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Abstract

Traditional energy detection algorithm is bad in anti-noise. In this paper, the relationship of energy
detection performance and detection sensitivity with average noise power fluctuation in short time is
investigated. Detection performance and detection sensitivity drops quickly with the increment of average
noise power fluctuation and becomes worse in low signal-to-noise ratio. To the characteristic, a new
energy detection algorithm based on dynamic threshold is presented. Theoretic results and simulations
show that the proposed scheme removes the falling proportion of performance and detection sensitivity
caused by the average noise power fluctuation with a choice threshold, and also improves the antagonism
of the average noise power fluctuation in short time and obtains a good performance. Detection sensitivity
and performance improves as the dynamic threshold factor increasing.
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1 Introduction

Cognitive radio spectrum sensing under cognitive problems is that the cognitive user can detect
the signal in time and feedback the existence or else when an authorized user sends a signal.
Clearly, the spectrum sensing affects largely the accuracy of the authorized user and cognitive
user communication quality. Spectrum sensing algorithm is better robustness against noise, i.e.,
the disruption to authorized users is lower. So the sensing scheme in low SNR environment
will be an important focus. Most programs now are based on the energy detection, and the
energy detection scheme is sensitive to noise, small fluctuations in noise power may cause a sharp
decline in energy detection performance. Most energy detection schemes are based on constant
noise power [1-6], also same papers research on non-constant noise power [11-15]. In fact this is
not possible because of the background noise by the thermal noise, quantization noise, and the
non-ideal filter due to power leakage, interference between authorized users, cognitive interference
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between users and other components. Thus, the noise in the detection time can not be a constant;
otherwise, noise average power is fluctuation.

2 Energy Detection Model Description

Assume the signal is independent of the noise. Random processes are also assumed to be stationary
and ergodic unless otherwise specified. The problem of signal detection in additive Gaussian noise
can be formulated as a binary hypothesis testing problem with the following hypotheses:{

H0 : Y (n) = W (n), n = 1, 2, . . . , N ;

H1 : Y (n) = X(n) +W (n), n = 1, 2, . . . , N.
(1)

Where Y (n), X(n) and W (n) are the received signals at CR nodes, transmitted signals at primary
nodes and white noise samples, respectively; H1 and H0 stand for the decision that the licensed
user is present or not, respectively. Noise samples W (n) are from additive white Gaussian noise
process with power spectral density σ2

n, i.e. W (n) ∼ N (0, σ2
n).

Assume absolutely there is no deterministic knowledge about the signal X(n) besides the av-
erage power of the signal. In this case the optimal detector is an energy detector or a radiometer
[8], the test statistic is given by:

D(Y ) =
1

N

N−1∑
n=0

Y 2(n)
H1

≷
H0

γ (2)

WhereD(Y ) is the decision variable and γ is the decision threshold, N is the number of samples. If
the noise variance is known and no noise uncertainty, the central limit theorem gives the following
approximations [7][8]: {

D(Y ) | H0 ∼ N
(
σ2
n,

2
N
σ4
n

)
;

D(Y ) | H1 ∼ N
(
P + σ2

n,
2
N
(P + σ2

n)
2
)
.

(3)

Where P =
∑N

n=1 |X(n)|2/N is the average signal power, σ2
n is the noise variance. With these

approximations, one obtains the detection probability PD and false alarm probability PFA [7][8]:

PD = prob (D(Y ) > γ | H1) = Q

γ − (P + σ2
n)√

2
N
(P + σ2

n)

 (4)

PFA = prob (D(Y ) > γ | H0) = Q

γ − σ2
n√

2
N
σ2
n

 (5)

Where Q(·) is the standard Gaussian complementary cumulative distribution function (CDF).
PD, PFA and PMD represent detection probability, false alarm probability and missed detection
probability, respectively.
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3 Noise Average Power Fluctuation and Detection

Performance

To simplify the problem, energy detection algorithm based on average noise power without un-
certainty has been discussed. United (4) and (5), eliminate the variable of decision threshold γ,
and we can get:

N = 2[Q−1(PFA)−Q−1(PD)(1 + SNR)]2SNR−2 (6)

Where Q−1 is the inverse standard Gaussian complementary cumulative distribution function
(CDF), SNR = P/σ2

n is the signal-to-noise ratio.

Set the variables used in Fig. 1, i.e., Signal-to-noise ratio SNR; Detection probability PD;
Probability of false alarm PFA; Number of samples N with following numerical values: SNR=0.1,
denoted in dB is snr=10 lg(SNR)=-10 (dB), false alarm probability PFA ∈ (0, 0.5). Fig. 1 is
the numerical results of (6). It shows that the performance has been improved gradually as N
increases, and an accurate detection probability can be obtained even if the SNR is lower, as long
as N is large enough without noise uncertainty. In other words, a weak signal can be detected.
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Fig. 1: PD VS. PFA
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Fig. 2: PD VS. PFA

We have discussed and analyzed the case without noise uncertainty. Now, consider the case
with uncertainty in the noise model. The variance of noise with uncertainty can be included in a
single interval σ2 ∈ [σ2

n/ρ, ρσ
2
n], where ρ is the noise uncertainty factor and the value of ρ is closer

to 1, that is ρ > 1 and ρ ≈ 1. Thus (4) and (5) are modified to get:

PD = min
σ2∈[σ2

n/ρ,ρσ
2
n]
Q

(
γ − (P + σ2)√
2/N (P + σ2)

)
= Q

(
γ − (P + σ2

n/ρ)√
2/N (P + σ2

n/ρ)

)
(7)

PFA = max
σ2∈[σ2

n/ρ,ρσ
2
n]
Q

(
γ − σ2√
2/Nσ2

)
= Q

(
γ − ρσ2

n√
2/Nρσ2

n

)
(8)

Eliminate γ and we can get the expression of PD, PFA, N , ρ and SNR:

N = 2
[
ρQ−1 (PFA)− (1/ρ+ SNR)Q−1 (PD)

]2
(SNR− (ρ− 1/ρ))−2 (9)
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Comparing (9) with (6), by the property of Q−1(·) and ρ ≈ 1, therefore, there is almost no
contribution to the whole expression results if there is a tiny change of ρ; however, the second
half, i.e. SNR−2 and (SNR− (ρ− 1/ρ))−2 should be mainly discussed and compared. When
ρ ≈ 1, then SNR ≈ (SNR− (ρ− 1/ρ))−2, the numerical value of (9) and (6) are almost the same;
When ρ is larger and suppose ρ = 1.05, then (ρ − 1/ρ) = 0.0976 ≈ 0.1, if SNR= 0.1, well then
(SNR− (ρ− 1/ρ))−2 ≈ 0, substituting into equation (9) to be N → ∞. In other words, only an
infinite detection duration can complete detection, which is impracticable. A tiny fluctuation of
average noise power causes performance drop seriously, especially with a lower SNR.

Fig. 2 is the numerical results of 9), set parameters before simulation as this: SNR= 0.1,
expressed in dB is snr= 10 lg(SNR) = −10 (dB), PFA ∈ (0, 0.5) and N = 1000.

In Fig. 2, ρ = 1.00 represents the case without noise uncertainty, namely the average noise
power keeps constant in short time. We can see that the performance gradually drops as the
noise uncertainty factor increasing. When ρ = 1.05, the performance dropped seriously. For
example, if PFA = 0.1, then PD < 0.30, even when PFA = 0.5, the detection probability is still
less than 40%. It means that rental users decide the spectrum is idle no matter whether there are
primary users present. Consequently, rental users will be harmful to licensed users when primary
users are present. This situation often occurs in cognitive radio systems, particularly in lower
signal-to-noise ratio environments.

This illustrates that Energy detector is very sensitive to noise uncertainty. In order to guarantee
a good performance, choosing a suitable threshold is very important. Traditional energy detection
algorithms are based on a fixed threshold, and we have verified that the performance decreased
under noise uncertainty environments. This show that the choice of a fixed threshold is no longer
valid under noise uncertainty and threshold should be chosen flexible as necessary. In next section,
energy detection algorithm based on dynamic threshold will be discussed in detail.

4 Noise Average Power Fluctuation and Detection

Sensitivity

By comparing (6) with (9), since ρ is close to 1, so the two equations of the first half of the
results has few effects on the entire expression. We focus on the relationship between the second
half SNR−2 and (SNR(ρ− 1/ρ))−2. When ρ ≈ 1, SNR−2 ≈ (SNR(ρ− 1/ρ))−2, (6) and (9) is
almost the same; when ρ is larger, such as ρ = 1.05, (ρ − 1/ρ) ≈ 0.1. In the low SNR case and
SNR=0.1, (SNR(ρ− 1/ρ))−2 ≈ 0, N → ∞, this manifests that the detection duration is infinite.
It is impossible to realize, especially in the low SNR environment. This shows in the cognitive
radio systems, cognitive performance is influenced greatly by the noise average power fluctuation
and the signal to noise ratio with noise average power fluctuations and detection duration have a
close relation.

Next, the relationship of noise average power fluctuations factor, detection length, received
signal to noise ratio and sensitivity will be studied. Define the detection sensitivity SNRs =
ρ−1/ρ, in (9), if the signal to noise ratio cognitive radio received satisfies SNR= (ρ−1/ρ) ≈ 0, it
can not complete the detection even if test duration long infinitely. Therefore, SNR=SNRs. Let
S = 10 lg(ρ− 1/ρ) = 10 lg(SNRs) with dB, so the detection sensitivity is the signal to noise ratio
threshold SNRs. If the signal to noise ratio cognitive user received SNR is lower than SNRs, then
one can not complete the spectrum sensing no matter how long sensing time takes.
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Fig. 3: 10 lgN VS. SNR (dB)
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Fig. 4: 10 lgN VS. SNR (dB)

Set the expected detection performance before discussion, detection probability PD = 0.9 and
false alarm probability PFA = 0.1. When ρ = 1.000, 10 lg(ρ) = 0 (dB), S → −∞ (dB); if
ρ = 1.002, 10 lg(ρ) = 0.0087 (dB), S ≈ −23.98 (dB); if ρ = 1.020, 10 lg(ρ) = 0.086 (dB),
S ≈ −14.02 (dB); when ρ = 1.200, 10 lg(ρ) = 0.7918 (dB), S ≈ −4.36 (dB). Fig. 3 shows
the relation of detection sensitivity with detection duration and noise average power fluctuation
factor. From Fig. 3, one can see that the cognitive user detection sensitivity of the spectrum will
be very high, as long as the detection duration long enough when ρ = 1.0 and the cognitive user
is able to detect any low power signal without introducing interference to the authorized user.
If ρ = 1.002, the cognitive user detection sensitivity is -23.98 (dB), in other words, when the
cognitive user receives the signal to noise ratio below -23.98 (dB), then cognitive user declares
there is no authorized users in this band, if cognitive users occupied by the spectrum at this
time will cause interference to the authorized users. When ρ = 1.020, the sensitivity of sensing
is -14.02 (dB), that is, when the SNR the second user received is lower than -14.02 (dB), the
cognitive user decides this band can dynamically access. If ρ = 1.200, the sensitivity of detection
is -4.36 (dB), that is, when the SNR the second user received is below -4.36 (dB), the cognitive
user considers this band are idle. Thus, the detection sensitivity of cognitive user declines with
the noise average power fluctuation factor increased, especially in low SNR environment. If there
is a big undulation, such as, ρ = 1.200, the spectral sensing sensitivity is higher than -4.36 (dB),
which is fatal for cognitive radio. As in [7] and [10], cognitive radio detection sensitivity should be
up to -22 (dB) for the authorization system ATSC (the Advanced Television Systems Committee).

5 Dynamic Threshold Algorithm

Noise average power fluctuation causes the decline of sensing sensitivity, which makes the de-
tection accuracy drop quickly, and introduces cognitive user interference to the authorized users.
Motivated by this, we present a dynamic threshold algorithm based on energy detection to repress
the influence of noise fluctuation and improve the detection sensitivity.

Let ρ represent the noise average power fluctuation factor and the average power σ2 ∈ [σ2
n/ρ, ρσ

2
n],
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then PD and PFA are:

PD = min
γ′∈[γ/ρ′,ρ′γ]

min
σ2∈[σ2

n/ρ,ρσ
2
n]
Q

γ′ − (P + σ2)√
2
N
(P + σ2)

 = Q

γ/ρ′ − (P + σ2
n/ρ)√

2
N
(P + σ2

n/ρ)

 (10)

PFA = max
γ′∈[γ/ρ′,ρ′γ]

max
σ2∈[σ2

n/ρ,ρσ
2
n]
Q

γ′ − σ2√
2
N
σ2

 = Q

ρ′γ − ρσ2
n√

2
N
ρσ2

n

 (11)

Eliminating γ yields:

N =
2 [(ρ/ρ′)Q−1(PFA)− ρ′(1/ρ+ SNR)Q−1(PD)]

2(
ρ′SNR + ρ′

ρ
− ρ

ρ′

)2 (12)

In (10), when ρ′ ≈ ρ, ρ′(1/ρ + SNR) ≈ (1 + SNR and
(
ρ′SNR + ρ′

ρ
− ρ

ρ′

)−2

≈ (SNR)−2.

Substituting these approximate expressions into (12) and comparing it with (6), one can see
that (12) and (6) are almost the same at this time. Therefore, the degradation of detection
performance caused by noise average power fluctuation can be completely eliminated with a

choice dynamic threshold factor. Comparing (12) with (9), one gets
(
ρ′SNR + ρ′

ρ
− ρ

ρ′

)−2

≈ SNR

and
(
ρ′SNR + ρ′

ρ
− ρ

ρ′

)−2

≫ [SNR− (ρ− 1/ρ)]−2 in low SNR environment. Therefore, to achieve

the same detection performance, the detection duration of dynamic threshold detection scheme
is significantly shorter.

Set the expected detection performance PD = 0.9 and PFA = 0.1. As discussed earlier in
Section III, the detection sensitivity S is about -14.02 (dB) when ρ = 1.020 and ρ′ = 1.000. In
this section, the dynamic threshold algorithm based on energy detection is introduced. Let Sd be
detection sensitivity and ρ = 1.020 unchanged. The relationship between Sd and ρ′/ρ − ρ/ρ′ is
discussed with different dynamic threshold factors. If ρ′ = 1.020, then Sd = 10 lg(ρ′/ρ− ρ/ρ′) →-
∞ (dB), the degradation of detection performance caused by noise average power fluctuation can
be completely eliminated. If ρ′ = 1.015 (dB), then Sd ≈ −20.08 (dB), thus Sd − S = −6.06
(dB), the detection sensitivity increases about 6.06 (dB). If ρ′ = 1.010, then Sd ≈ −17.05 (dB)
and Sd − S = −3.03 (dB), the sensing sensitivity increases about 3.03 (dB). If ρ′ = 1.000, then
Sd ≈ −14.02 (dB), which is equivalent to the result without dynamic threshold, so the detection
sensitivity unchanged, as shown in Fig. 4.

Fig. 5 is the numerical results of (6), (9) and (12). Set the parameters N = 1000 and SNR=0.1
(-10 dB). The performance curve marked with ‘▹’ corresponds to constant noise average power
and without adopting the dynamic threshold algorithm, i.e., ρ = ρ′ = 1.000. Curve Labeled with
‘∗’ corresponds to the noise average power fluctuation and not using dynamic threshold detection
algorithm, here ρ = 1.002 and ρ′ = 1.000. The curve marked with ‘◃’ represents the average noise
power fluctuation factor ρ = 1.020 and the dynamic threshold factor ρ′ = 1.015. The curve with
‘◦’ represents ρ = 1.020 and ρ′ = 1.010. It is shown in Fig. 5 that the dynamic threshold detection
algorithm based on energy detection improves the rivalry of noise average power fluctuation. It
is very useful for energy detection algorithm to solve the vulnerability to noise-sensitive. This
method significantly increases the robustness against noise average power fluctuation without
increasing the detection duration, that is, the introduction of dynamic threshold improves the
detection performance in the noise average power fluctuation environment.
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Fig. 6: Performance curves

6 Simulation Result

To further validate the above analysis, Fig. 6 is the computer Monte Carlo simulation result.
In the processing, 5 × 105 signals were used and the authorize users to use the probability of
channel is 50%. Noise is AWGN. Simulation parameter settings: computer environment is SNR
∈ (−10, 10) (dB), false alarm probability is PFA = 0.01, detection duration is N = 500, the
average noise power fluctuation factor is ρ = 1.02.

In Fig. 6, curve labeled ‘△’ is the fixed threshold detection algorithm, that is dynamic threshold
factor is ρ′ = 1.00; and ‘∗’ curve correspond to the dynamic threshold detection algorithm and
the dynamic threshold factor is ρ′ = 1.01; Marked ‘◃’ is the curve correspond to the dynamic
threshold factor is ρ′ = 1.04; The last curve is ρ′ = 1.05 and labeled with ‘◦’.
From the figure we can see that when the noise is fluctuation, the dynamic threshold algorithm

is superior to fixed threshold energy detection scheme. With the dynamic threshold factor value
increases, detection performance improved significantly. The range of dynamic threshold factor
increases is relatively small, while detection performance trends are obvious. When SNR close
to 0 (dB), the value of dynamic threshold detection probability is better than fixed threshold
detection probability is [0.08 0.17 0.23]. It is very helpful to improve cognitive radio system
detection performance, especially work in low SNR environment.

Theoretical analysis and simulation results show that the dynamic threshold energy detection
algorithm has a better robustness of anti-noise average power fluctuations.

7 Conclusion

In this paper, the relationship of energy detection performance with detection duration, detec-
tion sensitivity and noise average power fluctuation in short time is investigated. A fractional
fluctuation of noise average power in short time will result in quick drop of spectrum detection
performance and sensing sensitivity. In low SNR environment, the noise power average fluctuation
increases to a certain extent, even if the detection duration is infinite long, it can not complete cor-
rect spectrum sensing. To the characteristic, a new energy detection algorithm based on dynamic
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threshold is presented. Theoretic results and simulations show that the proposed scheme improves
antagonism of noise average power fluctuation in short time with a good detection performance
as long as we choose a suitable dynamic threshold, and improves the detection sensitivity visibly.
In other words, the proposed scheme enhances the robustness of against noise and improves the
capacity of spectrum sensing and detection sensitivity.
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