
Classi�ers: A Theoretical and Empirical Study�Wray BuntineRIACSyArti�cial Intelligence Research BranchNASA Ames Research Center, Mail Stop 244-17Mo�et Field, CA 94035, USAPhone: +1 (415) 604-3389wray@ptolemy.arc.nasa.govAbstractThis paper describes how a competitive treelearning algorithm can be derived from �rstprinciples. The algorithm approximates theBayesian decision theoretic solution to thelearning task. Comparative experiments withthe algorithm and the several mature AI andstatistical families of tree learning algorithmscurrently in use show the derived Bayesian al-gorithm is consistently as good or better, al-though sometimes at computational cost. Us-ing the same strategy, we can design algorithmsfor many other supervised and model learningtasks given just a probabilistic representationfor the kind of knowledge to be learned. As anillustration, a second learning algorithm is de-rived for learning Bayesian networks from data.Implications to incremental learning and theuse of multiple models are also discussed.1 IntroductionSystems for learning classi�cation trees [Quinlan, 1986;Cestnik et al., 1987] are common in machine learning,statistics and pattern recognition. Despite these suc-cesses, the study presented here is not motivated bya view that tree classi�ers are inherently superior toother learning systems (see for instance, the argumentagainst so-called universal learning algorithms in [Bun-tine, 1990b]). Rather, this study is motivated by theview that tree learning is an ideal benchmark problem forstudying learning theories. The problem is used here togain insight into generic problems in empirical learning,and to explore a general strategy for designing learningalgorithms.First, current tree learning methods are mature in thatmany modi�cations have been suggested in recent years,but little real gain has been made1. There are now manydi�erent tree learning methods and none clearly superior�From Int. Joint Conf. on AI, Sydney, 1991.yResearch Institute for Advanced Computer Science1Except, perhaps, in the area of learning strictly logicalrules where recent techniques learn new terms; but the focusof this paper is primarily learning noisy or uncertain con-cepts, where gains have been more incremental.

[Mingers, 1989]. The systems have stood the test of timeand are now widely used for benchmarking and compar-ative studies. If an algorithm design strategy yields asuperior tree learning algorithm despite this tough com-petition, it is likely the strategy will be successful onother learning tasks.Second, tree learning is a commonmeeting ground forthe di�erent areas of inquiry outside of AI that havelearning theories of some form or another such as classi-cal statistics [Breiman et al., 1984] and minimumencod-ing approaches [Rissanen, 1989]. This provides a rareopportunity to contrast these di�erent learning theoriestheoretically as well as empirically. Comparative studiesconducted to date in AI have provided little understand-ing about generic principles of algorithm design, partlybecause comparisons have been made of algorithms thatuse di�erent knowledge representations, and compar-isons have largely ignored the theoretical principles onwhich the algorithms were based.Finally, classi�cation trees have been the frameworkin which a number of discoveries have been made in ma-chine learning: the over�tting problem (related to theaccuracy-complexity tradeo� and Ockham's razor), in-cremental algorithms [Schlimmer and Granger Jr., 1986],and interactive induction [Shapiro, 1987]. The learn-ing problem tree systems tackle is di�cult enough tobe considered \unlearnable," yet simple enough so notrequiring the specialized machinery to learn relationsor do constructive induction. In this spirit, this studypresents a number of additional discoveries about prob-lems generic to empirical learning.This paper reviews the Bayesian development of a sys-tem for learning tree classi�ers, from the theoretical ba-sis, through the hacking required to make the systemwork, to comparative results with other systems. Thedevelopment is presented as a generic algorithm designstrategy in the second section, and the results discussedin the third section. More detail of the statistical as-pects of the system can be found in [Buntine, 1990a;Buntine, 1990c]. Because of the large number of di�er-ent trials and data sets that were used, full detail of theresults are reported elsewhere [Buntine, 1990c].This paper also discusses some insights that have comeout of this study: an emerging trend in machine learningtowards the use of multiple models [Kwok and Carter,1990; Gams, 1989; Jacobs et al., 1991], a generic method



to overcome the problem of repeated restructuring inincremental learning [Crawford, 1989], and a better un-derstanding of learning theories and their role in helpingus design learning algorithms. These are discussed in thefourth section.We can now design algorithms for many other super-vised and model learning tasks given just a probabilisticrepresentation for the kind of knowledge to be learned.As an illustration, a method is outlined in the �fthsection for learning Bayesian networks [Lauritzen andSpiegelhalter, 1988], a common representation in medicalexpert systems. This is a model learning task. The de-sign strategy can also be applied to other learning taskssuch as probabilistic rule systems, n-gram models (suchas bigram and trigram models) used in speech recogni-tion and natural language, and the function-�nding taskthat is the basis of scienti�c discovery algorithms. Thestrategy has also been applied to analyse the trainingof feed-forward neural networks [Buntine and Weigend,1991], where popular heuristic procedures for cost func-tions and network pruning were found to conform wellto corresponding methods developed from Bayesian �rstprinciples.2 The Algorithm Design StrategyThe algorithm design strategy presented here is based onapproximating Bayesian decision theory. The justi�ca-tion for Bayesian decision theory comes from fundamen-tal principles of how uncertain reasoning should be done[Berger, 1985]. The theory applies widely in inferenceand plausible reasoning and its use is continually ex-panding in AI. But there is not a single \Bayesian learn-ing algorithm," as some people mistakenly believe whenthey learn about Bayesian classi�ers [Tou and Gonzalez,1974]. Rather, Bayesian decision theory presents com-putational guidelines on how learning should be done formany di�erent learning problems, including for instance,improving an approximate theory using data.The basic tenet of Bayesian decision theory is thatif we do not know something with reasonable certainty,then we should look at some reasonable and mutually ex-clusive alternatives and weigh them up, to help us makea \representative" decision. A reasonable alternative isone we currently have high subjective belief in. I will�rst explain how this applies to trees [Buntine, 1990a],to introduce the notation. This is done for the two-classproblem with discrete tests at nodes, but easily extendsto the multi-class problem, and adjustments for real-valued tests at nodes exist [Buntine, 1990c, Sec.6.5.5].The formulation is su�ciently general so that it couldjust as well be applied to other models such as proba-bilistic rules, Bayesian networks, or one of many otherknowledge representations that have a probabilistic in-terpretation.Class probability trees have a vector of class proba-bilities at their leaves [Breiman et al., 1984], and theyrepresent a conditional probability distribution of classvalue conditioned on example value. A particular classprobability tree can be represented by its discrete com-ponent T , the tree structure given by the shape of the treeand the tests at the leaves, and its continuous component

�, the leaf class probabilities. This gives the conditionalprobability distribution Pr(c0 jx0; T; �), which is the like-lihood function for the class probability tree speci�ed byT and � for the training example (c0; x0).Suppose we are given a training sample of examples~x and their classes ~c, together with a new example x0whose class we wish to predict. If the goal is to mini-mize errors in prediction (other utility functions can behandled similarly), decision theory says we should choosethe class c0 to maximize the posterior class probabilityPr(c0 j x0; ~x;~c). Using the tree model, this is the pos-terior average of the class probabilities predicted for c0from all possible class probability trees:Pr(c0 jx0; ~x;~c)= XT Z� Pr(c0 jx0; T; �)Pr(T; � j~x;~c) d�= XT Pr(T j~x;~c) E�jT;~x;~c (Pr(c0 jx0; T; �)) (1)where the summations are over the space of all possibletree structures T , andPr(T j~x;~c) / Z� Pr(~c j~x; T; �)Pr(T; �) d� ;E�jT;~x;~c (Pr(c0 jx0; T; �))= Z� Pr(c0 jx0; T; �)Pr(� jT; ~x;~c) d� :Formula (1) simply says to average the class predictionsmade for each tree structure, where Pr(T j ~x;~c), theposterior probability of the tree structure T , is the weightused in the averaging process. In this formula, Pr(T; �)is the prior on the space of class probability trees, andPr(~c j~x; T; �) the likelihood of the training sample.The algorithm design strategy is based on designinga heuristic procedure to �nd a single structure or set ofstructures that can be used to approximate Formula (1).This is described by the following 6 steps, and Table 1gives the results of the analysis.1. Precisely de�ne the form of knowledge to be learnedby representing it in terms of a parameterized likelihoodfunction. A particular parameterization is referred to asa model which has a structural (discrete) and a continu-ous component as described for trees.2. Develop a prior over the structural and contin-uous components of the model. The form of the priorshould be 
exible enough so that it can be changedfrom application to application. In [Buntine, 1990a], arange of priors are presented for trees. One is givenin the table. The prior on the tree structures, Pr(T ),is not given but could, for instance, be assumed uni-form. The prior on the continuous component is aproduct of symmetric beta distributions over the prob-abilities �. The function B(n;m) given there is thebeta function found in many mathematical handbooks.B(n;m) � 1=(n+m) � 1=Cn+mn .3. Given a training sample Sample, determine asuitably e�cient way of computing or approximating theposterior of the structural component of the model. See



structure T gives the tree structure, specifying the form of the tree, together with tests made at internalnodeslikelihood conditional likelihood of class c given example x isPr(c jx; T; �) = �cjl where x belongs in leaf l 2 leaves(T )prior Pr(T; �) = Pr(T ) Yl2leaves(T ) ��1jl��2jlB(�;�) for � = 0:5su�cientstatistics nijl = number of examples in Sample which occur at leaf l and have class iposterior Pr(T jSample) / Pr(T ) Yl2leaves(T ) B(n1jl + �;n2jl + �)B(�;�)lookaheadheuristic we replace the leaf l in tree structure T by a test and leaves l1; : : : ; lo at each test outcome, to givetree structure T+Pr(T+ jSample)Pr(T jSample) = increase in posterior by changing T to T+= Pr(T+)Pr(T ) Qoi=1 B(n1jli + �;n2jli + �)B(n1jl + �;n2jl + �) B(�;�)o�1estimates E�jT;Sample ��ijl� = nijl + �n:jl + 2�smoothing because the posterior is a product over the nodes in the tree structure, all conditional probabilitydistributions along a branch can be averaged together using a linear-time recursive algorithmTable 1: Bayesian analysis of learning class probability trees[Buntine and Weigend, 1991] for an approximation in themore complex domain of feed-forward neural networks.4. Devise a heuristic search procedure for search-ing the space of structures to �nd structures with highposterior. A simple one-ply lookahead procedure can betried, which corresponds to the standard tree growingalgorithm [Quinlan, 1986], although two-ply or three-ply versions could also be tried. Start with the trivialstructure, the empty tree. Then consider extending thestructure by a single ply, which for trees means growing asingle node by adding a test with leaves at the outcomesof the test. A heuristic measure to evaluate the qual-ity of the new growth is given in the table. To preventover
ow/under
ow, this measure has to be calculatedin log-space. The measure behaves similarly to Quin-lan's information gain heuristic, but has some correctionterms for multivalued attributes and small samples. Thisheuristic can also be used as a stopping rule [Cestnik etal., 1987].5. Given a training sample Sample and a structureT , determine a formula or approximation for the poste-rior expected values of the parameters �, as required forFormula (1).6. Devise a procedure for approximating the sum-mation of Formula (1) by a small set of high posteriorstructures. Several suggestions are given below. This iscurrently an active area of research.Minimum encoding approaches [Rissanen, 1989; Wal-lace and Freeman, 1987] to supervised learning and theso-called \most probable model" (Bayesian) approachare �rst-order approximations to Formula (1), becausethey attempt to �nd a single high posterior structure.Step 6 in the design strategy above is the main improve-

ment suggested here, because it suggests how to improveon this.There are three techniques for performing Step 6.These correspond to di�erent ways of estimating the sumin Formula (1):Smoothing: The sum can be computed in closed formif it is restricted to the set of tree structures obtainedby pruning a large tree structure in all possible ways.A linear time algorithm is given in [Buntine, 1990c,Lemma6.5.1]. This is called smoothing because it isequivalent to smoothing out the class probabilitiesat the leaf of a tree by averaging them with someclass probabilities from interior nodes of the tree.Averaging: The sum can be approximated by search-ing for and storing many dominant terms, i.e. manyhigh posterior trees structures. We can build multi-ple tree structures, and combine them together e�-ciently in an AND-OR representation called optiontrees. Growing option trees and then applying asimilar summation process to smoothing is calledtree averaging.Multiple Models: The sum can be approximated byusing importance sampling and Monte Carlo esti-mation. That is, a few tree structures are gener-ated in approximate proportion with their posterior(this is done using the tree growing heuristic [Bun-tine, 1990a]), and their class probability vectors uni-formly averaged.3 Experimental ResultsReimplementations of CART [Breiman et al., 1984], C4[Quinlan, 1988], and a generic minimum encoding ap-



proach were compared with the Bayesian approaches2.The algorithms were applied to 12 di�erent data setswith a range of characteristics. These included Quin-lan's hypothyroid and XD6 data [Quinlan, 1988], theCART digital LED problem [Breiman et al., 1984], threemedical domains made available by Bratko's inductiongroup [Cestnik et al., 1987], and a variety of other datasets from the Irvine Machine Learning Database suchas \glass," \voting records," \hepatitis," and \mush-rooms." Data sets were divided into training/test pairs,a classi�er was built on the training sample and the ac-curacy, predicted accuracy, and mean square error esti-mated on the test sample. This was done for 20 randomtrials of the training/test pair, and for 4 di�erent train-ing set sizes, and signi�cance of di�erence between twoalgorithms was checked using the paired t-test.Of the algorithms tried, a generic minimum encod-ing approach, (re-)CART, (re-)C4, Bayesian smoothingand Bayesian averaging, the averaging approach using auniform prior on tree structures was the only approachthat consistently produced the best predictions. In mostcases it was pairwise signi�cantly better than all othernon-Bayesian approaches at the 5% level. Bayesian av-eraging with a two-ply lookahead during growing yieldedimprovement in predictive accuracy averaged over 20 tri-als as often as high as 2-3%, sometimes more. With aone-ply lookahead, the improvement is not as dramaticbut still signi�cant. One has to be cautious in interpret-ing this result, however, because option trees are morethan just a single decision tree, they e�ectively involvean extension of the model space. Also the growing ofoption trees sometimes involved extra orders of magni-tude in time and space. Although this only occurredfor small samples, or where trees were inappropriate forthe learning problem (like XD6 which is a DNF conceptpoorly expressed using a tree). Certainly the Bayesianapproaches are competitive, and they appear to be su-perior for smaller samples.For many of the data sets, it was appropriate to se-lect a prior that had stronger preference towards smallertrees. When this was done, Bayesian smoothing of asingle tree gave good predictions, often as good as theBayesian averaging with one-step lookahead. This is use-ful because we would not always wish to go to the com-putational expense of Bayesian averaging, or we may re-quire just a single tree for explanatory purposes.A second point of comparison of the algorithms isthe parameters available when driving the algorithms.CART and C4 have default settings for their parame-ters. With CART, heavy pruning can be achieved usingthe 1-SE rule rather than the 0-SE rule. The numberof partitions to use in cross validation cost complexitypruning can also be changed, but the e�ect of this isunclear, especially since leaving-one-out cross validationcost complexity pruning gives poor predictive accuracy.The minimumencoding approaches are (according to thepurist) free of parameters. However, these approachesoften strongly overprune, so Quinlan and Rivest [Quin-2The tree algorithms were written in C and integratedwith an experiment control package. The entire suite is avail-able from the author.

lan and Rivest, 1989] introduce a parameter that al-lows lighter pruning. So all approaches Bayesian andnon-Bayesian have parameters that allow more or lesspruning. These can be set depending on the amountof structure believed to exist in the data. In the fullerBayesian approach with option trees and Bayesian aver-aging, choices available also allow greater search duringgrowing and fuller elaboration of the available optionaltrees. These parameters have the useful property thatpredictive accuracy (or some other utility measure) andcomputational expense are on average monotonic in thevalue of the parameter. The parameter setting allowsimproved predictive accuracy at computational expense.4 Discussion4.1 Multiple modelsMachine learning research, as with classical statistics andminimumencoding methods, has been largely concernedto date with trying to �nd the best single tree, the bestnon-redundant rule set, or the best relational rule ex-plaining the data.Several researchers have now reported being able tosigni�cantly improve learning performance by insteadworking with multiple models. This is an approximatemethod for doing the averaging presented in Section 2,and is di�erent from the technique of combining inde-pendent sources of knowledge multiplicatively, using theprobability formula for independence (the basis of \id-iot" Bayes classi�ers).Kwok and Carter used a heuristic approximation toBayesian decision theory [Kwok and Carter, 1990]; theybuilt multiple decision trees and when processing a newexample, processed it with each tree individually and av-eraged the multiple class predictions. Gams discussedthe notion of \redundant knowledge" [Gams, 1989],where he weighs up the predictions of several overlap-ping rules when classifying a new example. Jacobs et al.present another approach that does adaptive mixing ofmultiple feed-forward networks [Jacobs et al., 1991]. Asurvey of some related theoretical work in \aggregratinglearning strategies" and \weighted majority" is given in[Haussler et al., 1991].Suggested modi�cations to learning algorithms rarelyperform consistently better (see for instance [Mingers,1989]). The most striking thing about the use of multiplemodels is that it does appear to give consistently betterperformance, and can often be implemented as a controlmodule on top of an existing algorithm.4.2 Incremental learning algorithmsIncremental learning applies when new training exam-ples are continually being supplied and we wish to up-date our current hypothesis(es) given the few additionalexamples. The contrasting approach is batch learningwhere examples are supplied in one batch. The majorapproach for developing an incremental algorithm is tomodify a batch learning algorithm. This has the advan-tage that the long sequence of theoretical and empiricalwork that led to the development of the algorithm is notwasted. Some algorithms, however, are designed to be



incremental from the beginning [Gennari et al., 1990].These algorithms can su�er from order-sensitivity [Lan-gley and McKusick, 1990], which is an incremental man-ifestation of the over�tting problem, a problem which islargely solved for batch algorithms.There are two broad cases where a batch algorithmcan be easily converted to an incremental algorithm. Inthe �rst case, Bayesian classi�ers and many classical sta-tistical methods are naturally incremental because theyare calculated from simple summary statistics such asmeans and variances that are readily updated with ad-ditional data. These summary statistics are an exampleof su�cient statistics, discussed in most advanced statis-tical texts. In the second case, Perceptrons, most neuralnet methods, Autoclass [Cheeseman et al., 1988], andmany classical statistical clustering algorithms use itera-tive convergence methods. These are not naturally incre-mental, because their performance is generally poor withonly one iteration of the training sample. But becauseof their iterative nature, they can be easily modi�ed toform incremental versions. For instance, one could addthe new training data to the next iteration.Some batch algorithms do not lend themselves nat-urally to incremental versions. In these cases, as donewith trees [Schlimmer and Granger Jr., 1986], the batchlearning algorithm is di�erentiated. That is, an incre-mental algorithm is designed that attempts to do theleast amount of work to modify a tree given new dataso that it looks as if the tree was constructed from theentire training sample using the corresponding batch al-gorithm. Crawford reports this leads to the problem ofrepeated restructuring [Crawford, 1989]. This occurs intrees when some subtree is repeatedly restructured dur-ing incremental updating due to vacillation in what iscurrently considered the \best" test at the root of thesubtree. This occurs particularly with learning noisyconcepts (earlier incremental studies looked at logicalconcepts). The Bayesian methods o�er a generic rem-edy for this problem. Essentially, we only restructureif we strongly believe the new substructure will be bet-ter, rather than immediately restructuring the momentsome new substructure seems slightly better. The loga-rithm of the lookahead measure given in Table 1 returnsa measure whose units are in log-odds. So one can easilyimplement an algorithm that only changes the currenttest at a node if there is another test that has a goodlog-odds (e.g. > 1:0) of being better. This would preventvacillation, and experiments show it does not unduly ef-fect predictive accuracy.4.3 Comparisons of learning theoriesA basic tool of learning theory in pattern recognitionand computational learning theory is uniform conver-gence. If a sample size is large enough, uniform con-vergence theory provides bounds on the predictive per-formance of classi�ers learned by minimizing empiricalerror [Vapnik, 1982]. In practice when sample sizes arenot large enough, one needs to make a tradeo� betweenthe complexity of the hypothesis chosen and the accuracyof the �t to the data. Here, uniform convergence meth-ods give less guide, only asymptotic (i.e. large sample)

theory regarding their performance (see, for instance,the principle of structural risk minimization in [Vapnik,1982]). These techniques have no theoretical justi�cationthat they will provide good average-case performanceon smaller samples. Some experimental comparisons aregiven in [Buntine, 1990c]. Learning theoreticians are nowusing Bayesian methods [Haussler et al., 1991] to analysethe smaller sample case, as suggested earlier by Buntine[Buntine, 1989].Statisticians overcome these over�tting problems witha variety of resampling techniques (as applied to trees,see [Breiman et al., 1984; Crawford, 1989]) that havegood intuition and performance, but again only haveasymptotic theory. The tree experiments (using cross-validation) show these techniques work well, howeverthey can overprune, so do not have the consistency ofthe full Bayesian approach when sample sizes are smaller.They are quick to code in many cases and hence o�er aviable alternative.Only Bayesian decision theory is able to claim that itis the most rational alternative in the information poorenvironment of learning from smaller samples [Berger,1985]. Minimum encoding approaches [Rissanen, 1989]are sometimes touted as alternatives, however they are,mathematically, an interpretation of the Bayesian \mostprobable model" approach, which itself is an approxima-tion to Bayesian decision theory [Wallace and Freeman,1987; Buntine, 1990c]. Experiments support this approx-imation view, and also indicate the minimum encodingapproximation can degrade signi�cantly as the samplesize decreases. This happens because the encoding meth-ods do not consider multiple models, as suggested here.In Bayesian theory, priors are viewed as assumptionsthat are essential when making inference from limitedinformation such as a small training sample. Uniformconvergence theory constrains samples so they are largeenough to make the e�ect of the prior assumptions neg-ligible [Buntine, 1990c, Lemma 4.2.1]. According toBayesian theory, methods applied to smaller sampleshave implicitly built in particular assumptions whichcorrespond to a choice of prior. Breiman et al.'s costcomplexity pruning with cross validation and the 0-SE rule, for instance, favors smaller trees. And thevarious minimum encoding approaches [Rissanen, 1989;Quinlan and Rivest, 1989] have a very strong preferencetowards smaller trees. Bayesian methods di�er in thatthey make these unavoidable prior assumptions explicit,allowing them to be speci�ed by the user, or providingfairly objective assumptions as a fall-back.5 Learning Bayesian NetworksTo illustrate the algorithm strategy again, I will outlinethe development of an algorithm for learning Bayesiannetworks. This yields a one-step lookahead heuristicsearch algorithm, with smoothing on the �nal structure.The algorithm is analogous to the tree algorithms justpresented. A similar method has been independently de-veloped and implemented by Herskovits and Cooper andthey report good experimental results [Cooper and Her-skovits, 1991]. The di�erent approach of Geiger et al.is concerned with learning networks from known depen-



dency information [Geiger et al., 1990] (for instance, asextracted from a large sample) so is not relevant to theproblem of learning from a smaller sample when depen-dency information is uncertain.Bayesian networks in their simplest formulation spec-ify dependence properties between variables by using adirected acyclic graph. They describe probabilistic mod-els useful for non-directed classi�cation. Figure 1 shows�
 �	poor diet (c)�
 �	family history (b)�
 �	smoking (a) -�
 �	indigestion (f)-�
 �	un�t (e)-HHHHj�
 �	heart disease (d) -����*�
 �	breathless (g)-����*�
 �	chest pains (h)Figure 1: Bayesian network for a simple systema simple Bayesian network. The set of variables thathave outgoing arcs to a variable are called the parents ofthe variable. These parents specify the network struc-ture. Each variable also has an associated conditionalprobability table which gives probabilities for di�erentvalues of the variable given values of its parent variables.For instance for the graph in the �gure, we need valuesfor Pr(eja), Pr(dja; b),Pr(gje; d), etc. The parent struc-ture and the conditional probabilities specify the model,as given by the likelihood function in Table 2. For ease ofpresentation, the learning algorithm presented here as-sumes variables are binary; this can be easily extendedto multivalued or to real-valued variables.The following notation is used. A Bayesian networkconsists of a set of binary discrete variablesX where eachvariable x 2 X has a set of parent variables �x. Assumevariables take the values 1 or 2. For instance, for thegraph in the �gure, �e = fag, �d = fa; bg, etc. The setof values for the cartesian product of variables in �x isv(�x). The number of examples in the training sampleSample with x = i and �x = j is nx=ijj , assuming everyexample in Sample has variable values fully speci�ed.The conditional probabilities for variables are given bythe probabilities � as speci�ed in the likelihood functionin Table 2.The learning algorithm is developed analogously tothe tree learning algorithm. The corresponding resultsof the Bayesian analysis are given in Table 2. The net-work model has a structural component �, the parentfunction, and a continuous component �, the conditionalprobabilities. The prior on the continuous component issimilar to the tree prior. A form for Pr(�) is not givenin the table; it could be chosen to be uniform, or takesome other simple form. A one-step lookahead heuristicsearch procedure for growing a high posterior structurecan be developed analogous to the tree case. Start withthe trivial structure where no variables have parents, andrepeatedly add a new parent to maximize the posteriorat each stage. Notice the adding of parents also has tobe constrained so that the resultant graph has no cycles.A suitable heuristic measure for lookahead is given in thetable. This gives the increase in posterior due to making
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structure � is the parent function specifying how variables are conditionally dependent on other variables,as characterised by the likelihoodlikelihood Pr(X j�; �) = Yx2X Pr(x j�x) where Pr(x = i j�x = j) is given by �x=ijjprior Pr(�; �) = Pr(�)Yx2X Yj2v(�x) ��x=1jj��x=2jjB(�;�) for � = 0:5su�cientstatistics nx=ijj = number of examples in Sample with x = i and �x = jposterior Pr(� jSample) / Pr(�)Yx2X Yj2v(�x) B(nx=1jj + �;nx=2jj + �)B(�;�)lookaheadheuristic Pr(� [ fy ! xgjSample)Pr(� jSample) = increase in posterior with y a parent of x= Pr(� [ fy ! xg)Pr(�) Yj2v(�x) Qi2v(y)B(nx=1jj;y=i + �;nx=2jj;y=i + �)B(nx=1jj + �;nx=2jj + �) B(�;�)estimates E�j�;Sample ��x=ijj� = nx=ijj + �nx=1jj + nx=2jj + 2�smoothing because the posterior is a product over the variables in X , each conditional probability distri-bution Pr(x j�) can be smoothed individually without considering othersTable 2: Bayesian analysis of learning Bayesian networks[Gams, 1989] M. Gams. New measurements highlightthe importance of redundant knowledge. In K. Morik,editor, Proceedings of the Fourth European WorkingSession on Learning, pages 71{80, Montpellier, 1989.Pitman Publishing.[Geiger et al., 1990] D. Geiger, A. Paz, and J. Pearl.Learning causal trees fromdependence information. InEighth National Conference on Arti�cial Intelligence,pages 770{771, Boston, Massachusetts, 1990.[Gennari et al., 1990] J.H. Gennari, P. Langley, andD. Fisher. Models of incremental concept formation.Arti�cial Intelligence, 1990.[Haussler et al., 1991] D. Haussler, M. Kearns, and R.E.Schapire. Unifying bounds on the sample complexityof Bayesian learning using information theory and theVC dimension. In COLT'91: 1991 Workshop on Com-putational Learning Theory. Morgan Kaufmann, 1991.To appear.[Jacobs et al., 1991] R.A. Jacobs, M.I. Jordan, S.J.Nowlan, and G.E. Hinton. Adaptive mixtures of localexperts. Neural Computation, 3(1), 1991.[Kwok and Carter, 1990] S.K. Kwok and C. Carter.Multiple decision trees. In R.D. Schacter, T.D. Levitt,L.N. Kanal, and J.F. Lemmer, editors, Uncertainty inArti�cial Intelligence 4. North-Holland, 1990.[Langley and McKusick, 1990]P. Langley and K. McKusick. Personal communica-tion, 1990.[Lauritzen and Spiegelhalter, 1988] S.L. Lauritzen andD.J. Spiegelhalter. Local computations with proba-bilities on graphical structures and their application
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