
HiPAcc-LTE: An Integrated High Performance
Accelerator for 3GPP LTE Stream Ciphers

Sourav Sen Gupta1?, Anupam Chattopadhyay2, and Ayesha Khalid2

1 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India
2 MPSoC Architectures, UMIC, RWTH Aachen University, Germany

sg.sourav@gmail.com, {anupam, ayesha.khalid}@umic.rwth-aachen.de

Abstract. Stream ciphers SNOW 3G and ZUC are the major players
in the domain of next generation mobile security as both of them have
been included in the security portfolio of 3GPP LTE-Advanced, the po-
tential candidate for 4G mobile broadband communication standard. In
this paper, we propose HiPAcc-LTE, a high performance integrated de-
sign that combines the two ciphers in hardware, based on their struc-
tural similarities. The integrated architecture reduces the area overhead
significantly compared to two distinct cores, and also provides almost
double throughput in terms of keystream generation. This is in compar-
ison with the state-of-the-art implementations of the individual ciphers,
both in the academic literature as well as in the commercial domain. We
present detailed description of the design idea, optimization techniques
and comparison results in this paper. Long term vision of this hardware
integration approach for cryptographic primitives is to build a flexible
core supporting multiple designs having similar algorithmic structures.

Keywords: 3GPP, LTE-Advanced, Stream Cipher, SNOW 3G, ZUC, Hardware
Implementation, ASIC, High Throughput, Area Efficiency.

1 Introduction

The world is expecting a completely new mobile broadband technology in the
near future. The 3rd Generation Partnership Project (3GPP) had submitted
Long Term Evaluation (LTE) Advanced [2] as a candidate for the 4G system,
and LTE-Advanced (Release 10) [2] has been standardized by 3GPP as a major
enhancement of their LTE standard. The main contenders for the new 3GPP
LTE security suite had been EEA1/EIA1 [15] (identical to earlier protocols
UEA2/UIA2) based on SNOW 3G [16], and EEA2/EIA2 based on block ci-
pher AES-128. Later, a new set of security algorithms EEA3/EIA3 [17], based
on another stream cipher ZUC [18], was proposed for inclusion in LTE, and it
has been considered for verification and absorption in the LTE standards. At
present, the block cipher AES-128 and the two stream ciphers SNOW 3G and
ZUC constitute the core of the LTE security algorithms [1].

? This work was done during Sourav Sen Gupta’s visit to MPSoC Architectures, UMIC,
RWTH Aachen University, Germany as a Summer Intern during June–August 2011.



Motivation. It can be observed that the new security architecture for 4G is
going to have two different stream ciphers, which are very unlikely to be used
simultaneously. However, the hardware implementations of these two ciphers
have always been done independently, as distinct cores. Be it in academic liter-
ature [12, 13] or in commercial products [5–11], even the single-platform imple-
mentations of LTE-Advanced security suite seem to use two distinct cores for the
two stream ciphers. We, on the other hand, focus on merging the two towards a
compact hardware solution for the LTE suite.

Our main objective, however, is to explore a more general problem in cryp-
tographic hardware. One may want to implement two or more ciphers on the
same platform, and in such a scenario, the following question arises:

If there is a requirement to implement an array of ciphers on the same
platform, how should one approach the hardware design?

A general solution towards this direction is to incorporate custom instructions
for the individual ciphers into a general purpose processor and thus facilitate
it to run any cipher independently. However, this kind of an implementation
may not always be the best choice in terms of throughput and area, as a general
purpose processor with custom instructions do not provide the implementor with
full freedom to explore the design space for an optimal solution.

We approach this problem from a completely different angle. Implementing
custom instructions in a processor attempts to merge the ciphers from a hardware
implementation point of view. We take a step back, and try to merge the ciphers
from an algorithmic point of view first. Once this is accomplished, one may
design an integrated custom accelerator for the ciphers such that each of the
algorithms can be accessed individually. This approach offers the flexibility of

– sharing of resources, both storage and logic,
– optimization of mutual critical path,
– throughput vs. area optimization at the base level, and
– potential mechanism for combined protection against fault attacks.

The process of integration at both algorithm and hardware levels produce the
best solutions in terms of throughput and area, and provides the designer with
handles on both. It is quite surprising why this kind of a hybrid approach has
never been considered for integrated design of cryptographic accelerators.

Contribution. In this paper, we take up the LTE Stream Ciphers as a case
study for our idea of hardware integration. There has been a few academic pub-
lications towards hardware implementation of the individual ciphers. Especially,
Kitsos et al [12] provide us with a high performance ASIC implementation of
SNOW 3G and recently Liu et al [13] have published an efficient FPGA based
implementation of ZUC. However, the state-of-the-art hardware implementation
of both the ciphers come from the commercial domain, especially from Elliptic
Technologies Inc. [5–10] and IP Cores Inc. [11], the established brands in the
field of hardware security solutions.



In each of the above cases, the accelerators for SNOW 3G and ZUC have
been developed separately as individual cores, whereas the ciphers are going
to be used on the same platform. Moreover, the two ciphers have significant
structural similarities to facilitate an integrated design. This is the driving factor
behind our attempt to construct a unified accelerator that would provide higher
throughput compared to all existing designs.

We design an integrated high performance accelerator (HiPAcc-LTE) for
SNOW 3G and ZUC (version 1.5, as in LTE Release 10 and beyond), targeted
towards the 4G mobile broadband market. We merge the two ciphers within a
single core by sharing resources among them, thereby reducing the area overhead
compared to two independent implementations. HiPAcc-LTE provides almost
twice the throughput for both the ciphers compared to any existing architecture
for the individual algorithms. We also provide the user with the flexibility to
choose the ‘area vs. throughput’ trade-off for a customized design.

We also provide a combined fault detection and protection mechanism in
HiPAcc-LTE. In case of SNOW 3G, we provide tolerance against the known
fault attack by Debraize and Corbella [3]. For ZUC, as there are no known fault
attacks till date, we just leave the room for future fault protection requirements.

Long term vision of this hardware integration approach for cryptographic
algorithms is to have a flexible core supporting multiple designs including in-
termediate design points. This strategy will provide the developer to design a
unified architecture with optimal performance for a number of cryptographic
primitives with similar structural and algorithmic construct. To the end user,
the integrated core presents a fast platform to design, validate and benchmark
upcoming cipher primitives as well.

Organization. The technical content of this paper is organized as follows:

Section 2 presents a brief overview of the ciphers SNOW 3G and ZUC. We also
present some initial observations regarding the structural similarities and
dissimilarities of the two that will help us later in their integration.

Section 3 contains the main theoretical idea of this paper. We discuss
– the approach for integration and restructure the hardware designs of the

two ciphers to exploit the similarities to the fullest,
– construction of the optimal pipeline for the unified hardware, and
– the final top-level design and pipeline architecture for HiPAcc-LTE.

Section 4 deals with simulation, testing and synthesis of HiPAcc-LTE.
– We present a detailed account of the base implementation and further

optimization of the proposed hardware.
– We also present a comparison of our design in multiple technologies with

existing architectures in the academic and commercial domains.
– Furthermore, we provide a combined fault detection and correction fa-

cility in our architecture that prevents the known fault attack against
SNOW 3G and allows prevention of future fault attacks against ZUC.

Section 5 concludes the paper by providing a future direction of research ori-
ented around the idea of hardware integration proposed in this paper.



2 Preliminaries

Before diving into the main technical content of this paper, let us first recall the
design and constructs of the stream ciphers SNOW 3G and ZUC. This individual
overview of the ciphers will help us identify the similarities and dissimilarities in
their designs, which will later lead to their high performance integration.

2.1 Brief Overview of SNOW 3G and ZUC

SNOW 3G [16] is an LFSR based stream cipher designed by ETSI-SAGE,
largely based on the cipher SNOW 2.0 [4] by Ekdahl and Johansson. The cipher
generates a keystream of 32-bit words using an LFSR of size 16 words, that is
16 × 32 = 512 bits. The FSM of this design consists of three 32-bit registers
which are updated based on two different S-boxes S1, S2. The LFSR update
function depends on a couple of field operations (multiplication and division by
field element α) and XOR combinations.

Alike most stream ciphers, SNOW 3G has two distinct modes of operation.
During the initialization mode, the LFSR is initiated using a 128-bit key and a
128-bit initialization variable (IV), and the output of the FSM is XOR-ed with
the LFSR update function in the feedback loop for the first 32 iterations. There-
after, in the keystream generation mode, the output of the FSM is combined
with the first LFSR location s0 to produce the output keystream word. The
operation of the cipher in keystream generation mode is illustrated in Fig. 1.

Fig. 1. SNOW 3G cipher in Keystream Generation mode [16].

ZUC [18] is also an LFSR based word oriented stream cipher, designed by the
Data Assurance and Communication Security Research Center of the Chinese
Academy of Sciences (DACAS). This cipher produces a keystream of 32-bit
words, and is executed in two stages (initialization and keystream generation).
The LFSR for ZUC consists of 16 blocks, each of length 31 bits, and the update



function of the LFSR is based on a series of modulo 231 − 1 (this is a prime)
multiplications and additions. The FSM takes as input 32-bit words constructed
from the LFSR (through a routine called Bit Reorganization or BR) and outputs
a 32 bit word as well. It consists of two 32-bit registers R1 and R2 which are
updated using two different linear functions L1, L2 and the same S-box S.

The initial state of the LFSR is constructed using a 128 bit key and a 128 bit
IV, and during the first 32 iterations, the output of the FSM is added (modulo
231 − 1 addition after right shift by 1 place) to the feedback loop for LFSR
update. In the keystream generation mode, the output of the FSM is combined
with the word X3, constructed from the LFSR places s0 and s2, to produce the
final output. The keystream generation mode of ZUC is illustrated in Fig. 2.

Fig. 2. ZUC cipher in Keystream Generation mode [18].

2.2 SNOW 3G and ZUC: Similarities and Dissimilarities in Design

In this section, we put the two ciphers SNOW 3G and ZUC side by side for a
structural comparison in the designs. Observations made in this section will help
us later in building the integrated platform for the LTE stream ciphers.

Similarities. The reader may easily spot the inherent structural similarity in
the designs of the two ciphers SNOW 3G and ZUC. This is mainly because both
ciphers are based on the same principle of combining an LFSR with an FSM,



where the LFSR feeds the next state of the FSM. In the initialization mode, the
output of the FSM contributes towards the feedback cycle of the LFSR, and in
the keystream generation mode, the FSM contributes towards the keystream.

A top level structure for both the ciphers can hence be represented as in
Fig. 3. The figure on the left indicates the initialization mode of operation while
the figure on the right demonstrates the operation during keystream generation.
In Fig. 3, the combination of the LFSR update and the FSM during initialization
mode is represented by C, which is either an XOR or a shift and addition modulo
231− 1 for SNOW 3G and ZUC respectively. In the keystream generation mode,
the combination of the LFSR state with the FSM output is denoted as K, which
is an XOR for SNOW 3G and a bit reorganized XOR for ZUC. The operations
are individually presented in the previous subsections for the two ciphers. Z
represents the output keystream for both the ciphers.

Fig. 3. Top level structure of both SNOW 3G and ZUC.

The key point to observe in Fig. 3 is that we have a similar 3-layer structure
for both the ciphers SNOW 3G and ZUC. Note that we have not considered Bit
Reorganization of ZUC as a special stage, but have taken it as a part of the
FSM, thus exhibiting better structural similarity with SNOW 3G.

Dissimilarities. As we probe deeper into the individual components of the
design, the dissimilarities start appearing one by one. Let us categorize the dis-
similarities in the two designs according to the main stages of the ciphers.

1. LFSR update routine is fundamentally different for the two ciphers. While
SNOW 3G relies on field multiplication/division along with XOR for the
LFSR feedback, ZUC employs addition modulo the prime p = 231 − 1. An-
other point to note is that the new updated value s15 is required for the next
feedback in case of ZUC, whereas SNOW 3G does not have this dependency.
This creates a major difference in designing the combined architecture.

2. The main LFSR is slightly different for the ciphers as well, although both
SNOW 3G and ZUC output 32-bit words. SNOW 3G uses an LFSR of 16
words, each of size 32 bits, whereas ZUC uses an LFSR of 16 words, each of
size 31 bits. However, the bit organization stage of ZUC builds 32 bit words
from the LFSR towards FSM update and output generation.

3. FSM operations of SNOW 3G and ZUC are quite different as well, though
they use similar resources. SNOW 3G has three registers R1, R2 and R3



where the updation dependency R1 → R2 → R3 → R1 is cyclic with the
last edge depending on the LFSR as well. In case of ZUC, there are only two
registers R1 and R2. The updation of each depends on its previous state as
well as that of the other register. And of course, the LFSR also feeds the
state updation process, as in the case of SNOW 3G.

In the next section, we will try to merge the designs of SNOW 3G and ZUC in
such a fashion that the similarities are exploited to the maximum extent, and the
common resources are shared. The dissimilarities that we have discussed above
will be treated specially for each of the ciphers.

3 Integration of SNOW 3G and ZUC

In this section, we present our main idea behind the architectural integration
of SNOW 3G and ZUC. We will attempt this merger in three parts, each cor-
responding to the major structural blocks of the two designs; namely, the main
LFSR, the LFSR update function and the FSM.

3.1 Integrating the Main LFSR

Recall that the LFSR of SNOW 3G has 16 words of 32 bits each, while that of
ZUC has 16 words of 31 bits each. Our first goal is to share this resource among
the two ciphers. If we do a naive sharing by putting the 31 bit words of ZUC in
the same containers as those for the 32 bit words of SNOW 3G, 1 bit per word
is left unused in ZUC. Hence, our first target was to utilize this bit in such a
way that reduces the critical path in the overall implementation.

Motivation. In Section 4, while discussing the pipeline structure, we will note
that the critical path flows through the output channel, that is, through the
bit reorganization for s15, s14 and s2, s0, and the FSM output of W . In fact, bit
reorganization is also required for the FSM register update process. Keeping this
in mind, we tried to remove the bit reorganization process from the FSM.

Restructuring the LFSR. In this direction, we construct the LFSR as 32
registers of 16 bits each. The 32 bit words for SNOW 3G would be split in
halves and stored in the LFSR registers naturally. For ZUC, we split the 31 bit
words in ‘top 16 bit’ and ‘bottom 16 bit’ pieces, and store them individually
in the 16 bit LFSR registers. The organization of bits is shown in the middle
column of Fig. 4, where the two blocks share the center-most bit of the 31 bit
original word. Notice that we do not require the bit reorganization any more in
the FSM operation, as it reduces to simple read from two separate registers in
our construction. The modified bit reorganization model is illustrated in Fig. 4.

However, note that the LFSR update function of ZUC uses the 31 bit words
for the modulo 231 − 1 addition. Thus, we have actually moved the bit reorga-
nization stage to the LFSR update stage instead of keeping it in the FSM. The
effects of our design choices will be discussed later in Remark 1.



Fig. 4. Modified bit reorganization for ZUC after LFSR integration.

3.2 Integrating the FSM

Although the FSM of the two ciphers do not operate the same way, they share
similar physical resources. Thus, our main goal for the integrated design is to
share all possible resources between them. Note that the bit reorganization stage
is not present in the ZUC FSM any more, due to our LFSR reconstruction.

Register Sharing. One can straight away spot the registers R1, R2 and R3
for potential sharing. We share R1 and R2 between SNOW 3G and ZUC, while
R3 is needed only for the former. If required, R3 can be utilized in ZUC for
providing additional buffer towards fault protection, discussed in Section 4.

Sharing the Memory. During the FSM register update process, both SNOW
3G and ZUC use S-box lookup. In the software version of the ciphers, SNOW
3G [16] uses SR, SQ and ZUC [18] uses S0, S1. However, for efficient hardware
implementation of SNOW 3G with memory access, we choose to use the tables
S1 T0, S1 T1, ..., S2 T3, as prescribed in the specifications [16]. This saves a lot
of computations after the memory read, and hence reduces the critical path to
a considerable extent. We store the 8 tables in a data memory of size 8 KByte.

For ZUC, however, we can not bypass the lookup to S0 and S1. But one may
note that these tables are accessed 4 times each during the FSM update. So, to
parallelize the memory access, we store 4 copies of each table (thus 8 in total) in
the same 8 KByte of data memory that we have allocated for SNOW 3G. Note
that we are not using the full capacity of the memory in ZUC, as we store 1
byte in each location (as in S0 and S1) whereas it is capable of accommodating
4 bytes in each (as in S1 T0, S1 T1, ..., S2 T3).

By duplicating the ZUC tables in the 8 distinct memory locations, we have
restricted the memory read requests to 1 call per table in each cycle of FSM.
This makes possible the sharing of memory access between SNOW 3G and ZUC
as well. We use only a single port to read from each of the tables, and that too
is shared between the ciphers for efficient use of resources. This in turn reduces
the multiplexer logic and area of the overall architecture.

Pipeline based on Memory Access. Now that we have memory lookup dur-
ing the FSM update, we partition the pipeline according to it. We simulate the



memory by a synchronous SRAM with single-cycle read latency. To optimize
the efficiency with an allowance for the latency in memory read, we split the
pipeline in two stages, keeping the memory read request and read operations in
the middle. The structure of our initial pipeline idea is shown in Fig. 5.

Fig. 5. Pipeline structure based on Memory Access.

This pipeline is organized around the memory access, where we perform

– the memory read request and LFSR update in Stage 1, and
– the memory read and output computation in Stage 2.

For SNOW 3G, the computation for memory address generation is a simple par-
titioning of R1 and R2 values in bytes. The computation for register update
however, requires an XOR after the memory read. In case of ZUC, the com-
putation for address generation is complicated, and depends on the LFSR as
well as R1 and R2. However, the computation for register update is a simple
concatenation of the values read from memory.

Remark 1. So far, we have made a few design choices in integrating the two
ciphers. In a nutshell, the choices provide

– reduction in the critical path by reducing the memory and LFSR read times,
– reduced critical path by moving the bit reorganization away from FSM, and
– an efficient method for combined fault protection in both the ciphers.

The effect of these choices will be reflected in the critical path and fault tolerance
mechanism, discussed later in Section 4 of this paper.

Next, we deal with the integration of the most crucial part of the two ciphers:
the LFSR update and shift operations. The final structure of the pipeline will
evolve during this phase as we deal with the intricate details in the design.

3.3 Integrating the LFSR Update Function

The LFSR update function is primarily different for the two ciphers. The only
thing in common is the logic for LFSR update during initialization, and this poses
a big problem with our earlier pipeline idea based on memory access (Fig. 5).



Pipeline restructuring for Key Initialization. In the initialization mode
of the two ciphers, the FSM output W is fed back to the LFSR update logic.
The update of s15 takes place based on this feedback, and in turn, this controls
the next output of the FSM (note that W depends on R1, R2 and s15 in both
ciphers). This is not a problem in the keystream mode as the LFSR update path
is independent of the output of FSM. However, during initialization, it creates a
combinational loop from Stage 2 to Stage 1 in our earlier pipeline organization
(Fig. 5). This combinational loop in memory access due to dependencies prohibits
us from keeping the memory access and memory read in two different stages of
the pipeline. Thus, we design a new structure as follows:

– Stage 1: Initial computation for memory access and LFSR shift.
– Stage 2: Memory read, LFSR update and subsequent memory read request.

This new pipeline structure allows us to resolve the memory access dependencies
within a single stage and the independent shift of the LFSR occurs in the other.
Now, the main goal is to orient the LFSR update logic around this pipeline
structure, or to redesign the pipeline according to the LFSR update function.

Pipeline organization for LFSR update. The LFSR update logic of SNOW
3G is easier to deal with. The update depends upon the LFSR positions s0, s2
and s11, and also on the FSM output W during key initialization. A part of s0
and s11 each undergoes a field operation (MULα and DIVα respectively), and the
other part gets XOR-ed thereafter. To reduce the combinational logic of realizing
the field operations, two lookup tables are prescribed in the specifications [16].
For an efficient implementation in hardware, we follow this idea and store the
two tables MULalpha and DIValpha in two 1 KByte memory locations. These
are also read-only memories with single-cycle read latency. Now, we can fit the
update routine for SNOW 3G within the two stage pipeline proposed earlier.

– Stage 1: Precompute the simple XOR involving s0, s2 and s11, and generate
the addresses for memory read requests to tables MULalpha and DIValpha.

– Stage 2: Perform memory read and XOR with the previous XOR-ed values
to complete the LFSR feedback path, run the FSM and complete the LFSR
update of s15 depending on W.

Note that this pipeline structure works both for initialization as well as keystream
generation, as it takes into account all possible values required for the LFSR up-
date. Thus, in terms of SNOW 3G, we stick to our 2-stage pipeline.

In case of ZUC however, the LFSR update logic is quite complicated. This is
mostly because of the additions modulo the prime p = 231−1. Liu et al [13] had
proposed a single adder implementation of this addition modulo prime, and this
logic has also been included in the specifications [18]. We use the same for our
hardware, at least at this initial phase. In the same line, we first try a 5-stage
pipeline, similar to the one proposed in [13] for LFSR update of ZUC.

The initial idea for 5-stage pipeline is shown as Pipeline 1 in Fig. 6. All
the adders are modulo prime, similar to the ones in [13], and the variables



a, b, c, d, e, f represent s0, 2
8s0, 2

20s4, 2
21s10, 2

17s13, 2
15s15 (modulo p = 231 − 1)

respectively. Variable g denotes the FSM output W, which is added with the
cumulative LFSR feedback, and is then fed back to s15 in the LFSR itself.

Fig. 6. Pipeline structure reorganization for LFSR update of ZUC.

However, Pipeline 1 creates a combinational loop between Stage 5 and Stage
4 in the key initialization phase. The final output in Stage 5 of the addition
pipeline has to be fed back to s15 that controls the input f in Stage 4. This loop
is shown by the curvy solid line in Fig. 6, and it occurs due to mutual dependency
of FSM and LFSR update during initialization. The authors of [13] also observed
this dependency, and they proposed the 32 rounds of key initialization to be run
in software in order to achieve one-word-per-cycle using their structure.

Our challenge was to integrate this phase into the hardware without losing
the throughput. The main motivation is to restrain the use of an external aide
for the initialization mode. There are two direct ways of resolving this issue:

1. Allow a bypass logic for the f value across the stages
2. Restructure the pipeline to merge the last two stages

We choose the second one and reorganize the pipeline. As the dependency
discussed so far occurs in between the last two stages of the pipeline, we merge
those to resolve the inter-stage combinational loop. In this case, the output f’ of
this stage is written into the s15 location of the LFSR, and read back as f at the
next iteration. This is shown as Pipeline 2 in Fig. 6.

The reader may note that we have two adders (modulo prime p) in series at
the last stage of Pipeline 2 (Fig. 6). So, we can put two adders in any other stage
as well, without affecting the critical path. We decide to merge Stages 1 and 2



to have two adders in parallel followed by an adder in series in the first stage.
This does not increase the critical path, which still lies in the last stage due to
the two adders and some associated combinational logic. The final structure of
the LFSR update pipeline for ZUC is shown in Fig. 6 as Pipeline 3. In the next
section, we design the integrated pipeline structure combining all components.

3.4 Final Design of the Pipeline

In this section, we present the final pipeline structure for the integrated archi-
tecture. In the previous sections, we have already partitioned the components
into pipeline stages as follows.

– FSM: Two stages - initial computations for address generation in the first
stage, and memory access and related computations in the second stage.

– LFSR Movement: Two stages - shift in first stage and s15 write in second.
– LFSR Update: Two stages for SNOW 3G and three stages for ZUC.

Here, we combine all three components of SNOW 3G and ZUC and design the
final pipeline for our proposed hardware implementation, as shown in Fig. 7.

Fig. 7. Final 3-stage Pipeline Structure for the Integrated Design.

The stages of SNOW 3G and ZUC are different only in case of the LFSR
update routine, and we show these separately in the figure. The pipeline behavior
of the LFSR shift and write operations, as well the FSM precomputation and
update routines are almost same for both the ciphers, and hence we show single
instances of these in Fig. 7. In the next section, we discuss the practical issues
with the final ASIC implementation of our integrated hardware.

4 ASIC Implementation of the Integrated Hardware

In this work, we utilized the hardware generation environment and simulation
framework from LISA, the Language for Instruction-Set Architectures, for de-
signing the accelerator. The complete automatic generation environment is com-
mercially available via Synopsys Processor Designer [19]. The accelerator in our
case is designed as a state machine. This allowed fast exploration of design al-
ternatives and ease of high level modeling for making pipelining and resource



organization decisions. The language allows full control over minute design de-
cisions and preserves the overall structural organization neatly in the generated
hardware description. This is especially important for verifying the design costs
(area, timing) and accordingly modifying the design at high level. Such a capa-
bility of strong designer interaction with the tool during high level synthesis is
not common among automatic C to HDL flows [14], thereby forcing designers to
go through time consuming and error prone low-level design iterations.

The gate-level synthesis was carried out using Synopsys Design Compiler
Version D-2010.03-SP4, using topographical mode for a 65 nm target technology
library. The area results are reported using equivalent 2-input NAND gates. The
total lines of LISA code for our best implementation is 1131, while the total
lines of auto-generated HDL code is 13440 for the same design. The modeling,
implementation, optimization and tests were completed over a span of two weeks.

In this section, we first discuss the issues with the critical path in our de-
sign, and the optimizations thereof. This will be followed by a set of detailed
implementation results and comparisons with the existing designs.

4.1 Critical Path

After the initial synthesis of our design using LISA modeling language, we iden-
tified the critical path to occur in the key initialization phase of ZUC. Fig. 8
depicts the critical path using the curvy dashed line. To understand the individ-
ual components in the critical path, let us first associate the pieces in Fig. 8 to
the original initialization routine of ZUC, as described in its specification [18].

Fig. 8. Critical path in the Key Initialization of ZUC (curvy dashed line).

ZUC Key Initialization Routine. The following is the key initialization rou-
tine of ZUC, as per our notation and pipeline orientation. Note that the operation
is the same as in the LFSRWithInitialisationMode() function of [18].



LFSR Key Initialization (W)

1. v = 215s15 + 217s13 + 221s10 + 220s4 + 28s0 + s0 (mod 231 − 1)
2. Y = v + (W � 1) (mod 231 − 1)
3. If Y = 0, then set Y = 231 − 1
4. Write Y to location s15 of the LFSR

In Fig. 8, the first five adders Add 1 to Add 5 are part of the general LFSR
feedback loop in ZUC, and they compute the value

v = 215s15 + 217s13 + 221s10 + 220s4 + 28s0 + s0 (mod 231 − 1).

The LFSR is also accessed to run the FSM and the adder Add 7 at the
bottom of Stage 3 computes the FSM output W = (X0 ⊕R1) +R2, where this
addition is a normal 32-bit addition. The special operation in LFSR update of
ZUC in its initialization mode is to compute Y = v + (W � 1) (mod 231 + 1),
realized by the adder Add 6 on the top layer of Stage 3. If this sum Y = 0, it
is replaced by Y = 231 − 1 in the ‘Check’ module of Fig. 8. Finally, this 31 bit
value Y is written to s15 of the LFSR, thus completing the LFSR update loop.
The critical path, as shown by the curvy dashed line in Fig. 8, is as follows:

LFSR Read → 32-bit Add → Modulo Add → Check → LFSR Write

In this section, we try all possible optimizations to reduce the critical path.

LFSR Read Optimization. At first, we implemented the LFSR as a register
array. However, different locations of the LFSR are accessed at different stages of
the pipeline we have designed, and the LFSR read will be faster if we allow the
individual LFSR cells to be placed independently in the stages. This motivated us
to implement the LFSR as 32 distinct registers of size 16 bits each. Furthermore,
we shadowed the last two locations, i.e., s15 of the LFSR, so that it can be read
instantaneously from both Stage 4 and Stage 5. This led to a reduction in the
critical path. Though this optimization is targeted towards physical synthesis,
the gate-level synthesis results indicated strong improvement as well.

Modulo p Adder Optimization. Initially, we designed the modulo p = 231−1
adder as prescribed in [13]. This looks like the circuit on the left of Fig. 9.
However, one may bypass the multiplexer (MUX) by simply incrementing the
sum by the value of the carry bit. That is, if the carry bit is 1, the sum gets
incremented by 1, and it remains the same otherwise. The modified design (right
side of Fig. 9) slightly reduces the critical path and we replace all the modulo p
adders in our design (except for Add 6) by this modified circuit.

Check Optimization. The ‘Check’ block in the critical path actually has two
checks in series; one due to Add 6 where the increment is based on the carry bit,
and the second check is for the Y = 0 situation. We try to optimize as follows.

– Carry = 0: We just require to check if Y = 0. If so, set Y = 231 − 1.
– Carry = 1: We just require to set Y = Y + 1 without any further checks.



Fig. 9. Modulo p Adder optimization for ZUC.

The first case is obvious, as the sum would remain unchanged if the carry is 0.
In the second case, note that the inputs v and (W � 1) to Add 6 are both less
than or equal to 231 − 1. Thus, the sum Y is bounded from above by 232 − 2.
Even if the carry is 1, the incremented value of sum will be bounded from above
by 232 − 1, which can never have the lower 31 bits all equal to 0. Thus, we do
not even require the ‘Check’ block in this situation. This optimization simplifies
the logic and reduces the critical path considerably.

4.2 Performance Results

After performing all the optimizations discussed in the previous section, we still
find the critical path flowing through the same components. We proceed for our
final synthesis and performance results based on the current state of the design.

Table 1 presents all the architecture design points for HiPAcc-LTE that we
have implemented using the 65 nm technology. The area-time chart for the design
points of HiPAcc-LTE is shown in Fig. 10.

Frequency Area (equivalent NAND Gates)
(MHz) Total Sequential Combinational

200 11699 5540 6159
500 13089 5540 7549
800 14102 5541 8561
1000 15696 5541 10155
1050 16055 5554 10501
1090 16886 5568 11318

Table 1. Synthesis results for HiPAcc-LTE with 10 KByte memory.

The maximum frequency we could achieve is 1090 MHz, which corresponds
to a critical path length of approximately 0.92 ns. This provides us with a net
throughput of 34.88 Gbps, with 1 keystream word per cycle. The total area is
about 17 KGates NAND equivalent and 10 KByte of data memory is required.

Experiments with Reduced Data Memory. In the original HiPAcc-LTE
design as above, the static data for S-box and field operations have been stored in
external data memory. While SNOW 3G utilizes the complete 10 KByte memory,



Fig. 10. Area-Time chart for HiPAcc-LTE (10 KByte memory) using 65 nm technology.

ZUC requires only about 2 KByte of the allocated space. This motivated us to
experiment with an alternate design that requires less data memory.

In the alternate design, we use S-box tables SR, SQ for SNOW 3G [16] instead
of the tables S1 T0, S1 T1, ..., S2 T3, as in the previous case. During the sharing
of memory, the ZUC tables S0, S1 fit exactly in the space for SR, SQ as they
are of the same size, 256 bytes each. There are exactly 4 calls to each table per
cycle, and we store two copies of each table in dual-port RAMs to get optimum
throughput. This amounts to a data memory of 2×(256+256) bytes = 1 KByte.
The MULalpha and DIValpha tables (size 1 KByte each) in case of SNOW 3G
could not be avoided due to the complicated combinational logic involved in
these field operations. The total data memory for this alternate design sums up
to 3 KByte, and the details for all design points are presented in Table 2.

Frequency Area (equivalent NAND Gates)
(MHz) Total Sequential Combinational

200 10519 5548 4971
500 13090 5540 7550
800 14103 5541 8562
1000 15696 5541 10155
1090 16887 5568 11319

Table 2. Synthesis results for alternate design of HiPAcc-LTE with 3 KByte memory.

This alternate design retains the maximum frequency of 1090 MHz, which
provides us with a net throughput of 34.88 Gbps, with 1 word per cycle. The area
figure is still about 17 KGates NAND equivalent, but only 3 KByte of external
data memory is required. It is interesting to note that the combinational area
remained almost similar even after introducing the computations for S-boxes.



This is possibly due to the availability of high-speed, area-efficient library cells
in our target technology library and efficient design style.

It is expected that our design will be practically deployed in a system-on-chip
setting, where the memory requirement of 3 KByte is quite reasonable. With this
alternate design of HiPAcc-LTE having 3 KByte of memory, the performance of
the individual ciphers SNOW 3G and ZUC are also tested in stand-alone mode.
The synthesis results in this direction are presented in Table 3.

Cipher Frequency Area (equivalent NAND Gates)
(MHz) Total Sequential Combinational

SNOW 3G 500 6867 5061 1807
1000 7033 5062 1971

ZUC 500 9555 4798 4757
1000 11412 4811 6601

Table 3. Synthesis results for stand-alone mode in HiPAcc-LTE with 3 KByte memory.

4.3 Comparison with Existing Designs

To put the performance of HiPAcc-LTE into perspective, we compare it with the
state-of-the-art architectures available in academia and the commercial sector.

Comparison with Academic Literature. In the domain of published aca-
demic results, we could not find an ASIC implementation of ZUC, and neither
could we find a 65 nm technology implementation of SNOW 3G. The only hard-
ware realizations for ZUC have been done in FPGA [13] so far. Thus, we could
not compare HiPAcc-LTE to any academic results in terms of ZUC.

In case of SNOW 3G, the best academic publication is [12] that uses 130
nm technology. To compare with this result, we synthesized our proposed design
(with 10 KByte data memory) in 130 nm, and the comparison is as follows.

– SNOW 3G of [12]: 7.97 Gbps with 249 MHz max. freq. and 25 KGates area
– Our HiPAcc-LTE: 24.0 Gbps with 750 MHz max. freq. and 18 KGates area

Both designs use about 10 KByte of external data memory for look-up tables.
It is clear that we achieve surprisingly better throughput from HiPAcc-LTE due
to our careful pipeline design. Our integrated implementation for both the LTE
stream ciphers even outperforms the single stand-alone core in terms of area.

Comparison with Commercial Designs. In the commercial arena, the best
architectures available for SNOW 3G and ZUC are from IP Cores Inc. [11] and
Elliptic Tech Inc. [8] respectively. Both provide stand-alone solutions for the
individual stream ciphers and match our technology of 65 nm. One tricky issue
in the comparison is the area required for the memory. It is not always clear
from the product white-paper whether additional memories have been used.



For the sake of fairness, we first compare our designs using 3 KB memory
with existing stand-alone ZUC and SNOW 3G implementations. The memory is
synthesized with Faraday Memory Compiler in 65 nm technology node. Further,
we replace the S-Box SRAM implementations with hard macros in the RTL de-
sign and obtained the gate-level synthesis results. From the commercial designs,
the designs with best performance claims in 65 nm technology node are selected.
We provide the detailed comparison and analysis in Table 4.

Performance of Commercial Designs

Cipher Name of Design Designer Max. Freq. Throughput Total Area
(MHz) (Gbps) (KGates)

SNOW 3G SNOW3G1 [11] IP Cores Inc. 943 7.5 8.9

ZUC CLP-410 [8] Elliptic Tech. 500 - 10-13

Performance of HiPAcc-LTE

Cipher Mode of Design Frequency Throughput Memory Total Area
for Static Tables (MHz) (Gbps) (KGates) (KGates)

SNOW 3G 3 KByte memory 1000 32.0 43.0 50.0

ZUC 3 KByte memory 1000 32.0 26.8 38.2

Both 3 KByte memory 1090 34.9 43.0 59.9

SNOW 3G Hard macro 1650 52.8 - 18.1

ZUC Hard macro 920 29.4 - 20.6

Both Hard macro 920 29.4 - 23.9

Table 4. Comparison of HiPAcc-LTE with existing 65 nm commercial designs.

Area comparison: Around an operating frequency of 200-500 MHz, if one uses
the two best cores separately, the combined area comes around 18-20 KGates.
HiPAcc-LTE synthesizes within 16-18 KGates in this frequency zone (using hard
macros), hence offering about 10% reduction in area. Even with this reduced area
figure, HiPAcc-LTE offers the same throughput as CLP-410 [8] and more than
double throughput compared to SNOW3G1 [11].

Throughput comparison: The best throughput (1 word/cycle) is provided by the
CLP-410 ZUC core from Elliptic Tech. However, they just quote a figure of 6
Gbps for 200 MHz [8]. A simple scaling to their maximum frequency of 500 MHz
would translate this to an estimate of 15 Gbps. Even in this case, the throughput
29.4 Gbps of HiPAcc-LTE (in hard macro design) is almost double compared to
any of the commercial stand-alone implementations of the ciphers.

For a very rough estimate, if one wants to achieve a comparable throughput
(approx. 30 Gbps) using the existing stand-alone modules, then 4 parallel blocks
of SNOW3G1 [11] and 2 parallel blocks of CLP-410 [8] would be required. This
amounts to a total area of roughly 56-62 KGates, while HiPAcc-LTE achieves the
same using only 23.9 KGates (almost 57% reduction) for the hard macro based
design. For the sake of fairness, one may also note that we have a comparable



area figure of 59.9 KGates for an even higher throughput (34.9 Gbps) using
3 KByte of external data memory. If the extreme throughput is not required
for communication purpose, it may facilitate a scaling in frequency/voltage for
reduced power consumption.

4.4 Fault Detection and Protection in HiPAcc-LTE

Till date, no significant fault attack has been mounted on ZUC, and the best
fault attack against SNOW 3G has been reported in [3]. In HiPAcc-LTE, we
provide detection and protection against this fault attack of SNOW 3G, and
provide room for tolerance against future fault attacks on ZUC, if any.

In [3], the authors themselves propose a method to prevent their fault attack
in hardware. They have shown that if one shadows the five LFSR locations s0,
s1, s2, s3, s4 continuously, the attack becomes impossible [3, Section X].

In the hardware implementation of HiPAcc-LTE, we have additionally imple-
mented this shadowing mechanism as well. This is realized by keeping a buffer
register of 5×32 = 160 bits which continuously shadows the five LFSR locations
by shifting the array by one word in sync with the LFSR shift, and by recording
the value of s5 in the array during Stage 2 of the pipeline (note that this be-
comes the shadowed value of s4 in Stage 3). A fault is detected in this locations
by comparing the values in the LFSR with the shadowed values from the buffer
array, and the keystream byte is not produced if a fault is detected.

The fault tolerance mechanism does not affect the critical path, and HiPAcc-
LTE still achieves a maximum frequency of 1090 MHz. However, the area figures
rise slightly, as expected. Compared to the original HiPAcc-LTE, the new area
figures increase by approximately 1.5 KGates at 1090 MHZ in the 65 nm tech-
nology, when the design is implemented using external data memory.

The design automatically provides a mechanism for 160 bit shadowing for
ZUC, if required, and this is where our earlier design choices for resource sharing
(as mentioned in Remark 1) prove to be effective.

5 Conclusion

In this paper, we propose a novel idea for unified cryptographic hardware ac-
celerator design based on the algorithmic and structural similarities between
the ciphers to be implemented. As a practical case study of our proposal, we
present HiPAcc-LTE, an integrated high performance hardware accelerator for
3GPP LTE stream ciphers SNOW 3G and ZUC. Through a careful design of
the pipeline structure and storage organization, we achieve significantly higher
throughput than state-of-the-art implementations.

A detailed physical synthesis and post-layout validation of the proposed de-
sign HiPAcc-LTE is on our roadmap. Furthermore, the design principle applied
to the LTE stream ciphers can be exploited towards several similar hardware de-
signs in the domain of cryptography. In particular, we would like to explore the
application of our approach towards an integrated accelerator for other stream
ciphers, block ciphers and hash functions with structural similarities.



Acknowledgment. The authors are grateful to the anonymous reviewers of
Indocrypt 2011 for their critical review comments that helped in improving the
technical quality of this paper. The first author would also like to express his
gratitude to MPSoC Architectures, UMIC, RWTH Aachen University, Germany
for hosting him during June–August 2011, when this work was completed.

References

1. 3GPP TS 33.401 v11.0.1. 3rd Generation Partnership Project, Technical Specifica-
tion Group Services and Systems Aspects. 3GPP System Architecture Evolution
(SAE): Security Architecture. Release 11, June 2011.

2. 3rd Generation Partnership Project. Long Term Evaluation Release 10 and beyond
(LTE-Advanced). Proposed to ITU at 3GPP TSG RAN Meeting, Spain, 2009.

3. B. Debraize and I.M. Corbella. Fault Analysis of the Stream Cipher Snow 3G.
Fault Diagnosis and Tolerance in Cryptography (FDTC ’09), September, 2009.

4. P. Ekdahl and T. Johansson. A New Version of the Stream Cipher SNOW. Selected
Areas in Cryptography (SAC’02), LNCS, Springer, Vol. 2595, pp. 47–61, 2003.

5. Elliptic Technologies Inc. CLP-41: SNOW 3G Flow Through Core. Available at
http://elliptictech.com/products-clp-41.php. Retrieved on 5 August 2011.

6. Elliptic Technologies Inc. CLP-400: SNOW 3G Key Stream Generator.
7. Elliptic Technologies Inc. CLP-403: SNOW 3G Look Aside Core. Available at

http://elliptictech.com/products-clp-403.php. Retrieved on 5 August 2011.
8. Elliptic Technologies Inc. CLP-410: ZUC Key Stream Generator. Available at

http://elliptictech.com/products-clp-410.php. Retrieved on 5 August 2011.
9. Elliptic Technologies Inc. CLP-411: ZUC Look Aside Core. Available at http:

//elliptictech.com/products-clp-411.php. Retrieved on 5 August 2011.
10. Elliptic Technologies Inc. CLP-412: ZUC Flow Through Core. Available at http:

//elliptictech.com/products-clp-412.php. Retrieved on 5 August 2011.
11. IP Cores Inc. SNOW 3G Encryption Core. Available at http://ipcores.com/

Snow3G.htm. Retrieved on 5 August 2011.
12. P. Kitsos, G. Selimis and O. Koufopavlou. High Performance ASIC Implementa-

tion of the SNOW 3G Stream Cipher. IFIP/IEEE VLSI-SOC ’08 - International
Conference on Very Large Scale Integration, Greece, 2008.

13. Z. Liu, L. Zhang, J. Jing and W. Pan. Efficient Pipelined Stream Cipher ZUC
Algorithm in FPGA. First Int’l Workshop on ZUC Algorithm, China, 2010.

14. P.R. Schaumont, H. Kuo and I.M. Verbauwhede. Unlocking the design secrets of
a 2.29 Gb/s Rijndael processor. Design Automation Conf. (DAC ’02), USA, 2002.

15. Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.
Document 1: UEA2 and UIA2 Specification. ETSI/SAGE Specification, Version:
1.1, September 6, 2006.

16. Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2.
Document 2: SNOW 3G Specification. ETSI/SAGE Specification, Version: 1.1,
September 6, 2006.

17. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3. Document 1: 128-EEA3 and 128-EIA3 Specification. ETSI/SAGE Spec-
ification, Version: 1.5, January 4, 2011.

18. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 &
128-EIA3. Document 2: ZUC Specification. ETSI/SAGE Specification, Version:
1.5, January 4, 2011.

19. Synopsys Processor Designer. Synopsys Inc. http://www.synopsys.com/.


