
1

Finding significant matches of position
weight matrices in linear time

Cinzia Pizzi, Pasi Rastas, and Esko Ukkonen

Abstract— Position weight matrices are an impor-
tant method for modeling signals or motifs in biolog-
ical sequences, both in DNA and protein contexts. In
this paper we present fast algorithms for the problem
of finding significant matches of such matrices. Our
algorithms are of the on–line type, and they gener-
alize classical multi-pattern matching, filtering, and
super-alphabet techniques of combinatorial string
matching to the problem of weight matrix matching.
Several variants of the algorithms are developed,
including multiple matrix extensions that perform
the search for several matrices in one scan through
the sequence database. Experimental performance
evaluation is provided to compare the new techniques
against each other as well as against some other
on–line and index–based algorithms proposed in
the literature. Compared to the brute-force O(mn)
approach, our solutions can be faster by a factor that
is proportional to the matrix length m. Our multiple-
matrix filtration algorithm had the best performance
in the experiments. On a current PC, this algorithm
finds significant matches (p = 0.0001) of the 123
JASPAR matrices in the human genome in about
18 minutes.

Index Terms— Position weight matrices, position
specific scoring matrices, profiles, pattern search,
string matching.

I. I NTRODUCTION

Position weight matrices [11], [13], [27] are statisti-
cal models for sequence signals, such as transcription
factor binding sites, in DNA and in other biolog-
ical sequences. Fast search of significant matches
between weight matrices and sequences is a crucial

This article is an expanded and revised version of [18].
Cinzia Pizzi is with Department of Information Engineering,

University of Padova, Via Gradenigo, 6/A, 35133 Padova, Italy.
E-mail: cinzia.pizzi@dei.unipd.it

Pasi Rastas and Esko Ukkonen are with Department
of Computer Science, University of Helsinki and Helsinki
Institute for Information Technology HIIT, Helsinki Uni-
versity of Technology and University of Helsinki, P.O.
Box 68, 00014 University of Helsinki, Finland. E-mail:
Firstname.Lastname@cs.helsinki.fi

Supported by the Academy of Finland grants 211496 (From
Data to Knowledge) and 7523004 (Algorithmic Data Analysis)
and by EU projectRegulatory Genomics.

requirement for nowadays biological sequence anal-
ysis tools, due to the exponential growth of both
DNA and protein sequence databases as well as
alignment block databases from which the weight
matrices can be synthesized (e.g., TRANSFAC [16],
PRINTS [2], BLOCKS [14], JASPAR [22]). High–
performance matrix search tools are needed, for ex-
ample, in genomewide analysis of gene regulation
(e.g., [12]).

The algorithms for position weight matrix search
can be divided into two groups that substantially differ
in their approach, namely the on–line algorithms and
the index–based algorithms. Theindex–based algo-
rithms utilize a separately constructed index structure
of the target sequence that allows rapid accessing any
location of the target. The index may provide a fast
search at the cost of possibly large time and space
requirement of the index construction. The proposed
index–based algorithms use suffix trees [8], [24] or
suffix arrays [3] as the index. Theon–line algorithms
perform the search in one left–to–right scan through
the target sequence. All new algorithms introduced in
this paper are of the on–line type.

The popular on–line algorithms (e.g. [19], [25],
[29]) use a straightforward trial and error search in
a sliding window. The time requirement becomes
O(mn), wherem andn are the lengths of the matrix
and of the target sequence, respectively. As this is
slow, there has been some recent developments of
more advanced on–line algorithms based on various
ideas. In [30], thelookaheadapproach was introduced
which utilizes score properties to devise partial thresh-
olds that allow one to terminate the comparison of
symbols as soon as it is clear that no match will occur.
More recent proposals include matrix partitioning
[15], filtering approaches based on alphabet reduction
[4] or on clusters of similar matrices [15], and shift–
add technique [21]. Techniques using Fast Fourier
Transform [20] and data compression [10] have also
been proposed, but besides the interesting theoretical
approach it is not clear how efficient they can be in
practical applications.

In this paper we present new fast on–line al-

gorithms for the problem of finding weight matrix
matches that score higher than a given significance
threshold. Our algorithms are based on the classical
multi-pattern matching, filtration, and super-alphabet
techniques originally developed for exact and approx-
imate key–word matching. Each technique is intro-
duced in its basic version among with its variants.
For critical analysis of the various approaches, an
experimental comparison of all proposed and some
old techniques is provided.

The paper is organized as follows. Section II for-
malizes the problem of weight matrix search, recalls
the underlying probabilistic scoring model and how
the significance threshold is given as a p-value. We
also explains the so-called lookahead approach [30],
that is often used in more advanced algorithms, in-
cluding the ones proposed in this paper.

In Section III we introduce our Aho-Corasick ex-
pansion algorithm and its pruned variant, all based on
classical pattern matching techniques and lookahead.
The Aho–Corasick algorithm [1], [7], [17] is a very
fast method for multiple key–word search. To use it
for weight matrices, we explicitly generate for a given
matrix the sequences that score above the significance
threshold and use these qualifying sequences as the
key–word set in the Aho–Corasick algorithm. The
key–word set may become so large that it cannot be
accommodated in the fast storage of the computer,
hence slowing down the practical performance of
this theoretically appealing on–line algorithm. The
same idea of generating the qualifying sequences and
applying multiple key–word search (but other than
Aho–Corasick) independently appears in [21].

To solve the storage problem of the key–word
searching, we introduce in Section IV the filtration
approach, a well-known technique utilized in ap-
proximate pattern matching in strings (e.g., [28]).
Filtration algorithms compute first an upper bound for
the matching score of the sliding window. The actual
score is evaluated only if the obtained bound exceeds
the threshold. In fact, the lookahead scoring search
algorithm of [30] already utilizes the filtering idea.
The novelty of our method is to make the filtration
faster by using a precomputed table of the scores in
a fixed–width window of the matrix. This gives fast
and robust algorithms that have good performance
in practice as they can be tuned to fit the available
fast memory by selecting the width of the window
appropriately.

Section V finally gives a super–alphabet generaliza-
tion of the naive search. The fact that this trick speeds
up the search is an old observation in string algorith-

mics (e.g., [6], [9]). The method conceptually uses
a super–alphabet consisting of constant–width tuples
of the original symbols. This would give a speed–up
which is independent of the significance threshold,
making this algorithm competitive for low thresholds
and long matrices as then the Aho–Corasick and
filtration algorithms get slower. The super–alphabet
method can be seen as a special case of the variable–
width submatrix decomposition approach of [15],
with quite different technical implementation.

Extending the preliminary comparisons reported
in [18] we present in Section VI an experimental
comparison of the proposed algorithms and some
other recent on–line or index–based algorithms from
[3], [4], [21], [24]. In the experiments, we used
matrices from the JASPAR [22] database, consisting
of DNA motifs for transcription factor binding sites,
and from the PRINTS [2] database of protein motifs.
Multiple-matrix filtration algorithms were the best
search algorithms for the tested matrices.

A C++ implementation of our algorithms is avail-
able under the GNU general public licence at
www.cs.helsinki.fi/u/prastas/pssm/.

II. SCORING MATRICES AND WEIGHTED PATTERN

SEARCH

A. The search problem

The problem we consider is to find good matches
of a positionally weighted pattern in a sequence of
symbols in some finite alphabetΣ. A positionally
weighted patternis a real–valuedm × |Σ| matrix
M = (M(j, a)). In literature, these patterns are also
called, e.g., position weight matrices, position specific
scoring matrices, and profiles. As a shorthand, we use
pattern or matrix in this paper. The matrix gives a
weight (score) for each alphabet symbola at each
position j. We call m the lengthandΣ the alphabet
of M . Table I gives an example pattern.

PatternM matches any sequenceu = u1 . . . um

of length m in alphabetΣ. The quality of the match
is indicated by thematch scoreWM (u) of u with
respect toM . The score is defined as

WM (u) =

m
∑

j=1

M(j, uj). (1)

Let S = s1s2 . . . sn be ann symbol long sequence
in alphabetΣ. PatternM gives a match score for any
m symbol long segmentsi . . . si+m−1 (calledan m-
segment) of S. We denote the match score ofM at
location i as

wi = WM (si . . . si+m−1). (2)

2

TABLE I

A POSITIONALLY WEIGHTED PATTERN INDNA ALPHABET.

THE PATTERN WAS OBTAINED FROM THE COUNT MATRIX

GATA-3 (MA0037)OF JASPAR [22]WHICH WAS

TRANSFORMED INTO LOG-ODDS MATRIX USING

BACKGROUND DISTRIBUTION

qA = 0.343, qC = 0.187, qG = 0.189, qT = 0.281 (THE

SCORES MULTIPLIED BY100AND ROUNDED TO INTEGERS).

A PSEUDO-COUNTqa WAS FIRST ADDED TO THE COUNTS

FOR EACH ALPHABET SYMBOLa.

A C G T
1 14 17 -106 12
2 -416 -231 164 -416
3 103 -416 -232 -264
4 -416 -416 -85 118
5 58 -231 -106 7
6 -36 -132 112 -77

The problem studied in this paper can now be for-
malized as follows. Given a real–valuedsignificance
thresholdk, theweighted pattern search problem with
threshold kis to find all locationsi of sequenceS
such thatwi ≥ k. In addition to the locationsi,
also knowing the valueswi is of interest in many
applications.

A special case of this search problem is the widely
studied problem of exact string pattern matching in
which one wants to find within sequenceS the exact
occurrences of a patternP = p1p2 . . . pm where each
pj is in Σ (e.g., [7]). The weighted pattern search
formalism gives the exact pattern search problem by
choosing the weight matrixM asM(j, pj) = 1, and
M(j, v) = 0 if v 6= pj. Then thresholdk selects the
locations of S where the symbols ofP match the
corresponding symbol ofS in at leastk positions.
Choosingk = m gives the locations of the exact
occurrences ofP in S.

B. Probabilistic pattern model, log-odds scoring, and
significance thresholding

In typical applications such as finding putative
binding sites of transcription factors in DNA, the
weights M(j, a) are in fact log-odds scores of a
probabilistic model of a signal to be detected against
the background. The signal model is normally given
as anm × |Σ| matrix Π such thatΠ(j, a) gives the
probability of the symbola to occur in model position
j. These probabilities can be obtained e.g. from the
corresponding empirically constructed count matrix
[22], possibly with added pseudocounts.

The background is usually modeled as an i.i.d.
model, that is, as anm × |Σ| matrix π in which

each row holds the same probability vector giving the
background probability distribution of the alphabet
symbols. We denote the background probabilities as
qa for a ∈ Σ. Henceπ(j, a) = qa for all j.

A match between a sequence and a matrix is
decided upon the evaluation of the log-odds score that
compares the probability to observe the segment in the
signal modelΠ and to observe it in the background
π:

Score(u) = log
PrΠ(u)

Prπ(u)
=

m
∑

j=1

log
Π(j, uj)

π(j, uj)

=

m
∑

j=1

log
Π(j, uj)

quj

Once the backgroundπ is fixed, say by estimating
from the sequenceS to be searched, the modelΠ can
be translated into a positionally weighted patternM :

M(j, a) = log
Π(j, a)

π(j, a)

Then the score obtained as (1) equals the above
Score(u).

The significance thresholdk for the search is nor-
mally given indirectly by using the standard approach
of statistics that utilizes the p-values to control the
confidence of the findings. For given p-valuep∗, the
corresponding threshold is a valuek = k(p∗) such
that in the background distribution the probability of
sequencesu such thatWM (u) ≥ k, is p∗. Given p∗,
the correspondingk = k(p∗) can be evaluated by
using a well-known pseudo-polynomial time dynamic
programming algorithm [26], [30].

C. The naive algorithm and the lookahead scoring
algorithm

Let us recall in this section some well-known
search algorithms that will be included in our exper-
imental comparison.

The weighted pattern search problem can be solved
for given S, M , andk by evaluatingwi from (1) and
(2) for eachi = 1, 2, . . . , n − m + 1, and reporting
locationsi such thatwi ≥ k. We call this thenaive
algorithm (NA). As evaluating eachwi from (1)
takes timeO(m), the total search time of the naive
algorithm becomesO(mn), wherem is the length of
the pattern andn the length of the sequenceS.

The lookahead scoring algorithmis an improved
version of NA from [30] that precomputes the in-
termediate score thresholds that each prefix of a
candidate segment must meet in order to keep the
chance to be a match. The intermediate thresholds

3

are computed using themaximal remainder scores,
defined for0 ≤ h ≤ m as

Rh =

m
∑

j=h+1

max
a∈Σ

M(j, a). (3)

Obviously,Rh is the maximum possible score that
can be achieved by the suffix starting at position
h + 1 of any candidatem-segmentsi . . . si+m−1.
Let the sum of the score up to positionh,
WM (si . . . si−1+h) =

∑h

j=1 M(j, si−1+j), and the
maximal remainder scoresRh be below the match-
ing thresholdk. Then we know without seeing the
remaining symbols that them-segment cannot be a
match as the total score will be less thank for any
choice of the sequence beyond the locationh.

Utilizing this observation, the lookahead scoring
algorithm first tabulates theintermediate thresholds

Th = k − Rh (4)

for h = 0, . . . , m. The actual search at positioni of
S evaluates the score forsi . . . si+m−1 incrementally
term by term such that the next termM(h+1, Si+h)

is added to the score only if the accumulated score
so far is at leastTh. Otherwise the search is stopped
at the currenti and resumed ati + 1.

A further improvement of NA proposed in [30]
is called thepermuted lookahead scoring algorithm
(PLS). This algorithm accumulates the scores of the
matrix positions in an order which is not necessarily
left-to-right but is determined specifically for each
matrix to give optimal average performance. The
aim is to detect unsuccessfulm-segments as early
as possible. This is achieved by choosing the matrix
positions in decreasing order of theexpected lossat
position j, defined as

Lj = max
a∈Σ

M(j, a) −
∑

a∈Σ

qaM(j, a) (5)

whereqa is the background probability ofa.
On average, computing the score atj would in-

crease the difference between maximum possible
score and the actual score byLj . This means that
the partial score, when evaluated in this order, will
drop below the intermediate thresholdTh for smallest
possibleh on average. Hence the search takes minimal
average time at each location ofS. Note that the
maximal remainder scoreRh has to be evaluated
using the same order of matrix locations, determined
by decreasing expected loss.

III. A HO–CORASICK EXPANSION ALGORITHM

PatternM and thresholdk determine them sym-
bols long sequences whose matching score is≥ k.
We may explicitly generate all such sequences in a
preprocessing phase before the actual search overS,
and then find their occurrences fast fromS, using
some multipattern search technique of exact string
matching. We will use the Aho–Corasick multipattern
search algorithm for that purpose while [21] used the
q–gram variant of the multipattern backward DAWG
matching algorithm.

A. Full version

The preprocessing phase takesM andk, and gen-
erates the Aho–Corasick pattern matching automaton
as follows. For each sequencex ∈ Σm, addx to the
setD of the qualifying sequencesif WM (x) ≥ k. In
practice we avoid generating and checking the entire
Σm by using the lookahead technique of [30] to limit
the search. We buildD by generating the prefixes of
the sequences inΣm, and expanding a prefix that is
still alive only if the expanded prefix is a prefix of
some sequence that has score≥ k.

More technically, we use the same trick as in the
lookahead scoring algorithm. For a prefixu1 . . . uh,
h ≤ m, of a full m–segment, let

WM (u1 . . . uh) =

h
∑

j=1

M(j, uj) (6)

be the prefix score of u1 . . . uh. Now, if
WM (u1 . . . uh−1uh) < Th, we know for sure
that no string with prefixu1 . . . uh−1uh can have a
score≥ k with respect toM , and there is no need
to expandu1 . . . uh−1 to u1 . . . uh−1uh. Otherwise
there is a string with prefixu1 . . . uh−1uh that has
score≥ k, and the expansion byuh is accepted.

We organize this process in the breadth–first order
such that all still alive prefixes of lengthh − 1 are
examined and expanded to the lengthh by all uh ∈ Σ

such thatWM (u1 . . . uh−1uh) ≥ Th. This is started
with h = 1 (only the empty string is alive at the start)
and repeated forh = 2, . . . , m. The sequences alive
at h = m constituteD.

For large k, only a small fraction ofΣm will
be included inD. Denoting the total length of the
sequences inD by |D|, the above procedure generates
D in timeO(|D|+|M |) where theO(|M |) = O(m|Σ|)

time is needed for computing the intermediate thresh-
olds Th from M .

4

The standard Aho–Corasick pattern matching au-
tomatonAC(D) for the sequences inD is then con-
structed [1], [7], followed by a postprocessing phase
to get the ‘advanced’ version of the automaton [17]
in which the failure transitions have been eliminated.
This version is the most efficient for small alphabets
like that of DNA. The construction of the automaton
needs time and spaceO(|D||Σ|). For eachw ∈ D,
we associate the scoreWM (w) with the state of the
automaton that corresponds tow.

The search overS is then accomplished by scan-
ning S with AC(D). The scan will report the oc-
currences of the members ofD in S as well as the
precomputed scores of the members detected.

We call this search algorithm theAho–Corasick ex-
pansion algorithm(ACE algorithm). The total running
time of ACE isO(|D||Σ|+|M |) = O(|Σ|m+1+m|Σ|)

for preprocessingM to obtainAC(D), andO(|S|) for
scanningS with AC(D). Note that the scanning time
does not depend on the matrix lengthm.

B. Pruned version

Next we develop a pruned variant of the Aho-
Corasick expansion that sometimes gives a notably
smaller pattern matching automaton than the full
version of Section III-A. The variant is based on
the following observation. Let sequencev, |v| < m,
be such that for allw ∈ Σm−|v|, sequencevw

qualifies (i.e.,WM (vw) ≥ k) and hence is inD. Then
detectingv at some positioni of S indicates that a
qualifying sequence must occur ati. This is because
independently of whatm−|v| symbols long sequence
w follows the occurrence ofv in S, we know that
the total score ofvw must be≥ k. Hence we can
use in the multipattern search onlyv instead of all
sequencesvw. To get greatest saving,v should be
shortest possible.

In this way we see that to find the occurrences of
the original qualifying sequences inD, it suffices to
search for sequences in the set

Dpruned = { v | vw ∈ D for all w ∈ Σm−|v|

andv is shortest possible}.

Set Dpruned can be constructed directly, without at
first constructing the fullD. We use a technique that
is similar to the breadth-first search construction ofD.
In addition to the maximal remainder scoresRh, the
construction also uses theminimal remainder scores
rh defined for0 ≤ h ≤ m as

rh =

m
∑

j=h+1

min
a∈Σ

M(j, a). (7)

Hence the minimal remainder score at positionh of
M is the smallest possible total score that can be
obtained from positionsh + 1 to m.

It should be obvious thatv = v1 . . . vh is in
Dpruned if and only if WM (v) ≥ k − rh and
WM (v′) < k − rh for any proper prefixv′ of v. To
facilitate the construction ofDpruned we therefore
tabulate theminimum gain thresholds

th = k − rh.

The breadth-first construction then examines the
still alive prefixes u1 . . . uh−1 for all uh in Σ

as follows: If WM (u1 . . . uh−1uh) ≥ th, then
u1 . . . uh−1uh is added toDpruned and made dead.
Otherwise, if WM (u1 . . . uh−1uh) ≥ Th, then
u1 . . . uh−1uh is made alive for the next round. The
other u1 . . . uh−1uh are made dead. Finally, add to
Dpruned the sequencesu1 . . . um that are alive at
h = m.

As the total length of the sequences inDpruned

can for some matricesM be considerably smaller
than the length of the sequences ofD, the Aho-
Corasick pattern matching automatonAC(Dpruned)

can be clearly smaller thanAC(D). This may give
a faster search because of improved cache memory
behaviour. However, this search would only report
the occurrence locations of the sequences inD. In
applications also the scores of the occurrences are
of interest. To be able to report these, the entirem-
segment making the occurrence must be scanned and
the corresponding total score must be output. This
complicates the search and makes the data structures
larger as we need to precompute and store the scores
for all members ofD. In our experiments we observed
that the search withAC(Dpruned) was actually some-
what slower than withAC(D). Therefore the search
times ofAC(Dpruned) are not reported in Section VI.

C. Size of Aho–Corasick automata

When deciding which algorithm to use it is useful
to evaluate the size of the Aho–Corasick automaton
AC(D) directly, without explicitly constructing the
automaton. GivenM andk = k(p∗), this can be done
as follows.

First we note that for uniform background distribu-
tion the expected number of qualifying sequences is
≤ p∗|Σ|m. Hence the number of states ofAC(D) is
≤ p∗m|Σ|m in this case.

The accurate number of the states (for any back-
ground) can be computed by tabulating the number
of different sequences reaching each level of the
automaton. LetG1 andG0 be the largest and smallest

5

100

102

104

106

108

1010

1012

1014

1016

 5 10 15 20 25 30

au
to

m
at

on
 s

iz
e

matrix length m

ACE automaton sizes (p = 0.001)

Actual automaton size
Estimate

Fig. 1. Vertical bars show the maximum, minimum and
average number of states ofAC(D) for patterns of each length
4, . . . , 30 in the JASPAR database,p = 0.001. The solid line
gives the size estimatep∗m4m.

possible partial (prefix) score given by matrixM .
Let C(h, g) denote the number of different sequences
u1 . . . uh such thatM gives them score= g, that is,
g =

∑h

j=1 M(j, uj). ThenC(h, g) can be evaluated
for g = G0, . . . , G1 andh = 0, . . . , m from

C(0, g) =

{

1 if g = 0

0 otherwise

C(h, g) =
∑

a∈Σ

C(h − 1, g − M(h, a))

The number of different prefixesu1 . . . uh of the qual-
ifying sequences inD is now Nh =

∑

g≥Th
C(h, g),

whereTh is as in (4). By the properties of the Aho–
Corasick trie representingD, the total number of the
states ofAC(D) then equals

∑m

j=0 Nj .
Fig. 1 gives the sizes ofAC(D) for the 123

JASPAR matrices used in the experiments of Sec-
tion VI.

IV. F ILTRATION ALGORITHMS

A. Window–based filtration

While the Aho–Corasick expansion algorithm of
Section III scansS very fast, it is not always robust
enough for practical use, due to its huge memory
requirements: If the matrix lengthm is large andk

is relatively small, setD of the qualifying sequences
can become so large thatAC(D) cannot be accom-
modated in the available fast memory. For example,
AC(D) for the longest JASPAR matrix (m = 30)
has more than4 · 1015 states whenp = 0.001

(Fig. 1). This leads to a considerable slow–down of
the scanning phase because of secondary memory
effects. Moreover, repeating the construction of the

Aho–Corasick automaton for differentk but the same
M seems inefficient.

To tackle these problems we develop in this section
algorithms that use the so–called filtration. The size
of the filtration machine that scans the sequenceS

can be selected flexibly to fit the available memory
space. The general idea of filtration algorithms is that
instead of the accurate value of the score, the search
first evaluates anupper boundfor the score of each
m–segment ofS. Whenever the upper bound value
is ≥ k, we know that also the score itself may be
≥ k. However, to eliminate false positives this must
be checked separately as the actual score may also be
< k. But if the upper bound is< k, we know for sure
that the score itself must be less thank. Checking is
not needed, and we can continue immediately to the
next segment.

This filtration scheme gives a fast search, provided
that the upper bound can be evaluated fast (faster than
the accurate value) and the bound is strict enough
to keep the number of false positives small. Note
moreover, that the filter is lossless, i.e., it always finds
all true positives.

To get an upper bound, we will evaluate the score
only for a limited window of the matrixM . The win-
dow score added with the maximal remainder score
for the rest of the matrix clearly is an upper bound
for the score of the whole matrix. The evaluation
of the window scores can be done using an Aho–
Corasick machine or using a simpler technique based
on tabulating the scores of all possible sequences for
the window. By making the window narrow enough
we can get a filtration machine that fits to the available
memory.

The position of the window within the matrix is se-
lected such that the filtration accuracy is maximized.
This is achieved by using a window position for which
the expected loss (5) is maximal. In the checking
phase the columns of the matrix outside the window
are evaluated in the decreasing order of the expected
loss, giving shortest checking on average. In fact, our
filtration algorithm is the permuted lookahead scoring
algorithm [30] (Section II-C) generalized such that a
window of several columns takes the role of the first
evaluated column.

An additional useful feature of the algorithms of
this section is that the filtration machines for several
matrices can be united into a combined filtration
machine that performs the pattern search for all
matrices in a single scan of the sequenceS. In some
applications it might not be feasible to store the entire
sequence in which case the single–scan approach can

6

be utilized.

B. Lookahead filtration algorithm

The Lookahead filtration algorithm(LF) fixes the
details of the filtration scheme as follows. LetS, M ,
andk be as before, and leth, h ≤ m, be thewidth of
the window. The optimal window gives the maximal
total expected loss among all windows of widthh. Its
position i0 can be determined as

i0 = arg1≤i≤m−h+1 max

i+h−1
∑

j=i

Lj .

Matrix M is then preprocessed to get a finite–
state automatonF that reports for eachh symbols
long segmentv of S the score given tov by the
optimal window. The automatonF has a state for
each sequenceu = u1 . . . uh ∈ Σh. It is convenient
to denote this state also byu. The window score

WM [i0,i0+h−1](u1 . . . uh) =

i0+h−1
∑

j=i0

M(j, uj)

of sequenceu is associated with stateu. The state
transition functionτ of F is defined for allu in Σh

and a in Σ as τ (u, a) = v wherev = u′a and u′ in
Σh−1 is theh − 1 symbols long suffix ofu.

The regular structure of the states and the transition
functionτ of F makes a very efficient implementation
possible. AutomatonF is implemented simply as an
array of size|Σ|h, also denoted byF , whose entry
F (u) stores the window scoreWM [i0,i0+h−1](u) of
sequenceu. Automaton F takes a state transition
τ (u, a) = v by computing the new indexv from u and
a. This can be done by applying onu a shift operation
followed by concatenation witha. This shift–and–
concatenatetechnique can be conveniently used if|Σ|

is a power of 2; this is the case for DNA matrices.
For other alphabets such as the amino acid alphabet
we use arithmetic operations: multiply by|Σ|, adda

(encoded by one of0, 1, . . . , |Σ| − 1), and subtract
u”|Σ|h whereu” is the header symbol ofu.

The filtration phase is done by scanning the se-
quenceS with F to obtain, in timeO(n), the window
score of everyh symbols long segment ofS. Let ti
be the score for such a segment that starts atsi.
(Note that ti = F (u) where u is the state ofF
after scannings1 . . . si+h−1.) Now, the upper bound
used in filtration isti + Rh where Rh is the (also
precomputed) maximal remainder score (3) forM

outsidethe optimal window. Ifti + Rh < k, then the
full m–segment at the present location must score less

than k, and we can continue the search immediately
to the next location, without evaluating the full score.
On the other hand, ifti +Rh ≥ k, the full score must
be evaluated to see if it really is≥ k. This is done
by adding toti the scores of matching the remaining
positions ofM outside the optimal window against
the corresponding element ofsi−i0+1, . . . , si−i0+m.
The addition is done in the decreasing order of the
expected lossLj . The checking is terminated as soon
as the score accumulated so far plus the maximal
remainder score (3) for the rest goes underk.

Note that F does not depend onk. The same
filtration automatonF can be used with any threshold
k, and henceF needs to be constructed and stored
only once.

C. Running time and filtration specificity

To analyse the running time of the LF algorithm,
we note first that the filtration automatonF and the
maximal remainder scores can be constructed in time
O(|Σ|h + |M |). ScanningS takes timeO(n) plus the
time for checking the score at locations picked up by
the filter. Checking takesO(m − h) time per such a
location. Denoting byγ the number of locations to be
checked, the total checking time becomesO(γ(m −

h)) = O(n(m − h)). Filtration pays off only ifγ is
(much) smaller thann = |S|. Increasingk or h would
obviously decreaseγ.

To estimateγ, let us writeγ = δn. Then for target
sequences taken from the background distribution,δ

is proportional to the probability of that the filtration
score ti + Rh is ≥ k. This depends onM . For the
JASPAR matrices we estimated the average values
of δ for filtration window width h = 7. For p =

0.01, 0.001, 0.0001, and 0.00001, the corresponding
values ofδ are 0.175, 0.0815, 0.0369, and 0.0178.
This also gives averagefiltration specificity δ : p

which is the ratio between the expected number of
positive occurrences of the filtration window and the
truly positive occurrences of the entireM .

D. Multipattern generalization

The automatonF can be extended to multipattern
case, to handle severalM simultaneously, as follows.
Let M1, . . . , MK be the patterns we want to search.
The filtration automaton stores in its entryF (u) all
the K window scores ofu given by the optimal
window of each ofM1, . . . , MK . The above time
bounds for initialization should be multiplied byK
to get time bounds for the generalized algorithm.
The algorithm scansS only once but the scanning

7

becomes slower by a factor which is proportional to
the average number of patterns for which the checking
phase is entered. We call this algorithm theMultiple
matrix lookahead filtration algorithm(MLF).

To get an idea of what values ofh and K may
be feasible for MLF in practice, assume that|Σ| =

4. Then arrayF contains about2.5 × 108 numbers
if h = 9 and K = 1000 or if h = 10 and K =

250. Storing them takes about 1 gigabytes which is
a reasonable main memory size of a current PC. To
get fastest possible performance, the array should fit
into the CPU’s cache memory that is typically much
smaller.

E. Aho-Corasick lookahead filtration and multipat-
tern generalization

The idea of the ACE algorithm to use only the
qualifying sequences in the search can as well be
used for the window search of the filtration method.
The qualifying sequences for a given window and
thresholdk are the sequences whose window score
plus the corresponding maximal remainder score is≥

k. These sequences can be found using the methods of
Section III, adapted to the optimal window. The Aho–
Corasick multipattern automaton for these sequences
can be put in the role of the finite–state machine
F of the LF algorithm. We call this variant the
Aho–Corasick lookahead filtration algorithm(ACLF).
Average size of the ACLF automaton for the Jaspar
matrices is 2452 states whenh = 7 andp = 0.001.

As compared to the LF algorithm, ACLF saves
space as the qualifying sequences for a window can
be sparse.

The multiple matrix version is again possible by
combining in an obvious way the Aho–Corasick
automata for all matrices. The resulting method is
called theMultiple matrix Aho–Corasick lookahead
filtration algorithm (MACLF). The size of the mul-
tipattern automaton for all Jaspar matrices is 21845
states and 170060 window scores (and matrix indices)
associated with the states (h = 7, p = 0.001).

V. SPEED–UP BY SUPER–ALPHABET

Finally we give a simple ‘super–alphabet’ general-
ization of the naive algorithm NA. As the running
time of this algorithm does not depend onk, the
algorithm has potential of performing relatively well
for low k and for long matrices for which the filtration
does not work as the lookahead bound tends to be
overly conservative.

To define the super–alphabet we fix the integer
width q of the alphabet. Then eachq–tuple of the
original alphabet is a super–alphabet symbol.

Matrix M is preprocessed to obtain an equivalent
scoring matrixM̂ for super–alphabet symbols:̂M is
an ⌈m/q⌉ × |Σ|q matrix whose entries are defined as

M̂(j, a1 . . . aq) =

q
∑

h=1

M((j − 1)q + h, ah)

for j = 1, . . . , ⌈m/q⌉ and for all q–tuplesa1 . . . aq ∈

Σq.
The score of eachm symbols long segment ofS

can now be evaluated inO(m/q) steps using the shift–
and–concatenate technique of the previous section to
find fast the appropriate entries of̂M . We call this
method the Naive super–alphabet algorithm (NS).

The search time using algorithm NS becomes
O(nm/q), giving a (theoretical) speed–up of algo-
rithm NA by a factor ofq, independently of the thresh-
old k. In practice the larger overhead of algorithm
NS makes the speed–up smaller. With some care in
implementation, matrixM̂ can be constructed in time
O(m|Σ|q/q).

The submatrix decomposition method of [15] is
a generalized super–alphabet technique with varying
alphabet width.

VI. EXPERIMENTAL PERFORMANCECOMPARISON

A. Experimental set–up

For the experimentation we implemented the well-
known base–line algorithms NA (naive algorithm)
and PLS (permuted lookahead scoring) as well as
our six new algorithms ACE (Aho–Corasick ex-
pansion), LF (lookahead filtration), ACLF (Aho–
Corasick lookahead filtration) and NS (naive super-
alphabet) as well as the multi–matrix variants MLF
(multiple matrix lookahead filtration) and MACLF
(multiple matrix Aho–Corasick lookahead filtration).
The algorithms were implemented in C++. The
implementation is available under GNU license at
www.cs.helsinki.fi/u/prastas/pssm/.

Moreover, using the software implementation by
the original authors, our experiments included: The
shift–add (SA) and the enumerative BG algorithm
(EBG) and the multimatrix version (MEGB) of
EGB by [21]; the index–based (suffix–array) program
PoSSuMsearch [3], [4]; the index–based (suffix–tree)
program STORM [24]. In the running time tables,
POSSUM+ refers to PoSSuMsearch with the index
construction time included, while POSSUM- is the
mere search time using a preconstructed index. For

8

program STORM such a separation of the two phases
was not possible. Moreover, STORM works only for
DNA matrices. The available implementation of the
submatrix decomposition method of [15] is obviously
not optimized for speed as it took in our experiments
at least twice the running time of the base–line
algorithm NA. Therefore we do not report detailed
timing results for that program.

We collected 123 positionally weighted matrices
for DNA from the JASPAR database [22]. The length
of these matrices varied from 4 to 30, with average
length 10.8. As the target sequence to search the
matrix occurrences we used a 50 megabases long
DNA sequence. The sequence contained segments
taken from the human and the mouse genome. To
test the behaviour of the algorithms on very long
patterns, we constructed a collection of 13 patterns,
each having a length of 100, by concatenating the
JASPAR matrices.

We also experimented with amino acid matrices by
choosing a random subset (five of each length from
5 to 30, and two of length 31) of 132 matrices from
the PRINTS database [2]. The target sequence was
a 50 megabases long amino acid sequence that was
made by concatenating a sample of SWISS-PROT
sequences [5].

The significance thresholdk for the experiments
was given as a p-value as follows. The original count
matrices from the JASPAR and PRINTS databases
were first transformed into log-odds scoring matri-
ces using background distribution estimated from the
DNA or amino acid sequence and by adding for
all alphabet symbolsa ∈ Σ a pseudo-countqa to
every original count matrix entry fora; hereqa is the
estimated background probability ofa. The score that
corresponds to a given p-value was then computed
using well-known pseudo-polynomial time dynamic
programming algorithm [26], [30]. As this method
requires an integer-valued matrix, the log-odds scores
were first multiplied by 100 and then rounded to
integers.

The reported running times are for 3 GHz Intel
Pentium IV processor with 2 gigabytes of main
memory, running under Linux. The compiler used
in the experiments was gcc with parameters “-O3-
march=pentium4 -fforce-addr -funroll-loops -frerun-
cse-after-loop -frerun-loop-opt -falign-functions=4”.
We also experimented with 2,13 GHz Core 2 Duo
machine, with essentially similar results (slight dif-
ferences explained by different cache memory size).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 0.01

NA
NS

PLS
LF

ACE
ACLF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 8 10 12 14 16 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 0.001

NA
NS

PLS
LF

ACE
ACLF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 8 10 12 14 16 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 0.0001

NA
NS

PLS
LF

ACE
ACLF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 12 14 16 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 0.00001

NA
NS

PLS
LF

ACE
ACLF

Fig. 2. The dependency of the running time of different
algorithms on the pattern length for some p–values. Average
running times for DNA patterns of each length4, . . . , 30 in the
JASPAR database as well as the standard deviations of 10 runs
are shown.

9

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13

tim
e

in
 s

ec
on

ds

window width h

ACLF, p = 0.0001

MA0033, m = 8
MA0001, m = 10
MA0074, m = 15
MA0106, m = 20
MA0068, m = 30

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13

tim
e

in
 s

ec
on

ds

window width h

LF, p = 0.0001

MA0033, m = 8
MA0001, m = 10
MA0074, m = 15
MA0106, m = 20
MA0068, m = 30

Fig. 3. Dependency on the window width for some individual
matrices of different lengths. Running time of algorithms LF
and ACLF for 5 example DNA patterns from JASPAR database
whenh varies from 2 to 13 andp = 0.0001.

B. DNA search

The run time results for searching Jaspar matrices
are summarized in Tables II, III, and IV, and in
Figures 2, 3, and 4. In algorithms LF, ACLF, MLF,
and MACLF we used parameter valueh = 7 and in
algorithm NS we usedq = 7, if not stated otherwise.

The ACE algorithm is the fastest among our algo-
rithms for short matrices (up to lengthm = 8, . . . , 14

depending onp); Table II gives the average times for
all programs and for all matrices of lengthm ≤ 15.
For longer matrices the size of the pattern matching
automaton of ACE becomes too large to fit the fast
cache memory, and the algorithm gets rapidly much
slower. Fig. 2 shows the dependency of the running
time of some programs on the matrix lengthm;
the collapse of ACE for longer matrices is evident.
Similar behaviour was observed for algorithms EBG
and MEGB of [21].

The window technique of the filtration algorithms
LF and ACLF resolves this problem, giving algo-
rithms that are consistently fast in the entire length
range of JASPAR, algorithm ACLF being slightly
faster for short matrices and LF for longer ones. As

 0

 1

 2

 3

 4

 1 2 3 4 5 6 7 8 9 10 11 12 13

tim
e

in
 s

ec
on

ds

window width h

p = 0.01

NS
ACLF

LF
MACLF

MLF

 0

 1

 2

 3

 1 2 3 4 5 6 7 8 9 10 11 12 13

tim
e

in
 s

ec
on

ds

window width h

p = 0.001

NS
ACLF

LF
MACLF

MLF

 0

 1

 2

 3

 1 2 3 4 5 6 7 8 9 10 11 12 13

tim
e

in
 s

ec
on

ds

window width h

p = 0.0001

NS
ACLF

LF
MACLF

MLF

 0

 1

 2

 3

 1 2 3 4 5 6 7 8 9 10 11 12 13

tim
e

in
 s

ec
on

ds

window width h

p = 0.00001

NS
ACLF

LF
MACLF

MLF

Fig. 4. Average dependency on the window width. Average
running time of algorithms LF, ACLF, MACLF, MLF and NS
for the 123 DNA patterns from the JASPAR database for some
p-values and varyingh (= q in the case of NS).

10

TABLE II

AVERAGE RUNNING TIMES PER PATTERN(IN SECONDS,

PREPROCESSING INCLUDED) OF DIFFERENT ALGORITHMS

WHEN SEARCHING FOR108 JASPARPATTERNS OF LENGTH

m ≤ 15, WITH VARYING P-VALUES. EACH REPORTED TIME

IS AN AVERAGE OF 10 RUNS. THE LOWER PANEL IS FOR

ALGORITHMS INTRODUCED IN THIS PAPER.

p = 10−5 10−4 10−3 10−2

NA 0.846 0.954 1.073 1.440
PLS 0.468 0.665 0.975 1.633
SA 0.864 0.873 0.838 0.819

EBG 0.140 0.199 0.389 1.269
MEBG, q = 9 0.015 0.044 0.152 0.382

POSSUM+ 5.908 5.952 6.348 10.472
POSSUM- 0.018 0.059 0.445 4.579
STORM 0.956 1.041 1.747 -

ACE 0.071 0.105 0.298 1.318
LF 0.178 0.216 0.310 0.754

ACLF 0.117 0.147 0.237 0.715
MLF 0.010 0.032 0.132 0.680

MACLF 0.008 0.039 0.178 0.743
NS 0.551 0.590 0.646 1.002

TABLE III

AVERAGE RUNNING TIMES PER PATTERN(IN SECONDS,

PREPROCESSING INCLUDED) OF DIFFERENT ALGORITHMS

WHEN SEARCHING FOR ALL123 JASPARPATTERNS, WITH

VARYING P-VALUES. EACH REPORTED TIME IS AN AVERAGE

OF 10 RUNS.

p = 10−5 10−4 10−3 10−2

NA 0.987 1.079 1.190 1.572
PLS 0.574 0.771 1.079 1.775

POSSUM+ 5.955 6.041 6.524 10.964
POSSUM- 0.062 0.148 0.631 5.071
STORM 0.996 1.204 2.173 -

LF 0.208 0.268 0.396 0.886
ACLF 0.153 0.214 0.353 0.884
MLF 0.066 0.126 0.280 0.916

MACLF 0.101 0.171 0.348 0.985
NS 0.537 0.612 0.687 1.043

algorithms ACE, EBG and MEBG were unable to
search for all matrices reasonably efficiently, we omit
them in further experiments. Algorithm SA is omitted
as the available implementation only worked for short
matrices.

Fig. 3 illustrates the dependency of the performance
of algorithms LF and ACLF on the window widthh
for some example matrices. Increasing parameterh

should improve the filtration performance and hence
make the algorithm faster. In the experiment, the
performance is seen to improve untilh = 7 or h = 8.
After that there is a strong slow-down. This is because
the highest level cache memory is getting full. We
verified that ath = 7 also the number of cache misses
starts to grow. Fig. 4 summarizes the dependency on

TABLE IV

AVERAGE RUNNING TIMES(IN SECONDS, PREPROCESSING

INCLUDED) OF DIFFERENT ALGORITHMS FOR LONGDNA

PATTERNS(m = 100) AND VARYING P-VALUES. EACH

REPORTED TIME IS AN AVERAGE OF10 RUNS.

p = 10−5 10−4 10−3 10−2

NA 9.724 10.119 9.901 10.331
PLS 9.463 10.265 11.475 13.147

POSSUM+ 72.613 73.355 76.424 84.557
POSSUM- 16.859 17.601 20.670 28.803
STORM 35.138 36.098 40.677 -

LF 8.379 9.199 10.285 12.068
ACLF 7.392 8.074 9.050 10.481
MLF 9.982 10.707 11.905 13.938

MACLF 11.544 11.971 13.133 15.167
NS, q = 6 3.076 3.150 3.293 3.701

h by giving average execution times of LF, ACLF,
MACLF, MLF and NS for all JASPAR matrices for
varying h.

Table III gives the average running times forh = 7

(q = 7 in NS) for all matrices and for all algorithms
that are efficient also for matrices longer than 15. The
multiple matrix algorithms MLF and MACLF give the
best total performance for smallp, while for higher
p the difference to LF and ACLF disappears. Fig. 4
also indicates that the multiple matrix algorithms are
quite robust against the variation ofh.

For the long DNA patterns withm = 100, algo-
rithm NS is the best as reported in Table IV. We used
q = 6 in algorithm NS. Note, however, that we made
this experiment only for curiosity. The matrices here
were artificially generated as we did not find such
long matrices in databases.

TABLE V

AVERAGE RUNNING TIMES PER PATTERN(IN SECONDS,

PREPROCESSING INCLUDED) OF DIFFERENT ALGORITHMS

WHEN SEARCHING FOR A SUBSET OFPRINTSPATTERNS,

WITH VARYING P-VALUES. EACH REPORTED TIME IS AN

AVERAGE OF 10 RUNS.

p = 10−20 10−15 10−10 10−5

NA 1.408 1.630 1.773 1.850
PLS 0.624 1.046 1.606 2.461

POSSUM+ 1.498 2.679 4.050 6.074
POSSUM- 1.100 2.281 3.652 5.676
LF, h = 3 0.474 0.861 1.390 2.224

ACLF, h = 2 0.498 0.887 1.431 2.215
MLF, h = 4 0.787 2.077 3.680 4.310

MACLF, h = 4 0.853 1.927 2.950 4.772

C. Amino acid search

For amino acid matrices the situation is somewhat
different as can be seen in Table V and Fig. 5. As the

11

 0

 1

 2

 3

 4

 5

 6 8 10 12 14 16 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 10-5

NA
PLS

ACLF, h = 2
LF, h = 3

 0

 1

 2

 3

 4

 5

 10 12 14 16 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 10-10

NA
PLS

ACLF, h = 2
LF, h = 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 12 14 16 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 10-15

NA
PLS

ACLF, h = 2
LF, h = 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 18 20 22 24 26 28 30

tim
e

in
 s

ec
on

ds

matrix length m

p = 10-20

NA
PLS

ACLF, h = 2
LF, h = 3

Fig. 5. The dependency of the running time of different
algorithms on the pattern length for some p–values. Average
running times for some patterns of each length5, . . . , 31 in the
PRINTS database are shown.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 1 2 3 4 5 6 7

tim
e

in
 s

ec
on

ds

window width h

LF, p = 10-10

FADPNR5, m = 8
ANAPHYLATOXN1, m = 10

EGFBLOOD1, m = 12
VWFADOMAIN2, m = 15

SREBPS2PTASE1, m = 20
LSHMANOLYSIN1, m = 30

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 1 2 3 4 5 6 7

tim
e

in
 s

ec
on

ds

window width h

ACLF, p = 10-10

FADPNR5, m = 8
ANAPHYLATOXN1, m = 10

EGFBLOOD1, m = 12
VWFADOMAIN2, m = 15

SREBPS2PTASE1, m = 20
LSHMANOLYSIN1, m = 30

Fig. 6. Running time of algorithms LF and ACLF for 6
example amino acid patterns from PRINTS database whenh
varies from 1 to 7 andp = 10−10 .

amino acid alphabet is much larger, filtration can only
be efficient if the p-value is very small. Algorithm
LF with h = 3 gives the best performance but the
difference to PLS is clearly smaller than in the case
of DNA matrices. Fig. 6 illustrates the dependency on
window width for some individual example matrices.
As compared to the DNA matrices, the window–based
filtration evidently has smaller effect. The multiple
matrix algorithms MLF and MACLF had the best per-
formance for windowh = 4. Somewhat unexpectedly,
the speed–up due to filtration did not suffice in the
multiple–matrix case to compensate the overhead of
the more complicated algorithmic structure.

VII. D ISCUSSION

Several novel on–line algorithms were proposed for
the position weight matrix search. Six of them were
implemented and experimentally compared with some
earlier on–line and index–based search programs.
Among the new methods, the ACE algorithm is
theoretically optimal in the sense that its search speed
does not depend on the matrix length. In practice,
however, ACE suffers from large memory requirement
which makes it competitive only for short matrices.

12

The multiple matrix versions MLF and MACLF of
our filtration algorithm had in our experiments the
best overall performance for DNA matrices. In some
cases also MEGB of [21] and our LF and ACLF
are very fast. For example, algorithm MLF finds in
the human genome all matches of the 123 JASPAR
matrices on significance levelp = 0.0001 in about 18
minutes on a current PC. As a comparison, reading
the human genome from disk to the main memory
takes about 3 minutes.

It should be emphasized that the practical perfor-
mance of the algorithms studied here quite strongly
depends on the implementation details and on the
properties of the memory hierarchy of the computer
used. The observed speed differences between differ-
ent on–line algorithm variants were often relatively
small and can vary with the implementation and the
computer. However, compared to the naive search
(NA) and the permuted lookahead search (PLS) the
new algorithms give a clear speed-up in the case of
DNA matrices. Compared to PLS, the average speed-
up factor was4, . . . , 8 for p = 0.001, . . . , 0.00001, and
for individual matrices often much higher. For amino
acid matrices the observed speed–up is more modest.
For very long DNA matrices the only algorithm
showing improved performance is the super–alphabet
method (NS).

Choosing between on–line and index–based algo-
rithms is a subtle task with no short answer. Building
an index probably pays off if the target sequence
(database) is long and stays unchanged, and there
are lots of matrix searches to be done. The high
speed of the on–line algorithms observed here is
sufficient in many situations, noting in addition that
on–line algorithms are conceptually simple and easy
to implement. In our experiments the index-based
programs were observed to perform the pure search
(with preconstructed index) very fast for high sig-
nificance values but the speed rapidly drops for low
significances. If the index construction is included in
the time comparison, then the index–based algorithms
were not competitive with on–line methods for the 50
million symbols long targets used in the experiments.
For longer targets the situation may change. However,
we leave more extensive experimental study of these
issues as a topic for further research.

VIII. A CKNOWLEDGEMENT

We would like to thank Janne Korhonen for imple-
menting some of our algorithms and for running the
experiments.

REFERENCES

[1] Aho, A. V. and Corasick, M.: Efficient string matching:
An aid to bibliographic search,Comm. ACM18 (1975),
333–340.

[2] Attwood T.K., and Beck, M.E., PRINTS - A Protein
Motif Finger-print Database,Protein Engineering, 1994;
7(7):841–848.

[3] Beckstette M., Strothmann D., Homann R., Giegerich
R., and Kurtz S., PoSSuMsearch: Fast and Sensitive
Matching of Position Specific Scoring Matrices using
Enhanced Suffix Arrays, inProc. German Conference in
Bioinformatics, 2004; GI Lecture Notes in Informatics,
vol.: P-53, pages 53–64.

[4] Beckstette M., Strothmann D., Homann R., Giegerich R.,
and Kurtz S., Fast Index Based Algorithms and Software
for Matching Position Specific Scoring Matrices,BMC
Bioinformatics, 2006 Aug. 24; 7(1):389.

[5] Boeckmann B., Bairoch A., Apweiler R., Blatter M.C.,
Estreicher A., Gasteiger E., Martin M.J., Michoud K.,
O’Donovan C., Phan I., Pilbout S., and Schneider M.,
The SWISS-PROT protein knowledgebase and its sup-
plement TrEMBL in 2003,” inNucleic Acids Research,
2003; 31(1): 365–370.

[6] Boyer, R. S., and Moore, J. S., A fast string searching
algorithm. Commun. ACM1977; 20(10):762–772.

[7] Crochemore, M. and Rytter, W.,Text Algorithms, Oxford
University Press 1994.

[8] Dorohonceanu B., and Neville-Manning C.G., Acceler-
ating Protein Classification Using Suffix Trees, inProc.
8th International Conference on Intelligent Systems for
Molecular Biology (ISMB), 2000; 128–133.

[9] K. Fredriksson, Shift-or string matching with super-
alphabets.Inf. Process. Lett.2003; 87(4):201–204.

[10] Freschi V., and Bogliolo A., Using Sequence Compres-
sion to Speedup Probabilistic Profile Matching,Bioinfor-
matics, 2005; 21(10):2225–2229.

[11] Gribskov M., McLachlan A.D., and Eisenberg D., Profile
Analysis: Detection of Distantly related Proteins,Proc.
Natl. Acad. Sci., 1987; 84(13):4355–8.

[12] O. Hallikas, K. Palin, N. Sinjushina, R. Rautiainen,
J. Partanen, E. Ukkonen & J. Taipale: Genome-wide
prediction of mammalian enhancers based on analysis
of transcription-factor binding affinity.Cell 124 (January
13, 2006), 47–59.

[13] Henikoff S., Wallace J.C., Brown J.P., Finding protein
similarities with nucleotide sequence databases,Methods
Enzymol., 1990;183:111–132.

[14] Henikoff J.G, Greene E.A., Pietrokovski S., and Henikoff
S., Increased Coverage of Protein Families with the
Blocks Database Servers,Nucleic Acids Research, 2000;
28(1): 228–230.

[15] Liefhooghe, A., Touzet, H. and Varre, J.: Large Scale
Matching for Position Weight Matrices. In:Proc CPM
2006, LNCS 4006, pp. 401–412, Springer-Verlag 2006.

[16] Matys V., Fricke E., Geffers R., Gossling E., Haubrock
M., Hehl R., Hornischer K., Karas D., Kel A.E., Kel-
Margoulis O.V., Kloos D.U., Land S., Lewicki-Potapov
B., Michael H., Munch R., Reuter I., Rotert S., Saxel H.,
Scheer M., Thiele S., and Wingender E., TRANSFAC:
Transcriptional Regulation, from Patterns to Profiles,
Nucleic Acids Research, 2003; 31(1):374–378.

[17] Navarro, G. and Raffinot, M.,Flexible Pattern Matching
in Strings, Cambridge University Press 2002.

[18] Pizzi C., Rastas P., and Ukkonen E., Fast Search Algo-
rithms for Position Specific Scoring Matrices, inBioin-

13

formatics Research and Development Conference (BIRD
2007), LNBI 4414, Springer, 2007; 239–250.

[19] Quandt K., Frech K., Karas H., Wingender E., and
Werner T., MatInd and MatInspector: New Fast and
Versatile Tools for Detection of Consensus Matches
in Nucleotide Sequences Data,Nucleic Acid Research,
1995; 23(23):4878–4884.

[20] Rajasekaran S., Jin X., and Spouge J.L., The Efficient
Computation of Position-Specific Match Scores with
the Fast Fourier Transform,Journal of Computational
Biology, 2002; 9(1):23–33.

[21] Salmela L. and Tarhio J., Algorithms for weighted match-
ing, in Proc. SPIRE 2007, LNCS 4726, Springer, 2007,
276–286.

[22] Sandelin, A., Alkema, W., Engstrom, P., Wasserman,
W.W. and Lanhard, B., JASPAR: an open-access database
for eukaryotic transcription factor binding profiles,Nu-
cleic Acids Research32 (2004), D91–D94.

[23] Schneider T.D., Stormo G.D., Gold L. and Ehren-
feucht A., Information Content of Binding Sites on
Nucleotide Sequences,Journal of Molecular Biology,
1986; 188:415–431.

[24] D. E. Schones, A. D. Smith, and M. Q. Zhang: Statistical
significance of cis-regulatory modulesBMC Bioinformat-
ics, 2007; 8: 19

[25] Scordis P., Flower D.R., and Attwood T., Finger-
PRINTScan: Intelligent Searching of the PRINTS Motif
Database,Bioinformatics, 1999; 15(10):799–806.

[26] Staden R., Methods for calculating the probabilities of
finding patterns in sequences,CABIOS, 1989; 5(2):89–
96.

[27] Stormo G.D., Schneider T.D., Gold L.M., and Ehren-
feucht A., Use of the ‘Perceptron’ Algorithm to Distin-
guish Translational Initiation Sites in E.coli,Nucleic Acid
Research, 1982; 10:2997–3012.

[28] Ukkonen, E., Approximate string-matching with q-grams
and maximal matches.Theoretical Computer Science92
(1992), 191-211.

[29] Wallace J.C., and Henikoff S., PATMAT: a Searching
and Extraction Program for Sequence, Pattern and Block
Queries and Databases,CABIOS, 1992; 8(3):249–254.

[30] Wu T.D., Neville-Manning C.G., and Brutlag D.L., Fast
Probabilistic Analysis of Sequence Function using Scor-
ing Matrices,Bioinformatics, 2000; 16(3):233–244.

PLACE
PHOTO
HERE

Cinzia Pizzi received her PhD in
Computer Engineering from Univer-
sity of Padova (Italy) in 2005. She
then joined as post-doctoral researcher
the University of Helsinki (Finland),
and next INRIA (France). She is
currently at the Department of In-
formation Engineering of University
of Padova. Her research interests in-
cludes design and analysis of algo-
rithms, and motif discovery in biolog-

ical sequences and networks.

PLACE
PHOTO
HERE

Pasi Rastasreceived his MSc degree
in Computer Science in 2004 from
University of Helsinki, Finland. His
research interests include algorithms
in general and in computational biol-
ogy. He is currently writing his PhD
at the University of Helsinki under
supervision of Professor E. Ukkonen.

PLACE
PHOTO
HERE

Esko Ukkonen is since 1985 Pro-
fessor of Computer Science of the
University of Helsinki. He has had
visiting positions at the University of
California at Berkeley, University of
Freiburg, and University of Bielefeld.
He has published more than 140 orig-
inal scientific articles on various areas
including algorithms and data struc-
tures, combinatorial pattern matching,
machine learning, and computational

biology. In 1999-2001 he was the chairman of the Finnish Soci-
ety for Computer Science, in 1999-2004 an Academy Professor
of the Academy of Finland, and in 2004-2008 Research Director
of the Helsinki Institute of Information Technology (HIIT).

14

