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Abstract A fundamental question for both evolutionary

biologists and breeders is the extent to which genetic cor-

relations limit the ability of populations to respond to

selection. Here I view this topic from three perspectives.

First, I propose several nondimensional statistics to quan-

tify the genetic variation present in a suite of traits and to

describe the extent to which correlations limit their selec-

tion response. A review of five data sets suggests that the

total variation differs substantially between populations. In

all cases analyzed, however, the ‘‘effective number of

dimensions’’ is less than two: more than half of the total

genetic variation is explained by a single combination of

traits. Second, I consider how patterns of variation affect

the average evolutionary response to selection in a random

direction. When genetic variation lies in a small number of

dimensions but there are a large number of traits under

selection, then the average selection response will be

reduced substantially from its potential maximum. Third, I

discuss how a low genetic correlation between male fitness

and female fitness limits the ability of populations to adapt.

Data from two recent studies of natural populations suggest

this correlation can diminish or even erase any genetic

benefit to mate choice. Together these results suggest that

adaptation (in natural populations) and genetic improve-

ment (in domesticated populations) may often be as much

constrained by patterns of genetic correlation as by the

overall amount of genetic variation.

Keywords Constraint � Evolvability � Function-valued

trait � Genetic correlation � Heritability � Selection response

Introduction

What constrains how much natural and artificial selection

can modify phenotypes? A naive reading of the quantita-

tive genetics literature might leave one with the impression

that there are virtually no limits. Long term artificial

selection programs continue to show progress (e.g. with

corn (Moose et al. 2004) and dairy cattle (Powell and

Norman 2006)), the vast majority of traits that have been

studied are heritable (Roff 1997), and mutation provides a

constant source of new genetic variation (Houle et al.

1996). The conclusion seems to be that selection on almost

any single trait will yield an evolutionary response. Indeed,

Lewontin (1974, p. 92) proclaimed ‘‘there is good reason to

suppose that any outbred population or cross between

unrelated lines will contain enough variation with respect

to almost any character to allow effective selection.’’

But the picture is quite different when suites of traits are

considered together. The number of trait combinations that

will respond to selection can be much smaller than the

number of traits, even when each trait is heritable and all

pairwise genetic correlations between them are less than 1

(Dickerson 1955; Lande 1979; Charlesworth 1990; Kirk-

patrick and Lofsvold 1992; Blows 2007; Blows and Walsh

2008). Then the population is confined to evolve in a

subspace with fewer dimensions than the number of traits

under selection. Patterns of genetic correlations result in

‘‘genetic lines of least resistance’’ that can have major

effects on long-term evolutionary trajectories (Schluter

1996).

Does genetic variation in natural and domesticated

populations in fact impose this kind of constraint? Both

evolutionary biologists and breeders have a lot riding on

the answer. A central question in evolutionary biology is

the degree to which the diversity of phenotypes we see in
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nature reflects what selection favors vs. the constraints

imposed by genetics and development (Maynard Smith

et al. 1985; Phillips and Arnold 1999; Brakefield 2006;

Roff and Fairbairn 2007). The ultimate benefit of artificial

selection programs depends on whether economically

favored traits can be decoupled from traits with deleterious

effects (Brotherstone and Goddard 2005).

Artificial selection offers one approach to studying

constraints. Weber (1990) selected on five bivariate rela-

tions relating to wing shape in Drosophila melanogaster,

and found that all five pairs of relations can be altered.

Beldade et al. (2002a, b) selected on two eyespots on the

forewings of the butterfly Bicyclus anynana. They showed

that the relative sizes of each eyespot can be altered

independently of the other. The results from both experi-

ments are surprising because we might expect that the

developmental genetics of insect wings might impose

constraints in these pairs of traits. What we do not know

from these results, however, is whether there are con-

straints in higher dimensions (that is, combinations of more

than two traits). These experiments only prove that the

correlation between pairs of traits is less that one. These

population may still be confined to evolve in a two-

dimensional subspace. The ideal—but logistically incon-

ceivable—experiment would be to select in all possible

directions in a high-dimensional multivariate space.

A second approach to the study of constraints uses

models to understand how patterns of genetic variation and

correlation evolve. Under various assumptions concerning

the underlying genetic and/or developmental principles,

these constraints can in principle be predicted (e.g. Zhang

et al. 2002; Jones et al. 2004; Schlosser and Wagner 2004;

Hansen et al. 2006; Jones et al. 2007). These models are

useful for understanding how constraints are affected by

(for example) mutation rates and effective population size.

Typically there is great uncertainty about the values for

many of the parameters, however, and so it is not yet

possible to extract from them robust quantitative

conclusions.

This paper discusses a third way to study how quanti-

tative genetic variation impacts adaptation. It is based on

the analysis of standing genetic variation. First I present

simple nondimensional statistics that describe the ‘‘effec-

tive number of dimensions’’, the maximum ‘‘evolvability’’,

and the total genetic variation present in a suite of quan-

titative traits. The statistics are illustrated with an analysis

of five data sets. Second, theoretical calculations show

how a population’s average response to selection in a

random direction is affected by the effective number of

dimensions and the actual number of traits under selection.

Third, I review recent studies for variation in lifetime

fitness in natural populations, highlighting an emerging

conclusion that the genetic correlation between male and

female fitness may be small or even negative. Together,

these results suggest that genetic correlations between

quantitative traits may be at least as important as the total

amount of genetic variation in limiting a population’s

response to selection.

In addition to presenting some new empirical and the-

oretical results, I will also highlight several developments

in evolutionary quantitative genetics that have appeared

since the Second International Congress on Quantitative

Genetics. These include multivariate data sets with both

genetic variation and fitness measures, the use of the

animal model in natural populations, advances in methods

to analyze function-valued traits, new statistical methods

and software for analyzing multivariate quantitative

genetic data, and a general framework for multilocus

modeling.

Quantifying genetic variation in many dimensions

The additive genetic covariance matrix G describes pat-

terns of genetic variation for multiple traits in terms of their

variances and covariances. But this is an opaque format for

the information: simply inspecting the matrix doesn’t

reveal whether there are constraints. Looking at the cor-

relation matrix rather than the covariance matrix will show

pairs of traits that are completely coupled, but again does

not immediately reveal constraints involving three or more

traits.

The solution is to work with the eigenvectors, or prin-

cipal components, of the additive genetic covariance

matrix G. They define the combinations of traits that

respond to selection independently of each other. The

eigenvalues quantify the amount of genetic variation

associated with each of these axes. A population’s potential

response to selection—and its constraints—are completely

described by these quantities (reviewed by Blows 2007).

The genetic principal components for which there is no

genetic variation define a null space, combinations of trait

values that are inaccessible to evolution. Interest in iden-

tifying evolutionarily forbidden combinations has

motivated studies aimed at determining how many eigen-

values of G are zero. Several empirical studies have

suggested that one or more eigenvalues of G equal zero

(Kirkpatrick and Lofsvold 1992; Hine and Blows 2006;

Mcguigan and Blows 2007). In contrast, Mezey and Houle

(2005) found genetic variation for all combinations of the

20 wing dimensions in flies that they measured.

It is difficult to tell whether evolutionarily forbidden

trait combinations are widespread for several reasons.

Sampling results in substantial imprecision in estimates of

the eigenvalues (Hill and Thompson 1978), and there are

still unresolved statistical difficulties in determining
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confidence limits on the estimates (Hine and Blows 2006).

Second, under at least some statistical frameworks, esti-

mates of the smallest eigenvalues are biased downwards

(Hill and Thompson 1978; Hayes and Hill 1981). This can

lead us to believe there is no variation for some dimensions

where in fact there is. Third, the analyzes rest on the key

assumption that the distribution of breeding values is

Gaussian. If this assumption is violated, which it is certain

to be, we do not know precisely what the eigenvalues tell

us about constraints. Fourth, G itself can evolve as the

result of changes in allele frequencies and disequilibria,

and the appearance of new variation by mutation and

migration. There is no guarantee that an eigenvalue that is

0 today will keep that value indefinitely. A final problem is

a fundamental limitation of statistical inference: we can

never prove that a quantity is exactly equal to 0.

Multivariate evolvability

One exit from this conundrum is to adopt a milder view of

evolutionary constraints. We step back from the question of

whether there are directions in multivariate space where

selection absolutely cannot take the population. Instead, we

focus on how strongly the pattern of genetic variation

biases evolutionary trajectories. We might then ask how

suites of traits or populations differ in how strongly they

are constrained or biased. Questions of interest include: Is

there typically more or less variation in domesticated vs.

natural populations? Are function-valued traits more con-

strained than suites of scalar-valued traits? Unfortunately,

this paper will not answer those questions because only five

data sets are analyzed. But it will allow us to consider

useful ways to quantify multivariate genetic variation, and

to draw a tentative conclusion about the number of

dimensions in which variation lies.

How are we to compare the evolutionary potential of

milk production in cows, say, with that of a flower’s scent?

There are several issues to consider here. One is the scale

of measurement: we need to compare traits that are mea-

sured in incommensurate units. A second issue is

magnitude: we want to consider the evolutionary potential

of traits that have very different means. A third consider-

ation is that traits of interest can be scalar-valued (that is,

consisting of a single datum for each individual’s trait

value) or function-valued (consisting of a curve, such as a

growth trajectory or lactation curve).

The basic idea I will explore here extends Houle’s

(1992) notion of evolvability to multiple traits. The key is

to work with proportions, dividing each measurement by its

trait mean. This is not the only standardization possible, but

for many situations it is the most natural (Hereford et al.

2004). Differences in means then represent proportions,

and variances become squared coefficients of variation.

Previous empirical and theoretical studies have explored

this idea in the context of single traits (Houle 1992;

Kirkpatrick 1996; Hansen et al. 2003).

When traits are standardized by their means, the multi-

variate version of Lande’s (1979) equation for the response

to selection is

Dez ¼ eGeb ¼ EREð Þeb ð1Þ

where Dez is the vector of selection responses, eG is the

additive genetic covariance matrix, and eb is the selection

gradient vector. The tildes are to remind us that these are

normalized quantities. Thus the elements of Dez give the

proportional change in the trait means caused by one

generation of selection. The elements of eb give the rate that

relative fitness increases per proportional change in that

trait’s value, holding the values of the other traits constant.

As shown in Eq. 1, the normalized genetic covariance

matrix can be decomposed into a product involving two

quantities: eG ¼ ERE, where E is a diagonal matrix with

the additive genetic coefficients of variation or ‘‘evolv-

abilities’’ (Houle 1992) for each trait, and R is the matrix of

genetic correlations. Thus the constraints implied by eG

result from both the amount of genetic variation present for

each trait (measured by E) and the correlations between

them (which appear in R). The constraints are again

quantified by the distribution of eigenvalues of eG. I will

denote these eigenvalues as ki, and order them from largest

(k1) to smallest (kn).

Summarizing variation

Patterns of genetic variation can be summarized with the

help of some simple summary statistics. The first of these

is the effective number of dimensions, which I define as

the sum of the eigenvalues divided by the largest

eigenvalue:

nD ¼
X

n

i¼1

ki=k1 ð2Þ

where n is the number of traits measured. If all genetic

variation lies in a single dimension, then the effective

number of dimensions is 1. At the other extreme, if all the

(normalized) traits have equal amounts of variation and

there are no genetic correlations between them, the effec-

tive number of dimensions is equal to the actual number of

traits measured. Another way to think about nD is that it is

equal to the reciprocal of the fraction of total genetic

variance contributed by the first principal component

(eigenvector) of eG: For example, if half the variation is

explained by that principal component, then the effective

number of dimensions is 2.

A second measure is the maximum evolvability, which is

the square root of the largest eigenvalue:
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emax ¼
ffiffiffiffiffi

k1

p

: ð3Þ

The maximum evolvability is the genetic coefficient of

variation for the combination of traits that has the greatest

amount of genetic variation. It corresponds to Houle’s

(1992) definition of evolvability when there is only a single

trait. Again, we are working with data that has been

standardized by the trait means, and so emax refers to a

combination of traits in which there is the maximum

genetic variation for proportional change.

The last summary statistic is the sum of the eigenvalues

of eG, which I refer to as the total genetic variance:

vT ¼
X

n

i¼1

ki ¼ k1nD ð4Þ

The total genetic variance measures the population’s

overall potential to respond to selection on combinations of

traits. Like the other summary statistics, vT is based on the

standardized data and so it has no dimensions.

Figure 1 illustrates the patterns of variation described by

these statistics when there are n = 3 traits. Within each set

of axes an ellipsoid represents the distribution of additive

genetic values. The ellipsoid has been rotated so that the

axes of each panel are parallel to the genetic principal

components (eigenvectors). The amount of variation is

maximal along the horizontal axis, and is multiplied by a

factor k in the axis coming towards the reader, and again by

another factor k in the vertical axis. The three columns of

panels show how the distribution of variation changes with

k and nD. On the right is the case with k = 1, where the

effective number of dimensions is equal to the actual

number of traits measured: nD = 3. There is equal varia-

tion in all directions and so the cloud of variation is

represented by a sphere. The column on the left shows the

case for k = 0.2. Here the effective number of dimensions

is nD = 1.25, and the cloud is strongly eccentric. The rows

of Fig. 1 show how the cloud of variation expands and

contracts as a function of the total genetic variance, vT.

Moving from left to right across a row, the maximum

evolvability emax decreases and effective number of

dimensions nD increases so that the total variation remains

constant.

We will now use these summary statistics to explore

genetic variation in two domesticated populations (dairy

and beef cattle), one laboratory population (mice), and two

natural populations (a fish and a fly). I will first consider

data sets that are scalar-valued, that is, where each trait can

be quantified by a single number. I then move to function-

valued traits in which an individual’s value for a trait

changes with its age.

Before presenting the results from these analyses, I

caution that this paper does not attempt to put confidence

limits on the estimates of the summary statistics. Those

would be necessary before any strong conclusions can be

drawn. Determining the sampling properties of the statis-

tics is a substantial project that should be pursued but that

is beyond the scope of this paper.

Scalar-valued traits

The first data set comes from Meyer’s (2005) study of

Angus beef cattle. The combination of a very large sample

size and sophisticated statistical analysis provides one of

the most precise estimates of a genetic covariance matrix

available for any population. Meyer estimated the genetic

parameters from pedigrees that included 74,268 animals

using genetic principal components based on restricted

maximum likelihood. Four morphological traits were

measured. Values in males and females are treated sepa-

rately, and so the data consist of a total of 8 traits.

Two more data sets come from natural populations

studied by McGuigan, Blows, and their colleagues. They

studied variation in 21 distances between landmarks dis-

tributed across the bodies of rainbow fish, Melanotaenia

eachamensis (McGuigan et al. 2005). Genetic parameters

were estimated with data from 44 families of fish using

analysis of variance. In a second study, McGuigan and

Blows (2007) estimated variation for 10 distances between

landmarks on the wings of Drosophila bunnanda. They

analyzed the data collected from 488 families using

restricted maximum likelihood (REML).

Fig. 1 Patterns of multivariate variation with n = 3 traits as a

function of the effective number of dimensions (nD) and the total

genetic variation (vT)
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These studies provided estimates of the genetic correla-

tion matrices, genetic variances, and the trait means. Those

quantities allow us to calculate the nondimensional genetic

covariance between traits i and j as eGij ¼ rij

ffiffiffiffiffiffi

Gii

p
Gjj

�

�zi�zj

� �

,

where rij is the genetic correlation between i and j, Gii is the

genetic variance for trait i on the original measurement scale,

and zi is the trait’s mean. The fish data were analyzed as the

logs of the trait measurements, and so it was necessary to

back-transform the data to the original scale of measurement

before nondimensionalization. To do that I calculated the

genetic variances for each trait i as G2
ii ¼ exp s2

i

� �

� 1
� �

�z2
i ,

where s2
i is the genetic variance of trait i for the log-trans-

formed data. Finally, to calculate the genetic covariances, I

assumed that the genetic correlations on the original mea-

surement scale can be approximated by those on the log-

transformed scale.

We can get a first impression about patterns of multi-

variate genetic variation by considering the Angus cattle

data. The evolvabilities and genetic correlation matrix R

are given in Table 1. The univariate evolvabilities suggest

that there is substantial genetic variation available to

selection. Six of the eight values are quite large, between

25 and 36%. Comparing the smallest to the largest evolv-

ability, the values differ only by a factor of 4.

The picture of constraints, however, is quite different

when we consider the multivariate perspective. Figure 2

shows that the eigenvalues of eG decline rapidly. This

pattern holds when all 8 traits are taken together, and also

when the traits in males and females are considered sepa-

rately. Table 2 shows the summary statistics. A striking

result is that the effective number of dimensions is only

nD = 1.5. This follows from the fact that well more than

half (65%) of all genetic variation is accounted for by the

first eigenvalue. The total genetic variance is vT = 0.2

when all traits are taken together, and is smaller (as it must

be) when females and males are considered separately.

There appears to be somewhat more genetic variation in

females than males. The maximum evolvability when both

sexes are included is emax = 0.36, which appears to be

somewhat larger than the average value for evolvabilities

of adult size measures reported by Houle (1992) in his

survey of single traits.

Results from analyses of the two other scalar-valued

data sets are also shown in Table 2. The most striking

pattern that emerges is that the effective number of

dimensions varies over a narrow range of values and is

always less than 2. The largest estimate is only 1.9, from

the wing dimensions of female Drosophila bunnanda. This

is perhaps surprising as one might expect developmental

processes to generate more constraints on wing shape than,

say, combinations of less functionally-related traits.

Values for the other summary statistics range widely.

The total genetic variance, vT, ranges from 0.002 (for fly

wings) to 1.7 (for fish body dimensions). The maximum

evolvability, emax, ranges from 0.033 (for female fly wings)

to 0.36 (for cattle morphological traits). These two statis-

tics vary so much because the leading eigenvalues for the

data sets vary over three orders of magnitude. To sum up,

the effective number of dimensions seems remarkably

Table 1 The estimated nondimensionalized genetic correlation matrix R and the evolvabilities (along the diagonal, in bold) for Angus beef

cattle, based on Meyer (2005a)

P8.f RIB.f IMF.f EMA.f P8.m RIB.m IMF.m EMA.m

P8.f 0.36 0.86 0.58 0.18 0.70 0.62 0.40 0.02

RIB.f 0.33 0.65 0.20 0.60 0.72 0.44 -0.01

IMF.f 0.095 0.18 0.28 0.35 0.72 -0.01

EMA.f 0.25 -0.01 0.02 0.03 0.82

P8.m 0.28 0.92 0.66 -0.08

RIB.m 0.25 0.71 -0.02

IMF.m 0.087 -0.01

EMA.m 0.27

The normalized genetic covariance function eG can be calculated from these values using Eq. 1. The traits are eye muscle area (EMA), fat depth at the

12th/13th rib (RIB), P8 fat depth (P8), and percentage intra-muscular fat (IMF). Traits in females are denoted by ‘‘.f’’ and traits in males by ‘‘.m’’

1

10-1

10-2

10-3

2 3 4

Females

Both sexes

Males

Fig. 2 The first four eigenvalues of the normalized genetic covari-

ance matrix eG for the Angus cattle data set of Meyer (2005). Note

that the y-axis is logarithmic
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consistent, but other measures of genetic variation differ

substantially between populations and studies.

Function-valued traits

A situation where we might expect constraints to be par-

ticularly conspicuous is when traits are ‘‘function-valued’’.

Here the phenotype of an individual is represented by a

function rather than a set of distinct variables, such as traits

that change with age or whose expression varies with an

environmental variable. Function-valued traits appear in

many contexts in evolutionary biology (Kirkpatrick and

Heckman 1989; Kingsolver et al. 2001) and animal

breeding (Schaeffer 2004; Meyer and Kirkpatrick 2005b).

Function-valued traits are an interesting place to look for

constraints simply because it is certain that they are there.

No animal can grow (or shrink) infinitely fast, so there

must be some limits on the types of evolutionary changes

that can be made to a growth trajectory.

We can study variation and constraint for function-valued

traits by a direct extension of the tools used for standard

scalar-valued traits. In place of the genetic covariance matrix

we have a genetic covariance function that gives the additive

genetic variation between all pairs of measurements (e.g. size

at different ages, in the case of a growth study) (Kirkpatrick

and Heckman 1989). The eigenvalues of the covariance

function again tell us about the amount (or lack) of genetic

variation for different genetic deformations in the shape of the

function (Kirkpatrick and Lofsvold 1989, 1992).

The covariance function can be estimated conveniently

and efficiently with ‘‘random regression’’ methods

(Henderson 1982; Meyer and Hill 1997; Schaeffer 2004).

These methods are now being applied to diverse phenotypes

and organisms in both natural and domesticated populations.

The eigenvalues of the estimated covariance function can be

calculated (Kirkpatrick and Lofsvold 1992; Kirkpatrick and

Meyer 2004), and from those we can compute the same

summary statistics used above for scalar-valued data.

Here we will consider two data sets for function-valued

traits. Riska et al. (1984) studied the growth trajectories of

ICR randombred mice. They measured weight in males and

females at 9 ages in 2,693 individuals in a cross-fostering

design, and used analysis of variance to estimate genetic

variances. (The variances are reported for log-transformed

data, so the back-transformation described above was used

to calculate the variances and covariances for nondimen-

sional data.) Pander et al. (1993) studied genetic variation

for lactation curves in Holstein-Friesian dairy cattle.

Genetic parameters were estimated from a pedigree with

34029 individuals using REML. For this paper I used the

genetic covariance function estimated by the method of

asymmetric coefficients with k = 9 polynomials fitted (see

Kirkpatrick et al. (1994)).

Results for the summary statistics are shown in Table 2.

Lactation curves in Holstein-Friesian cows give the

smallest estimate for the effective number of dimensions of

any data set: nD = 1.1. The values for mouse growth tra-

jectories are a bit larger: nD = 1.2 for males and 1.3 for

females. The impression from these results is the effective

number of dimensions for function-valued traits may tend

to be smaller than for suites of scalar-valued traits, but the

number of studies is too small to draw strong conclusions

here. Again, the total genetic variation and maximum

evolvability range widely in their values.

Table 2 Analysis of normalized genetic variation in five populations

N n nD emax vT R k1 k2 k3

Scalar-valued traits

Angus cattle

Both sexes 74,268 8 1.5 0.36 0.20 0.32 0.13 0.027 0.018

Males 35,345 4 1.3 0.25 0.083 0.45 0.063 0.015 0.0031

Females 34,649 4 1.3 0.30 0.12 0.44 0.093 0.013 0.0058

D. bunnanda

Males 625 10 1.6 0.035 0.0020 0.29 0.0013 0.00038 0.00018

Females 759 10 1.9 0.033 0.0020 0.32 0.0011 0.00047 0.00021

M. eachamensis 375 21 1.2 1.2 1.7 0.18 1.4 0.18 0.057

Function-valued traits

Holstein-Friesian cows 34,029 ? 1.1 0.27 0.078 0 0.074 0.0037 0.00042

ICR mice

Males 1,346 ? 1.3 0.14 0.027 0 0.021 0.0048 0.00087

Females 1,347 ? 1.2 0.18 0.038 0 0.032 0.0052 0.00083

N is the number of individuals and n the number of traits measured. The next four columns give the summary statistics described in the text. The

last three columns give the leading eigenvalues for eG
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Conclusions about dimensionality

The effective number of dimensions is less than two, and

often less than 1.5, in all of the five data sets considered

here. Table 2 shows that the first genetic principal com-

ponent (eigenvector) accounts for more than half of all

genetic variation. In contrast, other nondimensional mea-

sures of variation (the maximum evolvability and the total

genetic variation) vary over several orders of magnitude.

The small and relatively constant estimates for the effective

number of dimensions is an intriguing empirical observa-

tion which at present has no theoretical explanation, and

indeed it is unclear how general that pattern may be.

Hopefully these preliminary results will stimulate further

analysis to determine if the pattern is robust and, if so, a

search for its explanation. It would be interesting to see if

similar conclusions hold for data sets that include more

diverse mixtures of phenotypes, for example morphologi-

cal, behavioral, and physiological traits.

These results might seem to convey a rather pessimistic

message about the potential for evolutionary change: the

data strongly suggest that there are many things that

selection cannot do, at least in a short amount of time. But

in fact this very observation has a practical advantage: it

offers a way to simplify the problem of estimating genetic

parameters substantially. One approach here is to assume a

parametric form for the covariance function, then estimate

its parameters (Jennrich and Schluchter 1986; Pletcher and

Geyer 1999; Jaffrezic and Pletcher 2000; Jaffrezic et al.

2004). A second way to exploit the low dimensionality of

genetic variance is to focus estimation directly on the

principal components that contain the bulk of the variation

(Kirkpatrick and Meyer 2004; Meyer and Kirkpatrick

2005a). Since most genetic variation falls along a relatively

small number of axes, we can capture most the information

about the genetic covariance matrix by estimating only

those principal components. The strategy applies equally to

function-valued traits, and to mixtures of scalar- and

function-valued traits. Related approaches focus on esti-

mating a reduced number of principal components of

covariance matrices that emerge from certain experimental

designs (Hine and Blows 2006).

Several advantages flow from estimation using principal

components. One is that it reduces—dramatically, in many

cases—the number of parameters to be estimated. The result

is increased accuracy, enhanced stability of the estimates,

and decreased computation. Yet another benefit is that this

approach guarantees that estimates of the genetic covariance

matrix (or function) will be positive semidefinite, without the

negative variances and correlations outside the range (-1, 1)

that plague some other estimation schemes. There are,

however, pitfalls. If an insufficient number of principal

components are estimated, variation is inappropriately

assigned to genetic and environmental sources, which results

in biased estimates (Meyer and Kirkpatrick 2007).

The use of principal components as the basis for

estimation is quite recent and to date has only been used

in a handful of studies of domesticated (Meyer 2005,

2006a, 2007) and natural (Hine and Blows 2006;

McGuigan and Blows 2007) populations. The release of

the WOMBAT software package (Meyer 2006b), which

includes the option of estimating genetic principal com-

ponents, now makes the approach much more accessible.

An interesting question is whether this and other advan-

ces in estimation will change our view of the importance

of constraints.

Potential vs. realized constraints

Principal components that lack genetic variation represent

potential constraints. They only pose a real problem for

adaptation, however, if selection favors a change in one of

the directions in which there is little or no variation. How

often does that happen?

One way to quantify the answer is using what I will call

the average selection response, denoted R. The idea is

based on a simple-minded model of how selection works,

something like a quantitative-genetic analog of Fisher’s

(1952) famous model for the probability that a mutation

with random pleiotropic effects on n traits will be adaptive.

We imagine that selection acts by favoring arbitrary

combinations of traits, pushing the population mean in a

random direction in multivariate space. Our question is

how much is the average evolutionary response diminished

by genetic correlations and the uneven distribution of

genetic variation among the traits. I will quantify the

response as total evolutionary change, that is, the length of

the vector Dez. (This is not the only measure of interest.

T.F. Hansen and D. Houle (pers. comm.) suggest consid-

ering the average amount of change in the direction of the

selection gradient b.) To find R, we first calculate the focal

population’s average selection response to a random

selection gradient of constant length. We then divide that

result by the average response for a hypothetical population

in which all genetic correlations are 0 and the evolvability

of all traits is equal to the maximum evolvability of the

focal population. (Alternatively, one might set the total

genetic variance in the hypothetical population equal to

that of the focal population.) Details of the calculations are

given in the Appendix.

Results for the five data sets introduced earlier are

shown in Table 2. The average selection response for

scalar-valued traits is between 18 and 44% of what it would

be in hypothetical unconstrained populations. The results

give a different perspective than the other three summary
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statistics because R is sensitive to the total number of traits.

For example, the traits in male Angus cattle have the

highest average selection response (R = 0.45) while

the fish has the lowest (R = 0.18) despite the fact that the

effective number of dimensions is very similar for the two.

The low R in the fish results because there are a large

number of traits (n = 21) and most combinations have

little or no genetic variation. The effect of the number of

traits is most extreme for function valued traits: here the

average selection response must be 0 because there are

an infinite number of trait combinations that have no

variation.

To get more insight about how the number of traits and

distribution of variation affect the average selection

response, we can replace the real data in these calculations

with an idealized population. Eigenvalues often decline in an

approximately exponential (geometric) fashion (Kirkpatrick

and Lofsvold 1992; Griswold et al. 2007). Accordingly,

assume now that the ratio of the sizes of successive eigen-

values is k. The relation between k and the effective number

of dimensions is

nD ¼
1� kn

1� k
: ð5Þ

For example, if k = � then the second eigenvalue is

half as large as the first. With n = 2 traits measured the

effective number of traits is nD = 1.5, while with an

infinite number of traits nD = 2. With k = 0 all the

variation is contained in the single combination of traits

described by the first principal component and nD = 1. The

x-axis of Fig. 1 shows how nD changes with other values of

k when there are 3 traits measured.

Our question now is: How does the average selection

response depend on k and on the number of traits under

selection, n? Numerical calculations described in the

Appendix give the results shown in Fig. 3. As expected, the

average response declines as the effective number of

dimensions decreases. This decline is faster when there are

more traits under selection. That is because a randomly-

oriented selection gradient has a greater chance of lying in

a direction where there is little genetic variation.

When all genetic variation lies along just a single

dimension (k = 0 and nD = 1), the relative selection

response can be expressed analytically (see the Appendix).

The relative selection response is then:

R ¼ 2C n=2½ �
n� 1ð ÞC n� 1ð Þ=2�

ffiffiffi

p
p ; ð6Þ

where C[.] is the gamma function. This result is shown in

Fig. 4. Genetic correlations reduce the selection response

to 63% when two traits are under selection, and to 50%

when there are three traits. As the number of traits grows,

the average selection response continues to decline, but it

does so quite slowly.

Depending on your intuition, one can come away with

either an optimistic or a pessimistic message from these

calculations. On the one hand, even if the effective number

of traits is small, perhaps selection acts mainly on the space

defined by those dimensions. Imagine that the force of

selection is concentrated on just three phenotypic dimen-

sions. Even if all genetic variation is concentrated along a

single dimension within this space, the response to selec-

tion in an arbitrary direction will only decreased by about

half relative to the response when selection is perfectly

aligned with the dimension containing the most genetic

variation. One can make a plausible argument that both

natural and artificial selection, acting on traits like body

size and growth rate, generate situations like this. Selection
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Fig. 3 The average selection response to a randomly oriented

selection gradient as a function of the degree of constraint caused

by genetic correlations between the traits. The numbers for each curve

show n, the number of selected traits. On the x-axis, the effective

number of dimensions nD ranges from n (no constraint) to 1 (all

variation lies in a single dimension)
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Fig. 4 The average selection response to a randomly oriented

selection gradient when all genetic variation lies in a single dimension
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then makes substantial progress even in the face of strong

constraints. On the other hand, it is easy to envision a less

benign universe: selection acts with equal probability on

any of a large number of dimensions, yet genetic variation

is present in very few of them. Then evolution creeps along

compared to what it would do if the axes of selection and

variation coincided.

Where along this spectrum nature actually lies can only

be decided empirically. There has been a glaring lack of

systems in which both genetic variation and patterns of

selection have been estimated for at least a moderate

number of traits. The recent appearance of data sets with

both elements is thus an important and very welcome

development (Blows 2007). Blows et al. (2004) and Hine

et al. (2004) studied genetic variation and sexual selection

for several cuticular hydrocarbons in Drosophila serrata.

While there is substantial genetic variation for the indi-

vidual traits, the selection gradient points in a direction that

is nearly orthogonal to the dimensions where the variation

lies. Hunt et al. (2007) considered the relation between

stabilizing sexual selection and genetic variation for five

components of male calls in crickets. They found that

combinations of traits with stronger stabilizing selection

tend to have reduced amounts of genetic variation. It will be

exciting to see how general these results are with the

accumulation of more studies that integrate both the pattern

of selection and of genetic variation.

Genetic variation and correlations for fitness

Among all the traits under selection, fitness itself holds a

place of unique importance. Unlike other quantitative

traits, there is no doubt how fitness is selected! Several

other issues are much less obvious, however, such as how

fitness is determined and how to best measure it. Yet

another key question is how much genetic variation for

fitness exists in natural and domesticated populations.

Fisher’s (1952) Fundamental Theorem of Natural Selection

is often misquoted as predicting there should be no additive

genetic variation for fitness. In fact, Fisher made clear that

mutation, changing environments, and other factors con-

tinually regenerate variation. The question is simply how

much. Evolutionary biologists would very much like to

know, since the answer sets important limits for the scope

of fundamental processes such as the evolution of recom-

bination and mate choice (Fowler et al. 1997; Kirkpatrick

and Barton 1997).

Low estimates for the heritability for fitness components

(Mousseau and Roff 1987) have left some workers with the

impression that there is very little genetic variation. But

heritabilities are determined in part by environmental

sources of variation (Price and Schluter 1991). Thus for

many purposes a more appropriate measure for genetic

variance in fitness is again the evolvability, or genetic

coefficient of variation. Indirect estimates (based for

example on rates of adaptation) suggested that fitness in

natural populations may often have evolvabilities in the

range of 0.1 to 0.3 (Burt 1995). Until recently, however,

direct information about genetic variation in fitness in

natural populations was quite sparse.

The field has recently been energized by the application

to natural populations of the so-called ‘‘animal model’’

developed by breeders (Kruuk 2004). This statistical

framework uses information from an entire pedigree to

estimate genetic parameters (Henderson 1950, 1984).

Benefits over methods based on analysis of variance

include more efficient use of the data and a likelihood

estimation framework (Thompson 1973; Shaw 1987;

Meyer 1989). A particular boon for estimating genetic

components of fitness is that the animal model exploits

information about individuals that leave no descendants.

Kruuk (2004) reviews the development of the animal

model for natural populations and highlights several

intriguing new insights that have emerged.

What have we learned with the animal model about

genetic variation for lifetime fitness in natural populations?

There does indeed seem to be substantial genetic variation

for total fitness. Evolvability has been estimated for vari-

ous measures of fitness in red deer (Kruuk et al. 2000;

Foerster et al. 2007), great tits (Mccleery et al. 2004),

humans (Pettay et al. 2005), and collared flycatchers

(Qvarnstrom et al. 2006; Brommer et al. 2007). Evolv-

ability estimates of 0 have been reported for female red

deer (Kruuk et al. 2000) and male humans (Pettay et al.

2005). On the other hand, dramatically large values have

also been reported: 0.55 for the evolvability of lifetime

reproductive success in female humans (Pettay et al.

2005), 0.61 for in male red deer and 0.99 in female red

deer (Foerster et al. 2007).

Another emerging pattern is that genetic variation for

fitness in males and females appears to be largely uncou-

pled. There are two factors at play here. The first is that

there are often large differences between the evolvabilities

of fitnesses in males and females. It is not unusual for their

estimates to differ by a factor of 2 or more. The second is

that the genetic correlation between female and male fit-

ness, denoted rfm
W , is not large and positive. In fact, the

genetic correlation between male fitness and female fitness

may often be near zero or even negative. This conclusion

seems contrary to the conventional view that intersex

genetic correlations are often near 1 (Lande 1980). In fact,

strong positive intersex correlations for morphological and

physiological traits can result in a negative intersex cor-

relation for fitness when the optima for males and females

differ.
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The first estimates from natural populations for the

intersex correlation in fitness have appeared very recently.

Two estimates of rfm
W have been made for collared fly-

catchers, giving values of 0.23 (Qvarnstrom et al. 2006)

and -0.85 (Brommer et al. 2007). The value estimated for

red deer is -0.48. (These values are based on lifetime

reproductive success as the fitness measure; other measures

are also reported by these authors.) It is important to note,

however, that these estimates have large standard errors,

and that there are important unresolved issues regarding

how best to estimate fitness.

These are not the only reports of negative intersex

genetic correlations for fitness. The first findings came

from an important series of studies of laboratory popula-

tions of Drosophila (Chippindale et al. 2001; Pischedda

and Chippindale 2006; Prasad et al. 2007). Negative

intersex correlations have also been reported for fitness

components in dioecious plants (Meagher 1992; Delph

et al. 2004), snakes (Forsman 1995), lizards (Calsbeek and

Sinervo 2004), and crickets (Fedorka and Mousseau 2004).

Thus the genetic component of fitness may often be weakly

or even negatively correlated in males and females.

What is the evolutionary significance if male and female

fitness are in fact evolutionarily uncoupled? A flurry of

consequences might follow concerning rates of adaptation,

the maintenance of adaptive and neutral genetic variation,

and the evolution of recombination. Here I will focus on

yet another consequence, which regards the evolution of

mate choice. Some (but not all) theories of sexual selection

are built on the idea that female mating preferences evolve

for males that have high breeding values for fitness; this is

the so-called ‘‘good genes’’ theory of sexual selection

(Kirkpatrick and Ryan 1991). To quantify this argument,

we need to rely on theory to calculate how rapidly a mating

preference will evolve as the result of the genetic benefit it

receives by being associated with these good genes. The

challenge is how to do that calculation without information

about how mates are chosen or about the genetics of mate

choice, male display traits, and fitness genes.

New results from quantitative genetics theory make this

possible. Barton and Turelli (1991) developed a remark-

ably general framework for multilocus modeling that

makes two major advances over previous approaches. First,

it allows for exact descriptions of complex genetic systems,

allowing for any numbers of genes and distribution of their

effects. Second, under many situations the dynamics can be

approximated to high accuracy with simple expressions

using the ‘‘quasi-linkage equilibrium’’, or QLE, approxi-

mation. More recently, the Barton-Turelli framework has

been both generalized and simplified (Kirkpatrick et al.

2002).

These tools now allow us to calculate how mating

preferences evolve in terms of the genetic parameters

estimated from natural populations. The change in the

mean preference caused by good genes is

DP ¼ 1

2
qPT h2

PhT rTW

ffiffiffiffiffiffiffi

Gm
W

p

þ rfm
W

ffiffiffiffiffiffiffi

Gf
W

p

2

 !

ð7Þ

where the change in the mean preference DP is measured in

units of phenotypic standard deviations (Kirkpatrick and

Hall 2004). On the right, qPT is the phenotypic correlation

among mated pairs between the female’s preference and

the male’s display trait, h2
P and hT are the heritability of the

preference and the square root of the heritability of the

display trait, and rTW is the genetic correlation between a

male’s display trait and his lifetime fitness. A key point is

that this first set of terms cannot be larger than 1. Thus the

upper limit to the force of indirect selection is determined

by what follows.

The quantity inside the parentheses of Eq. 7 shows the

impact of genetic variation in fitness. The quantities
ffiffiffiffiffiffiffi

Gf
W

p

and
ffiffiffiffiffiffiffi

Gm
W

p

are the evolvabilities of female and male fitness,

and rfm
W is again the genetic correlation between male and

female fitness. Thus strong indirect selection on the pref-

erence results when fitness has large evolvabilities in both

sexes and the correlation between them is high. Con-

versely, a negative intersex correlation can nullify the

genetic benefit of mating with a high-fitness male. (The

relative weightings of male and female evolvabilities is

affected by sex linkage. Equation 6 assumes autosomal

inheritance, but analogous results are available for other

cases (Kirkpatrick and Hall 2004).)

Table 3 shows the implications. Taking the point esti-

mates of the genetic parameters at face value, it appears

that the intersex genetic correlation could largely eliminate

the genetic benefits to female mate choice. The next to last

column in Table 3 shows the estimate for the quantity in

parenthesis in Eq. 7. The last column shows the decrease in

the good genes effect caused by the imperfect intersex

correlation (that is, relative to a hypothetical population in

which rfm
W = 1). We see that the genetic benefit of mating a

high fitness male is decreased by 42–114%. Thus the

Table 3 Evolvabilities in males and females and the intersex corre-

lation of lifetime reproductive success in two natural populations

Species
ffiffiffiffiffiffiffi

Gm
W

p
ffiffiffiffiffiffiffi

Gf
W

p

rmf
W

ffiffiffiffiffi

Gm
W

p
þrmf

W

ffiffiffiffiffi

Gf
W

p
2

� �

% loss

Collared flycatchera 0.18 0.22 0.23 0.12 42

Collared flycatcherb 0.22 0.35 -0.85 -0.040 114

Red deerc 0.80 0.44 -0.48 0.29 53

See text for explanation of the last two columns
a (Qvarnstrom et al. 2006)
b (Brommer et al. 2007)
c (Foerster et al. 2007)
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negative intersex correlation might completely erase any

potential good genes effect.

The results on genetic variation for fitness add a new

perspective on the role of constraints. It was long assumed

that genetic variation for fitness was a limiting quantity in

evolution. The recent wave of data from natural popula-

tions suggests that in fact a potentially even more important

factor is that genes may typically have very different fitness

effects in males and females.

These conclusions are tentative. To date we have results

from a few populations, and those have large standard errors

and uncertainties regarding the measures of fitness. There is

another important caveat to these results. The animal model

assumes that the phenotypic contribution made by a given

genotype is constant in time. For fitness, that implies among

other things that the population is growing exponentially.

Density regulation makes the fitness produced by a given

genotype frequency-dependent. As a result, genotypes are

producing different fitness phenotypes in different genera-

tions, which violates the assumptions of the statistical

model. How this affects the estimates of standing genetic

variation for fitness is an important problem yet to be

resolved. Selection experiments (Chippindale et al. 2001;

Pischedda and Chippindale 2006; Prasad et al. 2007) and

controlled breeding (Luo et al. 2005) will be critical as

complimentary approaches to the analysis of variation in

natural populations.

Conclusions

The role of genetic correlations in limiting selection

response has been long recognized, but to date there has

been little effort to look for general patterns. Opportunities

to do so are expanding with the appearance of more mul-

tivariate and function-valued data sets, and the

development of new statistical methods for analyzing them.

Nondimensional statistics such as the ones suggested here

allow us to compare diverse organisms and phenotypes,

and provide a new way to quantify evolutionary con-

straints. The few data sets analyzed in this paper suggest

that while overall levels of genetic variation differ widely,

genetic correlations may typically reduce a population’s

effective number of evolutionary dimensions to something

less than two. The fundamental reasons for this pattern (if it

is indeed general) are unknown and warrant investigation.

If natural and artificial selection typically act in directions

(that is, on trait combinations) that are random with respect

to the axes of genetic variation, then the selection response

will much smaller than its potential maximum. The rate of

adaptation can also be greatly compromised by the absence

of a strong positive genetic correlation between the sexes

for fitness, as suggested from recent studies of natural

populations. An important research program for

evolutionary quantitative genetics is to explore the relation

between patterns of genetic variation and selection on

multivariate and function-valued phenotypes.
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Appendix

Our goal is to calculate R, the average relative selection

response to a selection gradient pointing in a random

direction and with a fixed magnitude. Selection response is

defined here as the length (norm) of Dez, the vector of

proportional changes in the trait means. We will calculate

that response relative to a hypothetical unconstrained

population whose eigenvalues are all equal to the maxi-

mum eigenvalue of the focal population.

The average selection response is

�R ¼
R p

0

R p
0

. . .
R 2p

0
RðHÞð dS

dHÞdh1dh2. . .dhn�1

k1

R p
0

R p
0

. . .
R 2p

0
ð dS

dHÞdh1dh2. . .dhn�1

ðA1Þ

The numerator is the expected selection response in the

focal population, and the denominator is the response in

the hypothetical unconstrained population. R(H) is the

selection response to a selection gradient oriented in the

direction given by the angles in the vector H whose

elements are h1,h2,…,hn–1. The ratio (dS=dH) is the change

in surface area of a unit sphere per change in the angles H,

and is given by

dS

dH
¼ 2

Y

n�2

i¼1

sini hi ðA2Þ

(see http://en.wikipedia.org/wiki/Hypersphere).

Without loss of generality, we can choose coordinates

that diagonalize the genetic covariance matrix. Then the

eigenvalues are equal to the genetic variances (ordered

from largest to smallest). The magnitude of the selection

response to a given selection gradient b is

R ¼
X

n

i¼1

ðkibiÞ2
" #1=2

ðA3Þ

where ki is again the ith eigenvalue and bi is the element of

the selection gradient corresponding to that trait. For a

selection gradient of unit length, R can be converted to the

polar coordinates of Eq. A1 using
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bi ¼ cos�i;nðhiÞ
Y

i�1

j¼1

sinðhjÞ ðA4Þ

where

cos�i;nðhiÞ ¼
cosðhiÞ if i 6¼ n
1 if i ¼ n

	

ðA5Þ

Substituting Eqs. A2–A5 into (A1) gives the average

selection response R in terms of integrals that can be

evaluated numerically once the eigenvalues are specified.

I calculated R this way using Mathematica (Wolfram

2003) for the three scalar-valued data sets. The results are

shown in Table 2. For the function-valued traits, the average

selection response is 0 because only a finite number of

eigenvalues are positive, but there are an infinite number of

trait combinations on which selection could theoretically act.

To better understand how the distribution of eigenvalues

affects R, I then considered hypothetical populations in

which the eigenvalues decline geometrically (exponen-

tially). The ratio of successive eigenvalues of the

standardized genetic covariance matrix, which is constant, is

denoted k. Thus k = 1 is the case where all traits have equal

genetic variance and no correlation, while if k = 0 all

genetic variation lies along a single dimension. It is conve-

nient to set the leading eigenvector to k1 = 1. The value of

the ith eigenvalue is then

ki ¼ ki�1k1: ðA6Þ

Substituting that expression into (A3) and then numerically

integrating (A1) using Mathematica (Wolfram 2003) gives

the results shown in Fig. 3.

It is possible to get simple analytic expressions for two

special cases. With k = 1, the population has no constraints,

and one can show Eq. A1 is equal to unity (as it must). At the

other extreme, consider the case of k = 0, so that all genetic

variation lies in a single dimension. Then we get

�R ¼

R p
0

R p
0

. . .
R 2p

0
j cos h1jð

Q

n�2

k¼1

sink hkÞdh1dh2. . .dhn�1

R p
0

R p
0

. . .
R 2p

0
ð
Q

n�2

k¼1

sink hkÞdh1dh2. . .dhn�1

¼ 2Cðn=2Þ
ðn� 1Þ

ffiffiffi

p
p

Cððn� 1Þ=2Þ
ðA7Þ

where C() is the gamma function. This appears in the

text as Eq. 5.
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