
1

Cache Latency Control for Application Fairness or
Differentiation in Power-Constrained Chip Multiprocessors

Xiaorui Wang1, Kai Ma1, and Yefu Wang2
1The Ohio State University, Columbus, OH 43210 2University of Tennessee, Knoxville, TN 37996

Abstract—Limiting the peak power consumption of chip
multiprocessors (CMPs) has recently received a lot of attention.
In order to enable chip-level power capping, the peak power
consumption of last-level (e.g., L2) on-chip caches in a CMP often
needs to be constrained by dynamically transitioning selected
cache banks into low-power modes. However, dynamic cache
resizing for power capping may cause undesired long cache
access latencies, and even thread starving and thrashing, for the
applications running on the CMP. In this paper, we propose
a novel cache management strategy that can limit the peak
power consumption of L2 caches and provide fairness guarantees,
such that the cache access latencies of the application threads
co-scheduled on the CMP are impacted more uniformly. Our
strategy is also extended to provide differentiated cache latency
guarantees that can help the OS to enforce the desired thread
priorities at the architectural level and achieve desired rates
of thread progress for co-scheduled applications. Our solution
features a two-tier control architecture rigorously designed based
on advanced feedback control theory for guaranteed control
accuracy and system stability. Extensive experimental results
demonstrate that our solution can achieve the desired cache
power capping, fair or differentiated cache sharing, and power-
performance tradeoffs for many applications.

Keywords: power capping, cache latency, fairness, per-
formance differentiation, control theory, chip multiprocessors.

I. INTRODUCTION

In recent years, limiting the peak power consumption of
chip multiprocessors (CMPs) has received a lot of attention
[2], [3], [4], [5]. With the increased levels of core integra-
tion and transistor density, the gap between the peak and
average power consumption of a CMP widens and leads to
unnecessarily more expensive cooling, packaging, and power
supplies in the CMP design. To effectively reduce the costs
while allowing higher computing densities with more cores
and caches integrated on a single die, power capping can
be enforced at different levels of a CMP for maximized
performance under given power constraints. In addition, to
enable chip-level power capping, it is preferable that power can
be flexibly shifted among the CPU cores and the shared on-
chip L2 caches1 within a CMP for performance optimization.
Therefore, the peak power consumption of on-chip L2 caches
in a CMP often needs to be constrained below a budget that
is determined at runtime.

An effective way of controlling the power of L2 caches
is to dynamically switch selected cache units (e.g., ways,
banks, or lines) between high- and low-power modes [6], [7].
For example, recent work [8] has proposed power-efficient

This paper is a significantly extended version of a conference paper [1].
1Our solution is designed to manage the last-level shared on-chip cache in

a CMP, which can be L2 or L3 in different CMPs.

management schemes for the non-uniform cache architecture
(NUCA) designed to reduce wire delays. However, as a
tradeoff, putting cache units into low-power modes may cause
undesired long cache access latencies for the applications
running on the CMP, because a smaller on-chip cache size may
lead to more expensive off-chip data accesses. In this paper,
we define cache access latency as the average number of cycles
when accessing the L2 cache for data. Note that the latency is
from the moment when an L2 cache request (including both
read and write) is issued to the moment when the request is
returned to the core. Therefore, the L2 cache access latency
includes the latency of memory access if L2 misses occur. As
cache access latencies contribute significantly to the number
of CPU stall cycles and thus are directly related to application
performance such as IPC (instructions per cycle), how to
select cache units for power capping is challenging. Simplistic
solutions may allocate too few cache units to applications
running on some cores, resulting in undesired thread starving
and thrashing. Therefore, it is important to provide desired
latency guarantees for the co-scheduled application threads
running on the cores in a CMP, even when the active L2 cache
size is being dynamically changed to enforce a runtime power
budget.

There can be different ways to provide cache access la-
tency guarantees in a power-constrained CMP. First, a straight-
forward way is to provide absolute latency guarantees for
some applications based on their performance needs (e.g., IPC
requirements). However, since the active L2 cache size can be
significantly reduced at runtime to enforce a low power budget
in scenarios such as thermal emergencies, the available active
cache size can become too small to guarantee the absolute
latencies for any applications. Therefore, it may not be feasible
to provide absolute latency guarantees in power-constrained
CMPs. The second and a more reasonable way is to provide
fairness guarantees such that the cache access latencies of
the co-scheduled applications are impacted more uniformly
by cache resizing. As a result, execution time fairness, i.e.,
how uniformly the execution times of co-scheduled threads
are changed, can be better achieved. While existing work
addresses fairness in terms of cache miss rate [9], we choose to
control the average access latencies because the latency of each
single access can vary significantly in NUCA caches due to
both wire delays and L2 cache miss rate. As a result, miss rate
alone may not accurately indicate the impact on application
performance.

Fair latency guarantees can also be extended to provide
differentiated cache access latencies, since the applications co-
scheduled on different cores in a CMP may have different per-
formance needs or priorities. Differentiated latency guarantees

Digital Object Indentifier 10.1109/TC.2011.187 0018-9340/11/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

can allow higher priority applications to have shorter latencies
and so less performance degradation under the impacts of
cache resizing. Differentiated cache sharing is important be-
cause it can help the OS to enforce the desired thread priorities.
The OS normally enforces thread priorities by assigning more
time slices to higher priority threads, with the assumption that
more time slices can lead to higher rates of progress among all
the co-scheduled threads. However, as cache implementation is
traditionally thread-blind and priority-blind, a novel scheme is
needed to help higher priority threads to achieve shorter cache
latencies and so higher rates of progress at the architectural
level. Differentiated latency guarantees can also be useful in
accelerating critical threads to reduce load imbalance. Existing
work on thread criticality relies mainly on per-core dynamic
voltage and frequency scaling (DVFS) and task stealing [10],
[11]. However, some applications are not suitable for task
stealing while some memory-intensive applications cannot be
accelerated by per-core DVFS alone. In addition, per-core
DVFS is not supported by most existing CMPs and can be
expensive for future CMPs [12]. In this paper, we demonstrate
that differentiated latency guarantees can provide another way
to achieve desired rates of progress for application threads. As
cache latencies may have small impacts on the performance
of some applications, differentiated latency control should be
combined with per-core DVFS and task stealing to accelerate
threads based on application characteristics.

In this paper, we propose a novel L2 cache management
strategy that can enforce the desired power budget for on-chip
L2 caches in a power-constrained CMP by cache resizing. In
order to achieve fair or differentiated cache sharing under the
impacts of power capping, our strategy dynamically partitions
the available active cache size among the threads on the cores
for fair or differentiated cache access latencies. A key chal-
lenge in implementing fair or differentiated cache sharing in a
power-constrained CMP is that the cache partition to achieve
the desired degree of fairness or differentiation depends on
two uncertain factors: workloads that are unknown a priori
and the total cache size that is dynamically varying. A main
contribution of this paper is the introduction of a coordinated
feedback control architecture for adapting cache partitioning
and resizing such that the desired latency fairness or differenti-
ation among threads on different cores can be achieved, while
the cache power consumption can be controlled. Specifically,
this paper makes the following major contributions:

• We propose a novel L2 cache management strategy that
provides fair or differentiated cache sharing for threads
running on a CMP whose power consumption must be
constrained. While prior research in this field focuses
primarily on reducing the power consumption of L2
caches, to our best knowledge, this paper presents the
first study to limit the peak power of L2 caches.

• We design a coordinated two-tier feedback control ar-
chitecture to simultaneously limit the peak cache power
consumption and achieve the desired latency differen-
tiation/fairness among different threads by dynamically
conducting cache resizing and partitioning.

• We use advanced feedback control theory as a theoretical

foundation to design and coordinate the two control loops
for theoretically guaranteed control accuracy and system
stability. This rigorous design methodology is in sharp
contrast to heuristic-based adaptive solutions that heavily
rely on extensive manual tuning.

The rest of this paper is organized as follows. Section II
introduces the proposed two-tier control architecture. Section
III presents the modeling, design, and analysis of the latency
fairness controller. Section IV introduces the cache power
controller. Section V discusses possible applications of relative
cache latency control. Section VI provides the implementation
details of our control solution. Section VII presents our
experimental results. Section VIII reviews the related work.
Finally, Section IX summarizes the paper.

II. TWO-TIER CACHE CONTROL ARCHITECTURE

In this section, we provide a high-level description of our
cache control system architecture, which features a two-tier
controller design.

As shown in Figure 1, the primary control loop, i.e.,
the L2 cache power control loop, limits the peak L2 cache
power consumption under the desired budget (e.g., 90% of the
peak power consumption) by manipulating the total number
of active L2 cache banks. The goal of the power control loop
is to find the number of L2 cache banks that can be used
under current power budget. Note that we use cache banks
in static-NUCA (i.e., S-NUCA) caches as our actuation unit,
but our controller can work with finer actuation granularities,
such as cache lines or blocks, with only minor changes and
slightly more hardware overhead. The key components in the
cache power control loop include a power controller, a power
monitor, and a cache resizing modulator. The control loop
is invoked periodically. In each control period of the cache
power control loop, the controller receives the total power
consumption of the L2 caches from the power monitor. Note
that although the power consumption of L2 caches cannot
be directly measured in today’s CMPs, it can already be
precisely estimated with on-chip programmable event counters
for control purpose [13]. The cache power is the controlled
variable of this loop. Based on the difference between the
measured power value and the desired power budget, the
controller then computes the number of cache banks in the chip
that should stay active in the next control period, which is the
manipulated variable. The controller then sends the number
to the cache resizing modulator. The modulator changes the
power modes of selected cache banks accordingly. There is
only one cache power control loop for a CMP.

The secondary control loop, i.e., the latency fairness/dif-
ferentiation control loop, achieves the desired latency fairness
or differentiation for the threads on the cores by conducting
cache partitioning at runtime on a smaller timescale. As shown
in Figure 1, in a CMP with N CPU cores, we have N − 1
latency fairness/differentiation control loops. There are two
ways to implement the latency control loops. The first way is
that we select a reference thread on a core and then control
the latencies of other threads relative to the latency of this
reference thread. The second way is that we can have a control

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

������ �
�	
��� �

������ �
�	
��� �

������ �
�	
��� �

������
�	
���

���� ��	��
�� ������

���� ��	��
�� �������

���� ��	��

�� �������

���� ��	��
�� �������

�	������
����� ��	�������

��	����

�����

�	�������

����	�� ��	����

�������� ����	��
�	�������

����	�� ��	����

����	�� ��	���� ����	�� ��	����

�������� ����	��
�	�������

�������� ����	��
�	�������

������ ��
���� ����	��
��	���� ����

�����
��	���� ����

�����
 !�"��

����
��������	�	"

����
����#�	"

Fig. 1. Two-tier L2 cache control architecture for power capping and fair/differentiated sharing.

loop to control the latency ratio between the two active threads
on every two adjacent cores. Since the controlled variable is
the relative latencies among threads, the two implementations
accomplish the same control functions. We plot the second
way in Figure 1 for easier illustration. Specifically, to achieve
fairness, we try to achieve approximately the same cache
access latency for the active threads running on all the cores,
despite the dynamically varying total cache size. Likewise,
to achieve differentiation, we maintain the cache latency of
a higher-priority thread shorter than that of a lower-priority
thread. Note that previous fair cache sharing solutions [9],
[14] try to manage the performance impacts of co-scheduling
relative to the case when the applications are running alone
on a CMP. As a result, they need to precisely know which
applications are currently running on the CMP and then use
corresponding off-line profiled performance measurements as
references. A key advantage of our solution is that we do not
assume such a prior knowledge and is thus more realistic. To
handle multi-threaded applications, we can put cores running
the same applications into groups and then conduct dynamic
L2 cache partitioning among the groups.

The key components in a latency fairness/differentiation
control loop for two cores include a latency fairness/differ-
entiation controller, two latency monitors for the threads on
the two cores, and a shared cache partitioning modulator.
The control loop is also invoked periodically and its period
is selected such that multiple cache access requests can be
received during a control period and the actuation overhead
is small compared with the period. The following steps are
invoked at the end of every control period: 1) The latency
monitors of the two cores measure the average absolute
latencies of the two threads in the last control period and
send the values to the controller through the feedback lane;
2) The controller calculates the relative latency of the two
threads, which is the controlled variable of the control loop.
The difference between the actual relative latency of the two
threads and the desired value is the control error; 3) The
controller then relies on control theory to compute the ratio
between the numbers of cache banks to be allocated to the
two threads, which is the manipulated variable of the control

loop. The absolute number of cache banks can be calculated
based on the total number of active banks determined by
the power control loop; 4) The cache partitioning modulator
then allocates the desired number of cache banks to each
thread. We assume that a cache bank is not shared by multiple
threads in this prototype design, but this assumption can be
easily relaxed in a real system implementation by using finer
actuation granularities with more hardware overhead or soft
cache partitioning [9], [15].

Clearly, the two control loops need to be coordinated
based on advanced control theory, because every invocation
of the cache power control loop may change the total number
of active cache banks of the CMP, and thus affect the stability
of the latency control loops. Therefore, in order to achieve
stability for the two-tier control architecture, we adopt the
method recently proposed in [16] to configure the period
of the power control loop to be longer than the settling
time of the latency fairness/differentiation control loops. This
guarantees that the latency loop can always enter its steady
state within one control period of the power control loop, so
that the two control loops are decoupled and can be designed
independently. As long as the two control loops are stable
individually, the coordinated control system is stable.

We now discuss the scalability of the proposed two-tier
cache control solution. Since there is only one cache power
control loop for a CMP, its overhead will not increase with
the number of cores. Instead, with more cores in a CMP,
the power control performance will improve due to the finer-
grained actuation resulting from the increased number of cache
banks. For a CMP with N CPU cores, we have N −1 latency
fairness/differentiation control loops. Thus, the overhead of the
latency control loops will increase linearly with the number of
cores. However, as we discuss in Section III, the computational
overhead of a latency control loop is negligible with just
several multiplications and additions. Therefore, the proposed
control solution is scalable for many-core CMPs with tens or
hundreds of cores.

Since the core of each control loop is its controller, we
introduce the design and analysis of the two controllers in the
next two sections, respectively. The details of cache resizing
and partitioning in NUCA caches and the implementation

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

details of other components in the control loops are discussed
in Section VI.

III. LATENCY FAIRNESS/DIFFERENTIATION CONTROLLER

In this section, we present the modeling, design and
analysis of the cache latency controller.

Given a CMP with N cores, as an example, we present
the design process of the cache latency fairness/differentiation
controller between Core i and Core j. The controller design
between other pairs of cores is the same. We first introduce
the following notation. li(k) is the absolute access latency
of the thread running on Core i in the kth control period.
l(k) is the relative latency ratio between the two threads on
Core i and Core j. Specifically l(k) = li(k)/lj(k). L is
the reference latency ratio between the two threads on Core
i and Core j. To achieve fairness, we can set L = 1. To
achieve differentiation, the ratio L can be set (e.g., by the OS)
proportionally to the thread priorities or progress rates. For
example, L < 1 means that the Core i thread should have a
shorter latency (i.e., a higher priority or a faster progress rate)
than the Core j thread. It is important to note that L is not
necessarily a constant and can be changed at runtime based
on thread progress rates. For example, the thread criticality
predictor in [10] can be used to predict how critical each of
the co-scheduled threads is, such that proper reference ratios
can be assigned to accelerate critical threads at different times.
The focus of this paper is on providing a control scheme that
can achieve the desired differentiation specified by the OS.
We plan to investigate advanced algorithms for the OS to
dynamically determine the reference ratio based on the desired
thread priorities and/or progress rates in our future work. e(k)
is the difference between the reference ratio and the actual
latency ratio. Specifically e(k) = L−l(k). ci(k) is the number
of active cache banks allocated to the thread on Core i in the
kth control period. c(k) is the ratio between the numbers of
cache banks partitioned to the two threads on Core j and Core
i, specifically c(k) = cj(k)/ci(k).

In the kth control period, given the current access latency
ratio l(k), the control goal is to dynamically choose cache
partition ratio c(k) such that l(k + 1) can converge to the set
point L after a finite number of control periods.

A. System Modeling

We now model the dynamics of the controlled system,
namely the relationship between the controlled variable (i.e.,
l(k)) and the manipulated variable (i.e., c(k)). However, a
well-established physical equation is unavailable to capture
the relationship between the latency ratio of two threads and
the ratio of cache banks partitioned to them, due to the
complexity of cache systems in today’s computers. Therefore,
we use a standard approach called system identification [17]
to this problem. Based on control theory, we use the following
standard difference equation to model the controlled system:

l(k) =

n1∑

j=1

aj l(k − j) +

n2∑

j=1

bjc(k − j) (1)

where n1 and n2 are the orders of the system output (i.e.,
l(k)) and system input (i.e., c(k)), respectively. aj and bj are

system parameters whose values need to be determined by
system identification. l(k − j) and c(k − j) are the values
of the relative latency ratio (i.e., l(k)) and the ratio of cache
banks (i.e., c(k)), respectively, in the k − j control period.

The model can be generally explained from the systems
perspective. The current latency ratio between two threads
on two cores, l(k), is mainly determined by three factors: 1)
the ratio l(k − j) in the previous n1 control periods, 2) the
cache partitioning actions c(k − j) happened in the previous
n2 control periods, and 3) the cache latency properties of the
workloads, which are captured by the system parameters aj
and bj through system identification. The system parameters
may change for two reasons: 1) workloads may have phase
changes at runtime, resulting in different latency properties
and 2) the system may run different workloads. The variations
of the system parameters must be theoretically analyzed to
guarantee system stability.

For system identification, we need to first determine the
right orders for the system, i.e., the values of n1 and n2 in
the difference equation (1). The order values are normally a
compromise between model simplicity and modeling accuracy.
In this paper, we test different typical system orders. For each
combination of n1 and n2, we use white noise to generate a
series of system inputs (normalized to the allowed ranges) in
a random fashion to stimulate the system and then measure
the system output in each period. Based on the collected
data, we use the Least Squares Method (LSM) to iteratively
estimate the values of parameters ai and bi. We select four
typical applications (mcf, gap, ammp, and crafty) in the SPEC
CPU2000 benchmark suite as our workloads, based on the
method introduced in [15]. mcf represents a workload with a
data set larger than the available cache size. gap has a large
number of compulsory misses. ammp continuously benefits as
the cache size is being increased. crafty has a small working
set but needs to frequently request data from L2 caches. We
combine the four applications in 10 groups, as shown in
Table I, to conduct the system identification experiments. The
average values of the system parameters aj and bj resulting
from the 10 groups are used as the parameters in the system
model. Table II estimates the accuracy of the system model
with different system orders (i.e., n1 and n2 in (1)), in terms of
Root Mean Squared Error (RMSE). A smaller RMSE indicates
a higher modeling accuracy. Based on our results, we choose
to have the orders of n1 = 1 and n2 = 1 because this
combination has a reasonably small error (only 0.0285 or 19%
higher than the third-order model), while keeping the model
orders low. Therefore, the nominal system model resulted from
our system identification is:

l(k) = a1l(k − 1) + b1c(k − 1) (2)

where a1 = 0.595 and b1 = 0.954 are system parameters
resulting from our experiments with the 10 groups of applica-
tions. To verify the accuracy of the model, we change the seed
of the white noise signal to generate a different sequence of
system inputs and then rerun the experiments to validate the
results of system identification by comparing the actual system
outputs and the estimated outputs based on the nominal model

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

TABLE I
APPLICATION COMBINATIONS AND MODEL VALIDATION RESULTS.

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10
Combi- mcf mcf mcf gap gap ammp mcf gap ammp crafty
nation gap ammp crafty ammp crafty crafty mcf gap ammp crafty

TABLE II
THE RMSE VALUES OF DIFFERENT MODEL ORDERS.

n1 = 0 n1 = 1 n1 = 2 n1 = 3

n2 = 1 0.2500 0.1714 0.1704 0.1621
n2 = 2 0.2211 0.1691 0.1684 0.1619
n2 = 3 0.1793 0.1455 0.1455 0.1429

(2). Our results show that the differences are sufficiently small
(with R2 = 0.87).

Note that the real model of the system may be different
from the nominal model (2) at runtime due to workload dif-
ferences or parameter variations. To quantitatively analyze the
impact of workload variations on the controller performance,
we model the variations caused by different workloads and
prove that the system controlled by the controller designed
based on the nominal model can remain stable as long as the
variation of a1 is within [−0.69a1, 1.18a1].

B. Controller Design

The goal of controller design is to achieve system sta-
bility, zero steady-state error, and short settling time. Follow-
ing standard control theory [17], we design a Proportional-
Integral (PI) controller to achieve the desired control per-
formance. An important advantage of PI control is that it
can provide robust control performance despite considerable
modeling errors. In addition, PI control has a small compu-
tational overhead and is thus suitable to be implemented in
the cache system. A more sophisticated PID (Proportional-
Integral-Derivative) controller is not used because it is deter-
mined by the system model (2) that a derivative (D) term
is not needed for the desired control performance. Having a
derivative term unnecessarily might amplify the noise in the
cache latency ratio. The designed PI controller in the Z-domain
is:

F (z) =
Kp(z −Ki)

z − 1
(3)

where Kp = 0.49 and Ki = 0.37 are control parameters
that are analytically chosen using the standard Root Locus
design method [17]. The corresponding closed-loop poles are
0.5638±0.3247i. Since both the poles are inside the unit circle
in the complex plane, the system is guaranteed to be stable
when the nominal system model (2) is accurate (i.e., a1 and
b1 are exactly as estimated). In this case, we have proven that
the closed-loop system can precisely converge to the desired
set point with a zero steady state error. The detailed proofs
are skipped due to space limitations. The time-domain form
of the designed PI controller is:

c(k) = c(k − 1) +Kpe(k)−KpKie(k − 1) (4)

Therefore, the computational overhead of the designed con-
troller is just several multiplications and additions.

IV. CACHE POWER CONTROLLER

In this section, we present the modeling, design, and
analysis of the cache power controller.

We first introduce some notation. P is the desired power
budget for the L2 caches in the CMP. p(k) is the actual power
consumption of the L2 caches in the kth control period. r(k) is
the difference between the power budget and the actual power,
specifically r(k) = P−p(k). s(k) is the total number of active
cache banks in the kth control period. Δs(k) = s(k)−s(k−1)
is the number difference of total active cache banks between
the kth and k − 1th control periods.

A. System Modeling

According to the investigation in previous work [18],
cache leakage power has a linear relation with active cache
size. The total power consumption of L2 caches can be the
sum of the two parts: one part varies with the cache size while
the other part remains approximately the same regardless of
the cache size. Therefore, the L2 cache power consumption
can be approximately modeled as:

p(k) = c ∗ s(k) + d (5)

where c is a model parameter determined by the workload and
d represents the part that does not vary with cache size. Similar
to the system identification experiments in Section III-A, we
select four typical benchmarks (mcf, gap, ammp, and crafty)
as our workloads to perform the experiments. In particular, we
generate a series of system inputs (i.e., s(k)) to stimulate the
system and then measure the system output (i.e., p(k)) in each
control period. Based on the collected data, we use the Least
Squares Method (LSM) to iteratively estimate the values of
parameters c and d. Our results show that c = 0.24 on average
for all the selected workloads. The value of d varies within a
small range from 0.02 (with application ammp) to 0.58 (with
application mcf). Note that a key advantage of the control-
theoretic design approach is that it can tolerate a certain degree
of modeling errors and can adapt to online model variations
based on dynamic feedback [17]. As a result, our solution does
not need to rely on power models that are 100% accurate,
which is in sharp contrast to open-loop solutions that would
fail without an accurate model. Hence, the dynamic system
model as a difference equation is:

p(k) = p(k − 1) + cΔs(k) (6)

The real power model of the L2 caches may be different
from the nominal model (6) at runtime due to several factors.
For example, the leakage power of a cache bank can be
sensitive to the system temperature. In the next subsection,
we show that the closed-loop system controlled by a controller
designed based on the nominal model (6) can remain stable
as long as c varies within a certain range.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

Fig. 2. Relative cache latency control to reduce priority inversion in EDF
real-time scheduling. The thread on Core 0 has the highest priority and should
finish first. Runtime is normalized to Core 0 in the controlled group.

Fig. 3. Relative cache latency control to accelerate critical threads (art
and vpr) for reduced load imbalance. Runtime is normalized to art in the
controlled group.

B. Controller Design and Analysis

The goal of the controller design is to achieve system
stability, zero steady-state error, and short settling time when
the nominal system model (6) is accurate. Similar to the design
of the cache latency controller, we design a Proportional-
Integral (PI) controller to achieve the desired control perfor-
mance because of the robustness and negligible overhead of PI
control. The time-domain form of the designed PI controller
is

s(k) = s(k − 1) +K1r(k)−K1K2r(k − 1) (7)

where K1 = 3 and K2 = 0.73 are control parameters that are
analytically determined using the standard Root Locus design
method. The corresponding closed-loop poles are 0.7349 ±
0.2033i. Since both the poles are inside the unit circle, the
system is stable. We have also proven that the closed-loop
system can precisely converge to the desired set point with
a zero steady state error. The worst-case settling time of the
system is 12 control periods.

Although the controlled system is guaranteed to be stable
when the system model (6) is accurate, stability has to be
reevaluated when the model parameter c changes. Based on
control theory, we have proven that the system can remain
stable and achieve zero steady-state error when c < −0.76 or
c > 0. Similarly, to handle systems with a modeling error that
is outside this stability range, an online model estimator [19],
[5] can be adopted to dynamically correct the system model
based on real power measurements.

V. DISCUSSION

In this section, we discuss possible applications of cache
latency differentiation control in power-constrained CMPs.

First, cache latency differentiation control can help reduce
priority inversion in real-time operating systems. Classic real-
time theory is developed mainly for single-core systems with
the assumption that the active thread has the full use of
L2 caches. For example, in the well-known EDF (Earliest
Deadline First) scheduling algorithm [20], a thread with the

earliest absolute deadline has the highest priority and thus
can get the CPU. However, in CMPs, the highest priority
thread running on each core now needs to compete for the
shared cache resources. As cache implementation is tradition-
ally thread-blind and priority-blind, a thread with the overall
earliest deadline may fail the cache competition and finish later
than a thread running on another core with a later deadline,
resulting in potential priority inversion and deadline misses.
A naive solution is to allocate almost all the cache banks
to the highest-priority thread. However, resource management
in such a greedy way often leads to extremely long worst-
case response times for the lower-priority threads and can
make schedulability analysis very difficult, which are both
highly undesirable for real-time systems (e.g., the well-known
release guard design) [20]. Therefore, in this case, relative
cache latency control can be used by the OS to enforce thread
priorities by setting the cache latency ratio among the threads
proportional to their deadlines. As a result, a thread with an
earlier deadline can have a shorter cache latency and thus a
higher probability of meeting its deadline, while the lower-
priority threads can also have chances to meet their deadlines.
To validate this hypothesis with simulation, we run 4 copies
of the benchmark applu on the 4 cores of a CMP for 200M
instructions. We assume that the thread on Core 0 has the
earliest deadline and thus the highest priority. The thread on
Core 1 has the second highest priority while Core 3 has the
lowest priority. With both the traditional shared L2 caches and
even cache partitioning in a static way, the Core 0 thread is not
guaranteed to have the earliest completion time. In contrast, as
shown in Figure 2, if we set the cache latency ratio based on
their priorities for differentiated cache sharing, the threads can
finish in the desired sequence. Note again that the purpose of
this paper is to provide a control scheme as a tool for OS to
enforce desired differentiation. We plan to design algorithms
that dynamically determine the desired cache access latency
ratio between co-scheduled threads for improved real-time
performance in our future work.

Second, cache latency differentiation control can also
be applied to reduce load imbalance by accelerating critical
threads. In many parallel programs, it is often preferable that
threads (or processes) running on different cores can reach the
same synchronization point (e.g., a barrier or shared lock) at
the same time, because otherwise faster threads would have to
spend a large amount of time waiting for other threads, result-
ing in wasted CPU resources [11]. Therefore, in order to better
exploit thread-level parallelism, it is important to dynamically
identify the slowest (or critical) threads in those programs
and then try to speed them up for improved performance. A
recent study [10] demonstrates that substantial performance
improvements can be achieved by accelerating critical threads.
Existing work on thread criticality relies mainly on per-core
dynamic voltage and frequency scaling (DVFS) and task
stealing [10], [11]. However, some applications are not suitable
for task stealing while some memory-intensive applications
cannot be accelerated by per-core DVFS alone. In addition,
per-core DVFS is not supported by most existing CMPs and
can be expensive for future CMPs [12]. With relative cache
latency control, we can effectively speed up critical threads

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

by shortening their cache access latencies based on their
progress, thus providing another way to achieve desired rates
of progress for application threads. As cache latencies may
have small impacts on the performance of some applications,
differentiated latency control should be combined with per-
core DVFS and task stealing to accelerate threads based on
application characteristics. To validate this hypothesis, we run
4 benchmarks: art, vpr, crafty, and bzip on the 4 cores
of a CMP to simulate a 4-thread program. We assume that
each thread needs to run 250M instructions and reach a syn-
chronization point after every 50M instructions. Figure 3 plots
the normalized average runtime between two synchronization
points (with standard deviation) of each thread under different
cache management policies. With the traditional shared L2
caches, we can observe load imbalance as art and vpr
have longer runtime than crafty and bzip. The undesired
load imbalance still exists if we evenly partition the caches
in a static way. However, if we control the latency ratio to
1 : 1.5 : 2 : 2.5, all the four threads can finish approximately at
the same time, resulting in a 50% runtime speedup compared
to the shared caches case. Note that the latency ratio can be
dynamically adjusted by the OS based on the progress of the
threads to achieve even better synchronization and a slightly
higher speedup.

In addition to the two example applications, cache latency
differentiation control can also be used in other applications
such as desired thread speedup on selected cores. A lot of
today’s application software is developed with a single thread
(called worker thread) doing most computation-intensive work.
Therefore, it is often preferable to accelerate the worker
thread in order to have a shorter execution time for the
entire program. Furthermore, relative cache latency control can
also be used to provide cache sharing fairness guarantees, as
discussed before. As power is becoming a major constraint for
CMPs in the near future, relative cache latency control can be
used to ensure desired application fairness or differentiation
under the impact of power capping.

VI. IMPLEMENTATION

In this section, we introduce our simulation environment
and the implementation details of the control loops.

A. Simulation Environment

We extend the SimpleScalar simulator with static-NUCA
cache configuration [21] as our simulation environment. In
our simulations, we configure the CMP floor plan to have 4
Alpha 21264-like cores (65nm) with a frequency of 5GHz.
We calculate the leakage power using HotLeakage [22] and
calculate dynamic power using Wattch (built on CACTI)
[23]. In all our experiments, we use the SPEC CPU2000
benchmark suite (V1.0) to test our two-tier cache control
solution. The working temperature of the L2 cache is set to
80◦C to simulate a typical real CMP setting based on the
study in [24]. The L2 cache is configured to be 16MB (8-
way set associative), because large caches are expected to be
incorporated into future chips due to the shrinking of process
technologies [21]. The main memory latency is 300 cycles.
The L2 cache replacement algorithm is LRU (Least Recently

Used). The L1 i-cache and d-cache are both 32KB (2-way,
64 byte block size) with a 3-cycle hit latency. The detailed
simulation configuration parameters are listed in Table III.

B. Implementation of Control Loops

We now introduce the implementation details of each
component in the two control loops.

Cache Access Latency Monitor. We add two counters
for each core: one counter counts the number of stall cycles
induced by cache accesses while the other counts the total
number of cache accesses. We use the average access latencies
in one control period to calculate the relative latency between
the threads on two cores.

Cache Power Monitor. We use HotLeakage to calculate
the leakage power consumption of the L2 caches and Wattch
to calculate the dynamic power. We then use the sum of the
two parts as our cache power reading. Note that the power
consumption of L2 caches can be precisely estimated based
on measurements feasible on physical chips [13].

Controllers. As introduced in Sections III and IV, both
the latency controllers and cache power controller are PI
controllers. Each controller is invoked once in one of its
control period to receive the measured value of its con-
trolled variable (i.e., relative latency or cache power) from the
monitor, and then conduct its control algorithm to compute
the corresponding control output. As shown in the controller
functions (4) and (7), each invocation of the controller only
executes a couple of multiplications and additions. Therefore,
the computational overhead of the controllers is small enough
to be implemented in a real cache system. The control period
of the latency control loop is set to 1M CPU cycles as a
compromise between the system response speed and actuation
overhead. A longer control period may fail to promptly react
to some system dynamics while a shorter period may lead to
increased actuation overhead. Based on our stability analysis,
the control period of the cache power control loop is set to 10
times that of the latency control loop, i.e., 10M cycles, in order
to decouple the two controllers for global system stability.

In a real system, there can be two ways to implement
our controllers. First, as discussed in Section III, the compu-
tational overhead of the two designed controllers is several
multiplications and additions. Given the control periods of
10M and 1M cycles, the total time overhead of our controllers
is less than 0.01%. The dominant circuit in our control solution
is the fixed-point multiplication in the controllers, which is
estimated to have an area overhead of 0.0057mm2 with the
65nm process technology [25] or a hardware overhead of
0.003% on a typical 200mm2 die. As a result, the controllers
can be implemented on chip (as in Intel ItaniumII) to allow
cache management on a fine timescale. Second, our controllers
can also be implemented in service processor firmware (similar
to the Thermal and Power Management Device (TPMD) used
for IBM POWER7 [26]) and so their power and compu-
tational overheads will not directly affect the main CMP.
This implementation is more flexible since the firmware is
programmable but the control periods cannot be too small due
to the communication delay between the service processor and
the main CMP.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

TABLE III
SIMULATOR CONFIGURATION PARAMETERS FOR SIMPLESCALAR.

Parameter Summary
Technology 65nm Temperature 80◦C
Vdd 1.2V Frequency 5GHz
Main memory latency 300 cycles L2 cache 16MB, 8-way set associative
Fetch queue size 64 Issue queue size 60 (int and fp, each)
Register file size 100 (int and fp, each) Width 8-wide
Branch predictor comb. bimodal and 2-level Bimodal predictor size 16K
Level 1 predictor 16K entries,history 12 Level 2 predictor 16K entries
Branch mispredict penalty at least 12 cycles Reorder Buffer size 80
BTB size 16K sets, 2-way I and D TLB 128 entries, 8KB page size
L1 i-cache 32KB,2-way, 64 bytes block, 3 cycles hit latency
L1 d-cache 32KB,2-way, 64 bytes block, 3 cycles hit latency
L2 interconnection 16 x 16 banks, switch network, 2 cycles latency per hop

The relative cache latency controllers need to interact
with the OS to receive the desired set points via on-chip reg-
isters. If the OS scheduler changes the thread-core mapping,
it needs to reset the desirable set points (i.e., the latency ratio
among each pair of cores). We assume that the OS scheduling
period is much longer than our control period, similar to [14],
[15]. As a result, the thread-core mapping will not change
during the settling time of each cache latency controller. Once
the OS changes the mapping or the set points, the cache
latency controllers will re-converge to the new set points to
enforce the desirable cache latency ratios.

Cache Resizing and Partitioning Modulator. In order to
implement cache resizing and partitioning for S-NUCA caches
in a CMP with N cores, we add lg(N + 1) flag bits for each
cache bank, which have only negligible gate overhead to be
implemented in real CMP chips. If a cache bank is allocated
to Core i, we set the flag to the value i. A non-zero value
indicates that the bank should be active. If the cache bank is
not allocated to any core, we switch the cache bank to a low-
power mode (i.e., inactive). We use the Gated-Vdd technology
[27] to implement the power mode switch of a cache bank.
We assume that a cache bank is not shared by multiple threads
in this prototype design, but a finer actuation granularity (e.g.,
cache lines or blocks) is also available. For example, Kaxiras et
al. discuss a technology to transition selected cache lines into
a low-power mode [28] and their granularity (cache lines) can
be used in our control solution for even better control accuracy
with a higher hardware overhead.

Since the S-NUCA caches have non-uniform cache access
latency related to the wire length, we have a cache resizing
policy to ensure that the active cache banks of each core
are always the ones that are closest to the cache I/O port of
the core. We adopt this policy for three reasons. First, in S-
NUCA caches, a cache bank that is farther away from the
core normally has a longer access latency due to the longer
wire. Second, a longer routing distance from the core may also
lead to more routing hops, an increased probability of more
contention, and thus reduced on-chip network routing capa-
bility. Third, if the dynamic data migration policy is enforced
in the S-NUCA caches, cache banks that are far away from
cores may get much less frequently accessed [29]. Therefore,
switching those cache banks to the low-power mode will lead
to considerable power savings with only slight impacts on

cache performance. After receiving the desired total active
cache size from the power controller and the desired cache
size ratios among threads on different cores from the latency
controllers, the resizing and partitioning modulator calculates
the number of active cache banks to be allocated to each
thread. The cache resizing and partitioning modulator then
uses the cache resizing policy to enforce the cache allocation.
To implement the resizing policy, we maintain a table for each
thread that records the cache banks allocated to the thread. In
addition, in order to ensure that the active cache banks of a
thread on a core are the ones that have the shortest distances
to the core, the active cache area around the core needs to
expand or shrink in both dimensions of the cache bank array.
Therefore, we keep track of the cache row and column that are
farthest from the core. Each core will expand or shrink in the
farthest row and column alternatively to enforce the desired
cache bank allocation. After the modulator allocates the active
banks to the thread on each core, all the unallocated banks are
switched to the low-power mode for power management.

Since we use Gated-Vdd technology, the cache contents
are lost when we turn off cache banks. Therefore, all the dirty
cache lines in those banks are written back to the memory
during the mode transition. Since we only write back the
dirty cache lines, the time and power overheads to write back
a cache bank depend on how many cache lines in the to-
be-turned-off bank are dirty. Timing and active power are
simulated in the same way as for normal write-backs. Since
SimpleScalar cannot simulate memory systems, our simulation
considers the average effect of bus contention by having an
increased average memory penalty to account for the average
impact of bus contention [21]. Note that we assume static-
NUCA instead of dynamic-NUCA (i.e., D-NUCA) in this
paper. The address mapping is modified according to the
available cache size allocated to each core. First, to implement
core-to-bank affinity of each bank in cache partitioning, we use
an affinity register for each bank to claim the affinity. Second,
to deal with cache banks that are turned off, we modify the
cache mapping scheme to use (desired-cache-address mod
active-cache-size) as the real address. The cache coherence
is maintained by a snoopy bus protocol implemented in [21].

We plan to evaluate our control solution with D-NUCA
L2 cache in our future work. However, it is well-known that
address remapping and lookup in D-NUCA are challenging,

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

because it is difficult to come up with a way to maintain cache
coherence, facilitate fast lookup to nearby banks, and avoid
broadcast when trying to locate a particular line across many
banks that might potentially store it. Therefore, implementing
D-NUCA itself can be a serious challenge. In addition, to avoid
the overheads of frequent remapping operations in D-NUCA,
the period of cache resizing used by the power control loop
in our solution may need to be reconsidered. Despite those
challenges, D-NUCA may allow our solution to have better
performance by turning off remote banks and turning on the
banks close to cores, because D-NUCA policy is designed to
put most recently used data to close banks and less used data
to remote banks.

VII. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments
conducted using the SimpleScalar simulator. We first evaluate
the cache power controller. We then examine the latency
differentiation controller. Finally, we test the two-tier cache
control solution for fair and differentiated cache sharing in
power-constrained CMPs.

We randomly select a SPEC CPU2000 benchmark, crafty,
as the default application in our experiments unless otherwise
noted. We test two different kinds of application cases: single
benchmark on all the 4 cores and mixed benchmarks. For
mixed benchmarks, we run the first benchmark on Cores 0
and 2 and the second benchmark on Cores 1 and 3. To our
best knowledge, there are no existing solutions that can control
cache latencies for fair or differentiated sharing. Therefore,
we compare our solution with two baselines: even cache
partitioning in a static way (denoted as Static) and a state-of-
the-art cache partitioning solution (denoted as Priority) [30].
Priority is an ad hoc cache control solution that dynamically
reallocates a fixed amount of cache size (i.e., 10%) between
high and low priority applications on different cores to achieve
differentiated cache miss rates. In contrast to our solution that
explicitly controls cache latencies, Priority does not consider
that the long access time of distant cache banks may lead to
long core stall time in S-NUCA caches due to wire delays.
For each benchmark, we first run 2 billion instructions and
then start to measure the cache access latency and IPC values
for the next 100 control periods of the power control loop
(i.e., 1 billion cycles). In our experiments, we assume that
the threads on the cores run to the synchronization points
without being preempted in the middle (e.g., due to their
highest scheduling priorities on their cores). However, please
note that our solution is not restricted to this assumption. When
thread preemption happens in a real system, based on the
priorities of the new active threads, a new relative latency ratio
set point can be used by the OS for desired thread performance
differentiations.

A. Cache Power Control

In this section, we examine the cache power controller
without enabling the latency controllers. All the cache banks
are initially active in this set of experiments.

We first test the power controller in a common scenario
where the power budget of the L2 caches needs to be reduced

from 60 W to 40 W at the 500th sampling point due to
various reasons (e.g., thermal emergency). The power budget
is then raised back to 60 W at the 1000th sampling point
after the emergency is resolved. This scenario is interesting
because the power consumption of a CMP often needs to be
capped and reduced at runtime [2], [5]. Reducing the power
of L2 caches is an important way to maintain load balancing
between CPU cores and L2 caches for optimized processor
performance under the reduced budget. Figure 4(a) shows that
the proposed PI power controller effectively controls the cache
power to the desired budget by adjusting the active cache
size. This experiment demonstrates that adjusting active cache
size (and thus leakage power) is a promising way to conduct
cache power management because leakage power contributes
significantly to overall power consumption in large cache
systems [31].

One may easily think that simplistic control solutions
may also work well to control the cache power or achieve
the desired fair or differentiated cache sharing. For example,
a typical ad hoc power control solution (denoted as Ad hoc)
would be to turn off M cache banks if the cache power violates
its budget. However, without a theoretical foundation, it is
commonly difficult to find a good value of M that would
achieve the desired control performance in different cases. As
shown in Figure 4(b), if M is too small (e.g., 3 banks), Ad
hoc may take an unnecessarily long settling time for power to
converge back to the budget, resulting in overheating and even
undesired processor shutdown. On the other hand, as shown
in Figure 4(b), if the step size M is too large (e.g., 25), Ad
hoc may have large oscillations and overshoots. Therefore, it
is undesirable to use Ad hoc in practice, which is consistent
with the observations in [32], [5]. A fundamental benefit of the
control-theoretic approach is that it provides standard ways to
choose the right control parameters and gives us confidence
for system stability and control accuracy. In addition, without
well-designed coordination, naive control solutions may also
cause different control loops to conflict with each other.

The cache power controller is designed based on a system
model whose parameters are the results of system identifica-
tion. Therefore, in order to test the robustness of the power
controller when it is used in a system that is running a different
workload, we conduct a set of experiments with different
workload combinations under different power budgets: 20W,
35W, and 50W. Figure 5 shows that the average power of the
L2 caches can be precisely controlled to the desired budget
(with the maximum standard deviation smaller than 2% of the
budget). The experimental results demonstrate that the power
controller can precisely control the power consumption of the
L2 caches for different workloads and power budgets with
only small deviations.

B. Relative Cache Latency Control

In this experiment, we disable the cache power controller
to focus on testing a relative latency controller (i.e., cache
latency differentiation controller) between the threads on two
cores in two scenarios with runtime variations.

In the first scenario, we control the relative cache latency
between two threads to the desired set point and then change

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

0

10

20

30

40

50

60

70

0 250 500 750 1000 1250

C
ac

h
e

P
o

w
er

 (W
)

Time (Sampling Point)

Budget
PI

0

10

20

30

40

50

60

70

0 250 500 750 1000 1250

C
ac

h
e

P
o

w
er

 (W
)

Time (Sampling Point)

Budget
Ad hoc (3)

0

10

20

30

40

50

60

70

0 250 500 750 1000 1250

C
ac

h
e

P
o

w
er

 (W
)

Time (Sampling Point)

Budget
Ad hoc (25)

(a) PI cache power controller (b) Ad Hoc with 3 banks (c) Ad Hoc with 25 banks
Fig. 4. Typical runs of the PI cache power controller and a baseline under a power budget reduction.

the set point at runtime. We run application crafty on Cores
0 and 1 with an initial set point of 0.8, which means that
the thread on Core 0 currently has a higher priority than
that on Core 1 and thus should have a shorter cache access
latency. As discussed in Section III, the reference ratio can be
dynamically determined by the OS based on the desired thread
priorities and/or progress, which is our future work. Figure 6
shows that the relative latency is controlled to the desired set
point after a short settling time. Therefore, the desired latency
differentiation has been achieved. At the 100th sampling point,
we assume that the priorities of the two threads have changed
and the Core1 thread now has a higher priority. As a result, the
set point dynamically changes to 1.2. As shown in Figure 6,
the controller promptly achieves the new set point and enforces
the desired new latency ratio. At the 300th sampling point, the
set point changes back to 0.8 and the controller achieves the
set point again. This experiment demonstrates that the latency
controller provides a flexible solution to enforce desired cache
latency differentiation or fairness (if the ratio is set to one) at
runtime based on the OS scheduling needs.

In the second scenario, we change the workload at
runtime. We run application crafty on Cores 0 and 1 with a
total active cache size of 128 banks for the two cores, and run
application apsi on Cores 2 and 3 with a cache size of 64 banks
for each core. Initially, we use the controller to control Cores 0
and 1 (with a set point of 1.2), which have the same workload.
At the 200th sampling point, we dynamically reconnect the
controller to control the latency ratio between Cores 0 and 2,
which are running different workloads. This change simulates
a sudden workload change on Core 1 in a real CMP. As shown
in Figure 7, this change introduces a significant control error
because the latency of the thread on Core 2 is not controlled
previously. After a short settling time, the controller enters the
steady state again. The latency ratio between the threads on
the two cores has been controlled to the desired set point. This
experiment demonstrates that the latency controller can handle
runtime workload variations.

As discussed in Section III, our system model is the
result of system identification with four selected workloads.
To test the robustness of the relative latency controller when
it is used in a system that is running a different workload,
we conduct a set of experiments with different workload
combinations. Figure 8 shows the control accuracy under
different benchmarks, where accuracy is defined as the av-
erage relative latency between Core 0 and Core 1, which is
normalized to its set point. The standard deviations are also
plotted. The experiments demonstrate that the relative latency
controller can approximately achieve the desired latency ratio

for workloads that are significantly different from the one used
to design the controller.

C. Differentiated Cache Sharing

In this experiment, we evaluate the differentiated cache
sharing provided by the cache latency controller with the
cache power controller disabled. As discussed in Section
I, differentiated cache sharing is important to help the OS
to enforce the desired thread priorities at the architectural
level and achieve desired rates of thread progress for co-
scheduled applications. Note that fair sharing is a special case
of differentiated sharing, so we show results for fair sharing
only in Section VII-D due to space limitations.

Figure 9(a) shows the cache access latencies of the two
threads on Cores 0 and 1 for different benchmarks under
differentiated sharing and the two baselines. The benchmarks
are split into two sub figures because their IPC values are at
different scales. With differentiated sharing (i.e., Controlled),
we successfully achieve the desired latency differentiations
by controlling the latency of the Core0 thread to be shorter
than that of the Core1 thread. Specifically, because different
benchmarks have different cache latency characteristics, we set
the set point of cache latency ratio between Core0 and Core1
to be 1 : 1.4 for apsi, bzip2+art, and twolf+swim, 1 : 1.5
for crafty+bzip2 and gap+galgel, and 1 : 1.3 for all other
benchmark combinations. In contrast, with the baseline Static,
the Core1 thread has a shorter cache latency than the Core0
thread for 7 (out of 12) benchmark combinations (e.g., gcc,
gzip2, and apsi), which may result in lower-priority threads
running faster at the OS level. Since the baseline Priority
controls cache miss rates instead of cache latencies, even
though Priority can help the higher-priority thread on Core0
to have a lower cache miss rate, the Core0 thread may still
have a longer cache access latency in NUCA caches (e.g., for
bzip2+art).

Figure 9(b) shows the IPC values of the two threads on
Cores 0 and 1 under the three cache management policies.
As a result of latency differentiations, the Core0 thread is
able to achieve a better IPC than the Core1 thread in all
the single benchmark cases, for both memory-intensive bench-
marks and randomly selected benchmarks. The Core0 thread
also has a better IPC in most mixed benchmark cases, except
for mgrid+mesa. Since mgrid and mesa have significantly
different cache-access properties, the Core1 thread (running
mesa) has a higher IPC than the Core0 thread (running mgrid)
though it has a longer latency. However, even in this case,
latency control helps to improve the IPC of the Core0 thread
(running mgrid) as it has the highest IPC compared with
the two baselines. Note that in some mixed benchmark cases

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

0
10
20
30
40
50
60
70
80

ar
t

fm
a3

d
luc

as m
cf

sw
im vp

r

fm
a3

d+
vp

r

fm
a3

d+
gc

c

ar
t+

m
es

a

luc
as

+w
up

wise

C
ac

h
e

P
o

w
er

 (
W

) Budget: 20W Budget: 35W Budget: 50W

Fig. 5. Control accuracy under different workloads
and budgets.

Fig. 6. A typical run of the relative latency
controller when set point varies at runtime due
to priority changes.

Fig. 7. A typical run of the relative latency
controller when workload varies at runtime.

Fig. 8. Control accuracy of the relative latency controller under different workloads.

0

50

100

150

200

250

gcc bzip2 apsi crafty+bzip2 art bzip2+art

L
at

en
cy

 (
cy

cl
es

)

Core0 Static Core1 Static Core0 Priority
Core1 Priority Core0 Controlled Core1 Controlled

0

50

100

150

200

250

mesa galgel twolf mgrid+mesa twolf+swim gap+galgel

L
at

en
cy

 (
cy

cl
es

)

Core0 Static Core1 Static Core0 Priority
Core1 Priority Core0 Controlled Core1 Controlled

(a) Cache access latencies. Core 0 has a higher priority and so a shorter cache latency under Controlled.

0

0.2

0.4

0.6

0.8

gcc bzip2 apsi crafty+bzip2 art bzip2+art

IP
C

Core0 Static Core1 Static Core0 Priority
Core1 Priority Core0 Controlled Core1 Controlled

0

1

2

3

4

mesa galgel twolf mgrid+mesa twolf+swim gap+galgel

IP
C

Core0 Static Core1 Static Core0 Priority
Core1 Priority Core0 Controlled Core1 Controlled

(b) IPC values. Latency differentiations can help to achieve desired IPC differentiations.

Fig. 9. Cache access latencies and IPC values of the two threads on Core 0 and Core 1 under three policies: shared L2 caches, static even cache partitioning,
and differentiated sharing (i.e., Controlled).

similar to mgrid+mesa, we can still achieve a higher IPC for
the higher-priority thread by allowing the OS to dynamically
adjust the latency set point at runtime based on the thread
progress. However, in some cases, due to the significantly
different cache-access properties of different benchmarks, it
may be infeasible for differentiated cache sharing to achieve
the desired IPC differentiation, as the controller can enter satu-
ration regions. Saturation can be caused by two reasons. First,
the low-priority threads already have the minimum number of
cache banks so that the controller can no longer reallocate
cache banks to high-priority threads. In our implementation,
the minimum number of cache banks for each thread is set
to 4 in order to avoid cache starvation. Second, allocating
more cache banks is no longer beneficial to the performance
improvement of an application. In the case of controller
saturation, differentiated cache sharing should be combined
with per-core DVFS and task stealing to accelerate threads

based on application characteristics.

In contrast to differentiated sharing, with the baseline
Static, either of the two threads on Cores 0 and 1 can have a
higher IPC value regardless of their priorities, even when they
are running the same benchmark on homogeneous cores. As
a result, the uncontrolled cache latencies can result in an un-
predictable thread completion sequence. This unpredictability
is highly undesirable for the OS-level priority-based thread
scheduling. With the baseline Priority that provides a lower
cache miss rate for the higher-priority thread on Core0, the
number of undesired priority inversions has been reduced.
However, since Priority does not control cache latencies di-
rectly, the Core0 thread may still have a lower IPC value than
the Core1 thread in some cases (e.g., for bzip2+art).

This experiment demonstrates that differentiated cache
sharing can be used as one of the effective ways to achieve
desired rates of thread progress for some co-scheduled appli-

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

0

50

100

150

200

250

300

350

20 25 30 35 40 45 50 55

L
at

en
cy

 (
cy

cl
es

)

Power budget (W)

Core0 Core1 Core2 Core3

0

0.1

0.2

0.3

0.4

0.5

20 25 30 35 40 45 50 55

IP
C

Power budget (W)

Core0 Core1 Core2 Core3

0

0.4

0.8

1.2

1.6

20 25 30 35 40 45 50 55

R
el

at
iv

e
la

te
n

cy

Power budget (W)

Core0 Core1 Core2 Core3

(a) Cache access latencies (b) IPC values (c) Relative latencies

Fig. 10. Cache access latencies and IPC values of the four threads (running crafty) on the four cores of the CMP. When power budget varies from 20W to
55W, all the threads have reduced cache latencies and increased IPCs, while the desired latency differentiations and fairness are maintained.

cations.

D. Power-Performance Tradeoffs

In the previous sections, we have demonstrated that the
cache power controller and the latency controller achieve
their desired control functions individually. In this section,
we enable all the controllers to demonstrate that our two-
tier control solution can achieve desired power-performance
tradeoffs.

In the first experiment, we run application crafty on all the
4 cores. To investigate the impacts of power constraint on fair
and differentiated cache sharing, we increase the power budget
from 20W to 55W with an increment of 5W. The cache sharing
priority of Cores 0, 1, and 3 is set to high, medium, and low,
respectively, to test the differentiated cache latency guarantees,
while the priority of Core 2 is also set to medium to test fair
cache sharing in terms of cache latency. Specifically, the set
point of relative cache latency ratio among the four cores is
set to 1 : 1.25 : 1.25 : 1.5. Figure 10(a) shows that all the
four threads on the four cores have reduced cache latencies
when the power budget increases from 20W to 55W, due to
increased number of total active cache banks. As a result,
Figure 10(b) shows that all the threads have increased IPC
values. In the meantime, as shown in Figure 10(c), the desired
cache latency priorities have been strictly enforced (with a
maximum error rate smaller than 1% from the set point). This
allows the OS to achieve the desired rates of progress among
the co-scheduled applications, despite that all the threads have
improved performance with the increased power budget. In
particular, by setting the same priority for Cores 1 and 2 for
fairness, the latency differences between Core0 and Core1
are less than 5 cycles and the IPC differences are less than
0.01 under all the power budgets. This demonstrates that fair
sharing, as a special case of differentiated sharing, can be
guaranteed by our control solution. As discussed in Section I,
differentiated sharing can help the OS to enforce the desired
thread priorities at the architectural level.

The benchmark used in this experiment, crafty, is a chess
game playing application and is one of the SPEC integer
benchmarks. crafty represents applications with a significant
number of logical operations that are relatively simple but
need to frequently request data from the caches. As a cache-
sensitive application whose execution is dominated by cache
accesses [33], crafty achieves an almost reverse linear rela-
tionship between cache latency and IPC, i.e., the decrease
rate of the cache latency is approximately proportional to the
increase rate of the IPC. While this experiment demonstrates
the effectiveness of our control solution with cache-intensive

benchmarks, it is important to investigate other benchmarks
with different cache-access properties.

In the second set of experiments, we conduct the same
experiment with different benchmarks for three power bud-
gets: 20W, 35W, and 50W. Our workloads include memory-
intensive benchmarks such as apsi, art, bzip2, and swim, as
well as randomly selected benchmarks. We test two kinds of
workload combinations: 1) four copies of a single benchmark
running on the 4 cores and, 2) one benchmark running on
Cores 0 and 2 while the other benchmark running on Cores 1
and 3.

To save space, we only present the results of the two
threads on Cores 0 and 1. Cores 0 is configured to have a
higher cache sharing priority than Core 1. The desired set point
of cache latency ratio between Core 0 and Core 1 is set in the
same way as in the experiments presented in Section VII-C.
As shown in Figure 11(a), when the power budget increases
from 20W to 50W, the cache latencies of the two threads on
Cores 0 and 1 decrease for all the benchmark combinations and
decrease in an approximately linear way for many benchmark
combinations, such as bzip2+art, twolf, and gap+galgel. In
addition, for all the 36 test cases (12 benchmark combinations
and 3 power budgets), the Core0 thread successfully achieves
a shorter cache latency than the Core1 thread. We calculate the
error (i.e., deviation from the set point) of each case as (the
resultant latency ratio - set point)/ set point. The average error
of the 36 cases is only 0.2% with a small standard deviation
of 1.2%. The maximum error is 3.1% for benchmarks mesa
at the power budget of 20W. The results demonstrate that the
relative latency controller can precisely achieve the desired
latency differentiation. Figure 11(b) shows that the IPC values
of the two cores increase as the power budget increases for all
the benchmark combinations. For IPC values, the Core0 thread
achieves a higher IPC value than the Core1 thread for 33 cases.
The only exception is for mgrid+mesa. As analyzed in Section
VII-C, in that case, a higher IPC may still be achieved for the
Core0 thread by allowing the OS to dynamically adjust the
reference set point at runtime based on the measured thread
progress or combining per-core DVFS or task stealing. The
experiments demonstrate that our two-tier control solution can
be used to achieve the desired power-performance tradeoffs
and maintain performance differentiations at the same time.

It is important to note that the controllers may saturate
for some benchmark combinations. For example, although the
two-tier control solution can precisely achieve the desired la-
tency priorities for most benchmark combinations, the latency
controller saturates for some benchmarks, such as mesa when
the power budget is 20W. Note that it is easier for the latency

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

controller to saturate under small power budget, because when
the power budget is small, the number of active cache banks
is small, resulting a limited range for the latency controller
to conduct dynamic cache partitioning. Consequently, it may
become infeasible for the latency controller to achieve the
desired priorities. Figure 11(a) shows that the Core0 thread
only has a slightly shorter cache latency than the Core1 thread
for mesa due to saturation when the power budget is 20W. As
a result, the IPC values of the two threads are close in this
case. However, when the power budget increases to 35W and
50W, the latency controller has more active cache banks for
partitioning and thus can achieve the desired latency priorities
by allocating more cache to the high-priority thread (i.e., the
Core0 thread). Consequently, the Core0 thread can have a
much shorter cache latency and thus a much higher IPC value
than the Core1 thread.

We acknowledge that cache latencies may have small
impacts on the performance of some applications (e.g., CPU-
intensive ones). The goal of our paper is to demonstrate
that differentiated latency control can provide another way to
achieve desired rates of progress for some co-scheduled ap-
plication threads (e.g., cache-intensive ones). In a real system,
differentiated latency control should be combined with per-
core DVFS and task stealing to accelerate threads based on
application characteristics, which is our future work.

VIII. RELATED WORK

Power has become an important design constraint for
CMPs. Some recent work has studied power capping for
CMPs. For example, Intel’s Foxton technology [34] has suc-
cessfully controlled the power and temperature of a processor
by using chip-wide DVFS. Isci et al. [2] proposed both a
closed-loop algorithm and a prediction based algorithm to con-
trol the power of a CMP to stay below a power budget. Meng
et al. [4] presented heuristic-based algorithms to use both per-
core DVFS and cache resizing as actuators to control power.
Teodorescu et al. [3] developed an optimization algorithm
based on linear programming to provide power management
for a CMP based on both DVFS and thread mapping. Wang
et al. [5] developed a control-theoretic power controller for
improved system performance. While the related work mainly
focuses on adapting the dynamic power of the CPU cores in
a CMP, we use cache resizing to control the cache power
and provide performance differentiations. Our scheme can be
combined with those CPU core power control solutions for
chip-level power management.

Adaptive cache partitioning for CMPs has recently re-
ceived a lot of attention. This paper is different because we
use cache partitioning to achieve performance differentiation
in NUCA caches for threads with different performance needs
and priorities in a CMP with power constraints. Some studies
have been conducted to dynamically adapt the cache size for
power savings. For example, Albonesi et al. proposed to turn
off cache ways for reduced dynamic power [35]. Bardine et al.
explored the possibility of applying this technique to NUCA
caches [8]. Kobayashi et al. presented a heuristic-based control
algorithm based on locality metrics [36]. Our paper is different
because 1) we provide differentiated performance guarantees

in addition to power management, and 2) we rely on control
theory as a theoretical foundation for theoretically guaranteed
control accuracy and system stability.

Feedback control theory has been successfully applied
to control temperature, power, and performance in computer
architecture research. For example, Skadron et al. [37] used
control theory to dynamically manage the temperature of
microprocessors. Likewise, Wu et al. [38] managed power us-
ing dynamic voltage scaling by controlling the synchronizing
queues in multi-clock-domain processors. In contrast to their
work that relies on basic control theory to design a single
control loop, we coordinate two control loops in a hierarchical
way for guaranteed stability.

Our work is also related to thread criticality research.
Bhattacharjee et al. [10] proposed a novel way to predict
thread criticality. Cai et al. [11] used DVFS to slow down non-
critical threads for power savings. In our work, we provide
cache latency differentiations to accelerate critical threads.
Our scheme can also be used to guarantee cache sharing
fairness. While Kim et al. proposed partitioning policies with
five fairness metrics defined based on cache miss rates [9],
we address average latencies because the latency of each
single access can vary significantly in the NUCA caches. As
a result, miss rate may not accurately indicate the impact on
application performance. Zhou et al. [14] also proposed fair
cache sharing to have the same impacts on execution times.
However, similar to [9], they need to precisely know which
applications are currently running on the CMP such that they
can use corresponding off-line profiled execution times as
references.

IX. CONCLUSIONS AND FUTURE WORK

In order to enable chip-level power capping, the peak
power consumption of on-chip L2 caches in a CMP often
needs to be constrained by dynamically transitioning selected
cache banks into low-power modes. While prior research in
this field focuses primarily on reducing the power consumption
of L2 caches, this paper aims at limiting the peak power
consumption of L2 caches. To avoid undesired thread starving
and thrashing caused by dynamic cache resizing for power
capping, our strategy can provide fairness guarantees such
that the cache access latencies of the application threads
co-scheduled on the CMP are impacted more uniformly.
Furthermore, our strategy is also extended to provide dif-
ferentiated cache latency guarantees that can help the OS to
enforce the desired thread priorities at the architectural level
and achieve differentiated rates of thread progress for co-
scheduled applications. Our solution features a two-tier control
architecture rigorously designed based on advanced feedback
control theory for guaranteed control accuracy and system
stability. Extensive experimental results demonstrate that our
solution can achieve the desired cache power capping, fair or
differentiated cache sharing, and power-performance tradeoffs
for many applications. Our results also demonstrate that differ-
entiated latency guarantees can provide another effective way
to achieve desired rates of progress for application threads. As
cache latencies may have small impacts on the performance
of some applications, differentiated latency control should be

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

0

50

100

150

200

250

300

gcc bzip2 apsi crafty+bzip2 art bzip2+art

L
at

en
cy

 (
cy

cl
es

)

Core0 20W Core1 20W Core0 35W
Core1 35W Core0 50W Core1 50W

0

50

100

150

200

250

300

mesa galgel twolf mgrid+mesa twolf+swim gap+galgel

L
at

en
cy

 (
cy

cl
es

)

Core0 20W Core1 20W Core0 35W
Core1 35W Core0 50W Core1 50W

(a) Cache access latencies. Reduced latencies and desired latency differentiations are achieved with increased power budget.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

gcc bzip2 apsi crafty+bzip2 art bzip2+art

IP
C

Core0 20W Core1 20W Core0 35W
Core1 35W Core0 50W Core1 50W

0
0.5

1
1.5

2
2.5

3
3.5

mesa galgel twolf mgrid+mesa twolf+swim gap+galgel

IP
C

Core0 20W Core1 20W Core0 35W
Core1 35W Core0 50W Core1 50W

(b) IPC values. Increased IPC values and desired progress differentiations are achieved with increased power budget.

Fig. 11. Cache access latencies and IPC values of the higher-priority thread on Core 0 and the lower-priority thread on Core 1 under different benchmarks,
when the power budget increases from 20W to 50W.

combined with per-core DVFS and task stealing to accelerate
threads based on application characteristics, which is our
future work.

ACKNOWLEDGEMENTS

We thank Dr. Naveen Muralimanohar at HP Labs for
providing the source code of SimpleScalar S-NUCA cache im-
plementation. This work is funded in part by NSF under CNS-
0720663, CNS-0845390, CNS-0915959, and CCF-1017336,
and by ONR under N00014-09-1-0750.

REFERENCES

[1] X. Wang, K. Ma, and Y. Wang, “Achieving fair or differentiated cache
sharing in power-constrained chip multiprocessors,” in ICPP, 2010.

[2] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in MICRO, 2006.

[3] R. Teodorescu and J. Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in ISCA, 2008.

[4] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-optimization
power management for chip multiprocessors,” in PACT, 2008.

[5] Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power control
for chip multiprocessors with online model estimation,” in ISCA, 2009.

[6] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy
caches: Simple techniques for reducing leakage power,” in ISCA, 2002.

[7] Y. Meng et al., “Exploring the limits of leakage power reduction in
caches,” ACM Trans. Archit. Code Optim., vol. 2, no. 3, 2005.

[8] A. Bardine, P. Foglia, G. Gabrielli, C. A. Prete, and P. Stenström,
“Improving power efficiency of D-NUCA caches,” SIGARCH Comput.
Archit. News, vol. 35, no. 4, 2007.

[9] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning
in a chip multiprocessor architecture,” in PACT, 2004.

[10] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors for
dynamic performance, power, and resource management in chip multi-
processors,” SIGARCH Comput. Archit. News, vol. 37, no. 3, 2009.

[11] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González, “Meeting points: using thread criticality to adapt multicore
hardware to parallel regions,” in PACT, 2008.

[12] K. R. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: Fine-grained
power management for multi-core systems,” in ISCA, 2009.

[13] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” in MICRO, 2003.

[14] X. Zhou, W. Chen, and W. Zheng, “Cache sharing management for
performance fairness in chip multiprocessors,” in PACT, 2009.

[15] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006.

[16] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient response
time guarantees for virtualized enterprise servers,” in RTSS, 2008.

[17] G. F. Franklin, D. J. Powell, and M. Workman, Digital Control of
Dynamic Systems, 3rd edition. Addition-Wesley, 1997.

[18] K. Skadron et al., “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1, 2004.

[19] X. Liu et al., “Optimal multivariate control for differentiated services
on a shared hosting platform,” in DC, 2007.

[20] J. W. S. Liu, Real-Time Systems. Prentice Hall, 2000.
[21] N. Muralimanohar and R. Balasubramonian, “Interconnect design con-

siderations for large NUCA caches,” in ISCA, 2007.
[22] Y. Zhang et al., “Hotleakage: A temperature-aware model of subthresh-

old and gate leakage for architects. Tech Report, Univ. of Virginia,”
2003.

[23] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA, 2000.

[24] A. Greenhill, Power Saving in the UltraSPARC T1 Processor. Sun
Microsystem Whitepaper, 2005.

[25] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in MICRO, 2008.

[26] M. Ware et al., “Architecting for power management: The IBM
POWER7 approach,” in HPCA, 2010.

[27] M. Powell et al., “Gated-Vdd: a circuit technique to reduce leakage in
deep-submicron cache memories,” in ISLPED, 2000.

[28] S. Kaxiras, Z. Hu, G. J. Narlikar, and R. McLellan, “Cache-line decay:
A mechanism to reduce cache leakage power,” in PACS, 2001.

[29] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, C. A. Prete, and
P. Stenström, “Leveraging data promotion for low power D-NUCA
caches,” in DSD, 2008.

[30] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt, “Qos policies and architecture for cache/mem-
ory in cmp platforms,” in SIGMETRICS, 2007.

[31] Y. Meng, T. Sherwood, and R. Kastner, “On the limits of leakage power
reduction in caches,” in HPCA, 2005.

[32] X. Wang and M. Chen, “Cluster-level feedback power control for
performance optimization,” in HPCA, 2008.

[33] N. Muralimanohar et al., “Optimizing NUCA organizations and wiring
alternatives for large caches with CACTI 6.0,” in MICRO, 2007.

[34] M. Rich et al., “Power and temperature control on a 90-nm itanium
family processor,” IEEE Journal of Solid-State Circuits, vol. 41, no. 1,
2006.

[35] D. H. Albonesi, “Selective cache ways: on-demand cache resource
allocation,” in MICRO, 1999.

[36] H. Kobayashi, I. Kotera, and H. Takizawa, “Locality analysis to control
dynamically way-adaptable caches,” SIGARCH Comput. Archit. News,
vol. 33, no. 3, 2005.

[37] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic tech-
niques and thermal-RC modeling for accurate and localized dynamic
thermal management,” in HPCA, 2002.

[38] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark, “Formal
control techniques for power-performance management.” IEEE Micro,
vol. 25, no. 5, 2005.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

15

Xiaorui Wang received the BS degree from South-
east University, China, in 1995, the MS degree from
the University of Louisville in 2002, and the PhD
degree from Washington University, St. Louis, in
2006, all in computer science. He is an associate
professor in the Department of Electrical and Com-
puter Engineering at The Ohio State University. He
is the recipient of the US Office of Naval Research
(ONR) Young Investigator (YIP) Award in 2011, the
US NSF CAREER Award in 2009, the Power-Aware
Computing Award from Microsoft Research in 2008,

and the IBM Real-Time Innovation Award in 2007. He also received the Best
Paper Award from the 29th IEEE Real-Time Systems Symposium (RTSS) in
2008. He is an author or coauthor of more than 70 refereed publications.
From 2006 to 2011, he was an assistant professor at the University of
Tennessee, Knoxville, where he received the EECS Early Career Development
Award, the Chancellor’s Award for Professional Promise, and the College of
Engineering Research Fellow Award in 2008, 2009, and 2010, respectively.
In 2005, he worked at the IBM Austin Research Laboratory, designing power
control algorithms for high-performance computer servers. From 1998 to
2001, he was a senior software engineer and then a project manager at Huawei
Technologies Co. Ltd., China, developing distributed management systems
for optical networks. His research interests include power-aware computer
systems and architecture, real-time embedded systems, and cyber-physical
systems. He is a member of the IEEE and the IEEE Computer Society.

Kai Ma Kai Ma received the BS and MS degrees
in Electrical Engineering from Zhejiang University,
Hangzhou, China in 2004, and Tongji University,
Shanghai, China in 2007, respectively. He is a PhD
candidate in computer engineering in the Depart-
ment of Electrical and Computer Engineering at The
Ohio State University. His current research focuses
on power management of multi-core computing sys-
tems.

Yefu Wang received the BS and MS degrees from
Harbin Institute of Technology, Harbin, China, in
2003 and 2006. He is currently a PhD candidate in
computer engineering in the Department of Electri-
cal Engineering and Computer Science, University
of Tennessee, Knoxville. His current research fo-
cuses on system-level power management of com-
puting systems, with applications to virtualized en-
terprise server environments.

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

