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Abstract

The rule extraction capability of neural networks is an issue of interest to many researchers. Even though neural
networks offer high accuracy in classification and prediction, there are criticisms on the complicated and non-linear
transformation performed in the hidden layers. It is difficult to explain the relationships between inputs and outputs and
derive simple rules governing the relationships between them. As alternatives, some researchers recommend the use of
rough sets or ID3 for rule extraction. This paper reviews and compares the rule extraction capabilities of rough sets with
neural networks and ID3. We apply the methods to analyze expert heuristic judgments. Strengths and weaknesses of the
methods are compared, and implications for the use of the methods are suggested. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Recent research progress in database technol-
ogies has created a significant interest in knowl-
edge discovery in databases and data mining [1].
Knowledge discovery refers to the automation of
knowledge extraction from large databases
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[7,8,27]. A wide variety of artificial intelligence
techniques are used for rule induction from these
large databases [20], and algorithms are developed
to learn the regularities from the rich data [25].
These techniques include neural networks [10],
ID3 [5,35], rough sets [70]. To assess the perfor-
mance of the techniques, some researchers have
emphasized the importance of consistency, ro-
bustness, and predictive accuracy [9,12]. Others,
however, have focused on explanatory and ex-
ploratory capability, and emphasized the need to
reveal data patterns that are valid, novel, useful,
simple, understandable, significant [24], and in-
teresting [3,48].
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Neural network is one of the most widely used
artificial intelligence techniques for pattern rec-
ognition and machine learning. The neural net-
work method is highly accurate in classification
and prediction of data [4,57]. Different from the
classical statistical method, it can be applied to
analyze data with small sample sizes, without the
need to satisfy the normal distribution assump-
tion. Because of the non-linear transformation
involved in its hidden layers, neural networks also
perform well for modeling data with complicated
patterns.

However, neural networks have been criticized
for lack of explanatory power. In particular it is
difficult to trace and explain the way the data
pattern is derived, due to the complexity and non-
linear nature of data transformation conducted in
the multiple hidden layers. It is difficult to identify
rules relating the inputs and outputs of a neural
network, and assess the way each input contributes
to the output of the network.

In response to these criticisms, many neural
network researchers have developed ways to ex-
tract rules from neural networks. Researchers have
used the weights, or connection strengths, to an-
alyze the contribution of the inputs to the outputs
and of the hidden layer elements to the outputs.
For example, Setiono and Liu [46] have developed
the RG algorithm to extract rules from neural
networks [21]. They discretized and clustered the
activation values of the hidden units and analyzed
the weights connecting the inputs to hidden units
and the weights connecting the hidden units to the
outputs. In this way, they extracted rules relating
the inputs to the hidden layer elements, and rules
relating the hidden layer elements to the outputs.
IF THEN ELSE rules were then extracted relating
the inputs to the outputs by merging the two sets
of rules. Similarly, Tan [59] also extracted rules
from a neural network using the Cascade ART-
MAP architecture by making inferences in multi-
ple steps. The network was first parsed to derive
the initial relationships among inputs, intermedi-
ate concepts, and outputs. These relationships
were then used to set up Network A and Network
B in the Cascade ARTMAP, and the relationships
were further refined through mapping the two
networks to one another.

Besides extracting rules to explain the rela-
tionship between inputs and outputs, researchers
have also developed empirical indices to assess the
contribution of inputs to outputs. Examples in-
clude the work of Garson [11], Yoon et al. [66],
and Mak and Blanning [22]. These indices are
measures showing the relative importance of the
inputs in contributing to the outputs.

Compared to neural networks, rule extraction
is relatively easy for rough sets and ID3. ID3 is a
decision analysis technique based on the greedy
algorithm of entropy reduction in constructing the
decision tree. Attributes that would lead to sub-
stantial entropy reduction (or information gain)
are included as condition attributes to partition
the data and for the prediction of the decision
outcome. A condition attribute that would induce
the most amount of entropy reduction and infor-
mation gain would be placed closer to the root and
used for the next level partitioning. Sometimes
filters may be set up so that only attributes with
information gain greater than a certain threshold
will be selected in constructing the decision tree.
Variants of ID3 included Quinlan’s C4.5 and C5
[44], which model both discrete and continuous
variables in a decision tree. Rules extracted from
the ID3, C4.5, or C5 decision trees can be used to
predict new cases.

Rule distillation is also relatively efficient with
rough sets compared to neural networks. The
rough set method was introduced by Zdzislaw
Pawlak for the analysis and pattern discovery in
databases, in particular for data that are ambigu-
ous or incomplete [37,39,40]. In the rough set
methodology, a database is regarded as a decision
table, which is made up of the universe of dis-
course, a family of equivalence relations over the
universe, condition attributes and decision attri-
butes. The rule discovery process in rough set
analysis involves simplifying the decision tables
with elimination of superfluous attributes and
values of attributes, and finding out simple rules
relating the condition and decision attributes. The
measures assessing the contribution of condition
attributes in affecting the decision attributes in-
clude dependency [36] and significance [15].

Since its introduction, the rough set method has
increasingly been applied to derive rules, and to
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provide reasoning and discover relationships in
qualitative, incomplete, or imprecise data. This
capability is especially important for business
analysis, as a lot of case data in business is in-
complete and imprecise. How do rough sets com-
pare to neural networks in extracting rules from
business heuristic data? Can rough sets model data
as accurately as neural networks? Can rough sets
discover rules much more efficiently than neural
networks from expert heuristic judgments?

The objective of this paper is to compare the
rule extraction capability of neural networks to
rough sets and ID3. In particular we are interested
in comparing the three methods in their classifi-
cation accuracy, ease of rule extraction methods,
and the way they analyze the contribution of in-
puts (condition attributes) to outputs (decision
attributes). We apply these methods to analyze
expert strategic judgments on new product entry.
We begin in the following section with a brief ex-
planation of the rough set concepts. In Section 3
we compare the rule extraction mechanisms in-
volved in the three methods and derive an index to
measure the contribution of condition attributes
for rough sets. Section 4 explains the results of an
empirical study to compare the three methods.
Sections 5 and 6 discuss the results and implica-
tions for future research.

2. The rough set method

Introduced by Pawlak in the early 1980s [38],
the rough set theory is a relatively new mathe-
matical and artificial intelligence technique dealing
with ordinary sets and relations. Its target objec-
tive can be somewhat similar to that of fuzzy
theory [68], which deals with uncertain or ap-
proximate reasoning. But the two techniques differ
concerning their approaches and objectives to
target problems. The major objective of fuzzy set
theory is to deal with complex problems by al-
lowing gradual changes and descriptive expres-
sions. The generic fuzzy set theory does not have
learning capability and the forms of fuzzy mem-
bership functions are assumed in the analysis [36].
On the other hand, the major objective of rough
set theory is to distill rules from data and make

sense out of complex data. The membership
functions are computed empirically from data.

According to Pawlak, the rough set theory is
built on the assumption that information can be
associated with every object in the universe. Ob-
jects characterized by the same amount of infor-
mation are similar, or indiscernible, to one
another. A set of indiscernible objects is called the
elementary set and a crisp set refers to a union of
some elementary sets. Objects that are not made
up of elementary sets belong to a rough, or im-
precise, set. They can be characterized by the lower
and upper approximations of rough set. The lower
approximation consists of objects that belong to
the set with certainty while the upper approxima-
tion contains all objects that may possibly belong
to the set.

The concepts of indiscernible relations and ap-
proximations can best be illustrated as follows.
Consider an information system that has a rule
base made up of expert judgments. Experts are
given the values of condition attributes for market
scenarios, and are asked to specify the new prod-
uct entry strategies they would use for each of
these scenarios. Based on the judgments of the
experts, an information table could be made up
relating the new product entry decisions to the
market scenarios. In Table 1, seven cases are pre-
sented showing three condition attributes: G, F, L,
and one decision attribute K. The associated val-
ues and meaning of the attributes are: G, demand
growth rate (high or low), F, Financial strength
(strong or weak), L, Cost of development (high or
low), and K, entry strategy (GO or NOGO).

Each new product entry case can be charac-
terized in terms of the three condition attributes G,
F, and L. Cases 4 and 5 are indiscernible in terms
of attributes G, F, and L, since the values for these
attributes are the same. Similarly, cases 1 and 6 are
indiscernible in terms of F and L, and so are cases
4 and 7.

The entry strategies for the first four cases are
GO, that is, launch the new product, while the
strategies for the rest are NOGO, that is, do not
launch the product. Let us try to describe set
{1,2,3,4} and {5, 6,7} in terms of attributes G, F,
and L. As observed from cases 4 and 5, which have
the same attribute values but differ in their entry
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Table 1
The new product entry decision

Case Demand growth rate (G) Financial strength (F) Cost of development (L) Entry strategy (K)
1 High Strong Low GO

2 High Strong High GO

3 High Weak Low GO

4 High Weak High GO

5 High Weak High NOGO

6 Low Strong Low NOGO

7 Low Weak High NOGO

strategies, we understand no exact answer can be
derived based on the attribute relationships shown
in Table 1. However, approximate answers may be
obtained. We may conclude that cases 1, 2, and 3
surely use a GO strategy and belong to the set
{1,2,3,4}, while cases 6 and 7 surely use an
NOGO strategy and belong to the set {5,6,7}.
Thus the set {1,2, 3} is the lower approximation of
the set {1,2,3,4}. On the other hand, cases
1,2,3,4,5 may possibly employ a GO strategy.
Thus the set {1,2,3,4,5} is the upper approxi-
mation of the set {1,2,3,4}. The set {4,5}, the
boundary region of the set {1,2,3,4}, is the dif-
ference between the upper and lower approxima-
tions.

Let U be a finite set of objects called the uni-
verse. If R C U x U is an equivalence relation on
U, then S = (U,R) is called an approximation
space. If u,v € U and (u,v) € R, we say that u and
v are indistinguishable in S. R is called an indis-
cernibility relation. Let R* = {X|,X,,...,X,} de-
note the partition induced by R, where X; is an
equivalence class of R. X; is also called an ele-
mentary set of S. Any finite union of elementary
sets is called a definable set. Let X be any subset of
U. Then we define the following:

S(X) = Uxicx Xi

the lower approximation of X in S,
S(X) = Uiy X

the upper approximation of X in S.

S(X) is the union of all the elementary sets of S,
where each elementary set is totally included (i.e., a
subset) in X. S(X) is the union of all the elemen-
tary sets of S, where each elementary set contains
at least one element in X. Using the lower and

upper approximations discussed above, we can
characterize the approximation space S = (U,R)
in terms of the concept X with three distinct re-
gions defined as follows:

1. the positive region: POSs(X) = S(X),

2. the boundary region: BNDg(X) = S(X) — S(X),
3. the negative region: NEGg(X) = U — §(X).
Let C be the set of all condition attributes and
let A C C, i.e., A is a set of condition attributes.
For example, A = {Demand growth rate, Financial
strength, Cost of market development}. Let B be
the set of all decision attributes and let B C D, i.e.,
Bis a set of decision attributes. For example, B =
{Entry Strategy}. Let 4 be an equivalence rela-
tion on U such that 4= {(u,v)|u and v have the
same value for every attribute in 4}. Similarly, we
define an equivalence relation B for set B. Let
4 ={x,...,X,} and B*={Y,...,Y,} denote
the partitions on U induced by the equivalence
relations 4 and B, respectively. To determine the
extent that partition B* can be approximated by
partition A*, we define the positive, boundary, and
negative regions of the partition B* as follows:

POSg(B*) = Uyep S(Y;) = Uy,es [Uxcr, Xil,
BND;(B") = Uyes (S(Y)) — 5(%)))

= Uyep [Uxny26X — UxcrXil,

NEGs(B") = U — Uyjep-(S(Y)))
= U — Uyep [Uxiny29Xi]-

If the boundary region is the empty set, that is,
BNDs (B*) = ¢, the set B* is denoted as the crisp
set with respect to S. Alternatively, if BNDs (B*)
# ¢, then the set B* is called the rough set with
respect to S. The coefficient o, (B*) is known as the
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accuracy of approximation and is given by the
ratio of the cardinality of the lower approxima-
tion, |S(X)|, to the cardinality of the upper ap-
proximation, |[S(X)|, and 0<o«(B)<1. If
o (B*) =1, B* is crisp with respect to S. If
os(B*) < 1, B* is rough with respect to S. The ac-
curacy of the set {1,2, 3,4} shown in Table 1 is 3/5
or 0.6.

Besides identifying indiscernibility relationships
and equivalent classes to approximate data, data
reduction can also be achieved through keeping
the attributes that are required to preserve the
indiscernibility relation. Let B be a non-empty
subset of C, the set of condition attributes. B is
said to be a reduct of C if B is a maximal inde-
pendent set of condition attributes [29]. There is no
superfluous attribute in B and all attributes are
indispensable. Features found in the intersection
of all reducts of the information system are known
as the core of the information system.

One critical challenge in the development of
decision tables is the choice of condition attributes
to be included. Reduct approximation is one ap-
proach employed to solve the problem. The
method involves computing reducts for some
random subsets of the universe of a given infor-
mation system and finding the most stable reducts
that occur most frequently. These conditional at-
tribute sets that occur “‘sufficiently often” as re-
ducts of samples of the original decision table are
known as dynamic reducts. The thresholds for
“sufficiently open” are normally determined based
on the results of empirical experiments. Qhrn,
Komorowski, Skowron, and Synak successfully
applied the dynamic reduction approach in the
ROSETTA system [19,33,69].

3. Rule extraction capabilities of rough sets, ID3,
and neural network

In this section, we compare the rule extraction
capabilities of rough sets, ID3, and neural net-
works. We review the contribution measures and
derive a heuristic measure assessing the contribu-
tion of input variables (condition attributes) to
output variables (decision attributes) for rough
sets.

3.1. Rule extraction and measures of input contri-
bution in rough sets

Unlike neural networks, rule extraction in
rough sets is relatively simple and straightfor-
ward, and no extra computational procedures are
required before rules can be extracted. Rough set
analysis involves diagnosis of equivalence rela-
tions and partitions of common knowledge events
in order to extract the minimal set of condition
attributes (the reduct) that are required for the
decision [45]. The process of rough set analysis
generates a decision table made up of essential
attributes with rules that can be readily applied to
guide decision-making. The decision table gener-
ated based on the attributes in the reduct can be
used to help the decision maker to concentrate on
the most essential factors and assist in solving
multi-attribute decision problems [39]. For ex-
ample, based on the information from Table 1,
for the condition attributes {G, F, L}, we can
obtain the reduct {G, F'}. We can also derive the
following decision rules: (1) If demand growth
rate is high, and financial strength is strong, then
GO. (2) If demand growth rate is low, then
NOGO.

Rough set analysis has been successfully ap-
plied in medical diagnosis [63], industrial control
[28], and marketing analysis [70]. The method has
been used in credit card application analysis [39],
prediction of company acquisition [54] and busi-
ness failures [6], and evaluation of firm bankruptcy
risk [53]. It has also been used to analyze the es-
sential and distinctive factors in voting [31]. The
method can be extended to deal with choice and
ranking problems through the development of
pairwise comparison table to represent preference
binary relations [13].

3.2. Measures of contribution of condition attributes
in rough sets

Various measures can be defined to represent
how much B, a set of decision attributes, depends
on A4, a set of condition attributes. One of the most
common measure is the dependency [26,36,56].
The dependency of B on A, denoted as y, (B), is a
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plausible measure of how much B depends on A4
and is defined as follows:

74(B) = [POSs(B")|/ [ U |,

where (S = (U,4)) is the approximation space,
and | | denotes the cardinality (i.e., the number of
elements) of a set. Note that 0<y,(B)<!I. In
particular, three situations arise:

1. y,(B) = 1: B is totally dependent on A. ie., A

functionally determines B.

2. y,(B) =0: A and B are totally independent of
each other.
3. 0 < v,4(B) < 1: Bis roughly dependent on A.

In general, the dependency of B on 4 can be
denoted by 4 —, B. For example, 4 —; B if B is
totally dependent on 4. An alternative to the de-
pendency measure is the discriminant index, f3,(B),
which measures the degree of certainty in deter-
mining whether elements in U are elements of B or
not, or the amount of uncertainty removed by
selecting S [56]:

p4(B) = [POSs(B") UNEGs(B")|/|U]|
= |U — BNDs(B")|/|U].

The significance of B on « is the difference be-
tween the dependency of B on the set of all con-
dition attributes C and the dependency of B on the
set of all condition attributes without the specific
attribute a [14,15]. That is, the significance mea-
sures the importance level of the attribute by
considering how a deletion of the attribute a from
the entire set of condition attributes affects the
dependency. The significance of B on a specific
condition attribute a, o4(B), can be defined by
using the dependencies as follows:

O-{“}<B) = VC(B> - ny{a}<B)7

where yc_(,, (B) is the “complement dependency”
of {a} with respect to C. We can further extend the
significance of {a} to A4, a set of any number of
condition attributes, which indicates the signifi-
cance of the set of condition attributes 4:

94(B) = 7c(B) = 7c_4(B).

The dependency and discriminant index are
direct measures focusing on the direct contribution

of one or more condition attributes. On the other
hand, the significance is a complementary measure
that assesses the importance of the condition at-
tribute based on backward elimination of the at-
tribute from the entire set of condition attributes.
In certain situations, such as the case we have in
Table 1, we may not be able to assess the depen-
dency and discriminant index of F, Financial
strength, and L, Cost of development. This is be-
cause the data are incomplete and have few ele-
ments in the positive regions of F and L. Under
such circumstances, only the significance measure
can be computed for F and L based on the back-
ward elimination of variables. To help assess the
contribution of condition attributes to data like
these, we derive a heuristic measure for the con-
tribution index.

3.3. Deriving a contribution index for rough sets

In this section, we introduce a new measure
called a contribution index, denoted by ¢. It is a
heuristic, gross approximation measure derived to
assess the contribution of attributes in sparse data,
where there are many condition attributes and the
values of condition attributes are incomplete. As a
result, very few elements are found in the positive
regions of these condition attributes. Coarse and
sparse data are often found in the real world.
Examples include business case data and expert
heuristic data. This type of data is incomplete,
coarse, and sparse, with many decision variables
affecting the decision outcome, and has few ele-
ments in positive regions. Mining of expert
knowledge presents difficulties when the data col-
lected from experts are coarse and sparse. Expert
knowledge, however, is useful information to be
stored. To better extract rules and enhance un-
derstanding on this type of data, we derive the
contribution index, which is a simple and compu-
tationally efficient measure used to assess the
contribution of condition attributes to the decision
attribute in sparse data. The algorithm for deriving
this heuristic measure consists of two phases. First
we compute a measure based on the row-wise and
table-wise goodness of each attribute. Second, we
re-examine the entire database and perform ad-
justment if necessary.
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Fig. 1 shows the algorithm we employ to derive
this contribution index. Let condition attributes be
v, i=1to I, and j; =1 to J; be the domain of
possible values that attribute v; can take. We as-
sume one decision attribute for the product entry
strategy; possible values of the entry strategy are
k=1,...,K. Our target database consists of many
cases, where each case has the form of “if
vy = 1,02 = ja,...,U = ji, then choose k7. Let n;j
be the number of cases in the database for attrib-
ute v; assuming a value of j (v; =) choosing
strategy k. We can view n;; as the jth row, kth
column element of matrix (table) M; representing
v;. (We dropped the subscript i of j; to avoid
subscript i of subscript j in the following. This
does not cause any problem since j for v; always
means j;.) Let N be the total number of cases; then
N =32 ny foreveryi=1to L

In our product entry problem, J,=J,=
---J;=J, and all the condition attributes have
binary values. In general, when J; are different for
different i, we must replace J in the following with
J;. For each pair of i and j, that is, for each row j of

matrix M;, we determine max;; and min;; defined as
follows:

max;; = the maximum of 1, ny, nyj3, . .., Bk
among the K strategies,
min,‘j = the minimum of Nij1y Nij2y Nij3y -« o RijK
among the K strategies.
Deﬁne l",‘jk(o é Vijik g 1) as
(max;; — min;;)
i Mije
to max;,

0 otherwise.

for k that corresponds
Vijk =

The term ry is a measure to discriminate
among K strategy outcomes for specific values of i
and j (row-wise goodness). The higher the 7, the
better the ability of a specific row j of variable v;
(with value j) in discriminating among the possible
values of the decision attribute. Next, consider the
positions of 7 for different values of j in the

j choosing strategy k as
decision outcome

- AN

/ Set up matrix M; \ / \ /C " _ (max _-min ) \
for condition attribute v; , Find maximum (max;;) ompute ik = %nljk‘
The j" rowl ]:‘hlé;illlrrln element andfm{nlmjlm (m_l,nij) j shows the ability of v; = j
o . OF Miji, Mijp, - - Mijk to discriminate among different
of Msis n representing the > among the different g decision outcomes (row-wise
number of cases for which v; = decision outcomes k goodness)

AN )

4 N

Sum rj; across values of j to
obtain s;

sik shows ability of v; to P
discriminate among different
decision outcomes k under a

best scenario for j

\ AN

Sum s;, across k decision
outcomes, to obtain t;

t; shows the ability of condition ]

attribute v; to discriminate

among different decision
outcomes

4 N

Second Phase to
adjust any under-
represented k by going
through the entire database

AN J

Fig. 1. Algorithms for deriving the contribution index in decision tables.
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matrix; more diverse matrix positions over differ-

ent values of & would indicate a better discrimi-

natory ability of variable v;. For example, the more
diverse matrix in Table 2 below indicates a better

discriminatory ability than the one in Table 3.
Define sy = max;ry for each strategy k. If

there is a tie, arbitrarily choose one. Here s;; can be

thought of representing how well strategy k may
be discriminated under the best scenario for j. Fi-
nally, we define the contribution index, t; as
t=> s k=1,...,K. t; indicates the overall
contribution of the different values of variable v; in
distinguishing among all the k strategies (table-
wise goodness). The computation of  is illustrated
using the following example. Suppose the values of
nye are as given in Table 4, then =), sy =

(3/5)+(1/2) =1.1.

Based on the values of 7;; shown in Table 5, we
can see that the strategy k£ = 2 is under represented.
The following additional algorithm is employed to
adjust for these under represented strategies.

1. Find & such that s;; = 0 for all i = 1 to [ in the
entire database.

2. For those &’s found in Step 1, check if n;; (or
ni/N) is zero or very small. If so, such k’s
are insignificant, and they can be discarded. If
not, these k’s can be re-examined. Go to step 3.

Table 2

Diverse position of 7 indicates better discriminatory ability
Tijk k=1 k=2 k=3

J = 1 O Fi12 0

J=2 Fio1 0 0

Table 3

Less diverse position of r; indicates worse discriminatory
ability

Tijk k=1 k=2 k=3

J=1 0 T2 0

J = 2 0 I'in2 O

Table 4

An example to illustrate the computation of # — values of n;
l’l,-jk k: 1 k:2 k:3 anf/'k
j=1 3 2 0 5

j=2 1 0 1 2

Table 5
An example to illustrate the computation of # — values of r;
and s

Pk k=1 k=2 k=3
j=1 3/5 0 0
j=2 12 0 12
Sk 3/5 0 12

3. For each k to be re-examined, find max n;; for
i=1tol, j=1toJ, going over the entire dat-
abase. The specific values of i, j, k found will be
“representative” for decision k. Even though
this £ may not be dominant in the first round
of evaluation, the specific (i,j,k) is considered
important for leading to this k& (otherwise, no
rule may be obtained leading to strategy k).

4. To incorporate the above, one simple way is to
insert new Ty = Mgk / > nip in the previous ma-
trix, and update s;; and ¢; accordingly. Or, the
new r;; can be multiplied by a constant factor,
A, greater than or smaller than 1, to emphasize
or de-emphasize the effect of k.

For example, refer to Table 5, where s, = 0.
That is, there is no case that leads to & = 2 for this
i. Suppose that s, =0 for all i=1,..., I. This
means that no variable leads to strategy £ = 2 in
the entire database. Suppose further that the entry
2 for j=1 and k = 2 in Table 4 is the maximum
ny for i=1to I and j =1 to J. Then we insert
r;; =2/5 into k = 2 as follows. The new adjusted
table is shown in Table 6. The updated #; becomes
3/5+2/5+1/2=1.5.

There are other measures to evaluate the im-
portance of each condition attribute toward de-
termining decision attribute values. The entropy in
information theory employed by ID3 introduced
below is a possible measure, somewhat similar to
the contribution index. To illustrate the similarity,
we may consider two extreme case scenarios. The
first scenario is the worst case for the importance

Table 6

Adjusted table for under-represented k£ = 2

Tijk k=1 k=2 k=3
j=1 3/5 2/5 0
j=2 172 0 12

Sik 3/5 2/5 1/2
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of a variable. In Table 4, suppose the entries for
j=1lare3,3and3fork =1, 2 and 3, respectively.
This means that experts’ opinions are equally di-
vided among which strategy to choose. Similarly,
suppose that the entries for j = 2 are also equally
split as 2, 2, and 2. Such a variable would be
considered useless since it does not lead to any
definite conclusion no matter what value it as-
sumes. In this case, the entropy gain will be 0. Our
rix will all be zero, and hence the contribution
index will also be zero. The second scenario is the
best case. In Table 4, suppose the entries for j = 1
are 9, 0, and 0, and for j =2 are 0, 0, and 6. Both
entropy gain and contribution index will be
maximal.

3.4. Rule extraction and measures of input contri-
bution in ID3

Instead of decision tables, ID3 [35] involves the
development of decision trees to classify examples
and make predictions for discrete class intervals.
Classification is based on recursive partitioning of
the data set into categories involving intersection
among the variables in various values. At each
node of the decision tree, the remaining variables
with the highest reduction in entropy, or highest
information gain, would be selected for the next
stage of partitioning. Entropy values are used to
indicate the contribution of the partitioning vari-
ables to the output. The entropy values of infor-
mation of a set of examples K are:

E(K) =Y Plogm(1/P) == P logmp,
i=1 1

m

1

where P; is the ratio of class K; in the set of ex-
amples K. When class K; partitions set K with at-
tribute T}, value of information E(7j) is:

d

E(T) = w x E(K).

where K] is the lower level of examples with par-
tition based on attribute 7;, and w; is the ratio of
the number of examples in K] to the number of
examples in K. Information gain obtained by
decision tree classifying attribute 7; from examples
K is

Gain(7) = E(K) — E(T).

Decision rules are developed based on rela-
tionships in decision tree generated with ID3. New
cases can be mapped to the decision tree to match
to the most similar case for prediction purposes.
When the number of alternatives and condition
attributes is small, a decision tree may be a better
decision aid than a decision table as it provides a
better graphical overview of the alternatives
available. However, as the number of alternatives
gets large, it may be too complicated to represent
all the alternatives with a decision tree, and 1D3
may focus on extracting important rules based on
the entropy criterion.

Quinlan has developed C4.5, an extension of
ID3 that deals with missing values, continuous
attribute value ranges, pruning of decision trees,
and rule derivation [44,61]. Quinlan has further
enhanced C4.5 and designed C5.0 to analyze sub-
stantial databases containing thousands of records
(reference: www.rulequest.com). It is faster and
easier to use than C4.5, and allows the user to
assign variable misclassification costs. Quinlan has
also developed the Cubist model to analyze con-
tinuous data with piecewise linear regression
models. Regression trees are used in Cubist, with
regression equations for variables broken into
different intervals for the purpose of predictions.
In addition, Quinlan also developed the Magnum
Opus regime that finds association rules from the
data.

3.5. Rule extraction and measures of input contri-
bution in neural networks

Neural network is one of the most widely used
artificial intelligence techniques for pattern recog-
nition and machine learning. However, rule dis-
tillation in neural networks involves complicated
analysis. Researchers have analyzed the weights
connected to an input and weights to elements in
the hidden layer in order to understand the con-
tribution of inputs and the impact of hidden units
on the output. For example, Omlin and Giles [32]
developed a recurrent network and used the
weights to analyze the rules guiding the state
transition behavior of the hidden units. They an-
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alyzed how the recurrent nodes in the hidden layer
transit from one state to another.

Setiono and Liu [46] have developed the Neu-
rorule to prune neural networks and RG algorithms
to extract rules from neural networks. They as-
sessed the activation values of hidden units in a
three-layer feedforward network to establish the
relationship between the inputs and outputs of a
network. They used an oversized network and re-
moved redundant connections and hidden units by
pruning. The backpropagation algorithm of the
neural network minimized a function consisting of
the entropy function of the output and a penalty
term used for weight decay. In this way, the network
was pruned to maintain only salient connections.
The activation values of the hidden unit were dis-
cretized and clustered in order to generate simple
rules relating the network outputs to the hidden
units. Rules were also generated relating the dis-
cretized activation values of hidden units to the in-
puts. By merging the two sets of rules, the rules that
relate the inputs and the outputs were established.

They illustrated the rule extraction mechanism
with an Iris species data set containing fifty ex-
amples each of the classes Iris setosa, Iris versi-
color, and Iris virginica. Their networks consisted
of thirty-nine input units (made up of discrete in-
tervals of the attributes sepal-length, sepal-width,
petal-length and petal-width), three hidden units,
and three output units. An example of a rule re-
lating the hidden units H; and H, to the outputs is
as follows.

IF H, = 1, THEN Iris setosa

ELSE IF H; =0 AND H, = —0.5, THEN Iris

versicolor

ELSE Iris virginica.

By analyzing the weights to the hidden units to
generate rules relating the inputs to the hidden
units H; and H,, and merging the two sets of rules
together, they obtained the following rules relating
the inputs to the outputs.

RULE 1: IF Petal-length <1.9 THEN Iris se-

tosa.

RULE 2: IF Petal-length <4.9 AND Pental-

width <1.6, THEN Iris versicolor. DEFAULT

RULE: Iris virginica.

These rules were found to be comparable with the
decision tree rules generated from C4.5.

Similar to the RG rule extraction mechanism,
the Cascade ARTMAP architecture developed by
Tan [59] also involved making multi-step infer-
ences with intermediate concepts. Rule extraction
proceeded in two phases. The network was first
parsed to derive the relationships among inputs,
intermediate concepts, and outputs. Using Xj, X5,
and X; as input attributes, Y as an intermediate
concept, and K as an output attribute, the fol-
lowing rules were generated.

RULE 1: IF X; AND X, THEN Y

RULE 2: IF Y AND X; THEN K.

These relationships would then be used to set
up the Cascade ARTMAP in the second phase,
with X1, X;, X3, Y, and K as the inputs to Network
A, and X1, X5,X;. Y, and K as the outputs to Net-
work B, and Network 4 was mapped to Network
B. Further training of the ARTMAP refined the
antecedent and consequent of the rules.

Neural networks have also been used to model
relationships in a decision tree. Ivanova and Ku-
bat [17] proposed a method to initialize a feed-
forward network with prior knowledge of logical
relationships among inputs obtained through ID3
to help network training. Instead of using sigmoid
activation functions, they used threshold units of
logic functions. They developed a network with an
input layer, a hidden layer of AND logic threshold
relationships, and an output layer of OR logic
threshold relationships. They showed that this
hybrid network has better performances than
network learning alone or C4.5 alone.

Besides the efforts to extract rules from neural
networks relating the inputs to the outputs, re-
searchers have also analyzed the contribution of
inputs to the outputs of a neural network [47]. For
example, indices have been developed by Yoon
et al. [66,67] and Garson [11] to assess the contri-
bution of the inputs based on the w; and vy
weights of a network which has stabilized in
training. Yoon et al.’s measure of the relative
contribution of input i on output k is

J
S Wil
I J ’
S| S Wil

where input i=1,...,/, and hidden unit
j=1,....,J,outputk=1,...,K,and | | denotes



222 B. Mak, T. Munakata | European Journal of Operational Research 136 (2002) 212-229

taking the absolute values of the summation of the
product of the weights w; and v.

Similarly, Garson has developed an index that
also uses the weights to assess the contribution.
However, Garson’s index is based on comparison
of the absolute values of the weights and ignores
the direction of the influence. Garson’s measure of
contribution of input i on output k is

J |W;x| V//;|
21 5T I
I J Wil |v|
Zi:l Zj:l 25:1 |W,-,

Both the measures of Garson and Yoon have
considered the effect of change of the input on the
hidden unit (indicated by w;) and the effect of
change of the hidden unit on the output (indicated
by vy), but ignored the changes taking place at the
hidden layer. To address the rates of change across
the hidden layer, Mak and Blanning [22] devel-
oped the following index to assess the impact of
input i on output k:

J
Zj:] ijﬂjVVji
1 J ’
21:1 2]:1 V/‘k jWﬁ

where f8; = 1/T oL, zi(1 —z;) and ¢ is the num-
ber of trials of the training set, t=1,...,T.
z;(1 — z;) is the rate of change of output of the jth
hidden element with respect to its input, and f; is
the average of z;(1 —z;) across the trials of the
training set. This measure is based on differentia-
tion of the output of the network with respect to
the input by considering the transformation in the
hidden layer as well. This measure can be disag-
gregated into J measures, where J is the number of
elements in the hidden layer, in order to assess the
unique contribution of each of the hidden layer
elements.

4. An empirical comparison of ID3, rough sets, and
neural networks

In this section, we compare the capability of
ID3, rough sets, and neural networks in analyzing
expert heuristics on new product entry. We note
that each of these three methods has many versions

and variations. Here we apply the typical version of
the methods. Our focus is to obtain an overall idea
of the general performance of the three methods in
rule extraction. We select expert heuristic data as
our target data, partly because rule extraction is
important for this type of data. It is also because
heuristic data are incomplete and imprecise, and
resemble the properties of a lot of important data
that we would like to mine in the business world.

We compare the methods with respect to their
classification accuracy and predictive accuracy.
We also compare the contribution of the input
variables (condition attributes) in affecting the
output variable (decision attribute). The decision
attribute, or output variable, is the product entry
strategy. In addition to the three condition attri-
butes displayed in Table 1, four additional condi-
tion attributes were used. The seven condition
attributes were used as a framework to elicit
knowledge from the subjects. These variables and
their values are: the position of the firm (dominant
or small), the financial strength of the firm (strong
or weak), the expected demand growth (high or
low), the product’s life cycle (long or short), dif-
fusion across competitors (fast or slow), canni-
balization (high or low), and the cost of market
development (high or low). The heuristics were
obtained from 36 senior MBA students who were
experienced in strategic analysis. In total 233 cases
were collected, 105 cases were used for training
and 128 cases for testing. Details of the knowledge
acquisition process are found in [22,23].

The rough sets and ID3 methods were applied
to analyze the data, and to develop decision tables
and decision trees. A neural network of one hidden
layer with three hidden units was constructed to
analyze the data. This structure was adopted be-
cause it was the most parsimonious neural net-
work architecture used for modeling the data, and
addition of additional elements in the hidden layer
did not result in increase in accuracy [22].

Table 7 shows the robustness and predictive
ability of rough sets. Here, robustness refers to the
rate of correct prediction for the original training
data set, while predictive ability refers to the rate
of correct prediction for the test data set. The ro-
bustness of rough sets is the percentage of number
of elements in the positive regions in the training
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Table 7 Table 8
Robustness and predictive accuracy of rough sets Classification accuracy of ID3, rough sets, and neural networks
Robustness Predictive accuracy ID3 Rough Neural
1 0 1 0 (%) sets (%) network (%)
1 57 10 70 18 Robustness 83.8 80.95 89.52
0 10 28 17 23 Predictive accuracy  72.66 72.66 71.88
Hit rate 80.95% 72.66%

data. Out of the 105 training cases, 57 are in the
positive region with strategy £ = 2, while 28 are in
the positive region with strategy £ = 1. Thus the
robustness of the rough set method is 85/105
(81%).

Based on the models obtained from the training
data, the generalizability of the three methods was
analyzed with the test data. In predicting the test
data with the rough set method, existing rules are
matched to a test case. An exact rule is applied to
make the prediction for the test case if a match is
found. However, if no rules can be found to match
the test case, the variables in the test case are
modified based on its contribution index until a
match occurs between the modified case and one
of the rules. Then the rule is applied to predict this
modified test case. The predictive ability is then
computed based on the percentage of test cases
correctly predicted. It is about 73%.

Table 8 shows the comparison of the classifi-
cation accuracy of the three methods. The neural
network performs best in robustness (90%), and

has predictive ability slightly worse than those of
rough sets and ID3.

Next we compare the contribution of input
measures for ID3, neural networks, and rough
sets. The three indices developed by Garson,
Yoon, Mak and Blanning, were computed to as-
sess the contribution of the input elements to the
output in the neural network. In the rough set
analysis, the importance of condition attributes in
affecting the decision attribute was assessed using
the significance measure and the contribution in-
dex we developed in the previous section. No de-
pendency and discriminant index could be
computed because the data were incomplete and
information was insufficient.

Table 9 shows the contribution index, z, com-
puted for the rough set method, as well as the rank
order of the importance of the variables for all the
five methods. The measures indicating the impor-
tance of the variables are included in parentheses.

As shown in the table, the rough sets and 1D3
measures all indicate expected growth demand as
the most important variable, followed by position

Table 9
Rank order of the importance of variables
ID3 (entropy  Neural network  Neural network  Neural network ~ Rough sets ~ Rough sets
reduction=0) (Garson (Yoon (Mak & Blanning (significance  (contribution
index =7y) index = f§) index = o) =0) index =1)
Position of the firm 2(6 = 0.082) 1(y =0.216) 1(p = 0.356) 1(oe = 0.308) 1(6 =0.62) 2(r=0.64)
Financial strength of  7(6 = 0.002) 2(y =0.193) 7(p = 0.001) 6(a =0.051) 6(c =0.51) 7(t=0.35)
the firm
Expected demand 1(60 =0.123) 3(y =0.149) 5(p =0.109) 5(e = 0.122) 1(6 =0.62) 1(+=0.75)
growth
The product’s life 3(6 = 0.065) 6(y =0.102) 3(p=0.180) 3(x=0.162) 4(6 =0.53)  3(:+=0.59)
cycle
Diffusion across 4(0 =0.04) 4(y =0.137) 6(p=-0.017) 7(a = —0.041) 3(6 =0.54) 4(t=0.54)
competitors
Cannibalization 6(6 =0.016) 5(y = 0.105) 4(f=—-0.152) 4(oe = —0.129) 4(6 =0.53)  6(r=0.44)
The cost of market 5(60 =0.034) 7(y =0.098) 2(p =—0.186) 2(a = —0.186) 7(c =0.46)  5(t=0.53)

development
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of the firm, product’s life cycle, and diffusion
across competitors. On the other hand, the neural
network measures all agree that position of the
firm was the most important variable. Garson’s
index was different than those of Yoon, Mak and
Blanning, probably due to the fact that direction
of influences is not considered in Garson’s measure
but in the other two measures. The similarity in
ranking between the measures for ID3 and rough
sets may be due to the similarity in the type of
partitioning conducted in both methods. Non-lin-
ear transformation and partitioning are performed
in neural networks and this non-linearity may
constitute for a different set of contribution indices
for the input variables.

5. Discussion

In evaluating the rules extracted from neural
networks, Tickle et al. [60] have used the following
criteria: (1) expressive power of the extracted rules;
(2) the quality of the extracted rules; (3) the
translucency of the view taken within the rule ex-
traction techniques; (4) the algorithmic complexity
of the rule extraction technique; (5) the extent to
which the underlying neural network incorporates
specialized training. Tickle et al. [60] further sug-
gested the following measures for assessing rule
quality: (a) rule accuracy (how accurate can the
rule set classify unseen examples) (b) rule fidelity
(how true can the rule set represent the behavior of
the neural network) (c) rule consistency (how
consistent can the rule set classify unseen examples
under differing training conditions) (d) rule com-
prehensibility.

Based on these criteria, rule extraction in neural
networks may suffer from certain inflexibility due
to the non-linear and complicated nature of
transformation performed in the hidden layers.
The fact that neural network models can provide
high accuracy in modeling that is related to the
non-linear sigmoid transformation in the hidden
layers. The adoption of sigmoid transformation
allows differentiation of the error function and
backpropagation of the network to update the
weights to minimize the error. Once rules are ex-
tracted using clustering and discretization, these

rules may lose their accuracy in modeling as they
may over-generalize the relationships modeled in
the network. The rules as abstract representation
may provide an overall idea about the relation-
ships between inputs and outputs and the inter-
mediate products, but they may not classify and
predict as accurately as the neural network.

Overall speaking, the rough set method offers
much better explanatory capability than the neural
network method and distills the data into a set of
simple and usable rules. When the sample size is
small or if the underlying distribution of the data
deviates significantly from multivariate normal
distribution, rough sets may perform better since
there is no assumption on the data size and dis-
tribution [56]. Rough sets may also perform better
when the data are incomplete, imprecise, hetero-
geneous, or non-numeric. It is particularly useful
in distilling complicated data into simple and easy-
to-understand rules. Rough sets can be used as a
tool in decision analysis to offer intelligent decision
support [52,55]. The rules obtained from rough set
analysis can be readily applied to predict new cases
or new situations (see Appendix A).

Besides rule comprehensibility, another impor-
tant factor is the time involved in the training
phases of the three methods. There are funda-
mental differences in the training methods involved
in neural networks, ID3 and rough sets. Training
of a neural network requires long computational
time before the network stabilizes or converges.
Sometimes if the data are inconsistent or incom-
plete, neural networks may fail to converge. On
the other hand, training time for ID3 and rough
sets is considerably shorter. As observed in this
study, the training time required of ID3 and rough
sets is also less than that of neural networks.

Neural networks provide best fit with numeric
data, while ID3 and rough sets perform best with
non-numeric data. Thus, when the original input is
in non-numeric form, it must be converted to nu-
meric before it can be analyzed with neural net-
works. This process requires computation time
and may cause partial loss of data integrity. On the
other hand, ID3 and rough sets deal with discrete
data. When the original data are continuous,
quantization or discretization is typically per-
formed before the data can be analyzed with 1D3
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or rough sets. Thus each of these methods may be
more appropriate than the others depending on
the type of data analyzed and the objective of the
analysis. If numeric data are involved and the
objective is high robustness in modeling training
data, neural networks should be the best method.
On the other hand, if qualitative case data are
involved and if the objective is to obtain an easy-
to-use decision table or decision tree, then ID3 and
rough sets should be used instead.

Grzymala-Busse [14] has found that the rough
set method showed better predictive capability
compared with ID3 when applied to refine im-
perfect data and classify unseen data. Under spe-
cial circumstances, when the distribution of objects
in the boundary region is equally probable [64], the
criterion for selecting dominant attributes based
on rough sets can be theoretically shown to be a
special case of ID3.

Comparisons of these two techniques, rough
sets and ID3, in general terms are very difficult.
Theoretical analysis of comparisons tends to be
limited to special cases satisfying certain condi-
tions or assumptions, while experimental studies
may only apply for certain sets of data. Obviously
these two methods employ different classification
criteria. Rough set theory is typically based on
relations between the condition and decision at-
tributes, and on concepts of positive and boundary
regions, reducts and cores. ID3 uses entropy for
the classification process. In general, ID3 prunes
search trees based on entropy but rough sets do
not.

One might argue that the rules derived from
rough sets are more extensive, while ID3 focuses
on important rules based on the entropy criterion.
ID3 may be more efficient to deal with excessively
large number of rules, but may overlook poten-
tially useful rules. Also, the ways to represent de-
rived knowledge or rules in these two methods are
different. Rough set theory is based on informa-
tion tables while ID3 is based on decision trees.
Certain classes of problems are probably best
represented by tables, some by trees, and still
others by some other types of data structures.
Searching for specific rules in a knowledge base of
tree form is generally efficient. On the other hand,
merging trees for knowledge base restructuring

may be harder than merging tables. However,
there is no mathematical proof to answer these
questions for general cases. Probably a consensus
would be that no single approach is the best for all
problems.

Instead of applying one single method, a com-
bined approach involving several methods would
contribute to the understanding of data mining
[34]. Researchers have developed hybrid systems
that capitalize on the combined strengths of rough
sets and other data mining techniques [32,42,43].
The rough set method has been combined with
neural networks, genetic algorithms, and Petri
nets. The rough set method has been used to re-
duce the data for preprocessing data input to
neural networks [18,58]. In addition, genetic al-
gorithms have been employed to look for the set of
minimal reducts used in rough set analysis [30,65].
Genetic algorithms may also be employed to de-
termine the thresholds used in selecting dynamic
reducts [49] or to look for the type of Boolean
relationships used in learning tolerance relations
[50,51]. Further, rough set methods can be applied
to specify which concurrent systems can be used
for the generation of Petri nets [41].

Rough sets may also be combined with ID3. An
entropy analysis may be performed in data pre-
processing and entropy reduction may be used as
the selection criteria for determining which fea-
tures should be selected as condition attributes for
rough set analysis. Alternatively, entropy may be
computed in rough sets as a measure of certainty
for uncertain rules [62], and less important rules
derived from rough sets can be pruned based on
entropy. Based on these continual research efforts
on hybrid systems, a researcher will gain a better
understanding on the strengths and limitations of
existing methodologies, and discover better and
newer ones by drawing on the strengths of existing
data mining techniques.

6. Conclusion

In this article we compare the rule extraction
capability of ID3, rough set method, and neural
networks. We also derive a measure to capture the
contribution of the condition attributes to the
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decision attribute. On going research has been
conducted to develop hybrid systems capitalizing
on the combined strengths of neural networks,
rough sets and I1D3 [2,16], as well as other data
mining techniques such as genetic algorithms and
Boolean analysis. Future research should address
how common standards can be developed to assess
the explanatory capability of these new systems in
order to improve the rule extraction and knowl-
edge discovery process.

Appendix A. Applications of rules derived from
rough sets

Rules on new product entry were obtained from
our database. An example of a “‘no-entry” deci-
sion rule is shown in Table 10, and an example of
an “entry” decision rule is shown in Table 11.

The rule in Table 10 suggests that a small firm
with weak financial resources should not enter the
market when the expected demand is low, canni-
balization is high, and product life cycle is short,
regardless of the cost of market development and

Table 10
An example of no entry decision

the diffusion rate across competitors. When the
market attractiveness is low (low demand, short
product life cycle and high cannibalization), a
company that has weak financial resources should
take a less aggressive strategy. An erroneous
move in this vulnerable situation may mean di-
saster.

Alternatively, Table 11 suggests that if the firm
is small but has strong financial resources, and if
the market demand is expected to be high and
product life cycle is expected to be long, the
company should enter the market even if there is
high cannibalization, regardless of the cost of
market development and diffusion across compet-
itors. In other words, a strong company should
make full use of opportunities and enter an at-
tractive market, even if it may mean a competitive
market with high competitor imitation and high
development cost.

These rules can be used to predict new cases.
The exact rules are applied for prediction when-
ever there is an exact match between the values of
the scenario variables in the new case and the
rules. If no exact match occurs, we find the closest

Rule 1: no-entry decision

If: Position of firm =small
Financial strength of firm =weak
Expected demand growth =low
Product life cycle =short
Cannibalization =high

Regardless of:

Cost of market development

Diffusion rate across competitors

Recommended strategy

=do not enter the market

Table 11
An example of entry decision

Rule 2: Entry decision

If: Position of firm =small
Financial strength of firm =strong
Expected demand growth =high
Product life cycle =long
Cannibalization =high

Regardless of:

Cost of market development

Diffusion rate across competitors

Recommended strategy

=enter the market
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Table 12

A new case example

New case
Position of firm =small
Financial strength of firm =weak
Expected demand growth =low
Product life cycle =short
Cannibalization =high
Cost of market development =high
Diffusion rate across competitors =high

match to an existing rule and modify the values of

the variables in the new case. The extent of mod-

ification is assessed using the contribution index of
the variables involved in the modification, and the
least amount of modification is preferred.

For example, we consider the following new
case shown in Table 12. Assuming that Rules 1
and 2 are the closest rules to the new case, this case
can be modified in two ways:

1. Modify the case for Rule 1 by (i) changing the
value of demand growth rate (¢ = 0.75) from
high to low, and (ii) the value of product life cy-
cle (t = 0.59) from long to short.

2. Modify the case for Rule 2 by changing the va-
lue of financial strength of firm (¢ = 0.35) from
weak to strong.

The contribution index helps us to assess the

amount of change involved in the two modifica-

tions.

The second modification involves changing a
variable of lower contribution index, and this means
a lesser extent of modification. Therefore the second
way of modification is preferred to the first. Rule 2
will be applied for the new case if there is no other
rule that matches exactly with the new case.
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