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Abstract—When the modern electrical infrastructure is under-
going a migration to the Smart Grid, vulnerability and security
concerns have also been raised regarding the cascading failure
threats in this interconnected transmission system with complex
communication and control challenge. The DC power flow-based
model has been a popular model to study the cascading failure
problem due to its efficiency, simplicity and scalability in simula-
tions of such failures. However, due to the complex nature of the
power system and cascading failures, the underlying assumptions
in DC power flow-based cascading failure simulators (CFS) may
fail to hold during the development of cascading failures. This
paper compares the validity of a typical DC power flow-based
CFS in cascading failure analysis with a new numerical metric
defined as the critical moment (CM). The adopted CFS is first
implemented to simulate system behavior after initial contingen-
cies and to evaluate the utility of DC-CFS in cascading failure
analysis. Then the DC-CFS is compared against another classic,
more precise power system stability methodology, i.e., the tran-
sient stability analysis (TSA). The CM is introduced with a case
study to assess the utilization of these two models for cascading
failure analysis. Comparative simulations on the IEEE 39-bus and
68-bus benchmark reveal important consistency and discrepancy
between these two approaches. Some suggestions are provided
for using these two models in the power grid cascading failure
analysis.

Index Terms—Cascading failure, contingency analysis, DC
power flow, transient stability, vulnerability assessment.

I. INTRODUCTION

T HE modern power system is advancing towards a crit-
ical and promising intelligent generation known as the

Smart Grid. This new generation is expected to integrate the ef-
ficiency, flexibility, and stability optimization benefits from the
computer-based communication networks. However, it is no-
table that the Smart Grid cannot by pass some structural vulner-
abilities in power grids. For instance, in a ripple effect known
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as the cascading failure, a single disturbance or contingency
can trigger a chain effect of unpredictable and disastrous dis-
turbances to the power grid under certain conditions [1]. Re-
cent blackouts, e.g., the 2011 Southwest blackout in Arizona
and South California [2] and the record-breaking blackout in
India [3], have revealed a strong impact of critical infrastruc-
ture failures that draws the concerns of the government, the in-
dustry and the public. However, with foreseeable cost of recon-
structing the whole power grid to the highest standard, the Smart
Grid still has to rely on the existing electrical infrastructure de-
spite of some of its inherent vulnerabilities [4], [5]. In addition,
new vulnerability and security challenges have been posed to
the grid managers as the infrastructure can become a target of
cyber-physical threats [6], [7]. As a result, there is a growing
call for the thorough understanding of the mechanism behind
cascading failures to enhance power grid’s stability.
The IEEE PES CAMS Task Force on Understanding, Pre-

diction, Mitigation and Restoration of Cascading Failures [8]
has reported a variety of simulation models that are developed
for cascading failure analysis [9]–[11]. All these models focus
on certain sets of assumptions to approximate the real power
system, but a well-accepted model is still absent due to the com-
plexity of interconnected power grids and cascading failures
themselves. While some studies have investigated the validity
of using graph theory based and complex network based cas-
cading failure models and metrics [12]–[16], there is little lit-
erature comparing the validity of using different power system
models to approximate system behavior in cascading failures.
This becomes the motivation of this paper: to investigate the
model comparison on two typical well-established models used
to assess grid vulnerability of cascading failures, i.e., the DC
power flow-based model against the transient stability analysis
method.
The first type of model in comparison is the power flow

model. This is based on steady-state analysis, which is widely
used in studies of cascading failures to approximate AC power
equations of power systems. For instance, Dobson et al. have
proposed a stochastic ORNL-PSerc-Alaska (OPA) model
[17]–[19]. Carreras et al. have also produced comprehensive
work on self-organized criticality [20]–[22] in cascading fail-
ures using the AC power flow-based Manchester model [23],
[24] and CASCADE model [25]. Compared to the AC flow
models, the DC power flow-based cascading failure simulator
(CFS) is powerful for its balance between model complexity
and system behavior approximation [8], [26]. It utilizes the
assumptions of power flow equations [27], [28] for efficient
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cascading failure simulation and assessment. Therefore, in
this paper, we have implemented a well-defined CFS [29] as a
typical example of steady-state cascading failure simulator.
In contrast to the power flow-based steady-state analysis,

transient stability analysis (TSA) is considered to be one of the
most comprehensive and complex approaches for power grid
stability analysis. Based on the differential algebraic equations
(DAE), they have been widely used in power system control
design [30] and adopted as the validation tool for many related
studies. Although TSA methods are still inadequate repro-
ducing the events of real power outages [31], the time-domain
simulations of TSA provide adequate system dynamic infor-
mation. This could be incorporated into steady-state models,
such as the optimal power flow (OPF) model [32], [33], for
improved system security and better outage prevention.
While much literature focuses on either DC power flow-based

analysis or transient stability analysis, there are few studies on
the discrepancy and consistency of these two models in eval-
uating the impact of cascading failures. The apparent distinc-
tions between the CFS and TSA models can not delineate that
to what degree these two methodologies are consistent or dif-
ferent with each other in cascading failure analysis. Therefore,
this paper aims to provide a reference, through illustrative com-
parative studies, to help determine a more appropriate model for
the analysis of power grid cascading failures from case to case.
To be specific, in this paper a newmetric named critical moment
(CM) is proposed based on the rotor angle stability and voltage
stability principles of power grids. This study is expected to
narrow the knowledge gap between these two well-developed
models and to facilitate understanding of cascading failures in
power systems.
There are two typical DC power-flow-based CFS distinguish-

able by their focuses. Some studies [19], [34] focus on long-term
effects to first evaluate temperature and line-expansion to de-
termine the vulnerability of a branch. Then proper control mea-
sures, e.g., vegetation management, can be applied to reduce the
risk of blackouts. Meanwhile, other research places a focus on
relays [29], because they are critical factors in major blackouts
due to the automatic branch tripping mechanism operated by re-
lays [35]. The relay-based CFS usually focuses on short-term ef-
fects occurring in seconds or minutes; in contrast, the long-term
models run from less than an hour to a few days. For a fair
comparison between the twomethodologies, it is therefore more
suitable for this paper to compare the relay-oriented CFS to TSA
models in this cascading failure study.
In the rest of this paper, we refer to the original cascading

failure simulator in [29] as the CFS, and its modified version
in this paper as the DC-CFS, respectively. In addition, the DC
power generation and load are denoted as and , respec-
tively, where denotes a generation bus and a load bus; cor-
respondingly, the complete sets of generators and load buses are
denoted as and , respectively. TheAC (reactive) power gen-
eration and load are denoted as and , respectively. Simi-
larly, refers to a branch and is the set of branches, while the
DC branch power flow is denoted by . Finally, voltage mag-
nitude and angles are denoted as and , respectively.
The rest of this paper is organized as follows: Section II

describes the adopted power flow-based DC-CFS for cas-

cading failure analysis. Then Section III presents assessment
of DC-CFS simulation of cascading failures that are triggered
by the single-component contingency. Comparison to TSA
simulation results are discussed in Section IV, where the new
notion CM is defined and discussed to reveal the validity of
DC-CFS. Finally, conclusions are provided in Section V.

II. DC POWER FLOW-BASED CASCADING
FAILURE SIMULATOR (DC-CFS)

The DC-CFS assessed in this paper is adopted from a re-
cent study published in 2012 [29] on multi-contingency trig-
gered cascading failure, which belongs to a family of models of
cascading failure based on DC power flow assumptions without
consideration of reactive power and transmission loss [22], [29],
[36]–[38]. In this paper, some minor modifications are made to
the original CFS for better comparison. A quick overview is pro-
vided as follows:
1) The DC-CFS implemented an additional trigger of bus
contingency so that cascading failure of both bus and
branch contingencies can be simulated to validate the use
of DC-CFS compared to the TSA approach;

2) In the generation and load re-dispatch process of the
DC-CFS, we introduced weight vectors to the generation
and load buses, which can be determined empirically in
advance, or adjusted adaptively according to the feedback
of simulated blackout size with proper algorithms;

3) A dedicated module is designed in the DC-CFS to handle
the islanding issue so that the simulation can be imple-
mented in parallel and further islanding technique and
policy can be incorporated;

4) The system failure criterion of 10% in blackout size in orig-
inal CFS is canceled in the DC-CFS so that we can explore
and compare the full development of a potential cascading
failure process in both models. Moreover, we can also jus-
tify if this criterion is appropriate in the simulation of cas-
cading failures;

5) Last but not least, more implementation details, including
the ramping rate, the ramping period, are provided to fur-
ther improve this DC-CFS dedicated for cascading failure
analysis.

While these modifications are not considered as the contri-
bution of this paper, they are adjustments to the original CFS
for fair comparison between the DC-CFS and TSA model in
cascading failure analysis. The whole process can be divided
into four steps, each represented by a subsection (Steps A–D)
below to describe specifications on cascading failure triggers,
dispatch policy, and islanding processing. The assessment met-
rics are discussed in the end of this section.

A. Cascading Failure Triggers

In the DC-CFS we consider a potential cascading failure
caused by both branch and bus triggers in the system. A branch
trigger is the tripping of a branch, as modeled in traditional
contingency analyses [13], [29], [39]. On the other hand, a bus
trigger is the failure of a bus, or substation, after which no
power flow is transmitted through the malfunctioned bus.
The bus trigger is less frequently studied due to rare occur-

rence of a complete failure of substations or power plants in
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contrast to the more common cases of branch tripping. Never-
theless, a cascading failure can still be triggered by a bus failure,
after which branches connecting to the failed bus is also tripped
since the power will not be able to flow either from or to the
failed bus [40], [41]. Theoretically, a bus contingency is more
likely to result in cascading failures and cause greater damages
to the grid because of the concurrent failure of multiple branches
and potential direct loss of load and generation, which over-
runs the criterion. Therefore, we implement both triggers
in this paper to better understand cascading failures in power
systems.

B. Relay-Based Overloading Branch Tripping

Branch tripping is one of the most common factors respon-
sible for the cascading failures [8]. Therefore, we refer to each
tripping as a cascading failure event (CFE), and the whole
process of cascading failure is then represented by a series of
CFEs. The initial contingency is numbered as CFE 0, while
the following CFEs occured during a cascading failure are
numbered by positive integers thereafter. When a CFE occurs,
overloading may be found on a branch whose power flow
exceeds its thermal rating of power flow, denoted as .

As critical or long-lasting overloading can cause great damage
to the power transmission, the relays will respond to these
overloadings by tripping dangerously overloading branches
from the grid. For an overloaded branch denoted as , the
following accumulative function from [29] determines
the severeness of overloading on a branch at time :

(1)

where is the branch power flow at time . Theoretically,
under the steady-state assumption, of a branch is inte-
grated over the duration when it is overloaded while the system
remains in a steady state. As the power flow will be changed
by the generation and load re-dispatch after the occurrence of a
CFE, and in practice will have to be changed accordingly,
which will be described later in the next subsection following
(2). If the accumulation exceeds a dangerous threshold

at time , the relays will automatically trip off the
corresponding branch . This critical threshold is defined empir-
ically based on referential scenarios as in [29]. Note that
is not the actual heat accumulated on the branch, but an accu-
mulative function of overloading evaluated by the relays to trip
dangerous branches accordingly.

C. Generation and Load Re-Dispatch

When a new failure occurs, the power transmission can be
disrupted, and the balance of load and generation has to be re-
stored via re-dispatch process [42]. Specifically, between two
consecutive cascading failures in a fully-connected grid, the fol-
lowing re-dispatching steps are performed:
C.1 Generation ramping
The generation ramping consist of two scenarios:
1) If there is a generation surplus, i.e., , ramp
down all generators’ output with a given ramping rate .

2) If there is a generation deficit, i.e., , ramp up
all generators’ output with the given ramping rate until
ramping is terminated;

The ramping is terminated if any of these two following con-
ditions is met: 1) ; or 2) the output of a given
generator has reached its capacity ;
C.2 Generator tripping/Load shedding
Similar to the generation dispatch, there are also two

corresponding processes to handle the surplus and deficit,
respectively:
1) If the surplus still exists after ramping, then the generators
with minimal non-zero importance will be instantly tripped
one by one in the grid until ;

2) If the desired balance is still not met after
a certain amount of time , the load on the bus with
the minimal non-zero importance will be shed one by one,
until the load-generation balance is established;

C.3 Power flow update
After the ramping and shedding process, the power flow on

each branch is instantly recalculated and redistributed to set up
a new system operating point.
In this procedure, the ramping in Step C.1 tries to resolve any

imbalance between generation and load caused by cascading
failure. In both scenarios, we assumed all generators ramp up
or down with a uniformed maximal ramping rate with respect
to their capacity. As this ramping process can be interrupted by
a new CFE in the system, the duration of generation ramping
period between two CFEs, denoted as , is determined by
the following equation:

(2)

where corresponds to the dangerous threshold
as aforementioned. No failure occurs during this period ,
and the power grid is assumed to stay in a steady-state. There-
fore, the accumulative overload in (1) is integrated from
, the moment when a new CFE is observed, to ,

the moment when the next CFE occurs in the system. In this
way, if a new CFE occurs in the system, the actual value of
is automatically reset to the time when this CFE occurs, and
is set to when is calculated by (2). This al-
lows the DC-CFS to directly use as a step time in simu-
lation instead of using small, unit step intervals in classic tran-
sient stability models, which can be computationally expensive
otherwise.
During the ramping period, a system can resume stable if the

generation deficit or surplus is eliminated; however, if the de-
sired balance is not met through ramping, then a generator trip-
ping and/or load shedding is performed in Step C.2 as the last
resort to ensure the stability of system. The importance of a gen-
eration bus is determined by the product of its generation
and a weight vector , i.e., ; similarly, the im-
portance of a load bus is calculated by .
Afterwards, the system operation point is updated in Step C.3

to continue the iterative simulation process. This procedure fol-
lows the general principle to maximize the adjustment on the
generation side while minimize the impact on the load/con-
sumer’s side as long as the power system remains stable.
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D. Handling Islanded Sub-Grids During Cascading Failures

During the process of a cascading failure, an originally fully
connected grid can be disintegrated into several islands, which
can still maintain independent operation. Each island has inde-
pendent topology, operating point, and potential cascading fail-
ures that continue to propagate therein. Instead of assigning a
new CFS for each new island, in this paper we used a more di-
rect tactic to efficiently simulate cascading failure in islands of
a power grid without increasing the implementation difficulty.
Specifically, an island emerged when a CFE breaks down the

grid is rendered as a new fully-connected sub-grid that carries
the most recent system operating point in corresponding seg-
ment. If generation and load are not balanced in an island, the
simulator re-dispatches the load and generation and recalculates
power flow through Step C.1 to Step C.3 to establish a new
balanced operating point, and obtains corresponding value of

in each island if a new CFE occurs.
As islands may be further broken down when cascading

failure continues to propagate, it is necessary to synchro-
nize among different cascading failure processes in different
sub-grids during simulation. Therefore, when the values of

for all current sub-grids are obtained, we will use the
minimum of them as a global time step to advance the
simulation:

(3)

where , and is the number of existing sub-
grids. It is notable that two consecutive values of may be
obtained from different islands during the simulation, so the se-
quence and location of the events is also recorded accordingly.
Also, because is the minimum of across different
islands, by definition every island still remains in steady state
with their own operating points.
This sub-grid handling is beneficial because the number of

islands emerging during a cascading failure is unknown in ad-
vance. This uncertainty causes a high computation overhead for
the simulator to process a time-variant number of islands simul-
taneously. From Step A to Step D, cascading failures in all ex-
isting islands will be simulated recursively until no overloading
is further observed. As a summary, Fig. 1 shows the general
process of the DC-CFS simulation.

E. Assessment Metric for DC-CFS

To assess the impact of cascading failures with DC-CFS, we
choose the blackout size as the assessment metric of a cascading
failure. Denoted as , it is defined as the percentage of overall
loss of load (measured in real power) with respect to the original
loading

(4)

where and are the sets of load buses in the original grid
and the final grid, respectively. and are the corre-
sponding load remaining in each grid, respectively. It is also
notable that the final load loss, as a result of generation and load

Fig. 1. Flowchart of DC-CFS.

re-dispatch in Step C, is equivalent to the loss of generation as
the system is designed to be balanced after Step C.
According to the model described above, we decompose the

final blackout size into three parts. First, if a contingency is
initially triggered on a load bus that has a non-zero load, the load
on that bus will instantly lost, which is referred to as the direct
loss of real power. Secondly, immediately after the initial con-
tingency, the blackout size is contributed by the system’s first
re-dispatch and shedding process in Step C as an emergent re-
sponse. Since there is limited time to react to the abrupt contin-
gency, some load will be shed in this emergent response. Third
and last, after the re-balance of load and generation, a potential
cascading failure triggered by overloading branches will further
increase the loss of load.
In addition to the blackout size , the number of load buses

affected during the cascading failure is also assessed as
comparative metrics of the cascading failure impact. It is mea-
sured as the number of load buses whose load is either com-
pletely or partially shed during the cascading. The correlation
efficient of and will be evaluated for comparison in
following simulations.

III. ASSESSMENT OF CASCADING FAILURES WITH DC-CFS

A. Simulation Setup

In this paper, the DC-CFS is implemented in MATLAB and
the MATPOWER [27] toolbox is used to calculate DC power
flow in the benchmark. The standard IEEE 39-bus system is
also chosen from MATPOWER as a benchmark system to eval-
uate the DC-CFS. This system has a total load of 62.54 p.u.,
and it contains 39 buses (10 of which are generation buses) and
46 branches whose capacity is also given in the benchmark.
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Fig. 2. Histogram of blackout size in single-bus and single-branch
contingencies.

It represents the New England area power system, of which a
single bus (Bus 39) represents the regional system’s intercon-
nection to the rest of US/Canada. As one of themost widely used
benchmarks in power system studies, it is a suitable general rep-
resentation of typical regional power transmission networks.
In addition, to reflect the modern power system standard, we

referred to a recent performance standards of generators [43]
to assign the ramping rate. As the real power generation of all
generators in the 39-bus system are in fact greater than 250 MW
(2.5 p.u), we simply choose as 5%/min with respect to each
generator’s capacity. Since we do not have a practical reference
of the importance of buses, all generation buses are assigned
equal importance ; the same for all load buses

. As a result, and are proportional to the
generation and load of corresponding types of buses, respec-
tively, and so the simulator trips the generator with minimum
non-zero generation and then sheds the non-zero load in the
grid when necessary. These values of , , and can be
adjusted accordingly when detailed information is obtained in
real power system applications. If such information is not avail-
able, these weights can also be adjusted heuristically according
to the blackout size simulated in the DC-CFS as well as other
stability constraints in consideration. This way it also better ap-
proximates a real power system and help the goal of minimizing
the impact of cascading failure. Finally, as mentioned before,
we refer to [29] to calculate the critical threshold with

and . With all these settings, the DC
power flow-based simulation results are presented as follows.

B. Assessing Impact of Cascading Failures With the 39-Bus
System

First, we illustrate the histograms of the final blackout size
of both single bus and single branch contingency in Fig. 2. As
discussed in Section II-A, given the same number of simulta-
neous contingencies, single-bus contingencies should in gen-
eral yield greater cascading failure damage than branch contin-
gencies. The distributions in Fig. 2 are consistent with this as-
sumption. Roughly 61% of the 39 single-bus contingencies and
24% of the 46 single-branch contingencies lead to a blackout
size greater than 10% of the overall load in the system. It is
also notable that while the majority of the blackout sizes are no
greater than 25%, some critical contingencies still result in the
loss greater than 40%.

Fig. 3. Decomposition of single-bus and single-branch triggered blackout
sizes. The three bars, stacked from the bottom to the top, correspond to the
direct load loss, the loss after the initial re-dispatch, and the loss caused by
the cascading failure, respectively. Note that there is in fact no for
single-branch triggers.

In addition to assessing the overall blackout size of real power
caused by single-component contingencies, Fig. 3 illustrates the
decomposition of overall blackout size in single-bus and single-
branch contingencies, respectively, where different components
of a blackout size are shown as stacked bars representing dif-
ferent components in final blackout sizes. The first type of bars

on the bottom is the direct load loss on the victim
buses; the second type of bars in the middle repre-
sents the load loss after the initial emergent re-dispatch right
after the contingency; finally, the last type of bars on
top corresponds to the fraction of blackout sizes contributed by
the triggered cascading failures.
As shown in Fig. 3(a), in single-bus contingencies the initial

re-dispatch adds a significant amount to the blackout size to the
direct loss of load buses, which is observed on most generation
buses (Bus 30 to 38) and some load buses (Bus 6, 10, 16, etc.).
The generation-load combined Bus 39 is the only exception as
it carries the largest generation and load simultaneously in the
system. As an equivalent bus of interconnection to the rest of
US/Canada, Bus 39 in this benchmark provides 15.88% of the
generation and consumes 17.65% of the power in this system,
resulting in a significant direct impact to the system when it fails
even without a cascading failure. Nonetheless, from Fig. 3(a) it
is still shown that the cascading failure triggered by less loaded
buses is responsible for the most severe single-bus contingen-
cies blackouts. Meanwhile, the type of bus is not closely related
to the eventual blackout size, as the most severe single-bus con-
tingencies can be found on both load-only buses
(Bus 6, 21, 24, 27) and load-generator bus (Bus 31). In fact,
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Fig. 4. Number of affected load buses according to (a) single-bus triggers and
(b) single-branch triggers of DC-CFS, respectively.

because the type of a bus can be defined interchangeably by al-
tering the net injection of the given bus without changing the
overall system dynamics, it does not have a definite influence on
the eventual blackout size. Instead, the decomposition of in
Fig. 3(a) has shown that cascading failure plays a more impor-
tant role in the final impact.
Similar observation can be found in Fig. 3(b) for

single-branch contingencies. Although for branch contin-
gencies, there is no direct loss of power on branches,
the re-dispatch still contributes to some blackout sizes that reach
the similar scale as the bus-contingency blackouts without a
cascading failure. However, in the most severe cases, the cas-
cading failure is still the major factor in severe blackouts, which
raises some to nearly 50%. For both types of triggers, we
have observed that cascading failures contribute significantly in
the major blackouts caused by a single-component contingency.
In addition to the blackout size , we have also evaluated

the number of load buses affected in the cascading failures using
DC-CFS. The number of load buses affected by a cascading
failure is shown in Fig. 4 with both types of triggers. The
correlation coefficients of and are
for buses and for branches, respectively.
The results indicate a relatively high correlation between the
blackout size and the number of buses that subject to load shed-
ding during the cascading failures, which is reasonable as the
bus with the minimal load will be directly tripped when gener-
ator ramping cannot achieve the load-generation balance.
As a summary of this section, from the simulation results and

analysis above, the DC-CFS proves to be a useful tool to un-
derstand the vulnerability of a power system against cascading
failures. Information of the final impact, cascading failure de-
velopment as well as contributing factors can be obtained more
efficiently with the DC-CFS, which is especially helpful if it is
extended to a bulk power system or a detailed regional grid that
has much greater number of substations and transmission lines
in the system.

IV. COMPARATIVE STUDY BETWEEN DC-CFS AND
TSA-BASED CASCADING FAILURE ANALYSIS

While the DC-CFS simulation shown above presented inter-
esting and important information on potential blackout sizes
of cascading failures, it is certainly critical to understand how
precise these vulnerability assessments are in comparison to
some more complex methodologies. As mentioned before, the
DC power flowmodel is a proper representation of high-voltage
low-load power grids [26] with a good balance between the
computational efficiency and model complexity. It certainly
provides important information of power system behavior in
cascading failures. However, it does not consider the reactive
power and voltage characteristics in a complex power system,
and a steady-state assumption can fail to hold in the complex
dynamics of a real power system. Therefore, we presented a
comparative study between the DC-CFS and transient stability
analysis (TSA) to understand the discrepancy and consistency
between them for cascading failure analysis. The TSA model
is implemented in the Power System Analysis Toolbox (PSAT)
software, a popular open source toolbox for the research on
both static and dynamic analysis of power systems [44].
In addition to the IEEE 39-bus system shown in Fig. 5,

we also implemented the IEEE 68-bus system in PSAT as an
additional benchmark for more comprehensive comparison, as
shown in Fig. 7. The additional system is a representation of
the New England and the New York power system, with three
buses as the equivalent of three external regions connected to
these two regional power grids. As an extension to the 39-bus
system, the 68-bus system has a significantly larger total load
of 176.21 p.u., and both variances of power generation and
load consumption also become greater than the 39-bus system.
This more complex network can pose greater challenge to the
DC-CFS as discussed below. All parameters used in PSAT
can be found in publications for the 39-bus system [45], [46]
and the 68-bus system [47], respectively. There is no direct
generation dispatch or load shedding in PSAT, and branch
tripping is simulated upon each occurrence of CFE identified
by the DC-CFS. Numerical comparison between two models
are presented below to reveal their consistency and discrepancy
in the simulation of cascading failures.

A. Model Comparison Through A Case Study

To illustrate the consistency as well as discrepancy between
the DC-CFS and the TSA model, a comparative case study of
a single-branch contingency in the 39-bus system is first pre-
sented as follows. We choose the cascading failure caused by
the tripping of Branch 14 (from Bus 6 to Bus 31) as a baseline
for the comparative study. This branch failure isolates Gener-
ation Bus 31 from the grid, which has been shown previously
as a severe cascading failure in the system. According to the
DC-CFS simulation result, after the cascading failure has been
triggered, subsequent branch tripping has been found on Branch
13, 9, 6, 1, and 23 before the failure terminates. We record this
sequence of CFEs with the moments of occurrences in DC-CFS,
and then set up the simulation of identical branch tripping at the
same moments in PSAT. The location and occurrence time of
these CFEs are shown in Fig. 5. Then we observe whether there
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Fig. 5. Typical cascading failure on IEEE 39-bus system. Branches affected in the cascading failure are highlighted.

Fig. 6. Transmission line load rate distribution in cascading failure propagation at different moments. (a) System transmission line flows before cascading.
(b) At CFE 2, Branch 13 from Bus 6 to Bus 11 is tripped. (c) At CFE 3, Branch 9 from Bus 4 to Bus 14 is tripped.

is a consistent trend of power re-distribution and branch over-
loading, and if so, to what extent this consistency holds during
the cascading failure.
The corresponding line load rate distribution after each CFE

is partially visualized in Fig. 6, and the initial system branch
flow is shown in Fig. 6(a). After the initial failure of Branch
14 (CFE 1), the active power transmission on Branch 13 in-
creased immediately. This is because Branch 14 is linked to
Load Bus 1 with a generator Bus 31, whose failure requires the
generator to provide more power to Load Bus 7, Load Bus 8,
and Load Bus 4 through Branch 13 simultaneously, resulting in
a severe overloading condition that forces the relay to trip off
Branch 13 in CFE 2 after 23.1 s. Fig. 6(b) shows the system
line load rate change after the tripping of Branch 13, in which
the active power transmission on Branch 9 increased suddenly.

The reason is that Branch 13 and Branch 9 are two branches
connected the left generation area to the right load area. The
tripping of Branch 13 will increase the Branch 9’s transmis-
sion burden. As a result, Branch 9 was consequently tripped
by a relay in CFE 3 at 28.7 s after the initial tripping. Until
this point, simulation results remain consistent between the two
models despite that they are based on different power flow as-
sumptions and the regulation, i.e., TG and AVR, is only per-
formed in the PSAT simulation.
Upon the next occurrence of CFE, however, the system dy-

namics begin to change. Although in Fig. 6(c), the most severe
overloading is still observed on Branch 6 for both DC-CFS and
TSAmodels, in Fig. 8(a) and (b), the system voltage has already
started to collapse after CFE 3, making following simulations in
two models diverge into different flow distributions. As some
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Fig. 7. Diagram of IEEE 68-bus system implemented in PSAT.

Fig. 8. (a) Rotor angles and (b) bus voltages in the study case. Each curve in
(a) represents a generator and in (b) a bus in the 39-bus system. Bus 31 (which
is also Generator 2) is excluded as it is immediately isolated after Branch 14
is tripped. The vertical dotted lines represent CFEs and the vertical solid line
represents the CM.

bus voltages dropped to a relative low value and some genera-
tors start to desynchronize after CFE 3, the system became un-
stable as the bus voltages began to oscillation till the end of sim-
ulation. If this situation happens in real power system, grid oper-
ator will trip some generators to prevent further damage to the
machines caused by desychronization. As a result, the branch
line load rate distribution in simulation also began to diverge be-
tween these two models from the next CFE. Specifically, the ac-
tive power transmission on Branch 16 increased dramatically in
the TSAmodel, while the DC-CFS simulation suggested that the
next branch to be tripped should be Branch 1. As a summary, for
this cascading failure triggered on Branch 14, the steady-state
assumption no longer holds after CFE 3 due to the significant
change in the power grid dynamics. The importance of CFE 3
in this example leads to the concept of CM as an index of con-
sistency, which is described below.

B. Critical Moments in Model Comparison

With the case study above, we can now define the CM in a
more generic way for comparison between the two models. To
define the CM numerically, we refer to two principles of power
systems, i.e., the rotor angle stability and voltage stability as the
criteria.
Considering the following two numeric criteria in simulation:
1) The maximal difference between any two rotor angles is
greater than 10 ;

2) The voltage of any bus deviates from its original voltage
in p.u. by 10%.
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Fig. 9. Normalized T-Diff figure of the top-10 (a) buses and (b) branches with the greatest blackout size in the 39-bus system. “init.” denotes right after the initial
dispatch, and “N/A” denotes that the moment does not exist. The superscripts next to CM indicate whether the criterion of rotor angle stability (marked with ) or
the criterion of voltage stability (marked with ) is met when the corresponding CM is obtained.

Then the CM is defined as the most recent CFE that occurs be-
fore the point when either 1) or 2) is met. As a example, if crite-
rion 1) or 2) is satisfied at a moment between CFE and CFE

in a cascading failure simulated by the DC-CFS, then CFE
is selected as the CM after which the steady-state assumption

does not hold for the DC-CFS.
It is notable that for most of the research on transient sta-

bility, stability criteria can vary among different benchmarks
and different methods, e.g., change of sign of PEBS or an ar-
bitrary value, such as [32]. In this study, both thresholds are
chosen empirically based on the following considerations. For
criterion 1), according to [48], the angular difference depends
on the power-angle relationship, where it demonstrates a highly
nonlinear characteristic. For large-disturbance rotor angle sta-
bility (corresponding to small-disturbance or small-signal rotor
angle stability), the time frame of interest in transient stability
studies is usually 3 to 5 s following the disturbance, i.e., the most
recent CFE before the divergence. In such a short time frame,
it will be reasonable to set “10 degrees” as the criterion to de-
termine the critical moment. For criterion 2), we refer to [30],
which states that when the voltage drop below 85% to 90% of
its nominal value, more motors may drop out consequently and
lead to a cascading effect if the original cause of voltage drop

remains unsolved. Therefore, we choose the moment when the
voltage drops to 90% of nominal value, i.e., the 10% deviation,
to determine CM with criterion 2).
Although the actual moment when one of the criteria is met

can also be rendered as a critical point in simulation, by defining
CM as a CFE that corresponds to a failure event in the system
instead of a continuous time value, it is more intuitive and con-
venient to keep track of the CFEs. With the above definition,
we have calculated the CMs for the top ten single-component
contingencies of both types on IEEE 39-bus and 68-bus system,
respectively.
First, for the 39-bus system, the consistency and discrepancy

are visualized with a new figure called a time-domain difference
(T-Diff) plot shown in Fig. 9. In this visualization, we selected
the top-10most severe blackouts of single-branch contingencies
according to the DC-CFS model and illustrated their normal-
ized duration and CMs in the bar graph. The occurrence time
of each CFE in each cascading failure is normalized by their
overall duration, respectively. In this way, the horizontal bars
represent the series of CFEs for the top-10 cases in the time-do-
main. The corresponding blackout size , the total number of
CFES , the CMs and their actual time of occurrence are
listed to the right of the bar graph with the legends shown under
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TABLE I
CRITICAL MOMENT AND VIOLATION MOMENT OF TOP-10 CONTINGENCIES IN THE 68-BUS SYSTEM

it. The superscripts next to CM indicate whether the criterion of
rotor angle stability (marked with ) or the criterion of voltage
stability (marked with ) is met when the corresponding CM is
obtained.
As shown in Fig. 9, the CMs of bus-contingencies on average

are relatively smaller than those of the single-branch cases. In
other words, the duration in which the two models are consis-
tent with each other is relatively longer in single-branch cases.
This is reasonable as the tripping of buses usually do not follow
the security standard in cascading failures, and so they
may lead to more significant damage to the system stability and
results in earlier CM than the branches.
Meanwhile, for some branch contingencies (Branch 28 and

38), consistency between the two models remains through out
the whole cascading failure process. In these less complex cases,
the DC-CFS can be utilized for its computational efficiency in
cascading failure analysis. For the contingencies that did not
result in a cascading failure (indicated by Init.), there is no CM
between the two models, because the system always stays in a
steady state after the initial contingency.
Results of CMs for the 68-bus system can be found in Table I

with the same notation as in Fig. 9. The top-10 severe contin-
gencies all lead to subsequent cascading failures according to
the DC-CFS, and corresponding blackout sizes are com-
parably larger than that of the 39-bus system. It is also notable
that some single-branch contingencies yield identical CMs as
the single-bus contingencies in the 68-bus system, as each of
these branches is the only branch connecting the corresponding
bus to the rest of the power grid.
From Table I, it is also observed that the CMs in single-bus

contingencies are relatively short compared to single-branch
contingencies, which is consistent with the 39-bus system.
However, although the total number of CFEs becomes greater
in the 68-bus system, the CMs of the top-10 single-branch
contingencies turn out to be relatively smaller compared to
the 39-bus system. The major reason is that some generators
(e.g., Bus 12, 13, 14, 15, and 16) are providing at least 10 p.u.
of power to the rest of the grid, and the load of buses are also
significantly greater (e.g., 4 buses have load greater than 10
p.u., and the maximal load is as large as 60 p.u.). This causes
extremely imbalanced burden on a number of buses in the
68-bus system, while the rest of the grid operates in a state
with more redundancy. The contingencies triggered on these
components result in more severe damage to the system, and so

the stability is lost more easily compared to the 39-bus system
where no generator therein has an output greater than 10 p.u.
and the maximal load is only 11 p.u. In other words, as the CM
is defined by two stability criteria, it is thereby more likely to
observe a smaller CM of a given contingency if the contingency
leads to a greater impact to the system’s stability.
As a summary, when the oscillation or disturbance is con-

fined within a certain range, the power flow-based simulator can
well approximate the power system behavior. However, when
cascading failures continue to develop, the power flow-based
CFS can fail in capturing the actual power system behavior
as the steady-state assumption does not hold any more. In this
case, TSA models are more suitable for the simulation of power
system behavior so that proper critical control action can be
taken to address severe power grid disturbances. For very large
scale benchmarks with thousands of buses, criteria that render
a power grid has reached a system failure can also be consid-
ered alternative strategy to evaluate the impact or risk of cas-
cading failures. For instance, in the original CFS [29], the sim-
ulation of a cascading failure is terminated when the blackout
size reaches 10%, which can help limit the discrepancy caused
by the loss of dynamic stability in the system. The CM pro-
posed in this paper can be further developed and utilized to
determine such threshold of blackout size accordingly to take
the advantage of the simulation efficiency of DC-CFS for bulk
power systems. Meanwhile, as there is still a certain degree of
consistency between the DC-CFS and TSA models despite the
differences therein, the DC-CFS model can still be utilized for
applications such as early stage intervention and mitigation of
cascading failures, if the system has been designed with suffi-
cient stability margin, e.g., greater transmission capacity or fault
tolerance, against these severe single-component contingencies.

V. CONCLUSIONS

In this paper, we implemented a modified DC power
flow-based cascading failure simulator to evaluate its utiliza-
tion in the contingencies triggered by both bus and branch
failures. Simulations on the IEEE 39-bus system were pre-
sented to illustrate the utilization of DC-CFS from multiple
perspectives. Then simulation results of DC-CFS were com-
pared and validated against the TSA approach with two
benchmarks (IEEE 39-bus and 68-bus system) implemented in
power system analysis toolbox (PSAT). A new concept, i.e., the
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CM, is proposed and illustrated to measure important consis-
tencies and discrepancies between these two well-established
methodologies, which aims to facilitate a more comprehensive
understanding of cascading failures in power systems.
Although built with only DC power flow assumptions, the

DC-CFS is able to assess vulnerability of power grids in the
early stage of cascading failures, as discussed in the paper. In-
formative details of cascading failure development can be re-
vealed from different perspectives including the size, the con-
tributing factors and the duration of cascading failures. How-
ever, as the DC-CFS is utilizing the steady-state assumption to
replace the complex transient dynamics of power systems, if the
cascading failure violates the power system dynamic stability
principle, then the underlying steady-state assumption behind
DC-CFS will not hold and the simulator will fail to capture the
power system therein.
The CM presented in this paper illustrates the strength and

limitation of DC power flow-based steady-state model in cas-
cading failure analysis. As a model with a number of simplifi-
cations of complex power system dynamics, the DC-CFS cer-
tainly is able to acquire important information regarding the de-
velopment and final impact of cascading failures. However, as
discrepancy between these two models emerges in cascading
failure simulation when the impact to the system dynamic sta-
bility becomes significantly large, the DC power flow-based
models shall be carefully used to assess the impact of cascading
failures after severe system contingencies. It is notable that this
definition of CM can be further utilized for comparisons be-
tween other power system models, including the long term sto-
chastic models when proper timing information is provided.
It is also notable that the calculation of CM in this paper still

requires simulation of TSA model that will increase the compu-
tation overhead. While the major contribution of this paper is to
evaluate the discrepancy and consistence between two models
rather than to compete with pure DC-CFS on computation effi-
ciency, it is desirable that CM can be determined independently
for real world applications. This will be the primary focus of
our future work. Also, some of the parameters, e.g., the choice
of and in the calculation of , the ramping rate
in the re-dispatch procedure, and the branch capacity of

the benchmark system all have potential influence on the value
of CM [13], [40]. This reflects the complex nature of power
system and cascading failure itself, which will consist of our
focus in the next stage to evaluate the significance of their influ-
ence on CM. Furthermore, we will also consider an extension to
the AC power flow-based cascading failure simulator (AC-CFS)
and compare this complex-power based model to the TSA ap-
proach. Then a hybrid model of the AC-CFS and the TSAmodel
combining the strength of both models with proper visualization
[49] can be beneficial to power grid operators, on which more
comprehensive control policies and preventative techniques like
early warning signals [50] can be further developed.

REFERENCES

[1] A. Wang, Y. Luo, G. Tu, and P. Liu, “Vulnerability assessment
scheme for power system transmission networks based on the fault
chain theory,” IEEE Trans. Power Syst., vol. 26, no. 1, pp. 442–450,
Feb. 2011.

[2] Arizona-Southern California Outages on September 8, 2011: Causes
and Recommendations, Apr. 2012, Tech. Rep.

[3] Report of the Enquiry Committee on Grid Disturbance in Northern Re-
gion on 30th July 2012 and in Northern, Eastern & North-Eastern Re-
gion on 31st July 2012, Aug. 2012, Tech. Rep.

[4] X. Yu and C. Singh, “A practical approach for integrated power system
vulnerability analysis with protection failures,” IEEE Trans. Power
Syst., vol. 19, no. 4, pp. 1811–1820, Nov. 2004.

[5] Y. Zhu, J. Yan, Y. Sun, and H. He, “Revealing cascading failure vulner-
ability in power grids using risk-graph,” IEEE Trans. Parallel Distrib.
Syst., to be published.

[6] Y. Mo, T.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and
B. Sinopoli, “Cyber-physical security of a smart grid infrastructure,”
Proc. IEEE, vol. 100, no. 1, pp. 195–209, Jan. 2012.

[7] S. Sridhar, A. Hahn, and M. Govindarasu, “Cyber-physical system se-
curity for the electric power grid,” Proc. IEEE, vol. 100, no. 1, pp.
210–224, Jan. 2012.

[8] M. Vaiman, K. Bell, Y. Chen, B. Chowdhury, I. Dobson, P. Hines, M.
Papic, S. Miller, and P. Zhang, “Risk assessment of cascading outages:
Methodologies and challenges,” IEEE Trans. Power Syst., vol. 27, no.
2, pp. 631–641, May 2012.

[9] R. Baldick, B. Chowdhury, I. Dobson, Z. Dong, B. Gou, D. Hawkins,
H. Huang, M. Joung, D. Kirschen, F. Li, J. Li, Z. Li, C.-C. Liu, L.
Mili, S. Miller, R. Podmore, K. Schneider, K. Sun, D. Wang, Z. Wu, P.
Zhang, W. Zhang, and X. Zhang, “Initial review of methods for cas-
cading failure analysis in electric power transmission systems IEEE
PES CAMS task force on understanding, prediction, mitigation and
restoration of cascading failures,” in Proc. 2008 IEEE Power and En-
ergy Society General Meeting—Conversion and Delivery of Electrical
Energy in the 21st Century, 2008, pp. 1–8.

[10] M. Vaiman, K. Bell, Y. Chen, B. Chowdhury, I. Dobson, P. Hines, M.
Papic, S. Miller, and P. Zhang, “Risk assessment of cascading outages:
Part 1—Overview of methodologies,” in Proc. 2011 IEEE Power and
Energy Society General Meeting, Jul. 2011, pp. 1–10.

[11] M. Papic, K. Bell, Y. Chen, I. Dobson, L. Fonte, E. Haq, P. Hines, D.
Kirschen, X. Luo, S. Miller, N. Samaan, M. Vaiman, M. Varghese, and
P. Zhang, “Survey of tools for risk assessment of cascading outages,”
in Proc. 2011 IEEE Power and Energy Society General Meeting, Jul.
2011, pp. 1–9.

[12] J. Yan, Y. Zhu, H. He, and Y. Sun, “Multi-contingency cascading anal-
ysis of smart grid based on self-organizing map,” IEEE Trans. Inf.
Forensics Security, vol. 8, no. 4, pp. 646–656, 2013.

[13] J. Yan, H. He, and Y. Sun, “Integrated security analysis on cascading
failure in complex networks,” IEEE Trans. Inf. Forensics Security, vol.
9, no. 3, pp. 451–463, Mar. 2014.

[14] P. Hines, E. Cotilla-Sanchez, and S. Blumsack, “Topological models
and critical slowing down: Two approaches to power system blackout
risk analysis,” in Proc. 2011 44th Hawaii Int. Conf. System Sciences
(HICSS), 2011, pp. 1–10.

[15] P. Hines, E. Cotilla-Sanchez, and S. Blumsack, “Do topological
models provide good information about electricity infrastructure
vulnerability?,” Chaos: Interdiscipl. J. Nonlin. Sci., vol. 20, no. 3, pp.
033 122–033 122, 2010.

[16] M. Ouyang, “Comparisons of purely topological model, betweenness
based model and direct current power flow model to analyze power
grid vulnerability,” Chaos: Interdiscipl. J. Nonlin. Sci., vol. 23, no. 2,
p. 023114, 2013.

[17] I. Dobson, B. Carreras, V. Lynch, and D. Newman, “An initial
model of complex dynamics in electric power system blackouts,”
in Proc. 34th Annu. Hawaii Int. Conf. System Sciences, 2001, 2001,
pp. 710–718.

[18] S. Mei, F. He, X. Zhang, S. Wu, and G. Wang, “An improved OPA
model and blackout risk assessment,” IEEE Trans. Power Syst., vol.
24, no. 2, pp. 814–823, May 2009.

[19] J. Qi and S. Mei, “Blackout model considering slow process and SOC
analysis,” in Proc. 2012 IEEE Power and Energy Society General
Meeting, 2012, pp. 1–6.

[20] B. Carreras, D. Newman, I. Dobson, and A. Poole, “Evidence for self-
organized criticality in a time series of electric power system black-
outs,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 51, no. 9, pp.
1733–1740, 2004.

[21] I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “Com-
plex systems analysis of series of blackouts: Cascading failure, critical
points, and self-organization,” Chaos: Interdiscipl. J. Nonlin. Sci., vol.
17, no. 2, p. 026103, 2007.



296 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 30, NO. 1, JANUARY 2015

[22] B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman, “Critical
points and transitions in an electric power transmission model for cas-
cading failure blackouts,” Chaos: Interdiscipl. J. Nonlin. Sci., vol. 12,
no. 4, pp. 985–994, 2002.

[23] M. Rios, D. Kirschen, D. Jayaweera, D. Nedic, and R. Allan, “Value
of security: Modeling time-dependent phenomena and weather con-
ditions,” IEEE Trans. Power Syst., vol. 17, no. 3, pp. 543–548, Aug.
2002.

[24] D. Kirschen, D. Jayaweera, D. Nedic, and R. Allan, “A probabilistic
indicator of system stress,” IEEE Trans. Power Syst., vol. 19, no. 3,
pp. 1650–1657, Aug. 2004.

[25] I. Dobson, B. Carreras, and D. Newman, “A probabilistic loading-de-
pendent model of cascading failure and possible implications for black-
outs,” in Proc. 36th Annu. Hawaii Int. Conf. System Sciences, 2003,
2003, vol. 19, no. 01, pp. 15–32.

[26] B. Stott, J. Jardim, and O. Alsac, “Dc power flow revisited,” IEEE
Trans. Power Syst., vol. 24, no. 3, pp. 1290–1300, Aug. 2009.

[27] R. Zimmerman, C. Murillo-Sanchez, and R. Thomas, “Matpower:
Steady-state operations, planning, and analysis tools for power sys-
tems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12–19, Feb. 2011.

[28] R. Baldick, “Variation of distribution factors with loading,” IEEE
Trans. Power Syst., vol. 18, no. 4, pp. 1316–1323, Nov. 2003.

[29] M. Eppstein and P. Hines, “A “random chemistry” algorithm for iden-
tifying collections of multiple contingencies that initiate cascading
failure,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1698–1705, Aug.
2012.

[30] P. Kundur, Power System Stability and Control. Noida, India: Tata
McGraw-Hill Education, 1994.

[31] D. N. Kosterev, C.W. Taylor, andW. A.Mittelstadt, “Model validation
for the August 10, 1996 WSCC system outage,” IEEE Trans. Power
Syst., vol. 14, no. 3, pp. 967–979, Aug. 1999.

[32] R. Zarate-Minano, T. Van Cutsem, F. Milano, and A. Conejo, “Se-
curing transient stability using time-domain simulations within an
optimal power flow,” IEEE Trans. Power Syst., vol. 25, no. 1, pp.
243–253, Feb. 2010.

[33] Y. Xu, Z.-Y. Dong, K. Meng, J. H. Zhao, and K. P. Wong, “A hybrid
method for transient stability-constrained optimal power flow compu-
tation,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1769–1777, Nov.
2012.

[34] H. Ren, I. Dobson, and B. Carreras, “Long-term effect of the n-1 crite-
rion on cascading line outages in an evolving power transmission grid,”
IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1217–1225, Aug. 2008.

[35] Final Report on the August 14, 2003 Blackout in the United States and
Canada: Causes and Recommendations, Apr. 2004, Tech. Rep.

[36] R. Pfitzner, K. Turitsyn, and M. Chertkov, “Statistical classification
of cascading failures in power grids,” in Proc. 2011 IEEE Power and
Energy Society General Meeting, 2011, pp. 1–8.

[37] R. Pfitzner, K. Turitsyn, and M. Chertkov, “Controlled Tripping of
Overheated Lines Mitigates Power Outages,” ArXiv e-prints, Apr.
2011.

[38] D. Bienstock, “Optimal adaptive control of cascading power grid fail-
ures,” ArXiv e-prints, Dec. 2010.

[39] Y. Fu, M. Shahidehpour, and Z. Li, “Ac contingency dispatch based on
security-constrained unit commitment,” IEEE Trans. Power Syst., vol.
21, no. 2, pp. 897–908, May 2006.

[40] J. Yan, Y. Zhu, H. He, and Y. Sun, “Revealing temporal features of
attacks against smart grid,” in Proc. 2013 IEEE PES Innovative Smart
Grid Technologies (ISGT), pp. 1–6, to be published.

[41] Y. Zhu, J. Yan, Y. Sun, and H. He, “Risk-aware vulnerability analysis
of electric grids from attacker’s perspective,” in Proc. 2013 IEEE PES
Innovative Smart Grid Technologies (ISGT), pp. 1–6, to be published.

[42] J. Arroyo and A. Conejo, “Modeling of start-up and shut-down power
trajectories of thermal units,” IEEE Trans. Power Syst., vol. 19, no. 3,
pp. 1562–1568, Aug. 2004.

[43] Invitation for Low Cost Renewable Energy Projects on Oahu Through
Request for Waiver From Competitive Bidding, Feb. 2013 [Online].
Available: http://www.hawaiianelectric.com/vcmcontent/Genera-
tionBid/HECO/CompetitiveBid/ATTACHMENT_1.pdf

[44] F. Milano, “An open source power system analysis toolbox,” IEEE
Trans. Power Syst., vol. 20, no. 3, pp. 1199–1206, Aug. 2005.

[45] M. Pai, Energy Function Analysis for Power System Stability. New
York, NY, USA: Springer, 1989.

[46] A. Karami and S. Esmaili, “Transient stability assessment of power
systems described with detailed models using neural networks,” Int. J.
Elect. Power Energy Syst., vol. 45, no. 1, pp. 279–292, 2013.

[47] B. Pal and B. Chaudhuri, Robust Control in Power Systems. New
York, NY, USA: Springer, 2005.

[48] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C.
Canizares, N. Hatziargyriou, D. Hill, A. Stankovic, C. Taylor, T.
Van Cutsem, and V. Vittal, “Definition and classification of power
system stability IEEE/CIGRE joint task force on stability terms and
definitions,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1387–1401,
Aug. 2004.

[49] J. Yan, Y. Yang, W. Wang, H. He, and Y. Sun, “An integrated visual-
ization approach for smart grid attacks,” in Proc. 2012 3rd Int. Conf.
Intelligent Control and Information Processing (ICICIP), Jul. 2012,
pp. 277–283.

[50] H. Ren, X. Fan, D. Watts, and X. Lv, “Early warning mechanism for
power system large cascading failures,” in Proc. 2012 IEEE Int. Conf.
Power System Technology (POWERCON), 2012, pp. 1–6.

Jun Yan (S’13) received the B.S. degree in informa-
tion and communication engineering from Zhejiang
University, Hangzhou, China, in 2011 and the M.S.
degree in electrical engineering from the University
of Rhode Island, Kingston, RI, USA, in 2013. He is
currently pursuing the Ph.D. degree in the Depart-
ment of Electrical, Computer and Biomedical Engi-
neering at the University of Rhode Island.
His research interest includes smart grid security

analysis, cyber-physical systems and cyber-security,
data analysis, computer vision, behavior analysis,

computational intelligence, and machine learning. He works with the Labora-
tory of Computational Intelligence and Self-Adaptive Systems (CISA).

Yufei Tang (S’13) received the B.Eng. and M.Eng.
degrees in electrical engineering from Hohai Univer-
sity, Nanjing, China, in 2008 and 2011, respectively.
He is currently pursuing the Ph.D. degree at the
Department of Electrical, Computer, and Biomedical
Engineering, University of Rhode Island, Kingston,
RI, USA.
His research interests include power system

modeling, power system stability control, wind
energy generation and integration, smart grids,
power system cyber security, and the application of

computational intelligence in power systems.

Haibo He (SM’11) received the B.S. and M.S. de-
grees in electrical engineering from Huazhong Uni-
versity of Science and Technology (HUST), Wuhan,
China, in 1999 and 2002, respectively, and the Ph.D.
degree in electrical engineering from Ohio Univer-
sity, Athens, OH, USA, in 2006.
From 2006 to 2009, he was an Assistant Professor

in the Department of Electrical and Computer Engi-
neering, Stevens Institute of Technology, Hoboken,
NJ, USA. He is currently the Robert Haas Endowed
Professor in Electrical Engineering at the University

of Rhode Island, Kingston, RI, USA. His research interests include smart grid,
cyber security, cyber physical systems, adaptive dynamic programming (ADP),
machine learning, and computational intelligence and applications. He has pub-
lished one research book (Wiley), edited 1 research book (Wiley-IEEE) and
6 conference proceedings (Springer), and authored and co-authored over 140
peer-reviewed journal and conference papers. His researches have been cov-
ered by national and international media such as IEEE Smart Grid Newsletter,
The Wall Street Journal, and Providence Business News.
Prof. He is currently an Associate Editor of the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS and the IEEE TRANSACTIONS
ON SMART GRID. He was the recipient of the IEEE Computational Intelligence
Society (CIS) Outstanding Early Career Award (2014), K. C. Wong Research
Award, Chinese Academy of Sciences (2012), National Science Foundation
(NSF) CAREER Award (2011), Providence Business News (PBN) “Rising Star
Innovator” Award (2011), and Best Master Thesis Award of Hubei Province,
China (2002).



YAN et al.: CASCADING FAILURE ANALYSIS WITH DC POWER FLOW MODEL AND TRANSIENT STABILITY ANALYSIS 297

Yan (Lindsay) Sun (M’04) received the B.S. degree
with the highest honor from Peking University, Bei-
jing, China, in 1998, and the Ph.D. degree in elec-
trical and computer engineering from the University
of Maryland, College Park, MD, USA, in 2004.
She joined the University of Rhode Island,

Kingston, RI, USA, in 2004, where she is currently
an Associate Professor in the Department of Elec-
trical, Computer and Biomedical Engineering. Her
research interests include cyber security, trustworthy
cyber-physical systems, and network security. She

co-authored the book Network-Aware Security for Group Communications
(New York, NY, USA: Springer, 2007).
Dr. Sun is an elected member of the Information Forensics and Security Tech-

nical Committee (IFS-TC), in the IEEE Signal Processing Society. She has been
an associate editor of the IEEE SIGNAL PROCESSING LETTERS since 2013, and
an associate editor of Inside Signal Processing eNewsletter since 2010. She
was the recipient of NSF CAREER Award (2007), and also recipient of the
best paper award at the IEEE International Conference on Social Computing
(SocialCom’10).


