j, and a pigeon by i. By xi,j we denote the variable corre-
sponding to pigeon i and hole j. By Holej we denote the set of variables corresponding to
the jth hole, and by Pigeoni the set of variables corresponding to the ith pigeon. That is,

Holej = {xi,j|i ∈ Pigeons}.

Pigeoni = {xi,j|j ∈ Holes}.
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We will consider read once branching programs that query the variables xi,j . By u we will
usually denote a node in the branching program (BP). We say that u′ < u if there is a path
in the BP from u′ to u. By p we will usually denote a path in the BP. We denote by ǫ a
small fixed constant (say ǫ = 1/20). For simplicity, we assume that n is large enough (say
n ≥ 10100). We will assume that our BP is of size < 2nǫ/10, and we will show that such a BP
cannot solve the weak pigeon hole principle (we do not attempt here to optimize the value
of ǫ). Note that since the size of the BP is lower than 2nǫ/10, we can assume w.l.o.g. that
m < 2nǫ/10 as well. For simplicity, we assume that expressions like nǫ, n1−ǫ/2, etc., are all
integers.

By Proposition 2.1, we can assume that the set of variables queried along each path to a
node u is the same (i.e., the set of queries is independent of the path and depends only on the
final node u). For a non-leaf node u define:

Label(u) = the variable xi,j queried at u.

For any node u, define:

Queries(u) = the set of variables xi,j queried along paths to u (not including the
variable Label(u)). As mentioned above, by Proposition 2.1, this set is independent
of the path taken to u.

Queriesi(u) = Queries(u) ∩ Pigeoni.

For any node u, define Ones(u) to be the set of variables that the node u “remembers” to be
1, and Zeros(u) to be the set of variables that the node u “remembers” to be 0, that is:

Ones(u) = the set of variables xi,j in Queries(u) that get the value 1 along every
path to u.

Zeros(u) = the set of variables xi,j in Queries(u) that get the value 0 along every
path to u.

We can now define for any node u,

OpenPigeons(u) = the set of pigeons i with Queriesi(u) ⊂ Zeros(u).

Claim 3.1 If u′ ≤ u then

OpenP igeons(u) ⊆ OpenP igeons(u′).

Proof:

Let i ∈ OpenP igeons(u). For any xi,j ∈ Queriesi(u
′),

xi,j ∈ Queriesi(u
′) ⊂ Queriesi(u) ⊂ Zeros(u).
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Hence, xi,j gets the value 0 along every path to u. Since u′ < u and xi,j ∈ Queriesi(u
′),

xi,j must get the value 0 along every path to u′. Hence, xi,j ∈ Zeros(u′). Since this is
true for any xi,j ∈ Queriesi(u

′), we conclude that Queriesi(u
′) ⊂ Zeros(u′), and hence,

i ∈ OpenP igeons(u′). 2

3.2 Types of axioms and types of holes

For integer 1 ≤ k ≤ nǫ, define
nk = k · n1−ǫ,

and
mk = 2nǫ−k

(recall that we assume that nǫ, n1−ǫ are integers). We will say that a node u is a pigeon-axiom
of order k if there is a set A ⊂ OpenP igeons(u), such that |A| = mk and for every i ∈ A,
|Queriesi(u)| ≥ nk. Note that a pigeon-axiom of order k = nǫ is just a standard pigeon-axiom
of the pigeon hole principle. We say that a node u is a hole-axiom if there exists a hole j and
two different pigeons i1, i2, such that xi1,j, xi2,j ∈ Ones(u). Note that this is just a standard
hole-axiom of the pigeon hole principle. In our proof, we allow our BP to find a pigeon-axiom
of any order k (and not only pigeon-axioms of order k = nǫ as in the usual weak pigeon hole
principle). That is, we say that the BP solves the weak pigeon hole principle if it always stops
at an axiom (i.e., all leaves of the BP are either hole-axioms or pigeon-axioms of some order).
We assume w.l.o.g. that in our BP no non-leaf node is an axiom (otherwise, the BP can just
stop at that node). In particular, no non-leaf node is a pigeon-axiom of order k, for any k.

Let S1 ∪ · · · ∪ Snǫ be a random partition of Holes into nǫ sets of size n1−ǫ each. The
intuition is that the set of holes Sk will be used against pigeon-axioms of order k. For each
1 ≤ k ≤ nǫ, let Sk,1 ∪ · · · ∪ Sk,nǫ be a random partition of Sk into nǫ sets of size n1−2ǫ each.

Let I be the segment of integers [1, ..., n1−2ǫ] , We think of I as a set of indices. Let
I1, ..., I3nǫ be the partition of I into 3nǫ segments of length n1−2ǫ/3nǫ = (1/3) · n1−3ǫ each.
That is,

Ir =
[

(1/3) · n1−3ǫ · (r − 1) + 1, ..., (1/3) · n1−3ǫ · r
]

.

For each 1 ≤ r ≤ 3nǫ, let Ir,1, ..., Ir,3nǫ be the partition of Ir into 3nǫ segments of length
(1/3) · n1−3ǫ/3nǫ = (1/9) · n1−4ǫ each. That is,

Ir,s = [br,s, ..., er,s] ,

where
br,s = (1/3) · n1−3ǫ · (r − 1) + (1/9) · n1−4ǫ · (s − 1) + 1,

and
er,s = (1/3) · n1−3ǫ · (r − 1) + (1/9) · n1−4ǫ · s.

Denote
n̂ = |Ir,s| = (1/9) · n1−4ǫ.
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The relevant set of indices for Sk will be I3k−1. The relevant set of indices for Sk,l will be
I3k−1,3l−1. Define:

Queries
k,l
i (u) = the set of variables xi,j ∈ Queriesi(u) such that j ∈ Sk,l.

Stage
k,l
i = the set of all nodes u such that |Queriesk,l

i (u)| + 1 ∈ I3k−1,3l−1

(that is, b3k−1,3l−1 ≤ |Queriesk,l
i (u)| + 1 ≤ e3k−1,3l−1).

Over
k,l
i = the set of all nodes u such that |Queriesk,l

i (u)| + 1 > e3k−1,3l−1.

Before
k,l
i = the set of all nodes u such that |Queriesk,l

i (u)| + 1 < b3k−1,3l−1.

Claim 3.2 With exponentially high probability (over the choice of the partition {Sk,l}), the
following is satisfied for every k, l, i, u:

1.
n−2ǫ · |Queriesi(u)| < |Queriesk,l

i (u)| + n̂/2.

2.
n−2ǫ · |Queriesi(u)| > |Queriesk,l

i (u)| − n̂/2.

Proof:

Denote,
Qi,u = n−2ǫ · |Queriesi(u)|

and
Qk,l

i,u = |Queriesk,l
i (u)|.

Denote,
Dk,l

i,u = Qk,l
i,u − Qi,u.

Recall that Queriesk,l
i (u) is the set of variables xi,j ∈ Queriesi(u) such that j ∈ Sk,l. Since

Sk,l is a random subset of {1, ..., n} of fraction exactly n−2ǫ, the expectation of the random

variable Qk,l
i,u is Qi,u, and we can use the standard Chernoff-Hoeffding bounds to bound Dk,l

i,u

(for any α > 0) by

Pr[|Dk,l
i,u| ≥ αn] ≤ 2 · e−2α2n.

Hence,
Pr[|Dk,l

i,u| ≥ n̂/2] ≤ 2 · e−2n1−8ǫ/182

.

The number of tuples (k, l, i, u) is at most

nǫ · nǫ · 2nǫ/10 · 2nǫ/10.

Since this number is exponentially smaller than

(

2 · e−2n1−8ǫ/182
)−1

,
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we conclude that with exponentially high probability for every k, l, i, u,

|Dk,l
i,u| < n̂/2.

2

Claim 3.3 With exponentially high probability (over the choice of the partition {Sk,l}), the
following is satisfied for every k, l, k′, l′, i, u:

1.
|Queriesk,l

i (u)| < |Queriesk′,l′

i (u)| + n̂.

2.
|Queriesk,l

i (u)| > |Queriesk′,l′

i (u)| − n̂.

Proof:

Immediate from Claim 3.2. 2

We say that (k′, l′) < (k, l) if either (k′ < k) or (k′ = k and l′ < l).

Claim 3.4 With exponentially high probability (over the choice of the partition {Sk,l}), the
following is satisfied for every i, u and every (k′, l′) < (k, l):

1.
u ∈ Stagek,l

i =⇒ u ∈ Overk′,l′

i .

2.
u ∈ Stagek′,l′

i =⇒ u ∈ Beforek,l
i .

Proof:

Immediate from Claim 3.3 and the definitions of Stagek,l
i , Beforek,l

i , Overk,l
i . 2

Assume from now on that the partition {Sk,l} is some fixed partition satisfying Claim 3.2,
Claim 3.3 and Claim 3.4.

We say that a variable xi,j is of type (k, l) if j ∈ Sk,l. We say that a non-leaf node
u is of type (k, l) if Label(u) is of type (k, l).

3.3 The adversary strategy

We will define a probabilistic adversary strategy to answer queries of the BP. The answer
given by the strategy depends not only on the node u but also on the path p that was taken
to the node u (this is done for simplicity). In all the following, p is a path from the root to
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the node u (in some cases p will be a path starting from the root and u any node on it, and
then we just think of p as a path to u and ignore the rest of it). We will define the strategy
by defining it separately for each set Sk,l. The strategy for Sk,l will answer queries xi,j of type
(k, l). The answer Strategy(p, u) for a node u of type (k, l) will be defined by induction on l,
together with a set of pigeons Stubbornk,l(p, u). Thus, the definition of the strategy is actually
done in nǫ · nǫ steps. Note that in step (k, l) of the definition, Strategy(p, u) will be defined
only for nodes u with Label(u) = xi,j such that j ∈ Sk,l. In contrast, the set Stubbornk,l(p, u)
will be defined for any node u. First define for all k, p, u, the set

Stubbornk,0(p, u) = Pigeons.

We will now assume that Stubbornk,l−1(p, u) is already defined and we will define the answer
Strategy(p, u) for nodes u of type (k, l). Let u be a node in the BP, with Label(u) = xi,j of
type (k, l). Let p be a path from the root to u.

We say that u (with Label(u) = xi,j of type (k, l)) is Relevant for the path p
(from the root to u) if all the following are satisfied:

1. i ∈ OpenP igeons(u).

2. i ∈ Stubbornk,l−1(p, u).

3. u ∈ Stagek,l
i .

If u is Relevant for p and there exists i′ such that xi′,j ∈ Ones(u) we say that for
the path p, xi,j is Forced to 0 at u by xi′,j.

We now define Strategy(p, u) in the following way:

Strategy(p,u), (for u with Label(u) = xi,j of type (k, l)):

• If u is not Relevant for p answer 0.

• If for the path p, xi,j is Forced to 0 at u answer 0.

• Otherwise, answer 1 with probability 1/2mk and 0 with probability 1 −
(1/2mk).

The set of pigeons Stubbornk,l(p, u) is now defined (for any node u) in the following way:

Stubbornk,l(p,u) = the set of pigeons i, such that all the following are satisfied:

1. i ∈ Stubbornk,l−1(p, u).

2. u ∈ Overk,l
i .

3. At least 0.9 · n̂ variables xi,j of type (k, l) were Forced to 0 at some node of
the path p (up to the node u).
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Claim 3.5 Let p be a path from the root to u and let u′ < u be another node on the path p.
Then for every k, l,

Stubbornk,l(p, u′) ⊆ Stubbornk,l(p, u).

Proof:

The proof is by induction on l. The base case, l = 0, follows by the definition of Stubbornk,0(p, u).
For l > 0, let i ∈ Stubbornk,l(p, u′). We will show that i ∈ Stubbornk,l(p, u).

1. By the inductive assumption, i ∈ Stubbornk,l−1(p, u′) implies i ∈ Stubbornk,l−1(p, u).

2. If u′ ∈ Overk,l
i and u′ < u then obviously u ∈ Overk,l

i (by the definition of Overk,l
i ).

3. Since u′ < u, if at least 0.9 · n̂ variables xi,j of type (k, l) were Forced to 0 at some node
of the path p up to u′ then all these variables were Forced to 0 at some node of the path
p up to u.

Hence, i ∈ Stubbornk,l(p, u). 2

Claim 3.6 Let p be a path from the root to u and let u′ < u be another node on the path p.
Let k, l, i be such that u, u′ ∈ Overk,l

i and i ∈ Stubbornk,l(p, u). Then

i ∈ Stubbornk,l(p, u′).

Proof:

The proof is by induction on l. The base case, l = 0, follows by the definition of Stubbornk,0(p, u′).
For l > 0, let us show that i ∈ Stubbornk,l(p, u) implies i ∈ Stubbornk,l(p, u′).

1. By Claim 3.4, u, u′ ∈ Overk,l−1
i . Hence, by the inductive assumption, i ∈ Stubbornk,l−1(p, u)

implies i ∈ Stubbornk,l−1(p, u′).

2. u′ ∈ Overk,l
i by the assumption.

3. Since u′ ∈ Overk,l
i , every node in the path p after the node u′ is also in Overk,l

i and
hence is not Relevant for the path p. Therefore, if at least 0.9 · n̂ variables xi,j of type
(k, l) were Forced to 0 at some node of the path p up to u then all these variables were
Forced to 0 at some node of the path p up to u′.

Hence, i ∈ Stubbornk,l(p, u′). 2

Let Path be the random path defined by applying the adversary strategy for
answering questions of the BP and let Leaf be the random leaf of the BP reached
by Path.
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3.4 The main claim

The following is the main claim needed for our lower bound. The rest of the subsection is
dedicated for the proof of the claim.

Claim 3.7 With probability exponentially close to 1, for every k, l,

|Stubbornk,l(Path, Leaf)| ≤ (0.9)l · m.

Proof:

The proof is by induction on l. The base case, l = 0, is true (with probability 1) by the
definition of Stubbornk,0(p, u).

We say that a path p is Cheating if for some u ∈ p, |Ones(u)| ≥ 2nǫ.

Claim 3.8 The probability that Path is Cheating is at most 2−nǫ

.

Proof:

First note that by the definition of Strategy(p, u), the adversary strategy never answers a
query by 1 with probability more than 1/2 (i.e., the probability for 0 is always at least 1/2).
We say that a node u is Cheating if |Ones(u)| ≥ 2nǫ. Let u be a node that is Cheating.
Then there exist at least 2nǫ variables xi,j in Ones(u). Each one of these variables is in
Queries(u) and it gets the value 1 along every path to u. In order to have u ∈ Path, each one
of these variables must be queried along Path (and must get the value 1 along Path). Since
the adversary strategy answers by 1 with probability of at most 1/2, the probability that all
these variables get the value 1 along Path is at most 2−2nǫ

. Hence, the probability that one
particular Cheating node u satisfies u ∈ Path is at most 2−2nǫ

. Since the total number of
nodes in the BP is (by our assumption) at most 2nǫ/10, the probability that there exists a
Cheating node u ∈ Path is at most 2nǫ/10 · 2−2nǫ

< 2−nǫ

. 2

Let p be a path starting at the root. Define:

Forcedk,l(p) = the set of variables xi,j of type (k, l) such that xi,j was Forced to
0 at some node of the path p.

Tough
k,l
i (p) = the set of variables xi,j of type (k, l) such that all the following are

satisfied:

1. For some u ∈ p and some pigeon i′, xi,j was Forced to 0 at u by xi′,j.

2. xi′,j was queried at u′ ∈ p such that u′ ∈ Beforek,l
i .

Claim 3.9 If a path p is not Cheating then for every k, l, i,

|Toughk,l
i (p)| < 2nǫ.
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Proof:

Denote (in the proof of this claim) n′ = 2nǫ. Let v be the first node on p such that v ∈ Stagek,l
i .

Assume for a contradiction that |Toughk,l
i (p)| ≥ n′. Then there exist n′ different nodes

u1, ..., un′ ∈ p, and n′ different nodes u′
1, ..., u

′
n′ ∈ p, and n′ different variables xi,j1 , ..., xi,j

n′

of type (k, l), and n′ different variables xi′
1
,j1, ..., xi′

n′
,j

n′
(of type (k, l)), such that for every

1 ≤ r ≤ n′:

1. xi,jr
was Forced to 0 at ur by xi′r ,jr

.

2. xi′r ,jr
was queried at u′

r and u′
r ∈ Beforek,l

i .

By (1) we know that u1, ..., un′ ∈ Stagek,l
i . Hence,

v ≤ u1, ..., un′.

By (2) we know that u′
1, ..., u

′
n′ ∈ Beforek,l

i . Hence,

u′
1, ..., u

′
n′ < v.

By (2), each variable xi′r ,jr
was queried at u′

r and hence

xi′r ,jr
∈ Queries(v).

By (1), each variable xi′r ,jr
satisfies xi′r ,jr

∈ Ones(ur) and hence

xi′r ,jr
∈ Ones(v).

Therefore,
|Ones(v)| ≥ 2nǫ,

that is, the path p is Cheating. 2

Let u′ be a non-leaf node of type (k, l) such that Label(u′) = xi′,j, and let p be a path from
the root to u′. Define:

Shadow(p,u′) = (for u′ with Label(u′) = xi′,j of type (k, l)) the set of variables
xi,j such that all the following are satisfied:

1. i ∈ OpenP igeons(u′).

2. i ∈ Stubbornk,l−1(p, u′).

3. u′ ∈ Stagek,l
i .

Claim 3.10 For any non-leaf u′ of type (k, l) and any path p from the root to u′:

1.
|Shadow(p, u′)| < 2mk.

12



2.
|Shadow(p, u′)| ≤ |Stubbornk,l−1(p, u′)|.

Proof:

Part (2) is obvious by the definition of |Shadow(p, u′)|. We will prove part (1).

If k = 1 then 2mk = 2nǫ

and the claim follows by our assumption that m < 2nǫ/10. For
k > 1, assume for a contradiction that |Shadow(p, u′)| ≥ 2mk. Then there exist 2mk = mk−1

different pigeons i ∈ OpenP igeons(u′) such that u′ ∈ Stagek,l
i . By the definition of Stagek,l

i ,
each one of these pigeons satisfies |Queriesk,l

i (u′)| ≥ b3k−1,3l−1 − 1, and hence by Claim 3.2,

|Queriesi(u
′)| > n2ǫ · (b3k−1,3l−1 − n̂) ≥ n2ǫ · (1/3) · n1−3ǫ · (3k − 2) > (k − 1) · n1−ǫ = nk−1.

Hence, u′ is a pigeon-axiom of order k − 1 and cannot be a non-leaf node. 2

Let p be a path starting at the root. Define:

Badk,l(p) = the set of variables xi,j of type (k, l) such that all the following are
satisfied:

1. For some u′ ∈ p, xi,j ∈ Shadow(p, u′).

2. The variable xi′,j = Label(u′) was set to 1 along the path p.

Goodk,l(p) = the set of variables xi,j of type (k, l) such that all the following are
satisfied:

1. For some u ∈ p, xi,j = Label(u) (i.e., xi,j was queried at u).

2. u was Relevant for p and xi,j was not Forced to 0 at u (hence, Strategy(p, u)
answered the query xi,j by 1 with probability 1/2mk).

Claim 3.11 For any i, j, k, l, p, if xi,j ∈ Forcedk,l(p) then:

1.
xi,j ∈ Toughk,l

i (p)
⋃

Badk,l(p).

2.
xi,j 6∈ Goodk,l(p).

Proof:

Part (2) is obvious by the definition of Goodk,l(p). We will prove part (1).

If xi,j ∈ Forcedk,l(p) then xi,j was Forced to 0 at some node u of the path p, by some
variable xi′,j. The variable xi′,j was queried at some node u′ < u of the path p and was set to 1

(along the path p). If u′ ∈ Beforek,l
i then xi,j ∈ Toughk,l

i (p) (by the definition of Toughk,l
i (p))

and the claim follows. Otherwise, u′ 6∈ Beforek,l
i , and since u is Relevant for p, we also know

that u ∈ Stagek,l
i and hence that u′ 6∈ Overk,l

i . Hence, u′ ∈ Stagek,l
i . We will show that in

that case xi,j ∈ Shadow(p, u′) and hence xi,j ∈ Badk,l(p).

13



1. Since u is Relevant for p, we know that i ∈ OpenP igeons(u). Hence by Claim 3.1,
i ∈ OpenP igeons(u′).

2. Since u, u′ ∈ Stagek,l
i , we know by Claim 3.4 that u, u′ ∈ Overk,l−1

i . Since u is Relevant
for p, we know that i ∈ Stubbornk,l−1(p, u). Hence by Claim 3.6, i ∈ Stubbornk,l−1(p, u′).

3. We already showed, u′ ∈ Stagek,l
i .

Hence, xi,j ∈ Shadow(p, u′). 2

Denote B = |Badk,l(Path)|. Denote G = |Goodk,l(Path)|. Denote D = B − G. Denote
the variables in Goodk,l(Path) by g1, ..., gG, where the ordering is according to the order of
these queries in Path. Note that B, G, D, g1, ..., gG are random variables. Denote

m̂ = (0.9)l−1 · m.

Denote
m′ = min[2mk, m̂].

For 1 ≤ r ≤ G, denote by yr a random variable that gets the value (−1) if gr was set to 0
along Path, and the value (m′−1) if gr was set to 1 along Path. For r > G define yr to be an
(independently chosen) random variable that gets the value (−1) with probability 1−(1/2mk)
and the value (m′ − 1) with probability 1/2mk. Note that B, G, D, g1, ..., gG, m̂, m′, y1, ..., yG

depend on (k, l). For simplicity of the notations we do not use here the superscript k,l.

Claim 3.12 y1, y2, ... are independent random variables, and each one of them gets the value
(−1) with probability 1 − (1/2mk) and the value (m′ − 1) with probability 1/2mk.

Proof:

Follows immediately by the definition of the adversary strategy, by the definition of the set
Goodk,l(p) and by the definition of the random variables y1, y2, .... 2

Claim 3.13 Assume that |Stubbornk,l−1(Path, Leaf)| ≤ m̂ (the inductive assumption). Then

D ≤
G

∑

r=1

yr.

Proof:

Since D = B − G, it is enough to prove that

B ≤ G +
G

∑

r=1

yr =
G

∑

r=1

(yr + 1).

First note that by Claim 3.10 and Claim 3.5, for any u′ ∈ Path of type (k, l),

|Shadow(Path, u′)| ≤ m′.
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Every xi,j ∈ Badk,l(Path) is in Shadow(Path, u′) for some u′ ∈ Path (of type (k, l))
such that the variable xi′,j = Label(u′) was set to 1 along Path. Note, however, that the
only variables of type (k, l) that were queried along Path and that could be set to 1 are the
variables g1, ..., gG (these are the only queries for which the answer 1 was given with non-zero
probability). Denote by u′

1, ..., u
′
G the nodes on Path where g1, ..., gG were queried. Then,

xi′,j = gr for some gr that was set to 1 along Path, and hence, xi,j ∈ Shadow(Path, u′
r) for

some u′
r such that gr was set to 1 along Path (we will say in this case that gr is responsible for

xi,j ∈ Badk,l(Path)). The total number of variables xi,j that gr is responsible for is at most
m′ if gr was set to 1 (along Path), and is 0 if gr was not set to 1 (along Path). That is, the
total number of variables xi,j that gr is responsible for is bounded by (yr + 1). Hence,

|Badk,l(Path)| ≤
G

∑

r=1

(yr + 1).

2

Claim 3.14 Assume that |Stubbornk,l−1(Path, Leaf)| ≤ m̂ (the inductive assumption) and
assume (for a contradiction) that |Stubbornk,l(Path, Leaf)| > 0.9 · m̂. Then all the following
are satisfied:

1.
G < 0.2 · m̂ · n̂.

2. If Path is not Cheating then
B > 0.8 · m̂ · n̂.

3. If Path is not Cheating then
D > 0.6 · m̂ · n̂.

Proof:

First note that by the assumption |Stubbornk,l−1(Path, Leaf)| ≤ m̂ and by Claim 3.5 and
by the fact that along any path the total number of nodes in Stagek,l

i is at most n̂, we can
conclude that the total number of nodes u ∈ Path of type (k, l) that are Relevant for Path
is at most m̂ · n̂.

Denote F = |Forcedk,l(Path)|. Since |Stubbornk,l(Path, Leaf)| > 0.9 · m̂, and since for
each i ∈ Stubbornk,l(Path, Leaf), at least 0.9 · n̂ variables xi,j of type (k, l) were Forced
to 0 at some node of Path (by the definition of Stubbornk,l(p, u)), we can conclude that
F > 0.81 · m̂ · n̂.

Now, part (1) follows by Claim 3.11. Part (2) follows by Claim 3.11, Claim 3.9 and by the
fact that 2nǫ < 0.01 · n̂. Part (3) follows from part (1) and part (2). 2

Claim 3.15 Assume (for a contradiction) that |Stubbornk,l(Path, Leaf)| > 0.9 · m̂. Then at
least one of the following events occurs:
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1. |Stubbornk,l−1(Path, Leaf)| > m̂.

2. Path is Cheating.

3. For some s < 0.2 · m̂ · n̂, we have
∑s

r=1 yr ≥ 0.6 · m̂ · n̂.

Proof:

Assume that (1) and (2) do not occur. Then by part (1) of Claim 3.14, G < 0.2 · m̂ · n̂, and
by part (3) of Claim 3.14, D > 0.6 · m̂ · n̂. By Claim 3.13, D ≤

∑G
r=1 yr. Hence, for some

s < 0.2 · m̂ · n̂,
s

∑

r=1

yr ≥ D > 0.6 · m̂ · n̂.

2

Claim 3.16 With probability exponentially close to 1, for every s < 0.2 · m̂ · n̂,

s
∑

r=1

yr < 0.6 · m̂ · n̂.

Proof:

This follows from Claim 3.12, by the standard Chernoff bounds. For any specific s, the prob-
ability that

∑s
r=1 yr ≥ 0.6 · m̂ · n̂ is at most 2−c·n̂, where c is a small constant (say c = 1/5).

Hence, the probability that this happens for some s < 0.2 · m̂ · n̂ is at most 0.2 · m̂ · n̂ · 2−c·n̂,
which is smaller than 2−c′·n̂, where c′ is a small constant (say c′ = 1/10). 2

We can now complete the proof of Claim 3.7. By Claim 3.15, if |Stubbornk,l(Path, Leaf)| >
0.9 · m̂ then one of 3 events occurs. The probability for the first event is exponentially small
(by the inductive assumption for l − 1). The probability for the second event is bounded by
2−nǫ

(by Claim 3.8). The probability for the third event is bounded by 2−c′·n̂ (by Claim 3.16).
Note that since the number of possible k, l is relatively small (and hence also the number of
induction steps is small), the probabilities add to an exponentially small probability. Hence,
the event |Stubbornk,l(Path, Leaf)| > 0.9·m̂ occurs with an exponentially small probability. 2

3.5 The lower bound

Recall that we assume that the size of our BP is lower than 2nǫ/10. We will show that such a
BP cannot solve the weak pigeon hole principle. Denote by E the following event:

E = the event: for every k, l, |Stubbornk,l(Path, Leaf)| ≤ (0.9)l · m.

By Claim 3.7,
Pr[E ] > 1/2.
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Let u be a pigeon-axiom of order k. We will show that given the event E , the probability that
Leaf = u is exponentially small. Denote,

Eu = the event: Leaf = u.

Claim 3.17 For any pigeon-axiom u of order k,

Pr[Eu|E ] < 2 · e−n̂/20.

Proof:

Let u be a pigeon-axiom of order k. Then, there is a set

Au ⊂ OpenP igeons(u),

such that |Au| = mk and for every i ∈ Au, |Queriesi(u)| ≥ nk. By Claim 3.2 and by the
definition of Overk,l

i , for every i ∈ Au and every l,

u ∈ Overk,l
i .

Let p be any path from the root to u, such that for every l,

|Stubbornk,l(p, u)| ≤ (0.9)l · m

(we assume this because otherwise we would have had p 6= Path, if the event E occurs). In
particular, for l = nǫ,

Stubbornk,nǫ

(p, u) = ∅

(since we assume m < 2nǫ/10). At the other hand,

Stubbornk,0(p, u) = Pigeons.

Therefore, for any pigeon i there exists l = lp,u(i), such that i ∈ Stubbornk,l−1(p, u) and
i 6∈ Stubbornk,l(p, u). In particular, this applies for any pigeon i ∈ Au. Thus, for every i ∈ Au

we have (for l = lp,u(i)):

1. i ∈ Stubbornk,l−1(p, u).

2. u ∈ Overk,l
i .

3. i 6∈ Stubbornk,l(p, u).

By the definition of Stubbornk,l(p, u), this implies that no more than 0.9 · n̂ variables xi,j of
type (k, l) were Forced to 0 at some node of p (for l = lp,u(i)). Recall that this is true for any
i ∈ Au.

At the other hand, for every i ∈ Au, since u ∈ Overk,l
i , there are exactly n̂ nodes u1, ..., un̂ ∈

p of type (k, l), such that for every ur, Label(ur) ∈ Pigeoni, and such that u1, ..., un̂ are in
Stagek,l

i . For each of these nodes ur we have (for l = lp,u(i)):
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1. i ∈ OpenP igeons(u), and hence by Claim 3.1, i ∈ OpenP igeons(ur).

2. Since ur ∈ Stagek,l
i , we know by Claim 3.4 that ur ∈ Overk,l−1

i , and hence also that u ∈
Overk,l−1

i . Since i ∈ Stubbornk,l−1(p, u), we have (by Claim 3.6), i ∈ Stubbornk,l−1(p, ur).

3. ur ∈ Stagek,l
i .

Hence, each ur is Relevant for the path p. Since no more than 0.9 · n̂ variables xi,j of type
(k, l) were Forced to 0 at nodes of p, we conclude that for any i ∈ Au (and for l = lp,u(i)) at
least 0.1 · n̂ variables xi,j of type (k, l) were Relevant for the path p and were not Forced to
0 (when queried).

We will now consider the path Path. Assume that the event E occurs. That is, for every
l, |Stubbornk,l(Path, Leaf)| ≤ (0.9)l · m. Intuitively, in order to have Leaf = u, we must
have for every l, |Stubbornk,l(Path, u)| ≤ (0.9)l · m, and by the above argument we conclude
that for every i ∈ Au, there exists l such that at least 0.1 · n̂ variables xi,j of type (k, l)
were Relevant for Path and were not Forced to 0 (when queried). For each one of these
queries the adversary strategy answers by 0 with probability (1 − 1/2mk) (by the definition
of Strategy(p, u)). Since Au ⊂ OpenP igeons(u), in order to have Leaf = u the adversary
strategy must answer all these queries by 0. Since |Au| = mk, this happens with probability
of at most

(1 − 1/2mk)
0.1·n̂·mk < e−n̂/20,

if we ignore the condition that E occurs. Since we need the conditional probability under the
assumption that E occurs, we have an additional factor of 2 (using the bound that E occurs
with probability of at least 1/2).

More formally, we need to define,

Γu = the event: for every i ∈ Au there exists l = l(i), such that at least 0.1 · n̂
variables xi,j of type (k, l) were Relevant for Path and were not Forced to 0 (when
queried).

Assuming that the event E occurs, we know that if Γu does not occur then Leaf 6= u.
Therefore,

Pr[Eu|E ] = Pr[Eu|Γu, E ] ·Pr[Γu|E ].

If Γu, E occur then for every i ∈ Au and for l = l(i), at least 0.1 · n̂ variables xi,j of type (k, l)
were Relevant for Path and were not Forced to 0 (when queried). For each one of these
queries the adversary strategy answers by 0 with probability (1 − 1/2mk), and in order to
have Leaf = u the adversary strategy must answer all these queries by 0. Hence,

Pr[Eu, Γu, E ] ≤ (1 − 1/2mk)
0.1·n̂·mk < e−n̂/20,

that is,

Pr[Eu|Γu, E ] <
e−n̂/20

Pr[Γu, E ]
.
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Therefore,

Pr[Eu|E ] = Pr[Eu|Γu, E ] · Pr[Γu|E ] <
e−n̂/20

Pr[Γu, E ]
· Pr[Γu|E ] =

e−n̂/20

Pr[E ]
< 2 · e−n̂/20.

2

Our lower bound is now proved in the following way: By the definition of Strategy(p, u)
the answer given is always 0 if xi,j is Forced to 0. Therefore, Path never reach a hole-axiom,
and hence the probability that Leaf is a hole-axiom is 0. At the other hand, by Claim 3.17
the conditional probability that Leaf is a pigeon-axiom, given that the event E occurs, is at
most

2 · e−n̂/20 · m < 2 · e−n̂/20 · 2nǫ/10 < 1/2 < Pr[E ]

(since the total number of leaves u is at most m). Therefore, there is a positive probability
that Leaf is not a pigeon-axiom, and hence is not an axiom at all. We conclude that a read
once BP of size < 2nǫ/10 cannot solve the weak pigeon hole principle.

Corollary 3.1 Any read once Branching Program for the weak pigeon hole principle is of size
at least 2nǫ/10.
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