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Abstract— Position weight matrices are an impor- requirement for nowadays biological sequence anal-
tant method for modeling signals or motifs in biolog- ysis tools, due to the exponential growth of both
ical sequences, both in DNA and protein contexts. In pNA and protein sequence databases as well as
this paper we present fast algorithms for the problem alignment block databases from which the weight

of finding significant matches of such matrices. Our . .
algorithms are of the on-line type, and they gener- matrices can be synthesized (e.g., TRANSFAC [16],

alize classical multi-pattern matching, filtering, and PRINTS [2], BLOCKS [14], JASPAR [22]). High—
super-alphabet techniques of combinatorial string performance matrix search tools are needed, for ex-
matching to the problem of weight matrix matching. ample, in genomewide analysis of gene regulation
Several variants of the algorithms are developed, (e.g., [12]).

including multiple matrix extensions that perform The algorithms for position weight matrix search

the search for several matrices in one scan through S . . .
the sequence database. Experimental performance can be divided into two groups that substantially differ

evaluation is provided to compare the new techniques N their approach, namely the on-line algorithms and
against each other as well as against some otherthe index—based algorithms. Thiedex—based algo-

on-line and index—based algorithms proposed in rithmsutilize a separately constructed index structure
the literature. Compared to the brute-force O(mn)  of the target sequence that allows rapid accessing any
approach, our solutions can be faster by a factor that |ocation of the target. The index may provide a fast
is proportional to the matrix length m. Our multiple- search at the cost of possibly large time and space

matrix filtration algorithm had the best performance ) . -
in the experiments. On a current PC, this algorithm requirement of the index construction. The proposed

finds significant matches p = 0.0001) of the 123 index-based algorithms use suffix trees [8], [24] or
JASPAR matrices in the human genome in about suffix arrays [3] as the index. Then—line algorithms
18 minutes. perform the search in one left-to—right scan through
Index Terms— Position weight matrices, position th_e target sequence. All new algorithms introduced in
specific scoring matrices, profiles, pattern search, this paper are of the on—line type.
string matching. The popular on-line algorithms (e.g. [19], [25],
[29]) use a straightforward trial and error search in
a sliding window. The time requirement becomes
O(mn), wherem andn are the lengths of the matrix
Position weight matrices [11], [13], [27] are statisti-and of the target sequence, respectively. As this is
cal models for sequence signals, such as transcriptigfow, there has been some recent developments of
factor binding sites, in DNA and in other biolog-more advanced on-line algorithms based on various
ical sequences. Fast search of significant matchglas. In [30], thdookaheadapproach was introduced
between weight matrices and sequences is a crucighich utilizes score properties to devise partial thresh-
o ] ) olds that allow one to terminate the comparison of
This article is an expanded and revised version of [18]. gy ho)5 a5 soon as it is clear that no match will occur.
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I. INTRODUCTION



gorithms for the problem of finding weight matrix mics (e.g., [6], [9]). The method conceptually uses
matches that score higher than a given significan@esuper—alphabet consisting of constant—width tuples
threshold. Our algorithms are based on the classicafl the original symbols. This would give a speed-up
multi-pattern matching, filtration, and super-alphabewhich is independent of the significance threshold,
techniques originally developed for exact and approxnaking this algorithm competitive for low thresholds
imate key—word matching. Each technique is introand long matrices as then the Aho—Corasick and
duced in its basic version among with its variantsfiltration algorithms get slower. The super—alphabet
For critical analysis of the various approaches, amethod can be seen as a special case of the variable—
experimental comparison of all proposed and someidth submatrix decomposition approach of [15],
old techniques is provided. with quite different technical implementation.

The paper is organized as follows. Section Il for- Extending the preliminary comparisons reported
malizes the problem of weight matrix search, recall# [18] we present in Section VI an experimental
the underlying probabilistic scoring model and howgomparison of the proposed algorithms and some
the significance threshold is given as a p-value. Wether recent on-line or index-based algorithms from
also explains the so-called lookahead approach [3G8], [4], [21], [24]. In the experiments, we used
that is often used in more advanced algorithms, irmatrices from the JASPAR [22] database, consisting
cluding the ones proposed in this paper. of DNA motifs for transcription factor binding sites,

In Section 1l we introduce our Aho-Corasick ex-and from the PRINTS [2] database of protein motifs.
pansion algorithm and its pruned variant, all based dWultiple-matrix filtration algorithms were the best
classical pattern matching techniques and lookahedgarch algorithms for the tested matrices.

The Aho—Corasick algorithm [1], [7], [17] is a very A C++ implementation of our algorithms is avail-
fast method for multiple key-word search. To use i@ble under the GNU general public licence at
for weight matrices, we explicitly generate for a giverWWW.cs.helsinki.fi/u/prastas/pssm/.

matrix the sequences that score above the significance

threshold and use these qualifying sequences as the SCORING MATRICES AND WEIGHTED PATTERN
key—word set in the Aho—Corasick algorithm. The SEARCH

key—word set may become so large that it cannot bR The search problem

accommodated in the fast storage of the computer, The problem we consider is to find good matches

hence slowing down the practical performance ot 5 positionally weighted pattern in a sequence of

this theoretically appealing on-line algorithm. Thesymbols in some finite alphabet. A positionally

same idea of generating the qualifying sequences ajgighted patternis a real-valuedm x |%| matrix

applying multiple key—word search (but other tham; — (17(j a)). In literature, these patterns are also

Aho-Corasick) independently appears in [21]. called, e.g., position weight matrices, position specific
To solve the storage problem of the key-wordcoring matrices, and profiles. As a shorthand, we use

searching, we introduce in Section IV the filtrationpattern or matrix in this paper. The matrix gives a

approach, a well-known technique utilized in apweight (score) for each alphabet symholat each

proximate pattern matching in strings (e.g., [28])position j. We callm the lengthand 3 the alphabet

Filtration algorithms compute first an upper bound fopf 7. Table | gives an example pattern.

the matching score of the sliding window. The actual PatternA/ matches any sequenee = uq ...um

score is evaluated only if the obtained bound exceeds length m in alphabets. The quality of the match

the threshold. In fact, the lookahead scoring searg indicated by thematch scorei,;(u) of u with

algorithm of [30] already utilizes the filtering idea.respect toM. The score is defined as

The novelty of our method is to make the filtration m

faster by using a precomputed table of the scores in War(u) = ZM(j’ u;). 1)

a fixed—width window of the matrix. This gives fast =

and robust algorithms that have good performance

in practice as they can be tuned to fit the available “€L5 = s152.--5n be ann symbol long sequence

fast memory by selecting the width of the window"” alphabets. Patternd gives a match score for any
appropriately. m symbol long segmeny; . .. s;1,,—1 (calledan m-

. ) . ._segmentof S. We denote the match score &f at
Section V finally gives a super—alphabet generahzg(—)cationi as
tion of the naive search. The fact that this trick speeds

up the search is an old observation in string algorith- w; = Wp(si ... Sitm—1)- (2)



TABLE |
A POSITIONALLY WEIGHTED PATTERN INDNA ALPHABET.
THE PATTERN WAS OBTAINED FROM THE COUNT MATRIX
GATA-3 (MAO0037)0F JASPAR [22]WHICH WAS
TRANSFORMED INTO LOGODDS MATRIX USING
BACKGROUND DISTRIBUTION
ga = 0.343, qc = 0.187, qg = 0.189, g = 0.281 (THE
SCORES MULTIPLIED BYLI00AND ROUNDED TO INTEGERS.
A PSEUDGCOUNT g, WAS FIRST ADDED TO THE COUNTS

each row holds the same probability vector giving the
background probability distribution of the alphabet

symbols. We denote the background probabilities as
qa fOr a € ¥. Hencer(j,a) = q, for all j.

A match between a sequence and a matrix is
decided upon the evaluation of the log-odds score that
compares the probability to observe the segment in the
signal modelll and to observe it in the background

FOR EACH ALPHABET SYMBOLa. i m
H y .

A C G T Score(u) = log Pro(u) = Zlog M
I 14 17 106 12 Pro(u) =7 w(5ug)
2| -416 231 164 -416 .
3| 103 -416 232 -264 (3, uy)
4| -416 -416 -85 118 = log .
5| 58 231 -106 7 j=1 i
6| 36 -132 112 -77

Once the background is fixed, say by estimating
from the sequencs to be searched, the modglcan

The problem studied in this paper can now be forpe translated into a positionally weighted pattér

malized as follows. Given a real—valusignificance N 11(j, a)
; i M(j,a) = log —=
thresholdk, theweighted pattern search problem with

(4, a)
threshold kis to find all locationsi of sequenceS  Then the score obtained as (1) equals the above
such thatw; > k. In addition to the locations,  gcore(u).
also knowing the values; is of interest in many  The significance threshold for the search is nor-
apphcanqns. _ _ ~ mally given indirectly by using the standard approach
A special case of this search problem is the widelyf statistics that utilizes the p-values to control the
studied problem of exact string pattern matching igonfidence of the findings. For given p-valpé, the
which one wants to find within sequencethe exact corresponding threshold is a valie= k(p*) such
occurrences of a patteth = pips ... pm Where each that in the background distribution the probability of
pj is in X (e.g., [7]). The weighted pattern searchsequences, such thativ,, (u) > k, is p*. Given p*,
formalism gives the exact pattern search problem Bye corresponding: = k(p*) can be evaluated by
choosing the weight matrid/ as M (j,p;) = 1, and  ysing a well-known pseudo-polynomial time dynamic

M(], U) =0if v 7& pj- Then thresholdk selects the programming a|gorithm [26]’ [30]
locations of S where the symbols of” match the

corresponding symbol of in at leastk positions.
Choosingk = m gives the locations of the exact
occurrences ofP in S.

C. The naive algorithm and the lookahead scoring
algorithm

Let us recall in this section some well-known
o ) search algorithms that will be included in our exper-
B_. P_r_obablllstlc patter_n model, log-odds scoring, angental comparison.
significance thresholding The weighted pattern search problem can be solved
In typical applications such as finding putativefor given S, M, andk by evaluatingw; from (1) and
binding sites of transcription factors in DNA, the(2) for eachi = 1,2,...,n — m + 1, and reporting
weights M(j,a) are in fact log-odds scores of alocationsi such thatw; > k. We call this thenaive
probabilistic model of a signal to be detected againsiigorithm (NA). As evaluating eachw; from (1)
the background. The signal model is normally givemakes timeO(m), the total search time of the naive
as anm x |X| matrix IT such thatll(j,a) gives the algorithm become®(mn), wherem is the length of
probability of the symbok to occur in model position the pattern ana. the length of the sequence
j. These probabilities can be obtained e.g. from the The lookahead scoring algorithnis an improved
corresponding empirically constructed count matrixersion of NA from [30] that precomputes the in-
[22], possibly with added pseudocounts. termediate score thresholds that each prefix of a
The background is usually modeled as an i.i.ccandidate segment must meet in order to keep the
model, that is, as amn x |X| matrix = in which chance to be a match. The intermediate thresholds



are computed using thenaximal remainder scores  IlIl. AHO—CORASICK EXPANSION ALGORITHM

defined for0 < h < m as .
Pattern)M and threshold: determine then sym-

m bols long sequences whose matching score i&.
Ry, = max M(j,a). (3)  We may explicitly generate all such sequences in a
j=h+1 preprocessing phase before the actual search yer

and then find their occurrences fast frofy using

Obviously, k), is the maximum possible score thalyome multipattern search technique of exact string
can be achieved by the suffix starting at positiofaiching. We will use the Aho—Corasick multipattern
h + 1 of any candidatem-segments;...sitm-1-  search algorithm for that purpose while [21] used the
Let the sum of the score up to POSition, , gram variant of the multipattern backward DAWG
War(si- - sicaign) = D251 M(jssi—14;), and the  matching algorithm.
maximal remainder scoreB;, be below the match-
ing thresholdk. Then we know without seeing the
remaining symbols that the:-segment cannot be aA. Full version

match as the total score will be less tharfor any .
The preprocessing phase takesand k, and gen-

choice of the sequence beyond the location " !
erates the Aho—Corasick pattern matching automaton

Utilizing this observation, the lookahead scoringas follows. Eor each sequen ™ adde to the
algorithm first tabulates thimtermediate thresholds setD of tﬁe qualifying sgquencegisﬁ W () > k. In
M = .

practice we avoid generating and checking the entire
3™ by using the lookahead technique of [30] to limit
the search. We build by generating the prefixes of
the sequences iE™, and expanding a prefix that is

term by term such that the next te(h+ 1, S, 1,) still alive only if tEe (;xpanded prefix is a prefix of
is added to the score only if the accumulated scofPMe sequence that has score.

so far is at leastr,. Otherwise the search is stopped More technically, we use the same trick as in the
at the current and resumed att 1. lookahead scoring algorithm. For a prefix . .. uy,
I h < m, of a full m—segment, let

T, =k — Ry 4

for h = 0,...,m. The actual search at positianof
S evaluates the score f@f . .. s;1,,—1 incrementally

A further improvement of NA proposed in [30
is called thepermuted lookahead scoring algorithm
(PLS). This algorithm accumulates the scores of the Wr(ur - .up) =Y M(j,uy) (6)
matrix positions in an order which is not necessarily j=1
left-to-right but is determined specifically for each ) )
matrix to give optimal average performance. Th&€ the prefix score of wi...u,. Now, if
aim is to detect unsuccessfut-segments as early War (w1 .- up—yup) < T, we know for sure
as possible. This is achieved by choosing the matri@t no string with prefixu; ... uj,_ u), can have a

positions in decreasing order of thexpected losat SCOr€> k with respect toM, and there is no need
position j, defined as to expanduy ...up_1 tO wuy...up_qup. Otherwise

there is a string with prefixu; ... u,_ju; that has
L; = max M(j,a) — Z gaM(j, a) (5) score> k, apd thg expansioh by;, is accepte_d.
a€el We organize this process in the breadth—first order
such that all still alive prefixes of length — 1 are
whereg, is the background probability of. examined and expanded to the lengthy all u;, € &

On average, computing the score jawould in- such thatWy,(u1 ... up—1up) > Tp. This is started
crease the difference between maximum possibWgth h =1 (only the empty string is alive at the start)
score and the actual score ly;. This means that and repeated foh = 2,...,m. The sequences alive
the partial score, when evaluated in this order, wilit h = m constituteD.
drop below the intermediate threshdly for smallest For large k, only a small fraction ofx™ will
possibleh on average. Hence the search takes minimak included inD. Denoting the total length of the
average time at each location ¢f Note that the sequences i by |D|, the above procedure generates
maximal remainder scorék;, has to be evaluated D intime O(|D|+|M|) where theO(|M|) = O(m|X|)
using the same order of matrix locations, determinetime is needed for computing the intermediate thresh-
by decreasing expected loss. olds 7j, from M.

a€EX



The standard Aho—Corasick pattern matching atdence the minimal remainder score at positiorof

tomaton AC(D) for the sequences i@ is then con-

M is the smallest possible total score that can be

structed [1], [7], followed by a postprocessing phasebtained from positiong + 1 to m.

to get the ‘advanced’ version of the automaton [17] It should be obvious thaw

= is in

V1...VUp

in which the failure transitions have been eliminatedD,,,,.q if and only if Wy (v) > k — r, and
This version is the most efficient for small alphabetdV,;(v') < k — r;, for any proper prefixo’ of v. To
like that of DNA. The construction of the automatorfacilitate the construction oD,,,,.q We therefore

needs time and spaae(|D||X|). For eachw € D,
we associate the scoi&,,;(w) with the state of the
automaton that corresponds 40

tabulate theminimum gain thresholds

th:k—rh.

The search over is then accomplished by scan-The breadth-first construction then examines the

ning S with AC(D). The scan will report the oc-
currences of the members @f in S as well as the
precomputed scores of the members detected.
We call this search algorithm thEho—Corasick ex-
pansion algorithm(ACE algorithm). The total running
time of ACE isO(|D||Z|+|M|) = O™ +m|%))
for preprocessing/ to obtainAC (D), andO(|S]) for

still alive prefixes uy...up—q for all w;, in X
as follows: If Wy (uy...up_qup) > tp, then
uy ... up—1up iS added toD,;.neq and made dead.
Otherwise, if WM(u1 .. .uh,luh) > Ty, then
up ...up_1up 1S made alive for the next round. The
otheru; ...u;_1u; are made dead. Finally, add to
Dprunea the sequences ...un that are alive at

scanningS with AC(D). Note that the scanning time 4 = m.

does not depend on the matrix length

B. Pruned version

As the total length of the sequences M, ,,cq
can for some matrices/ be considerably smaller
than the length of the sequences bf the Aho-

Next we develop a pruned variant of the Aho-Corasick pattern matching automatefC(Dp,yneq)
Corasick expansion that sometimes gives a notabban be clearly smaller thadC'(D). This may give
smaller pattern matching automaton than the ful faster search because of improved cache memory
version of Section Ill-A. The variant is based orpehaviour. However, this search would only report

the following observation. Let sequenee |v| < m,
be such that for allw € ¥ I’l, sequencevw
qualifies (i.e. Wy (vw) > k) and hence is iD. Then
detectingv at some positioni of S indicates that a

the occurrence locations of the sequencesDinin
applications also the scores of the occurrences are
of interest. To be able to report these, the entire
segment making the occurrence must be scanned and

qualifying sequence must occur atThis is because the corresponding total score must be output. This
independently of whain — |v| symbols long sequence complicates the search and makes the data structures
w follows the occurrence of in S, we know that larger as we need to precompute and store the scores
the total score ofvw must be> k. Hence we can for all members ofD. In our experiments we observed
use in the multipattern search onlyinstead of all that the search witlhC'(D,,.,ncq) Was actually some-
sequencesw. To get greatest saving; should be what slower than withAC(D). Therefore the search
shortest possible. times of AC(Dyryuneq) @re not reported in Section VI.

In this way we see that to find the occurrences of
the original qualifying sequences in, it suffices to C. Size of Aho—Corasick automata

search for sequences in the set When deciding which algorithm to use it is useful
to evaluate the size of the Aho—Corasick automaton
AC(D) directly, without explicitly constructing the
automaton. Giverd andk = k(p™), this can be done
Set D, uneq Can be constructed directly, without atas follows.
first constructing the fullD. We use a technique that First we note that for uniform background distribu-
is similar to the breadth-first search constructiomof tion the expected number of qualifying sequences is
In addition to the maximal remainder scorgg, the < p*|X|™. Hence the number of states aiC(D) is
construction also uses thrainimal remainder scores < p*m|%|™ in this case.
rp, defined for0 < h <m as The accurate number of the states (for any back-
m ground) can be computed by tabulating the number
of different sequences reaching each level of the
automaton. LeG; andGq be the largest and smallest

Dypruneca = {v|vw € D for all w € £™~ 1!
andwv is shortest possible

T = min M(j,a). (7)

j=h+1



ACE automaton sizes (p = 0.001) Aho—Corasick automaton for differektbut the same

w7 Acwal AummaEtgt? ms‘iaztz —— ' 7] M seems inefficient.

104 . To tackle these problems we develop in this section

102 | , algorithms that use the so—called filtration. The size
% 100 [ 7 i of the filtration machine that scans the sequesce
g 108 L I ] can be selected flexibly to fit the available memory
E 108 [ AT * ] space. The general idea of filtration algorithms is that

ol ‘ & ] instead of the accurate value of the score, the search

wl T ] first evaluates ampper boundfor the score of each

100 7 ) ) ) ) ) m—segment ofS. Whenever the upper bound value

5 10 15 ey % 30 is > k, we know that also the score itself may be

matrix length m

> k. However, to eliminate false positives this must
Fig. 1. Velr)ticalfb?rts Sz%\/l;hef maXtitmum, fmi”ifEUIm f:rf:dbe checked separately as the actual score may also be
e kA daciae e Tvs skt ows < b But i the upper bound is: , we know for sure
gives the size estimaig*mA’™. that the score itself must be less thlanChecking is
not needed, and we can continue immediately to the
next segment.

This filtration scheme gives a fast search, provided
ethat the upper bound can be evaluated fast (faster than
the accurate value) and the bound is strict enough
to keep the number of false positives small. Note
moreover, that the filter is lossless, i.e., it always finds

all true positives.

possible partial (prefix) score given by matrix .
Let C(h, g) denote the number of different sequenc
uq ... up Such thatM gives them score- g, that is,
g = Z?Zl M(j,u;). ThenC(h, g) can be evaluated
for g =Gg,...,G1 andh =0,...,m from

C0,9) = 1 ifg=0 To get an upper bound, we will evaluate the score

9= 0 otherwise only for a limited window of the matrixd/. The win-
dow score added with the maximal remainder score

Clh.g) = Z Clh=1,9 = M(h,a)) for the rest of the matrix clearly is an upper bound

acx for the score of the whole matrix. The evaluation

The number of different prefixes; ... u;, of the qual- of the window scores can be done using an Aho—
ifying sequences iD is now N = Z_Q>Th C(h,g), Corasick machine or using a simpler technique based
whereTy, is as in (4). By the properties of the Aho—on tabulating the scores of all possible sequences for
Corasick trie representing, the total number of the the window. By making the window narrow enough
states ofAC(D) then equaIsE;”:O Nj. we can get a filtration machine that fits to the available
Fig. 1 gives the sizes ofAC(D) for the 123 memory.
JASPAR matrices used in the experiments of Sec- The position of the window within the matrix is se-
tion VI. lected such that the filtration accuracy is maximized.
This is achieved by using a window position for which
IV. FILTRATION ALGORITHMS the expected loss (5) is maximal. In the checking
phase the columns of the matrix outside the window
are evaluated in the decreasing order of the expected
While the Aho-Corasick expansion algorithm ofloss, giving shortest checking on average. In fact, our
Section Il scansS very fast, it is not always robust filtration algorithm is the permuted lookahead scoring
enough for practical use, due to its huge memorglgorithm [30] (Section II-C) generalized such that a
requirements: If the matrix length: is large andk window of several columns takes the role of the first
is relatively small, seD of the qualifying sequences evaluated column.
can become so large thatC(D) cannot be accom-  An additional useful feature of the algorithms of
modated in the available fast memory. For exampl¢his section is that the filtration machines for several
AC(D) for the longest JASPAR matrixn{ = 30) matrices can be united into a combined filtration
has more thand - 10'° states whenp = 0.001 machine that performs the pattern search for all
(Fig. 1). This leads to a considerable slow—down afatrices in a single scan of the sequescdn some
the scanning phase because of secondary memaugplications it might not be feasible to store the entire
effects. Moreover, repeating the construction of theequence in which case the single—scan approach can

A. Window-based filtration



be utilized. than k, and we can continue the search immediately
to the next location, without evaluating the full score.
On the other hand, if; + Ry, > k, the full score must
o ) ) be evaluated to see if it really i3 k. This is done
The Lookahead filtration algorithn(LF) fixes the py adding tot; the scores of matching the remaining
details of the filtration scheme as follows. L&t M, positions of M outside the optimal window against
andk be as before, and lét, h < m, be thewidth of the corresponding element Of igt1s- - s Sicigbm-
the window The optimal window gives the maximal The addition is done in the decreasing order of the
total expected loss among all windows of widthlts  expected losg;. The checking is terminated as soon

B. Lookahead filtration algorithm

positionio can be determined as as the score accumulated so far plus the maximal
i+h—1 remainder score (3) for the rest goes under
i0 = I8y <j<m_jpp1 MAX Z Lj. Note that F does not depend om. The same

filtration automator¥' can be used with any threshold

. . ...k, and henceF needs to be constructed and stored
Matrix M is then preprocessed to get a finite—

state automatort that reports for eacth symbols only once.
long segmentv of S the score given taw by the
optimal window. The automator has a state for C. Running time and filtration specificity
each sequence = uj...u, € X". It is convenient  To analyse the running time of the LF algorithm,
to denote this state also hy The window score  we note first that the filtration automatdh and the
io+h—1 maxir;lal remainder scores can be constructed in time
o - s O(|Z|™ + |M]). ScanningS takes timeO(n) plus the
Witlioso 1101 - - un) Z MG us) tin(1|e |for c|he|c)king the score at Iocation(s i)icked up by
the filter. Checking take®(m — h) time per such a
location. Denoting byy the number of locations to be
checked, the total checking time becorm@gy(m —
h)) = O(n(m — h)). Filtration pays off only if~y is

h—1 ; :
£ Is theh — 1 symbols long suffix ofu. __(much) smaller tham = |S|. Increasingk or h would
The regular structure of the states and the trans't'%viously decrease.

functionr of I makes a very efficientimplementation 1, estimatey, let us writey — én. Then for target

possible. Automator” is implemented simply as an seqences taken from the background distribution,
array of size|>|", also denoted by, whose entry g pronortional to the probability of that the filtration
F(u) stores the window SCOr®y(;, i, +n—1](4) OF  georet; + R, is > k. This depends or. For the
sequenceu. Automaton I takes a state transition jagpAR matrices we estimated the average values
7(u, a) = v by computing the new indexfromu and ot 5 for filtration window width h = 7. For p =

a. This can be done by applying ana shift operation o1 001, 0.0001, and 0.00001, the corresponding

followed by concatenation with. This shift-and—"aes of; are 0.175, 0.0815, 0.0369, and 0.0178.
concatenatéechnique can be conveniently use®lf  1pis 4150 gives averagéiltration specificity 5 : p

is a power of 2; this is the case for DNA matricesy ich is the ratio between the expected number of
For other alphabets such as the amino acid alphab@isisive occurrences of the filtration window and the

we use arithmetic operations: multiply b¥|, adda truly positive occurrences of the entire.
(encoded by one 06,1,...,]|X| — 1), and subtract

w”|=|" wherew” is the header symbol af. _ o

The filtration phase is done by scanning the sd?- Multipattern generalization
guenceS with F to obtain, in timeO(n), the window The automator¥’ can be extended to multipattern
score of everyh symbols long segment f. Let¢; case, to handle severd simultaneously, as follows.
be the score for such a segment that startss;at Let My,..., Mg be the patterns we want to search.
(Note thatt; = F(u) where u is the state ofF" The filtration automaton stores in its entfy(u) all
after scannings; ...s;yx—1.) Now, the upper bound the K window scores ofu given by the optimal
used in filtration ist; + R;, where R;, is the (also window of each ofM;y,..., M. The above time
precomputed) maximal remainder score (3) fof bounds for initialization should be multiplied bi
outsidethe optimal window. Ift; + R;, < k, then the to get time bounds for the generalized algorithm.
full m—segment at the present location must score le$ge algorithm scanss only once but the scanning

i=i

Jj=to
of sequenceu is associated with state. The state

transition functionr of F is defined for allu in ©"
anda in © ast(u,a) = v wherev = v'a andv’ in



becomes slower by a factor which is proportional to To define the super-alphabet we fix the integer

the average number of patterns for which the checkingidth ¢ of the alphabet. Then eacdf-tuple of the

phase is entered. We call this algorithm tHeltiple original alphabet is a super—alphabet symbol.

matrix lookahead filtration algorithn{MLF). Matrix M is preprocessed to obtain an equivalent
To get an idea of what values @f and K may scoring matrixAZ for super—alphabet symbold7 is

be feasible for MLF in practice, assume tH&j = an[m/q] x |X|? matrix whose entries are defined as

4. Then arrayF contains about.5 x 108 numbers

if h =9 and K = 1000 or if h = 10 and K = M(j,a1...aq) =

250. Storing them takes about 1 gigabytes which is h

a reasonable main memory size of a current PC. To

get fastest possible performance, the array should

into the CPU’s cache memory that is typically much

smaller.

M((j — D)g+ h,ap)

M=

1
rj=1,...,[m/q] and for allg—tuplesa; ...aq €

The score of eachn symbols long segment of
can now be evaluated iD(m/q) steps using the shift—
and—-concatenate technique of theAprevious section to
E. Aho-Corasick lookahead filtration and multipat-find fast the appropriate entries aff. We call this
tern generalization method the Naive super—alphabet algorithm (NS).
. . The search time using algorithm NS becomes
The idea of the ACE algorithm to use only theo(nm/q), giving a (theoretical) speed—up of algo-

qualifying seqL_Jences in the search_ car_1 as well ffhm NA by a factor ofq, independently of the thresh-
used for the window search of the filtration method Id k. In practice the larger overhead of algorithm

The qualifying sequences for a given window anqs makes the speed-up smaller. With some care in

thresholdk are the Sequences whosg window s(_:0rﬁ?hplementation, matriX\/ can be constructed in time
plus the corresponding maximal remainder scorg is O(m|=|/q)

k. These sequences can be fqund using the methods he submatrix decomposition method of [15] is
Secno_n i, adapted o the optimal window. The Aho_a generalized super—alphabet technique with varying
Corasick multipattern automaton for these sequencgﬁ)habet width.

can be put in the role of the finite—state machine

F of the LF algorithm. We call this variant the
Aho—Corasick lookahead filtration algorith(ACLF).
Average size of the ACLF automaton for the Jaspdh. Experimental set-up

matrices is 2452 states whén= 7 andp = 0.001. For the experimentation we implemented the well-

As compared to the LF algorithm, ACLF saveknown base-line algorithms NA (naive algorithm)
space as the qualifying sequences for a window caihd PLS (permuted lookahead scoring) as well as
be sparse. our six new algorithms ACE (Aho—Corasick ex-

The multiple matrix version is again possible bypansion), LF (lookahead filtration), ACLF (Aho-
combining in an obvious way the Aho—CorasickCorasick lookahead filtration) and NS (naive super-
automata for all matrices. The resulting method ialphabet) as well as the multi-matrix variants MLF
called theMultiple matrix Aho—Corasick lookahead (multiple matrix lookahead filtration) and MACLF
filtration algorithm (MACLF). The size of the mul- (multiple matrix Aho—Corasick lookahead filtration).
tipattern automaton for all Jaspar matrices is 2184Bhe algorithms were implemented in C++. The
states and 170060 window scores (and matrix indicehplementation is available under GNU license at
associated with the statek € 7, p = 0.001). www.cs.helsinki.fi/u/prastas/pssm/.

Moreover, using the software implementation by
the original authors, our experiments included: The
shift-add (SA) and the enumerative BG algorithm

Finally we give a simple ‘super—alphabet’ general{EBG) and the multimatrix version (MEGB) of
ization of the naive algorithm NA. As the runningEGB by [21]; the index—based (suffix—array) program
time of this algorithm does not depend dn the PoSSuMsearch [3], [4]; the index—based (suffix—tree)
algorithm has potential of performing relatively wellprogram STORM [24]. In the running time tables,
for low k and for long matrices for which the filtration POSSUM+ refers to PoSSuMsearch with the index
does not work as the lookahead bound tends to lwenstruction time included, while POSSUM- is the
overly conservative. mere search time using a preconstructed index. For

VI. EXPERIMENTAL PERFORMANCECOMPARISON

V. SPEED-UP BY SUPER-ALPHABET



program STORM such a separation of the two phases
was not possible. Moreover, STORM works only for
DNA matrices. The available implementation of the
submatrix decomposition method of [15] is obviously
not optimized for speed as it took in our experiments
at least twice the running time of the base-line
algorithm NA. Therefore we do not report detailed
timing results for that program.

time in seconds

We collected 123 positionally weighted matrices =2 o
for DNA from the JASPAR database [22]. The length 0

. . . 4 6 8 10 12 14 16 18 20 22 24 26 28 30
of these matrices varied from 4 to 30, with average matrix length m
length 10.8. As the target sequence to search the p=0.001

matrix occurrences we used a 50 megabases long
DNA sequence. The sequence contained segments
taken from the human and the mouse genome. To
test the behaviour of the algorithms on very long
patterns, we constructed a collection of 13 patterns,
each having a length of 100, by concatenating the
JASPAR matrices.

time in seconds

We also experimented with amino acid matrices by
choosing a random subset (five of each length from
5 to 30, and two of length 31) of 132 matrices from
the PRINTS database [2]. The target sequence was
a 50 megabases long amino acid sequence that was
made by concatenating a sample of SWISS-PROT
sequences [5].

6 8 10 12 14 16 18 20 22 24 26 28 30
matrix length m

p=0.0001

The significance threshold@ for the experiments
was given as a p-value as follows. The original count
matrices from the JASPAR and PRINTS databases
were first transformed into log-odds scoring matri-
ces using background distribution estimated from the
DNA or amino acid sequence and by adding for ==
all alphabet symbols: € ¥ a pseudo-coung, to 8 10 12 14 16 18 20 22 24 26 28 30

time in seconds

every original count matrix entry fot; hereq, is the matrix length m
estimated background probability @f The score that p = 0.00001

corresponds to a given p-value was then computed
using well-known pseudo-polynomial time dynamic
programming algorithm [26], [30]. As this method 3
requires an integer-valued matrix, the log-odds scores € 25
were first multiplied by 100 and then rounded to
integers.

time in secol

The reported running times are for 3 GHz Intel

Pentium IV processor with 2 gigabytes of main ) T
memory, running under Lmux._The compiler used O T e i a0 e w w
in the experiments was gcc with parameters “-O3- matrix length m

march=pentium4 -fforce-addr -funroli-loops 'frerun'Fig 2. The dependency of the running time of different

cse-after-loop -frerun-loop-opt 'fa"gn‘funCti0n524”-alg(.)rithms on the pattern length for some p-values. Average
We also experimented with 2,13 GHz Core 2 Duaunning times for DNA patterns of each length. . ., 30 in the

machine, with essentially similar results (slight dif_JASPAR database as well as the standard deviations of 10 runs
’ )are shown.

ferences explained by different cache memory size).



ACLF, p = 0.0001

T T T T T
MA0033, m=8 —+—
MAOQ001, m = 10
MA0074, m =15 —*—
MA0106, m=20 —&—
3 [ MA0068, m = 30 1

time in seconds
time in seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 o—r—t

window width h ) .
window width h

LF, p =0.0001
p=0.001

T T T T T
MA0033, m=8 —+—
MAOQ001, m = 10
MAO074, m =15 —*—
MA0106, m =20 —5—
3 [ MA0068, m = 30 7

time in seconds
time in seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 0

1 2 4 7 1 11 12 1
window width h 3 5 6 8 9 0 3

window width h
Fig. 3. Dependency on the window width for some individual
matrices of different lengths. Running time of algorithmb L
and ACLF for 5 example DNA patterns from JASPAR database
when h varies from 2 to 13 angh = 0.0001.

p=0.0001

B. DNA search

The run time results for searching Jaspar matrices
are summarized in Tables II, Ill, and IV, and in
Figures 2, 3, and 4. In algorithms LF, ACLF, MLF,
and MACLF we used parameter valide= 7 and in
algorithm NS we used = 7, if not stated otherwise. o2 8 48 andow7widm8h 9 10 1 12 13

The ACE algorithm is the fastest among our algo-
rithms for short matrices (up to length =8,...,14
depending orp); Table Il gives the average times for
all programs and for all matrices of length < 15.

For longer matrices the size of the pattern matching
automaton of ACE becomes too large to fit the fast
cache memory, and the algorithm gets rapidly much
slower. Fig. 2 shows the dependency of the running
time of some programs on the matrix lengih;
the collapse of ACE for longer matrices is evident.
Similar behaviour was observed for algorithms EBG i — _
and MEGB Of [21] 1 2 3 4 5 Wid0W7Widm8h 9 10 11 12 13
The window technique of the filtration algorithms
Fig. 4. Average dependency on the window width. Average

LF and ACLF resolves this problem, giving algo- unning time of algorithms LF, ACLF, MACLF, MLF and NS

rithms that are ConSiSten_tly fast in the ?mire _Iengt r the 123 DNA patterns from the JASPAR database for some
range of JASPAR, algorithm ACLF being slightly p-values and varying. (= ¢ in the case of NS).

faster for short matrices and LF for longer ones. As

time in seconds

p = 0.00001

time in seconds
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TABLE Il
AVERAGE RUNNING TIMES PER PATTERNIN SECONDS
PREPROCESSING INCLUDEPOF DIFFERENT ALGORITHMS
WHEN SEARCHING FOR108 JASPARPATTERNS OF LENGTH
m < 15, WITH VARYING P-VALUES. EACH REPORTED TIME
IS AN AVERAGE OF 10 RUNS. THE LOWER PANEL IS FOR
ALGORITHMS INTRODUCED IN THIS PAPER

p= 10"° 107% 1073 1072
NA 0.846 0.954 1.073 1.440
PLS 0.468 0.665 0.975 1.633
SA 0.864 0.873 0.838 0.819
EBG 0.140 0.199 0.389 1.269
MEBG, ¢ =9 0.015 0.044 0.152 0.382
POSSUM+ 5908 5.952 6.348 10.472
POSSUM- 0.018 0.059 0.445 4579
STORM 0.956 1.041 1.747 -
ACE 0.071 0.105 0.298 1.318
LF 0.178 0.216 0.310 0.754
ACLF 0.117 0.147 0.237 0.715
MLF 0.010 0.032 0.132 0.680
MACLF 0.008 0.039 0.178 0.743
NS 0.551 0.590 0.646  1.002
TABLE IlI

AVERAGE RUNNING TIMES PER PATTERNIN SECONDS
PREPROCESSING INCLUDEDOF DIFFERENT ALGORITHMS
WHEN SEARCHING FOR ALL123 JASPARPATTERNS WITH
VARYING P-VALUES. EACH REPORTED TIME IS AN AVERAGE

OF 10 RUNS.
p= 10"° 107% 1073 1072
NA 0987 1.079 1.190 1572
PLS 0.574 0.771 1.079 1.775
POSSUM+ 5955 6.041 6.524 10.964
POSSUM- 0.062 0.148 0.631 5.071
STORM 0.996 1.204 2.173 -
LF 0.208 0.268 0.396 0.886
ACLF 0.153 0.214 0.353 0.884
MLF 0.066 0.126 0.280 0.916
MACLF 0.101 0.171 0.348 0.985
NS 0.537 0.612 0.687 1.043

TABLE IV
AVERAGE RUNNING TIMES(IN SECONDS PREPROCESSING
INCLUDED) OF DIFFERENT ALGORITHMS FOR LONADNA
PATTERNS(m = 100) AND VARYING P-VALUES. EACH
REPORTED TIME IS AN AVERAGE OFLO RUNS.

p= 1075 107* 1073 1072
NA 9.724 10.119 9.901 10.331
PLS 9.463 10.265 11.475 13.147
POSSUM+ 72.613 73.355 76.424 84.557
POSSUM- 16.859 17.601 20.670 28.803

STORM 35.138 36.098 40.677 -
LF 8379 9.199 10.285 12.068
ACLF 7.392 8.074 9.050 10.481
MLF 9.982 10.707 11.905 13.938
MACLF 11.544 11.971 13.133 15.167

NS,q =6 3.076 3150 3.293  3.701

h by giving average execution times of LF, ACLF,
MACLF, MLF and NS for all JASPAR matrices for
varying h.

Table Il gives the average running times for= 7
(¢ = 7 in NS) for all matrices and for all algorithms
that are efficient also for matrices longer than 15. The
multiple matrix algorithms MLF and MACLF give the
best total performance for smail while for higher
p the difference to LF and ACLF disappears. Fig. 4
also indicates that the multiple matrix algorithms are
quite robust against the variation bf

For the long DNA patterns withn = 100, algo-
rithm NS is the best as reported in Table IV. We used
g = 6 in algorithm NS. Note, however, that we made
this experiment only for curiosity. The matrices here
were artificially generated as we did not find such
long matrices in databases.

TABLE V
AVERAGE RUNNING TIMES PER PATTERNIN SECONDS
PREPROCESSING INCLUDEPOF DIFFERENT ALGORITHMS
WHEN SEARCHING FOR A SUBSET OPRINTSPATTERNS

algorithms ACE, EBG and MEBG were unable to WITH VARYING P-VALUES. EACH REPORTED TIME IS AN

search for all matrices reasonably efficiently, we omit
them in further experiments. Algorithm SA is omitted

AVERAGE OF 10 RUNS.

— —20 —15 —10 -5

as the available implementation only worked for short NA P = 110_408 1(;_630 101_773 19850
matrices. PLS 0.624  1.046  1.606 2.461
Fig. 3 illustrates the dependency of the performance POSSUM+ 1498 2679 4050 6.074
of algorithms LF and ACLF on the window width POShSE'\?/)" é'igg g'ggi i'ggg 252"26476
for some example matrices. Increasing paraméter aciF ;= 2 0.498 0887 1431 2215
should improve the filtration performance and hence MLF, h =4 0.787  2.077 3.680 4.310
make the algorithm faster. In the experiment, the MACLF, h =4 0.853  1.927 2950 4.772

performance is seen to improve uri="7 or h = 8.

After that there is a strong slow-down. This is because

the highest level cache memory is getting full. W& Amino acid search

verified that ath = 7 also the number of cache misses For amino acid matrices the situation is somewhat
starts to grow. Fig. 4 summarizes the dependency different as can be seen in Table V and Fig. 5. As the

11



LF, p=107°

14 T T T
5 13 F FADPNR5, m=8 —— E
12 £ ANAPHYLATOXN1, m = 10 3
EGFBLOOD1, m=12 —*—
11 F  VWFADOMAIN2, m=15 —&— E
10 F SREBPS2PTASE1, m = 20 4
” 9 9k LSHMANOLYSIN1, m =30 —e— E
g 3 g E
g £ E
g2 £ ]
1 3
o R 7
6 8 10 12 14 16 18 20 22 24 26 28 30 window width h
matrix length m
— 10710
p=1070 " ‘ ‘ ACLF, p‘ =10
13 | FADPNR5, m =8 E
12 £ ANAPHYLATOXN1, m =10 E
EGFBLOOD1, m =12
i 11 F  VWFADOMAIN2, m = 15/ —&— E
10 F SREBPS2PTASEL, m = 3
2 9k LSHMANOLYSIN1, m =30 —e— 3
8 g 7 E
£ s s 3
2 1 S ]
sk E
, b E
1 XE e S
L . 0 1 2 3 4 5 6 7
10 12 14 16 18 20 22 24 26 28 30 window width h
matrix length m
p=107 Fig. 6. Running time of algorithms LF and ACLF for 6
3 : : : : I : example amino acid patterns from PRINTS database when
B — %/ varies from 1 to 7 angph = 10~ 10,
25 ,Ac::E.H:gHH s
yh=3 —8—+ A/{/z/ B
g 2r ///*/ amino acid alphabet is much larger, filtration can only
8 15 - , be efficient if the p-value is very small. Algorithm
e LF with » = 3 gives the best performance but the
=t i difference to PLS is clearly smaller than in the case
05 , of DNA matrices. Fig. 6 illustrates the dependency on
— window width for some individual example matrices.
2 14 15 18 20 22 24 2 2 % As compared to the DNA matrices, the window-based
matrix length m filtration evidently has smaller effect. The multiple
p=10% matrix algorithms MLF and MACLF had the best per-
: Né — B formance for windowh = 4. Somewhat unexpectedly,
PL T - . : - .
25 |- ACLE,h=2 —x— e , the speed—up due to filtration did not suffice in the
’ /ﬁ*/ multiple—matrix case to compensate the overhead of
é 2L : the more complicated algorithmic structure.
g 15
2 VIl. DISCUSSION
s 1
Several novel on—line algorithms were proposed for
05 o the position weight matrix search. Six of them were
o ‘ ‘ ‘ ‘ ‘ ‘ implemented and experimentally compared with some

18 20 22 24 26 28 30
matrix length m

earlier on—line and index—based search programs.
Among the new methods, the ACE algorithm is

Fig. 5. The dependency of the running time of differenthegretically optimal in the sense that its search speed
algorithms on the pattern length for some p-values. Avera

running times for some patterns of each length. ., 31 in the géaoes not depend on the matrix length. In PraCt'Ce*
PRINTS database are shown. however, ACE suffers from large memory requirement

which makes it competitive only for short matrices.
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The multiple matrix versions MLF and MACLF of
our filtration algorithm had in our experiments the
best overall performance for DNA matrices. In some 1
cases also MEGB of [21] and our LF and ACLF
are very fast. For example, algorithm MLF finds in [2]
the human genome all matches of the 123 JASPAR
matrices on significance levgl= 0.0001 in about 18
minutes on a current PC. As a comparison, reading
the human genome from disk to the main memory
takes about 3 minutes.

It should be emphasized that the practical perfor-
mance of the algorithms studied here quite strongly [4]
depends on the implementation details and on the
properties of the memory hierarchy of the computer
used. The observed speed differences between differys;
ent on-line algorithm variants were often relatively
small and can vary with the implementation and the
computer. However, compared to the naive search
(NA) and the permuted lookahead search (PLS) the
new algorithms give a clear speed-up in the case of[6]
DNA matrices. Compared to PLS, the average speed-m
up factor wast, . .., 8 for p = 0.001, .. .,0.00001, and
for individual matrices often much higher. For amino [g]
acid matrices the observed speed-up is more modest.
For very long DNA matrices the only algorithm
showing improved performance is the super—alphabet[g]
method (NS).

Choosing between on-line and index—based algo0]
rithms is a subtle task with no short answer. Building
an index probably pays off if the target sequenceyiy)
(database) is long and stays unchanged, and there
are lots of matrix searches to be done. The high
speed of the on-line algorithms observed here iélz]
sufficient in many situations, noting in addition that
on-line algorithms are conceptually simple and easy
to implement. In our experiments the index-base
programs were observed to perform the pure searc
(with preconstructed index) very fast for high sig-
nificance values but the speed rapidly drops for low(14]
significances. If the index construction is included in
the time comparison, then the index—based algorithms
were not competitive with on—line methods for the 50[15]
million symbols long targets used in the experiments.
For longer targets the situation may change. However,
we leave more extensive experimental study of these
issues as a topic for further research.

13]
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