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Abstract—Forests are an important natural resource that
support economic activity and play a significant role in regulating
the climate and the carbon cycle, yet forest ecosystems are
increasingly threatened by fires caused by a range of natural
and anthropogenic factors. Mapping these fires, which can range
in size from less than an acre to hundreds of thousands of acres, is
an important task for supporting climate and carbon cycle studies
as well as informing forest management. Currently, there are
two primary approaches to fire mapping: field- and aerial-based
surveys, which are costly and limited in their extent; and remote
sensing-based approaches, which are more cost-effective but pose
several interesting methodological and algorithmic challenges. In
this paper, we introduce a new framework for mapping forest
fires based on satellite observations. Specifically, we develop
unsupervised spatio-temporal data mining methods for Moderate
Resolution Imaging Spectroradiometer (MODIS) data to generate
a history of forest fires. A systematic comparison with alternate
approaches in two diverse geographic regions demonstrates that
our algorithmic paradigm is able to overcome some of the
limitations in both data and methods employed by prior efforts.

I. INTRODUCTION

Forest fires, which range in size from less than an acre to
hundreds of thousands of acres, can be caused by both natural
(e.g. lightning) or anthropogenic factors. Fires constitute a
major component of terrestrial ecosystem disturbances every
year, therefore accurate and low-cost fire mapping methods
are important for understanding their frequency and distribu-
tion [26]. While monitoring fires in near-real time as they
happen is critical for operational fire management, mapping
historical fires in a spatially explicit fashion is also important
for a number of reasons (recently highlighted in [16, 26]),
including: (1) climate change studies – e.g., studying the re-
lationship between rising temperatures and frequency of fires;
(2) fuel load management – forest managers need a historical
fire record when deciding where to conduct controlled burns;
and (3) carbon cycle studies – quantifying how much CO2 is
emitted by fires is critical for emissions reduction efforts such
as UN-REDD [32].

There are two primary approaches to mapping forest fires:
field- and aerial-based studies, which allow detailed observa-
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tion of land cover changes but are limited in spatial extent
and temporal frequency [20] because of high cost; and remote
sensing-based techniques, which offer the most cost-effective
data for mapping fires because satellite observations – such as
from NASA’s Moderate Resolution Imaging Spectroradiome-
ter (MODIS) sensor – are obtained globally with regular,
repeated coverage; here we focus on the latter. Such datasets
have both temporal and spatial dimensions, and there are two
main ways to address the problem.

On the one hand are approaches that focus on the temporal
aspect, wherein fires are mapped based on time series analysis
(e.g., [23, 28]). These types of methods usually take into
consideration properties such as seasonality, variability and
temporal coherence in a given time series. On the other hand
are approaches that treat the data as a sequence of snapshots,
and image processing-based methods (e.g., [7, 17]) are used
to detect burned areas. Such methods mainly leverage the
spatial properties inherent in the data, for instance, the fact
that burned pixels tend to cluster together. Recently, techniques
have been developed for land cover change detection that
utilize both spatial and temporal properties [15, 19, 22] to
take advantage of autocorrelation structures present along both
dimensions. However, all of these are faced with a number
of data, algorithmic, and computational challenges associated
with analyzing remote sensing data including the presence
of noise and outliers, incompleteness of signals, high natural
variability and seasonality, influence of climatic factors, and
availability of multiple spatial and/or temporal scales. In
the case of fire mapping, additional factors include potential
obstruction of the signal due to smoke and the similarity of
the signal relative to other types of changes and events. Thus,
while numerous efforts have mapped fires at regional and local
scales [4, 6, 9, 25, 29, 30], only two spatially explicit wall-
to-wall efforts exist that regularly map fires at global scale:
the MODIS Active Fire (AF) [18] and Burned Area (BA)
products [15].

AF is based solely on thermal anomalies and by itself is not
sufficient to effectively map forest fires; it produces too many
false positives because not all thermal anomalies are associated
with fires while also missing a large portion of fires because
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the signal in the composite data is not strong enough. BA is
a more sophisticated method (see [15] and Section III-B) that
partitions the task into groups based on a land cover map
and identifies forest fires based on both temporal signals as
well as spatial context. In particular, it uses both AF and a
vegetation index computed from surface reflectance as input
data to generate labeled training pixels within each land cover
type; each class is further refined using information about
nearby pixels in tropic and sub-tropic regions. Using these
labeled samples as priors, a Bayesian model is then trained
to distinguish burned from unburned pixels in a classification
framework. BA generally provides much better performance
than AF alone; however, it still has several notable limitations
including sensitivity to false positive signals in AF and the
reliance on a global land cover map, which is known to be
inaccurate due to limitations of its own [10, 12].

In this paper, we introduce a new spatio-temporal data min-
ing framework for forest fire mapping that is both robust and
efficient. It shares some features with BA in that our proposed
approach also exploits both temporal and spatial structure in
the data and combines multiple sources of information – AF

and a vegetation index – but it differs in several important
respects: (1) it is unsupervised and therefore does not require
labeled training data; (2) it does not rely on a global land cover
map; and (3) it is more robust to noise and lower-quality sig-
nals in the input data. Using independently generated reference
data for validation, we systematically evaluate our approach as
well as alternate methods in two diverse geographic regions,
and we examine how our approach is able to overcome some
of the limitations of the BA algorithm.

The remainder of the paper is organized as follows: Sec-
tion II briefly describes the input datasets. Section III discusses
related work, including the BA algorithm, and in Section IV
we introduce our new approach. Section V describes the
experimental setup and validation data followed by results
and discussion in Section VI. Section VII provides concluding
remarks and directions for future work.

II. DATA

Global remote sensing datasets are available from a variety
of sources at different resolutions. The proposed fire map-
ping framework is based on two remotely sensed composite
data products from the MODIS instrument aboard NASA’s
Terra satellite, which are available for public download [33].
Specifically, we use the Enhanced Vegetation Index (EVI)
from the MODIS 16-day Level 3 1km Vegetation Indices
(MOD13A2) and the Active Fire (AF) from the MODIS 8-day
Level 3 1km Thermal Anomalies & Fire products (MOD14A2).
EVI essentially measures “greenness” (area-averaged canopy
photosynthetic capacity) as a proxy for the amount of vege-
tated biomass at a particular location (see Figure 1(a) for an
example). AF is a basic fire product designed to identify ther-
mal anomalies from the middle infrared spectral reflectance
bands [18] and is used heavily in operational situations by fire-
fighting agencies around the world. In order to separate forests
from other land cover types, we use the MODIS Vegetation
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(a) A sample EVI time series from the
fire.

(b) A photograph of the fire in
progress. Source: Associated Press

Fig. 1: The Basin Complex fire, which was started by lightning near
Big Sur, CA in June 2008, consumed more than 160,000 acres before
it merged with another fire and over $120M was spent fighting it.

Continuous Fields (VCF) dataset (MOD44B), which provides
the percent tree cover for every pixel. MODIS Level 3 products
are provided on a global 1km sinusoidal grid in 10◦×10◦ tiles.
For this study, we focus on subsets of the data corresponding
to geographical regions based on the available validation data
(see Section V).

III. RELATED WORK

Fire-related data products broadly fall into two categories:
active fire products, which capture the location and intensity
of fires burning at the time of observation (the prototypical
example being AF, see Section II); and burned area products,
which map areas that were burned by fires based on historical
observations. Here we discuss two approaches for mapping
burned areas, which require more sophisticated analysis meth-
ods and are the topic of this paper.

A. The V2DELTA Algorithm
Mithal et al. [24] presented a time series change detection

algorithm that incorporates natural variation into the change
detection framework. The algorithm, called V2DELTA, identi-
fies abrupt forest disturbances using EVI as an input. More
specifically, the V2DELTA algorithm compares a drop in EVI

with the variability in a fixed “training” window, thereby
providing a mechanism to ascribe significance to any given
drop. This relies on the assumption that EVI values in the
initial window were not affected by a land cover change, thus
enabling the algorithm to differentiate abrupt changes from
naturally occurring vegetation changes.

While V2DELTA identifies a broad class of disturbances [24],
it is not designed to distinguish fires from other land cover
changes (e.g., droughts). Figure 2(a) shows a sample time se-
ries which was incorrectly identified as burned – the loss in EVI

was actually due to logging. Moreover, the fire mapping task
poses specific challenges that affect the algorithm’s efficacy,
especially for time series that recover quickly (within a few
months). Figure 2(b) shows one such example.

B. The BA Algorithm
The burned area approach (henceforth called BA) recently

presented by Giglio et al. [15] is a state-of-the-art methodology
in the earth science research community for identifying regions
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(a) A pixel in California incorrectly
identified as burned by V2DELTA.
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(b) A 2005 California fire event not
detected as burned by V2DELTA be-
cause of fast recovery in “greenness”

Fig. 2: Illustrative examples of limitations in V2DELTA.

burned by fire. The overall approach can be viewed as a semi-
supervised Bayesian classification method with two classes:
burned and unburned. The technique builds on key concepts
and ideas developed over several years by Giglio et al. [14]
and others [11, 13, 21, 27]. The key steps of the algorithm are
outlined below:

1) Representative sets of samples for the burned and un-
burned classes are constructed. The sample pixels for
each class are discovered using conservative heuristics
which label pixels as unburned or burned if they pass a
set of conditions.

2) The burned class is further enriched with closely related
pixels from the dataset, while the unburned class is
refined by pruning pixels that are geographically close
to burned training pixels.

3) A statistic that estimates the daily loss in vegetation
(∆V I) is computed for all training pixels.

4) The conditional probability distribution of the vegeta-
tion loss statistic is estimated for both the burned as
well as the unburned class, i.e., P (∆V I|burned) and
P (∆V I|unburned).

5) Bayes’ Rule is applied to obtain the posterior probability
of a pixel belonging to the burned class.

The BA algorithm is run on a regular basis using the latest
spectral reflectance and AF inputs. The output is released by
the University of Maryland as a product called MODIS Direct
Broadcast Monthly Burned Area Product (MCD64A1). Two
versions of the BA product are available: one that only uses
input data deemed to be of high quality and one that also
incorporates lower-quality input data (which we call BAHighQ
and BALowQ, respectively). Although the former is the one
that is widely used, our experimental results show that the
latter based on lower-quality inputs can produce better results
(see Section VI).

IV. PROPOSED APPROACH

Forest fires lead to the burning of vegetation (trees and
shrubs) and the emission of large amounts of thermal energy
close to the land surface. Thus, a forest fire typically exhibits
simultaneous changes (at a given location and time) in both
the greenness as well as the thermal anomaly signals. We
utilize these properties to identify fire events by performing
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Fig. 3: Flowchart illustrating the proposed framework for mapping
forest fires.

an integrated analysis in both the EVI and AF datasets. In
addition, fires exhibit particular spatio-temporal properties
which can be harnessed to further improve fire mapping. The
full workflow consists of generating stratified sets of pixels
based on confidence of change exhibited in the EVI and AF

signals.
In particular, we present a framework (Figure 3) for map-

ping forest fires wherein the multiple strata signify vary-
ing degrees of observability in the available datasets and
confidence in detecting them. To obtain the highest stratum
of detected fire events, we employ multiple complementary
scoring mechanisms using both EVI and AF data. This stratum
is expanded by including very similar events in close proximity
to form the middle stratum. The lowest stratum is generated
by including loosely similar events in a spatial window around
the other two strata.

A. EVI Scoring Mechanisms

Forest fires are often characterized by a sudden decrease
in the EVI time series. Sometimes, these drops will persist
for a few years (e.g., fires in boreal evergreen forest) and
sometimes they only last for several months (e.g., fires in
tropical rainforests). Generally, they are significant in both
absolute value and relative value compared with the normal
variations attributed to climatic seasonality and sensor noise.
Below, we define several scoring mechanisms, each of which
captures some aspects of change and variation for a given time
series.

a) K-month Delta (KD): KD is designed to score the
changes which persist for a long time (k months). It accounts
for the natural variability present in the vegetation, which
is specific to a particular region. By modeling EVI as the
combination of yearly trend and Gaussian noise, we assume
that inter-annual variation (IAV, defined below) follows a
Gaussian distribution:

IAV (t) = µ(EV I(t− sl,K))− µ(EV I(t, K))

where sl is the number of time steps in one annual EVI
segment (23 in our case) and K is the window size of segments
being compared (12 months).
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Therefore, the KD score at time step t is given by

KD(t) =
IAV (t)

σ

which is the z-score of IAV. Here, σ is estimated based on the
data in a four year window preceding t using bootstrapping
(this makes the algorithm more robust than V2DELTA).

b) Local Instant Drop (LID): LID scores the instantaneous
drop in EVI to identify fires that recover too quickly to be
captured by the KD score. The algorithm accounts for the
seasonal context in EVI to improve the robustness of the
scoring algorithm. Specifically, the LID score is given by

LID(t) =
EV I(t− 1)− EV I(t + 1)

NV ar

where NV ar is the largest drop that occurs in the temporal
neighborhood (of size 3) in the previous two year history. In
order to account for the seasonality of EVI, only the time steps
within a small window (of size 1) around a given time step in
the previous years are considered.

LID is not as stable as KD and therefore generally has a
higher threshold to guarantee the detection accuracy. Addition-
ally, it is a good filter to remove false positives detected by
KD due to other types of vegetation changes, such as drought.

c) Near Drop (ND): ND is designed to enforce a min-
imum absolute change in EVI when a fire happens. As the
only score which reflects the real amount of drop in EVI, ND

is well-suited as a filter in our framework. In particular, ND is
calculated as

ND(t) = µ(EV I(t− k, K))− µ(EV I(t + 1, K))

where K = 3 steps.
d) Integrating Multiple Scoring Mechanisms: It is evi-

dent from the discussion above that the scoring mechanisms
serve complementary purposes and capture different charac-
teristics of the fire event, which are distinct in nature. Hence,
they offer a possibility for developing a fire detection frame-
work which utilizes the orthogonal aspects of each scoring
mechanism in an integrative manner.

B. Initial Pixels

A forest fire exhibits large instantaneous drop; thus, a high
ND score (≥ 500) is a filtering criterion that must be met by
all pixels. A large KD score (≥ 3) is representative of a forest
fire event when coupled in conjunction with a moderate LID

score (≥ 1), which helps in rejecting other land cover changes
that show high KD score but are not associated with fires (low
LID score). It can be used to detect fire which has long-term
effect on the forests. A large LID score (≥ 4) is in itself a good
indicator of forest fire events. It is useful in detecting the fires
that occur in the regions where greenness recovers quickly.
Events which satisfy either of these two scoring criteria are
considered as initial pixels (highest stratum) and are further
used in subsequent steps of our fire mapping framework.

C. Spatial Growing
The AF signal often fails to detect forest fire events which

do not register a thermal anomaly because of smoke or satellite
overpass timing. Thus, the initial pixels might suffer from
low coverage. To overcome this challenge, we exploit the
inherent spatio-temporal autocorrelation of forest fire events
to increase coverage. Since events corresponding to the same
forest fire occur in close proximity of space and time, we
exploit this property by searching for fire events around the
initial pixels classified as forest fires by the scoring mechanism
above. In the current framework, we consider the 24 spatial
neighbors in a 5×5 spatial grid around the initial pixels, with
a temporal constraint of being within one time step from the
change time of the initial fire event. We then apply our scoring
mechanism on the new pool of candidate events with exactly
the same scoring criteria as we used for detecting initial forest
fire events. We iteratively grow in a spatial neighborhood to
exhaustively detect forest fire events. They represent forest fire
events (middle stratum) which have sharp fire characteristics
in the EVI signal but were not initial pixels because of the
absence of AF signal.

Because of the presence of noise in EVI as well as cases
where EVI loss is small, there are a number of forest fire
events which do not exhibit strong characteristics of fire
in our scoring mechanisms and thus go undetected. Simply
lowering the threshold in initial pixel detection will decrease
the robustness of our approach on the noise of AF. Therefore,
we exploit the spatial autocorrelation of forest fires to discover
such events.

In particular, we exploit this property to create another level
of forest fire events (lowest stratum) with a relaxed scoring
criteria indicating a lower confidence. We accept events to
be part of the lowest stratum if they exhibit a positive ND

score and either a moderately large LID score (≥ 2), or a
moderately large KD score (≥ 2.5) in conjunction with a
moderate LID score (≥ 0.8). Thus, we iteratively grow in a
spatial neighborhood (5× 5 grid) to exhaustively include any
probable fire events. This improves our coverage of forest fires
but is likely to include some false positives.

V. EVALUATION SETUP

We examine the performance of AF, BA and the proposed
approach in two ecologically varied regions, namely, the US
states of California and Georgia. These geographic areas
represent diverse regions with widely differing variability,
land cover types, geography and noise characteristics. The
following describes the validation data used in this study and
provides a brief overview of the evaluation methodology.

A. Validation Data
For each region considered in our evaluation, we obtained

fire validation data from government agencies responsible for
monitoring and managing forests and wildfires. The validation
data is in the form of fire perimeter polygons, each of which
is associated with the time of burning. Table I summarizes
the regions studied in this paper and the respective sources of
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Region References Positives Negatives

California (US) [1, 8] 4597 597208
Georgia (US) [2, 3] 2003 425528

TABLE I: Regions studied in this paper and their respective sources
of historical fire validation data.

Predicted
Fire No Fire

Validation Data
Fire TP FN

No Fire FP TN

TABLE II: Confusion matrix.

validation data. Although government agencies make their best
effort in documenting historical fires, fire perimeter datasets
are neither complete nor without error due to the finite
resources available to any agency. However, inaccuracies and
incompleteness are represented only in a small portion of
the validation data, and these datasets are still useful for
quantitatively comparing methods across large spatial regions.
The AF, BA and EVI datasets are georeferenced by the latitude
and longitude values of their pixel centers. We consider an
event to be positive if the corresponding pixel lies inside a
polygon. Similarly, an event is considered to be unburned
(forming the negative class) only if the entire pixel is outside a
polygon. The remaining pixels (which partially overlap poly-
gon boundaries) are discarded from the evaluation framework
to avoid ambiguity.

Since our primary focus is on detecting forest fires, we uti-
lize the MODIS Vegetation Continuous Fields (VCF) dataset
(MOD44B) which contains the percentage tree cover informa-
tion. We only consider pixels with high percentage tree cover
(≥ 20) in our evaluation scheme, a procedure commonly used
in the earth science domain to separate forests from non-forests
[5, 15].

B. Evaluation Methodology

In this paper, we use precision and recall as evaluation
metrics for quantitatively comparing the performance of AF,
BA and the proposed approach. These two well-known metrics
are used to evaluate the performance of algorithms in infor-
mation retrieval, machine learning and data mining [31]. Each
algorithm provides a set of positive and negative events that
it detects, which is validated using fire perimeter polygons
to obtain the number of true positives (TP ), false positives
(FP ), false negatives (FN) and true negatives (TN) for each
algorithm, as shown in Table II. Note that a TP event means
that the pixel lies inside a polygon and the time of change
agrees with the polygon. The precision and recall values for
each algorithm are then given by:

Precision, p =
TP

TP + FP
Recall, r =

TP

TP + FN

VI. EXPERIMENTAL RESULTS &
DISCUSSION

Tables III and IV contain validation results of our proposed
fire mapping framework along with other algorithms discussed
in this paper for the two different geographic regions. In the
following paragraphs we discuss their performance as well
as relative strengths and weaknesses in detail, beginning with
some general observations.

Algo Precision Recall TP FP FN

Highest Stratum 0.994 0.806 3748 21 901
Middle Stratum 0.990 0.844 3922 38 727
Lowest Stratum 0.944 0.906 4210 249 439

BAHighQ 0.990 0.926 4307 44 342
BALowQ 0.988 0.926 4307 52 342

AF 0.624 0.913 4246 2563 403
V2DELTA 0.054 0.960 4462 77827 187

TABLE III: Evaluation results for California.

Algo Precision Recall TP FP FN

Highest Stratum 0.985 0.475 956 15 1056
Middle Stratum 0.986 0.601 1209 17 803
Lowest Stratum 0.973 0.707 1422 39 590

BAHighQ 0.470 0.193 389 438 1624
BALowQ 0.700 0.674 1356 581 656

AF 0.147 0.644 1295 7522 717
V2DELTA 0.027 0.869 1749 64237 263

TABLE IV: Evaluation results for Georgia.

First, we note that our approach is more stable in the
two geographic areas even though in California, BA performs
slightly better. Since our approach takes into account the
natural variation and spatial coherence, our framework is more
reliable when the signal quality is not good. But when the
signals are clean, the heuristic method designed by domain
experts performs (slightly) better than ours.

Second, the quality flag in BA is not trustworthy since it
represents the quality of input data not the output result. Unlike
BA, the quality in the proposed approach reflects the strength
of “fire” pattern in a time series and always guarantee a higher
recall but lower precision for a lower stratum.

Finally, by comparing the third and seventh row in Tables III
and IV, we find that our framework consistently outperforms
the V2DELTA algorithm [24]. Although V2DELTA achieves
a comparable recall in some cases, it tends to generate a
large number of false positives which is not surprising given
that it is a more general change detection method. In fact,
it was this shortcoming that prompted the development of
the bootstrapping procedure for more robust modeling of the
historical EVI patterns and incorporation of the AF signal as
an additional source of information. This point is illustrated in
Figure 2(a), which shows the time series for a pixel that was
incorrectly identified by V2DELTA as burned. However, with
a combination of robust time series modeling and AF signal,
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Data-set Precision (3σ) Recall (3σ)

AF + Noise(N)
0.9936 ± 0.0016 0.8166 ± 0.0006
0.9936 ± 0.0015 0.8754 ± 0.0003
0.7479 ± 0.0786 0.9571 ± 0.0011

AF + Noise(5N)
0.9933 ± 0.0015 0.8165 ± 0.0008
0.9934 ± 0.0016 0.8754 ± 0.0008
0.7558 ± 0.0631 0.9571 ± 0.0011

AF + Noise(10N)
0.9935 ± 0.0015 0.8165 ± 0.0006
0.9935 ± 0.0017 0.8753 ± 0.0004
0.7411 ± 0.0849 0.9570 ± 0.0004

TABLE V: Performance of the proposed framework in California
given “noise” in the form of additional (false positive) AF signals.
Each group of three rows corresponds to the top three rows in
Table III.

our new framework is able to correctly dismiss such pixels as
unburned.

A. Comparison with BA

Looking at the rows three and four in Tables III and IV, we
note that our proposed framework is more stable in different
geographic areas than BA. From our results, we further note
that the overall performance of BA is tied closely to that of
AF. For example, in California (Tables III) AF performs quite
well, and so does BA. However, in Georgia (Table IV) AF

incurs 7522 false positives resulting in very poor precision,
which in turn severely limits the performance of BA.

This phenomenon is partly because BA depends on AF to
generate the training data. Although several heuristic steps
have been used in BA to improve the accuracy of the training
data, the quality of training data cannot be guaranteed when
the precision of AF is too low (around 0.15 in Georgia).
Compared to BA, the proposed framework is robust to the
performance of AF because it does not simply search for
sudden drops but focuses on detecting the patterns which
represent “fire” in EVI time series.

In order to further illustrate the robustness of our approach
to noise in AF, we performed additional set of experiments
in California. We randomly inserted varying levels of false
positives into the AF signal. The number of instances being
added ranges from one to ten times the number of actual
AF instances. Each experiment was repeated 30 times. The
results, shown in Table V, are nearly identical to the main
result (Table III) and suggest that our framework is extremely
robust to the presence of false positive AF signals, unlike BA

as seen in Table IV.

B. The Quality Flag compared with the ones used in BA

Although “high-quality” BA product is most frequently used
in practice, in the results for Georgia (Table IV) we observe
a peculiar case where both precision and recall are higher
for the “low-quality” BA product. Unlike BA, our approach
guarantees that lower level results have lower precision and
higher recall. The main difference behind this observation is
that the definition of “quality” in the two algorithms is not
identical.
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(b) FN in BA highQ but TP in BA lowQ

Fig. 4: A comparison of histograms for pixel reliability of BA

suggests that the algorithm is sensitive to data quality.

When detecting “high-quality” results, BA uses only the
high quality observations (input data) within a limited tem-
poral window surrounding the fire date. Since values in the
immediate (temporal) neighborhood of a fire tend to be of
lower quality (due to obstruction from smoke), in some regions
the algorithm does not have sufficient information and is thus
unable to correctly classify such pixels. To test this hypothesis,
we generated two histograms (Figures 4(a) and 4(b)) of
the pixel reliability extracted from the Quality Assurance
(QA) fields: the first is for the true positives of the high-
quality product (left panel), and the second for the false
negatives of the high-quality product which are true positives
in the low-quality version (right panel). We find that the BA

highQ events that were correctly identified were mostly high
quality, while BA lowQ was able to take advantage of the
additional information from lower-quality inputs and thus find
a significantly larger number of burned pixels.

C. Limitations of the Proposed Approach

The forest fire mapping framework proposed in this paper
faces limitations in a number of scenarios, leading to both
false positives and false negatives. These include situations
where (1) the vegetation rapidly recovers after a fire or there
are multiple fires in short succession (FN), (2) the loss in
vegetation is insignificant (FN), and (3) the vegetation has high
natural variability (FP and FN). Each of these scenarios poses
distinct challenges for our current fire detection framework.
Additionally, if a fire polygon does not contain any pixel with
an AF signal, it will not be detected by our framework (FN).
However, we observed that such instances happen only in
small polygons, and hence its effect on the performance of
the proposed framework is insignificant.

We briefly present a discussion of the false positives and
false negatives of the proposed approach. We had observed
that a number of pixels exhibiting strong fire characteristics
were missed by the fire perimeter polygons in California
(Figure 5(a)). Such pixels were incorrectly counted as false
positives in our evaluation scheme affecting the performance.
In addition, we encountered a small number of false positives
which exhibited other types of land cover changes (Figure
5(b)), and were incorrectly included in the highest stratum of
detected points.
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(a) Missed fire in California.
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(b) Land cover change in Georgia.

Fig. 5: False positives of the proposed approach.
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(a) Vegetation with high variability in
California (fire occurred in 2004).
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(b) Weak fire characteristics in Cali-
fornia (fire occurred in 2008).
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(c) Weak fire characteristics in Geor-
gia (fire occurred in 2007).

Fig. 6: False negatives of the proposed approach.

Most false negatives of the proposed approach consist of
vegetation types with high natural variability and noisy EVI

data, which got poorly scored by the proposed algorithms and
went undetected (Figure 6(a)). Other false negatives can be
attributed to weak characteristics of fire in EVI signal, e.g., in
California (Figure 6(b)) and Georgia (Figure 6(c)).

We are in effect considering less information than BA, yet
we are able to achieve comparable performance. Thus, there
is reason to believe that some of the limitations above will
be addressed by increasing the spatial and temporal resolution
to 250m and daily, respectively. In particular, we expect that
smaller fires (250m data has sixteen times more detail than
1km data) and pixels that exhibit rapid recovery (because of
compositing, neighboring time steps can be up to a month
apart in the current 16-day data) can be detected with higher
resolution data. We have not used higher resolution data in
this paper since these are not standard MODIS products and
hence require extensive processing to generate.

VII. CONCLUSION & FUTURE WORK

In this paper, we proposed a data mining framework for
forest fire mapping. The proposed technique is unsupervised in
nature and has the potential to be used globally, providing spa-
tially explicit wall-to-wall coverage. We quantitatively showed
that the technique performs comparably to the well-known BA

algorithm in the state of California (US) and much better in
Georgia (US); there are also complementarities between the
two frameworks. We also showed that the proposed framework
is highly robust to noise in one of its primary inputs, AF, which
is known to have low precision.

While the current framework already performs relatively
well in a variety of geographies, there are a number of
interesting directions for future work. The data inputs used in
this paper, EVI and AF, have temporal resolutions of 16 and
8 days, respectively. Both of these inputs can be computed
on a daily basis, which is likely to provide much more
information in many cases. This information can be exploited
to identify the precise day of the fire and to ensure temporal
coherence between neighboring pixels. Challenges with daily
data include increase in the noise level and additional effort
required to generate a daily EVI product (since this is not a
standard MODIS product). Another potential extension is to
use BA (and similar products) as an input, taking advantage
of complementarities that exist between the frameworks.
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