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Abstract

Incorporating multi-scale features to deep convolutional
neural networks (DCNNs) has been a key element to achieve
state-of-art performance on semantic image segmentation
benchmarks. One way to extract multi-scale features is by
feeding several resized input images to a shared deep net-
work and then merge the resulting multi-scale features for
pixel-wise classification. In this work, we adapt a state-
of-art semantic image segmentation model with multi-scale
input images. We jointly train the network and an attention
model which learns to softly weight the multi-scale features,
and show that it outperforms average- or max-pooling over
scales. The proposed attention model allows us to diagnos-
tically visualize the importance of features at different posi-
tions and scales. Moreover, we show that adding extra su-
pervision to the output of DCNN for each scale is essential
to achieve excellent performance when merging multi-scale
features. We demonstrate the effectiveness of our model
with exhaustive experiments on three challenging datasets,
including PASCAL-Person-Part, PASCAL VOC 2012 and a
subset of MS-COCO 2014.

1. Introduction

Semantic image segmentation, also known as image la-
beling or scene parsing, relates to the problem of assigning
semantic labels (e.g., “person” or “dog”) to every pixel in
the image. It is one of the challenging tasks for scene un-
derstanding in computer vision. Recently, many methods
[5, 8, 24, 27, 32, 43] based on Fully Convolutional Net-
works (FCNs) [28] demonstrate astonishing results on sev-
eral semantic segmentation benchmarks.

Looking into the literature, we found that one of the key
elements of successful semantic segmentation models is the
employment of multi-scale features [11, 17, 24, 28, 31, 35].
For semantic segmentation, there are two main successful
types of networks to exploit multi-scale features [42]. The
first type, which we refer to as skip-net, combines features
from the intermediate layers of Deep Convolutional Neu-
ral Networks (DCNNGs) [5, 17, 28, 31]. The features within
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Figure 1. Model illustration. Attention model learns to put differ-
ent weights on objects of different scales. For example, our model
learns to put large weight on the small-scale person (green dashed
circle) for features from scale = 1, and large weight on the big-
scale child (magenta dashed circle) for features from scale = 0.5.
We jointly train the DCNN component and the attention model.

the DCNN are multi-scale in nature due to the increasingly
larger receptive field sizes. The second type, which we re-
fer to as share-net, feeds multi-scale inputs (i.e., resize the
input image to several scales) to a shared network [11, 24].

For skip-net, a two-step training process is usually em-
ployed [5, 17, 28, 31]. That is, the deep network backbone
is firstly trained and then fixed or slightly fine-tuned during
multi-scale feature extraction. The problem with this strat-
egy is that the training process is not ideal (i.e., classifier
training and feature-extraction are separate) and the train-
ing time is usually long (e.g., three to five days [28]).

For share-net, the input image is resized to several scales
and each is passed through a shared deep network. The
final prediction is then based on the fusion of the result-
ing multi-scale features [ 1, 24]. Share-net does not need
the two-step training process mentioned above. Average- or
max-pooling over scales are usually employed [7, &, 12, 34].
In this work, we propose to generalize average- and max-
pooling. Our method not only yields better performance
over baselines but also allows us to visualize which feature
at which scale contributes to the classification most.

In particular, we employ an attention model [3] to gen-
eralize average- or max-pooling over scales, as shown in
Fig. 1. The proposed attention model learns to weight the
multi-scale features according to the object scales presented
in the image (e.g., the model learns to put large weights



on features at coarse scale for large objects). In the ex-
periments, we explore a state-of-art semantic segmentation
model [5]. We adapt it to be a type of share-net and incorpo-
rate an attention model to it. The attention model as well as
the DCNN component is jointly trained. For each scale, the
attention model outputs a weight map which weights the ac-
cordingly features pixel-by-pixel, and by which we are able
to visualize the importance of features at different positions
and different scales. The weighted sum of DCNN-produced
score maps from each scale is then used for classification.

Motivated by [4, 23, 39, 42], we further introduce ex-
tra supervision to the output of DCNN for each scale. We
find that introducing extra supervision is essential for our
model to attain better performance. We demonstrate the ef-
fectiveness of our model on challenging datasets, including
PASCAL-Person-Part [6], PASCAL VOC 2012 [10], and a
subset of MS-COCO 2014 [25]. The experimental results
show that our proposed methods consistently improve over
strong baselines. Moreover, we demonstrate that our model
generalizes well to other dataset by applying our model
trained on PASCAL-Person-Part to some videos from MPII
Human Pose dataset [1].

2. Related Works

Our model draws on the success of several areas, includ-
ing deep networks, multi-scale features for semantic seg-
mentation, and attention models.

Deep networks: Deep Convolutional Neural Networks
(DCNNG5) [22] have demonstrated state-of-art performance
on several computer vision tasks, including image classifi-
cation [21, 37, 38, 39, 34] and object detection [ 14, 18]. For
the semantic image segmentation task, state-of-art methods
are basically variants of the fully convolutional neural net-
works [28], including [5, 8, 24, 32, 43]. In particular, our
method builds upon the current state-of-the-art DeepLab

model [5].
Multi-scale features: It is known that multi-scale fea-
tures are useful for computer vision tasks, e.g., [2, 13]. In

the context of deep networks for semantic segmentation, we
mainly discuss two types of networks that exploit multi-
scale features. The first type, skip-net, exploits features
from different levels of the network. For example, FCN-
8s [28] gradually learns finer-scale prediction from lower
layers (initialized with coarser-scale prediction). Hariharan
et al. [17] classified a pixel with hypercolumn representa-
tion (i.e., concatenation of features from intermediate lay-
ers). Mostajabi ef al. [31] classified a superpixel with fea-
tures extracted at zoom-out spatial levels from a small prox-
imal neighborhood to whole image region. DeepLab-MSc
(DeepLab with Multi-Scale features) [5] applied Multi-
Layer Perceptrons (MLPs) to the input image and to the
outputs of pooling layers, in order to extract multi-scale fea-
tures. ParseNet [260] aggregated features over the whole im-
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(a) skip-net (b) share-net
Figure 2. Differnet network structures for extracting multi-scale
features: (a) Skip-net: features from intermediate layers are fused
to produce the final output. (b) Share-net: multi-scale inputs
are applied to a shared network for prediction. In this work,
we demonstrate the effectiveness of the share-net when combined
with attention mechanisms over scales.

age to provide global contextual information.

The second type, share-net, applies multi-scale input im-
ages to a shared network. For example, Farabet ef al. [11]
employed a Laplacian pyramid, passed each scale through
a shared network, and fused the features from all the scales.
Lin et al. [24] resized the input image for three scales and
concatenated the resulting three-scale features to generate
the unary or pairwise potential of a Conditional Random
Field (CRF). Pinheiro et al. [35], instead of applying multi-
scale input images at once, fed multi-scale images at differ-
ent stages of recurrent convolutional neural network. This
share-net strategy has also been employed at the test stage
for better performance by Dai et al. [§]. In this work, we
extend DeepLab [5] to be a type of share-net and demon-
strate its effectiveness on three challenging datasets. Note
that Eigen and Fergus [9] applied input image to DCNNs
at three scales from coarse to fine squentially. The DCNNs
at different scales have different structures, and a two-step
training process is required for their model.

Attention models for deep networks: Mnih ez al. [30]
learn an attention model, which adaptively selects image
locations for processing. However, their attention model
is not differentiable, which is necessary for standard back-
propagation during training. On the other hand, Gregor et
al. [15] employ a differentiable attention model to spec-
ify where to read/write image regions for image generation.
For machine translation, Bahdanau et al. [3] propose an at-
tention model that softly weights the importance of words
in a source sentence when predicting a target word.

Attention to scale: To merge the predictions from
multi-scale features, there are two common ways: average-
pooling [7, 8] or max-pooling [12, 34] over scales. Moti-
vated by [3], we propose to jointly learn an attention model
that softly weights the features from different input scales



when predicting the semantic label of a pixel. The final
output of our model is produced by the weighted sum of
score maps across all the scales. We show that the pro-
posed attention model not only improves the performance
over average- and max-pooling, but also allows us to di-
agnostically visualize the importance of features at differ-
ent positions and scales, which separates us from existing
works on exploiting multi-scale features for semantic seg-
mentation.

3. Model

In this section, we first review the publicly available
model, DeepLab, which we build upon with proposed meth-
ods. After that, we introduce the attention model, which
weights features at different scales, and then how we fur-
ther improve the performance by adding extra supervision.

3.1. Review of DeepLab

DCNNSs have proven successful in semantic image seg-
mentation [8, 27, 43]. In this subsection, we briefly review
the DeepLab model [5], which is a variant of FCNs [28].

DeepLab adopts the 16-layer architecture of state-of-art
classification network of [38] (i.e., VGG-16 net). The net-
work is modified to be fully convolutional [28], producing
dense feature maps. In particular, the last fully-connected
layers of original VGG-16 net are turned into convolutional
layers (e.g., the last layer has a spatial convolutional kernel
with size 1x1). The spatial decimation factor of the original
VGG-16 net is 32 because of the employment of five max-
pooling layers and each with stride 2. DeepLab reduces it
to 8 by using the a trous (with holes) algorithm [29], and
employs linear interpolation to upsample by a factor of 8
the score maps of the final layer to original image resolu-
tion. There are several variants of DeepLab [5]. In this
work, we mainly focus on DeepLab-LargeFOV. The suffix,
LargeFOV, comes from the fact that the model adjusts the
filter weights at the convolutionalized fcg (fcg is the orig-
inal first fully connected layer in VGG-16 net) with a trous
algorithm so that its Field-Of-View is larger.

3.2. Attention model for scales

Herein, we discuss how to merge the multi-scale features
for our proposed model. We propose an attention model that
learns to weight the multi-scale features. Average pooling
[7, 8] or max pooling [12, 34] over scales to merge features
can be considered as special cases of our method.

Based on share-net, suppose an input image is resized to
several scales s € {1,...,.S}. Each scale is passed through
the DeepLab (the DCNN weights are shared for all scales)
and produces a score map for scale s, denoted as f;. where
1 ranges over all the spatial positions (since it is fully con-
volutional) and ¢ € {1,...,C} where C is the number of
classes of interest. The score maps f;’, are resized to have
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Figure 3. (a) Merging score maps (i.e., last layer output before
SoftMax) for two scales. (b) Our proposed attention model takes
use of features from DCNN and produces weight maps, reflect-
ing how to weightedly merge the DCNN-produced score maps at
different scales and at different positions.

the same resolution (with respect to the finest scale) by bi-
linear interpolation. We denote g; . to be the weighted sum
of score maps at (i, ¢) for all scales, i.e.,

S
Gie =Y W fi, (1)
s=1

The weight w; is computed by

s exp(hi)
Wi =5 .
> =1 exp(h})

where £ is the score map (i.e., last layer output before Soft-
Max) produced by the attention model at position ¢ for scale
s. Note wj is shared across all the channels. The attention
model is parameterized by another FCN so that dense maps
are produced. The proposed attention model takes as input
the convolutionalized fc; features from the VGG-16 [38],
and it consists of two layers (first layer has 512 filters with
kernel size 3 x 3 and second layer has S filters with kernel
size 1 x 1 where S is the number of scales employed). We
will discuss this design choice in the experimental results.

The weight w; reflects the importance of feature at po-
sition ¢ and scale s. As a result, the attention model de-
cides how much attention to pay to for features at different
positions and different scales. It further enables us to visu-
alize the attention for each scale by visualizing w;. Note
in our formulation, average-pooling or max-pooling over
scales are two special cases. In particular, the weights w; in
Eq. (1) will be replaced by 1/S for average-pooling, while
the summation in Eq. (1) becomes the max operation and
w; =1 Vs and 7 in the case of max-pooling.

We emphasize that the attention model computes a soft
weight for each scale and position, and it allows the gradient
of the loss function to be backpropagated through, similar
to [3]. Therefore, we are able to jointly train the attention
model as well as the DCNN (i.e., DeepLab) part end-to-end.
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3.3. Extra supervision

We learn the network parameters using training images
annotated at the pixel-level. The final output is produced
by performing softmax operation on the merged score maps
across all the scales. We minimize the cross-entropy loss
averaged over all image positions with Stochastic Gradi-
ent Descent (SGD). The network parameters are initialized
from the ImageNet-pretrained VGG-16 model of [38].

In addition to the supervision introduced to the final out-
put, we also add extra supervision to the DCNN for each
scale, similar to [4, 23, 39, 42]. The motivation behind this
is that we would like to merge discriminative features (after
pooling or attention model) for the final classifier output. As
pointed out by [23], discriminative classifiers trained with
discriminative features demonstrate better performance for
classification tasks. Instead of adding extra supervision to
the intermediate layers [4, 23, 39, 42], we inject extra super-
vision to the final output of DeepLab for each scale so that
the features to be merged are trained to be more discrimina-
tive. In the experimental results, we show that adding extra
supervision is essential for merging multi-scale inputs for
our proposed methods.

4. Experimental Evaluations

In this section, after presenting the common setting
for all the experiments, we evaluate our method on three
datasets, including PASCAL-Person-Part [6], PASCAL
VOC 2012 [10], and a subset of MS-COCO 2014 [25].

Network architectures: Our network is based on the
publicly available model, DeepLab-LargeFOV [5], which
modifies VGG-16 net [38] to be FCN [28]. We employ the
same settings for DeepLab-LargeFOV as [5].

Training: SGD with mini-batch is used for training. We
set mini-batch size of 30 images and initial learning rate of
0.001 (0.01 for the final classifier layer). The learning rate is
multiplied by 0.1 after 2000 iterations. We use momentum
of 0.9 and weight decay of 0.0005. Fine-tuning our net-
work on all the reported experiments takes about 21 hours
on a NVIDIA Tesla K40 GPU. During training our model
takes all scaled inputs and performs training jointly. Thus,
the total training time is twice more than training vanilla
DeepLab-LargeFOV. The average inference time for one
PASCAL image is 350 ms/image.

Evaluation metric: The performance is measured
in terms of pixel intersection-over-union (IOU) averaged
across classes [10].

Reproducibility: The proposed methods are imple-
mented by extending the Caffe framework [19]. Upon ac-
ceptance, we plan to release our source code and trained
models, to allow reproducing all results in the paper.

Experiments: To demonstrate the effectiveness of our
proposed model, we mainly experiment along with three

Baseline: DeepLab-LargeFOV 51.91
Merging Method w/ E-Supv
Scales = {1, 0.5}

Max-Pooling 52.90 55.26
Average-Pooling 52.71 55.17
Attention 53.49 55.85
Scales = {1, 0.75, 0.5}

Max-Pooling 53.02 55.78
Average-Pooling 52.56 55.72
Attention 53.12 56.39

Table 1. Results on PASCAL-Person-Part validation set. E-Supv:
extra supervision.

axes: (1) multi-scale inputs (from one scale to three scales
with s € {1,0.75,0.5}), (2) different methods (average-
pooling, max-pooling, or attention model) to merge multi-
scale features, and (3) adding extra supervision or not.

4.1. PASCAL-Person-Part

Dataset: We perform experiments on semantic part seg-
mentation, annotated by [6] from PASCAL VOC 2010
dataset. Few works [40, 41] have worked on the animal
part segmentation for the dataset. On the other hand, we
focus on the person part for the dataset, which contains
more training data and large scale variation. Specifically,
the dataset contains detailed part annotations for every per-
son, including eyes, nose, efc. We merge the annotations
to be Head, Torso, Upper/Lower Arms and Upper/Lower
Legs, resulting in six person part classes and one back-
ground class. We only use those images containing persons
for training (1716 images) and validation (1817 images).

Improve DeepLab: We report the results in Tab. | when
employing DeepLab-LargeFOV as baseline. We find that
using two input scales improves over using only one input
scale, and it is also slightly better than using three input
scales combined with average-pooling or attention model.
We hypothesize that when merging three scale inputs, the
features to be merged must be sufficiently discrimintive and
direct fusion of them degrades the performance. On the
other hand, max-pooling seems robust to this effect. No
matter how many scales are used, our proposed attention
model leads to a better strategy to merge the multi-scale
features than average-pooling or max-pooling. We further
visualize the weight maps produced by max-pooling and at-
tention model in Fig. 4, which clearly shows that our atten-
tion model learns better interpretable weight maps for dif-
ferent scales. Moreover, we find that by introducing extra
supervision to the DCNN for each scale significantly im-
proves the performance (see the column w/ E-Supv) over
the case where extra supervision is not added, regardless
of what merging scheme is employed. The results show



that adding extra supervision is essential for merging multi-
scale features, which experimentally proves our hypothesis.
Finally, we compare our proposed method with DeepLab-
MSc-LargeFOV, which exploits the features from the inter-
mediate layers for classification (MSc denotes Multi-Scale
features). Note DeepLab-MSc-LargeFOV is a type of skip-
net. Our best model (56.39%) attains 2.67% better perfor-
mance than DeepLab-MSc-LargeFOV (53.72%).

Design choices: For all the experiments reported in this
work, our proposed attention model takes as input the con-
volutionalized fc7 features [38], and employs a FCN con-
sisting of two layers (first layer has 512 filters with kernel
size 3 x 3 and second layer has S filters with kernel size
1x1, where S is the number of scales employed). We have
experimented with different settings, including using only
one layer for attention model, changing the kernel of first
layer to be 1 x 1, and varying the number of filters for the
first layer. The performance does not vary too much; the
degradation ranges from 0.1% to 0.4%. Furthermore, we
find that using fcg as features for attention model results in
worse performance (drops ~ 0.5%), while using fcg and
fcr yield similar performance. We also try to add one more
scale (four scales totally: s € {1,0.75,0.5,0.25}), how-
ever, the performance drops by 0.5%. We think the scale
{0.25} produces too small score maps after VGG-16 net.

Qualitative results: We visualize the part segmenta-
tion results as well as the weight maps produced by the
attention model in Fig. 5. Merging the multi-scale fea-
tures with attention model yields not only better perfor-
mance quantitatively but also better interpretable weight
maps. Specifically, scale-1 attention (i.e., the weight map
learend by attention model for scale s = 1) usually focuses
on small-scale objects, scale-0.75 attention concentrates on
middle-scale objects, and scale-0.5 attention usually puts
large weight on large-scale objects or background, since it
is easier to capture the largest scale objects or background
contextual information when the image is shrinked to be
half of the original resolution.

Failure modes: We show two failure examples in the
bottom of Fig. 5. The failure examples are due to the
extremely difficult human poses or the confusion between
cloth and person parts. The first problem may be resolved
by acquiring more data, while the second one is challenging
because person parts are usually covered by clothes.

Test on unseen dataset: We further apply our trained
model to some videos from MPII Human Pose dataset [1]
(the video can be downloaded from the first author’s web-
site *). The model is not fine-tuned on the dataset, and the
result is run frame-by-frame. As shown in the video, even
for images from other dataset, our model is able to produce
reasonably and visually good part segmentation results and
it infers meaningful attention for different scales.

*http://web.cs.ucla.edu/~1lcchen/

Baseline: DeepLab-LargeFOV 62.28
Merging Method w/ E-Supv
Scales = {1, 0.5}

Max-Pooling 64.81 67.43
Average-Pooling 64.86 67.79
Attention 65.27 68.24
Scales = {1, 0.75, 0.5}

Max-Pooling 65.15 67.79
Average-Pooling 63.92 67.98
Attention 64.37 69.08

Table 2. Results on PASCAL VOC 2012 validation set, pretrained
with ImageNet. E-Supv: extra supervision.

4.2. PASCAL VOC 2012

Dataset: PASCAL VOC 2012 segmentation benchmark
[10] consists of 20 foreground object classes and one back-
ground class. Following the same experimental protocol
[5, 8, 43], we augment the original training set from the
annotations by [16]. We report the results on the original
PASCAL VOC 2012 validation set and test set.

Pretrained with ImageNet: First, we experiment with
the scenario where the underlying DeepLab-LargeFOV is
only pretrained on ImageNet [36]. Our reproduction of
DeepLab-LargeFOV and DeepLab-MSc-LargeFOV yields
performance of 62.28% and 64.39% on validation set, re-
spectively. They are similar to those (62.25% and 64.21%)
reported in [5]. We report the results of proposed methods
on validation set in Tab. 2. We observe similar experimental
results as PASCAL-Person-Part dataset: (1) Using two in-
put scales is better than single input scale. (2) Adding extra
supervision is necessary to achieve better performance for
merging three input scales, especially for average-pooling
and proposed attention model. (3) The best performance
(6.8% improvement over the DeepLab-LargeFOV baseline)
is obtained with three input scales, attention model, and ex-
tra supervision, and its performance is 4.69% better than
DeepLab-MSc-LargeFOV (64.39%).

We also report the test set result with our best model
on validation set in the top of Tab. 3. We first observe
that employing proposed attention model yields 1% per-
formance better than employing average-pooling, consis-
tent to our results on validation set. We then compare
our models with DeepLab-LargeFOV and DeepLab-MSc-
LargeFOV [5]. We find that our proposed model improves
6.4% over DeepLab-LargeFOV, and yields 4.5% better per-
formance than DeepLab-MSc-LargeFOV. Finally, we com-
pare our models with two other methods: ParseNet [26] and
TTI_zoomout_v2 [31]. ParseNet incorporates the image-
level feature as global contextual information. We consider
ParseNet as a special case to exploit multi-scale features,
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(a) Scale-1 Attention
Figure 4. Weight maps produced by max-pooling (row 2) and by attention model (row 3). Notice that our attention model learns better
interpretable weight maps for different scales. (a) Scale-1 attention (i.e., weight map for scale s = 1) captures small-scale objects, (b)
Scale-0.75 attention usually focuses on middle-scale objects, and (c) Scale-0.5 attention emphasizes on background contextual information.

(b) Scale-0.75 Attention (c) Scale-0.5 Attention

Method

|| mean || bkg | aero | bike | bird | boat | bottle | bus | car | cat |chair|cow | table | dog |horse | mbike | person | plant | sheep | sofa | train | tv

Pretrained with ImageNet

DeepLab-LargeFOV [5] 65.1 (190.7|74.7|34.0 | 74.3 |57.1| 62.0 |82.6(75.5|79.1| 262 |65.7|55.8 |73.0| 68.0 | 78.6 | 762 | 50.6 | 73.9 |45.5|66.6|57.1
DeepLab-MSc-LargeFOV [5] 67.0 ||91.6|78.7|51.4|75.7|59.5| 61.7 |82.4|76.7|79.4| 26.8 |67.7|54.7 | 74.3| 70.0 | 79.9 | 77.3 | 52.5 | 75.5 |46.5|67.0|57.1
TTI_zoomoutv2 [31] 69.6 |191.9|85.6|37.3|83.2|62.5| 66.0 |85.1(80.7|84.9|27.2 [733|57.5|78.1| 792 | 81.1 | 77.1 |53.6| 74.0 |49.2|71.7|633
ParseNet [20] 69.8 ||92.4|84.1|37.0|77.0|62.8 | 64.0 |85.8|79.7|83.7|27.7 | 74.8|57.6 |77.1| 783 | 81.0 | 782 |52.6| 80.4 |49.9|75.7|65.0
DeepLab-LargeFOV-AveragePooling 705 ||92.7|83.537.2|75.4|60.9| 69.3 |89.0|83.4(83.5]28.2 [73.4]58.7 |78.4] 79.0 | 83.0 | 79.7 | 54.4| 79.6 |50.2|78.0|63.5
DeepLab-LargeFOV-Attention 715 |192.9|86.0|38.8 | 78.2|63.1| 70.2 |89.6|84.1|82.9|29.4 |75.2|58.7 |79.3| 784 | 83.9 | 80.3 |53.5| 82.6 |51.5|79.2{64.2
Pretrained with MS-COCO

DeepLab-CRF-COCO-LargeFOV [33] 72.7 (1934 |89.1|38.3|88.1|63.3| 69.7 |87.1|83.1(85.0|29.3 [76.5|56.5 |79.8| 77.9 | 85.8 | 82.4 |57.4 | 84.3 |54.9|80.5 |64.1
DeepLab-MSc-CRF-COCO-LargeFOV [33] || 73.6 ||93.8|88.7|53.1(87.7|64.4| 69.5 |85.9(81.6[853|31.0 |76.4(62.0 (79.8| 77.3 | 84.6 | 832 |59.1 | 85.5 |55.9|76.5 |64.3
DeepLab-CRF-COCO-LargeFOV-Attention || 75.1 ||94.0|92.0|41.2|87.8|57.2| 72.7 |92.8]85.9]90.5| 30.5 | 78.0 | 62.8 |85.8| 85.3 | 87.2 | 85.6 |57.7 | 85.1 |56.5|83.0|65.0

Table 3. Labeling IOU on the PASCAL VOC 2012 test set, using the trainval set for training.

Baseline: DeepLab-LargeFOV 67.58
Merging Method w/ E-Supv
Scales = {1, 0.5}

Max-Pooling 69.15 70.01
Average-Pooling 69.22 70.44
Attention 69.90 70.76
Scales = {1, 0.75, 0.5}

Max-Pooling 69.70 70.06
Average-Pooling 68.82 70.55
Attention 69.47 71.42

Table 4. Results on PASCAL VOC 2012 validation set, pretrained
with MS-COCO. E-Supv: extra supervision.

where the whole image is summarized by the image-level
feature. TTI_zoomout_v2 also exploits features at different
spatial scales. As shown in the table, our proposed model
outperforms both of them. Note none of the methods dis-
cussed here employs a fully connected CRF [20].
Pretrained with MS-COCO: Second, we experiment
with the scenario where the underlying baseline, DeepLab-
LargeFOV, has been pretrained on MS-COCO 2014 dataset

[25]. The goal is to test if we can still observe any improve-
ment with such a strong baseline. As shown in Tab. 4, we
again observe the similar experimental results as before, and
our best model still outperforms the DeepLab-LargeFOV
baseline by 3.84%. We also report the both best models on
the fest set in the bottom of Tab. 3. For fair comparison with
the reported DeepLab variants on test set, we also employ a
fully connected CRF [20] as post processing. As shown in
the table, our model attains the performance of 75.1%, out-
performing DeepLab-CRF-LargeFOV and DeepLab-MSc-
CRF-LaregeFOV by 2.4%, and 1.5%, respectively.

Note our models do not outperform current best models
[24, 27], which employ joint training of CRF (with spatial
pairwise term) and DCNN. However, we think our proposed
methods (e.g., attention model for scales) could be comple-
mentary to theirs. We emphasize that our models are trained
end-to-end with one pass to exploit multi-scale features, in-
stead of multiple training steps.

4.3. Subset of MS-COCO

Dataset: The MS-COCO 2014 dataset [25] contains 80
foreground object classes and one background class. The
training set has about 80K images, and 40K images for val-


http://host.robots.ox.ac.uk:8080/anonymous/OBB7IY.html
http://host.robots.ox.ac.uk:8080/anonymous/1TN3OK.html
http://host.robots.ox.ac.uk:8080/anonymous/F6FXXL.html

CPREEATS Fpper teas

(a) Image (b) Baseline (c) Our model

(d) Scale-1 Attention

os
os
l“
an

(e) Scale-0.75 Attention (f) Scale-0.5 Attention

Figure 5. Results on PASCAL-Person-Part validation set. DeepLab-LargeFOV with one scale input is used as baseline. Our model employs
three scale inputs, attention model and extra supervision. Scale-1 attention captures small-scale parts, scale-0.75 attention catches middle-
scale torsos and legs, while scale-0.5 attention focuses on large-scale legs and background. Bottom two rows show failure examples.

idation. We randomly select 10K images from the train-
ing set and 1,500 images from the validation set (the result-
ing training and validation sets have same sizes as those we
used for PASCAL VOC 2012). The goal is to demonstrate
our model on another challenging dataset.

Improve DeepLab: In addition to observing similar
results as before, we find that the DeepLab-LargeFOV
baseline achieves a low mean IOU 31.22% in Tab. 5
due to the difficulty of MS-COCO dataset (e.g., large ob-
ject scale variance and more object classes). However,
employing multi-scale inputs, attention model, and extra
supervision can still brings 4.6% improvement over the
DeepLab-LargeFOV baseline, and 4.17% over DeepLab-
MSc-LargeFOV (31.61%). We find that the results of em-
ploying average-pooling and attention model as merging

methods are very similar. We think it is because that there
are many small object classes (e.g., fork, mouse, and tooth-
brush) with extremely low prediciton accuracy, which re-
duces the improvment. This challenging problem (i.e., seg-
ment small obects and handle imbalanced classes) is con-
sidered as future work. On the other hand, we looked into
the performance for some class. In particular, we show the
performance for the person class in Tab. 6 because the per-
son class occurs most frequently and appears with different
scales (see Fig. 5(a), and Fig. 13(b) in [25]) in this dataset.
As shown in the table, the improvement from the proposed
methods becomes more noticeable in this case, and we ob-
serve the same results as before. The qualitative results are
shown in Fig. 7.
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Figure 6. Results on PASCAL VOC 2012 validation set. DeepLab-LargeFOV with one scale input is used as baseline. Our model employs
three scale inputs, attention model and extra supervision. Scale-1 attention captures small-scale dogs (dark blue label), scale-0.75 attention
concentrates on middle-scale dogs and part of sofa (light green label), while scale-0.5 attention catches largest-scale dogs and sofa.
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Figure 7. Results on subset of MS-COCO 2014 validation set. DeepLab-LargeFOV with one scale input is used as baseline. Our model
employs three scale inputs, attention model and extra supervision. Scale-1 attention captures small-scale person (dark red label) and
umbrella (violet label). Scale-0.75 attention concentrates on middle-scale umbrella and head, while scale-0.5 attention catches large-scale
person torso.



Baseline: DeepLab-LargeFOV 31.22
Merging Method w/ E-Supv
Scales = {1, 0.5}

Max-Pooling 32.95 34.70
Average-Pooling 33.69 35.14
Attention 34.03 35.41
Scales = {1, 0.75, 0.5}

Max-Pooling 33.58 35.08
Average-Pooling 33.74 35.72
Attention 33.42 35.78

Table 5. Results on subset of MS-COCO validation set with
DeepLab-LargeFOV as baseline. E-Supv: extra supervision.

Baseline: DeepLab-LargeFOV 68.76
Merging Method w/ E-Supv
Scales = {1, 0.5}

Max-Pooling 70.07 71.06
Average-Pooling 70.38 71.60
Attention 70.66 72.20
Scales = {1, 0.75, 0.5}

Max-Pooling 69.97 71.43
Average-Pooling 69.69 71.70
Attention 70.14 72.72

Table 6. Person class IOU on subset of MS-COCO validation set
with DeepLab-LargeFOV as baseline. E-Supv: extra supervision.

5. Conclusion

For semantic segmentation, this paper has adapted a
state-of-art model (i.e., DeepLab-LargeFOV) to exploit
multi-scale inputs. Experiments on three datasets have
shown that: (1) Using multi-scale inputs yields better per-
formance than single scale input. (2) Merging the multi-
scale features with the proposed attention model not only
improves the performance over average- or max-pooling
baselines, but also allows us to diagnostically visualize the
importance of features at different positions and scales. (3)
Excellent performance can be obtained by adding extra su-
pervision to the final output of networks for each scale.

Supplementary Material

We include as appendix: (1) more qualitative results on
PASCAL-Person-Part, PASCAL VOC 2012, and subset of
MS-COCO 2014 datasets.

A. More qualitative results

We show more qualitative results on PASCAL-Person-
Part [6] in Fig. 8, on PASCAL VOC 2012 [10] in Fig. 9,
and on subset of MS-COCO 2014 [25] in Fig. 10.
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Figure 8. Qualitative segmentation results on PASCAL-Person-Part validation set.
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Figure 9. Qualitative segmentation results on PASCAL VOC 2012 validation set.
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Figure 10. Qualitative segmentation results on subset of MS-COCO 2014 validation set.
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