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COHERENT ANALOGUES OF MATRIX FACTORIZATIONS

AND RELATIVE SINGULARITY CATEGORIES
LEONID POSITSELSKI

ABSTRACT. We define the triangulated category of relative singularities of a closed
subscheme in a scheme. When the closed subscheme is a Cartier divisor, we con-
sider matrix factorizations of the related section of a line bundle, and their analogues
with locally free sheaves replaced by coherent ones. The appropriate exotic derived
category of coherent matrix factorizations is then identified with the triangulated
category of relative singularities, while the similar exotic derived category of locally
free matrix factorizations is its full subcategory. The latter category is identified
with the kernel of the direct image functor corresponding to the closed embed-
ding of the zero locus and acting between the conventional (absolute) triangulated
categories of singularities. Similar results are obtained for matrix factorizations
of infinite rank; and two different “large” versions of the triangulated category of
singularities, due to Orlov and Krause, are identified in the case of a divisor in a
smooth scheme. Contravariant (coherent) and covariant (quasi-coherent) versions
of the Serre—Grothendieck duality theorems for matrix factorizations are estab-
lished, and pull-backs and push-forwards of matrix factorizations are discussed at
length. A number of general results about derived categories of the second kind for
CDG-modules over quasi-coherent CDG-algebras are proven on the way.
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INTRODUCTION

A matriz factorization of an element w in a commutative ring R is a pair of square
matrices (@, V) of the same size, with entries from R, such that both the products W
and U are equal to w times the identity matrix. In the coordinate-free language,
a matrix factorization is a pair of finitely generated free R-modules M° and M!
together with R-module homomorphisms M° — M! and M' — M? such that
both the compositions M — M' — MY and M' — M° — M' are equal to
the multiplication with w. Matrix factorizations were introduced by Eisenbud [14]
and used by Buchweitz [4] for the purposes of the study of maximal Cohen—Macaulay
modules over hypersurface local rings.

Another name for this notion is “D-branes in the Landau-Ginzburg B model” (as
suggested by Kontsevich) [18]; in this context, the element w is called the superpo-
tential. One generalizes the above definition, replacing free modules with projective
modules [18, 27], with locally free sheaves [29], and finally with coherent sheaves [20].
The importance of the latter generalization is emphasized in the present paper.

Being particular cases of curved DG-modules over a curved DG-ring [18, 35], matrix
factorizations form a DG-category. So one can consider the corresponding category of
closed degree-zero morphisms up to chain homotopy, which is a triangulated category.
Generally speaking, however, the homotopy category is “too big” for most purposes,
and one would like to pass from it to an appropriately defined derived category.
One can use the homotopy category in lieu of the derived one when dealing with
projective modules [18, 27]; for locally free matrix factorizations over a nonaffine
scheme, there is an option of working with the quotient category of the homotopy
category by the locally contractible objects [31, Definition 3.13]. When dealing with



coherent (analogues of) matrix factorizations, having some kind of a derived category
construction is apparently unavoidable.

The relevant concept of a derived category is that of the derived category of the
second kind, as developed in [35, 34]. There are several versions of this notion; the
appropriate one for quasi-coherent sheaves is called the coderived category and for
coherent sheaves it is the absolute derived category. The absolute derived category
of locally free matrix factorizations was studied in [29]; for coherent matrix factor-
izations over a smooth variety, it was considered in [20]. These two absolute derived
categories are equivalent for regular schemes, but may be different otherwise.

The triangulated category of singularities of a Noetherian scheme was defined by
D. Orlov in [27] as the quotient category of the bounded derived category of coherent
sheaves by its full triangulated subcategory of perfect complexes, i. e., the objects
locally presentable as finite complexes of locally free sheaves. This triangulated cat-
egory vanishes if and only if the Noetherian scheme is regular. It was shown in [27,
Theorem 3.9], under mild assumptions on an affine regular Noetherian scheme X and
a superpotential (regular function) w on it, that the homotopy category of locally
free matrix factorizations of w over X is equivalent to the triangulated category of
singularities of the zero locus Xy of w in X.

In his recent paper [29], Orlov shows that the affineness assumption on X can be
dropped in this result, if one replaces the homotopy category of locally free matrix
factorizations with their absolute derived category. He also considers the general
case of a nonaffine singular scheme X, for which he obtains a fully faithful functor
from the absolute derived category of locally free matrix factorizations over X to the
triangulated category of singularities of X,. The problem of studying the difference
between these two triangulated categories was posed in the introduction to [29].

The first aim of the present paper is to provide an alternative proof of these re-
sults of Orlov for regular schemes, an alternative generalization of them to singular
schemes, and a more precise version of Orlov’s original generalization. We replace
the triangulated category at the source of Orlov’s fully faithful functor by a “larger”
category (containing the original one) and the triangulated category at the target
by a “smaller” category (a quotient of the original one), thereby transforming this
functor into an equivalence of triangulated categories. We also describe the image of
Orlov’s fully faithful functor as the kernel of a certain other triangulated functor.

More precisely, we show that the absolute derived category of coherent matrix
factorizations of w over X is equivalent to what we call the triangulated category of
singularities of Xo relative to X. The latter category is a certain quotient category
of the triangulated category of singularities of Xj; it measures, roughly speaking,
how much worse are the singularities of X, compared to those of X. As to the
image of Orlov’s fully faithful embedding, it consists precisely of those objects of
the conventional (absolute) triangulated category of singularities of X, whose direct
images vanish in the triangulated category of singularities of X.

The paper consists of two sections and a short appendix. In Section 1, we prove
three rather general technical assertions about derived categories of the second kind
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for CDG-modules over a quasi-coherent CDG-algebra with a restriction on the homo-
logical dimension. One of them, claiming that certain embeddings of DG-categories
of CDG-modules induce equivalences of the derived categories of the second kind, is
a generalization of [30, Theorem 3.2] based on a modification of the same argument,
originally introduced for the proof of [34, Theorem 7.2.2].

The idea of the proof of the other assertion, according to which certain natural
functors between derived categories of the second kind are fully faithful, is new. The
third technical assertion explains when the coderived category coincides with the
absolute derived category of the same class of CDG-modules: e. g., for the locally
projective CDG-modules this is true.

A version of (the former two of) these results is used in Section 2 in order to extend
Orlov’s cokernel functor from the absolute derived category of locally free matrix
factorizations to the absolute derived category of coherent ones. This extension
of the cokernel functor admits a simple construction of a functor in the opposite
direction, suggested in [20]. We use these constructions to obtain a new proof of
Orlov’s theorem, and our own generalization of it to the singular case.

When X is regular, Orlov’s and our results amount to the same assertion, since
the absolute derived categories of locally free and coherent matrix factorizations are
equivalent by our Theorem 1.4. When X is singular, the natural functor between
these two absolute derived categories is fully faithful by our Proposition 1.5, and
Orlov’s full-and-faithfullness theorem follows from ours by virtue of an appropriate
semiorthogonality property.

We also compare a “large” version of the triangulated category of relative singu-
larities with the coderived category of quasi-coherent matrix factorizations, strength-
ening some results of Polishchuk—Vaintrob [31]. A “large” version of the absolute
triangulated category of singularities, defined by Orlov in [27], is identified with
H. Krause’s stable derived category [19] in the case of a divisor in a regular scheme.

The homotopy categories of unbounded complexes of projective modules over a
ring and injective quasi-coherent sheaves over a scheme were studied in the papers by
Jorgensen [16] and Krause [19]; subsequently, Iyengar and Krause have constructed
an equivalence between these two categories for rings with dualizing complexes [15].
These results were extended to quasi-coherent sheaves over schemes by Neeman [26]
and Murfet [21], who found a way to define a replacement of the homotopy category
of (nonexistent) projective sheaves in terms of the flat ones. The equivalence between
these two categories is a covariant version of the Serre-Grothendieck duality [12]. It
is also very similar to the derived comodule-contramodule correspondence theory,
developed by the present author in [35, 34].

The Serre-Grothendieck duality for matrix factorizations in the situation of a
smooth variety X (and an isolated singularity of X,) was studied in [22]. In this paper
we extend the duality to matrix factorizations over much more general schemes X,
constructing an equivalence between two “large” exotic derived categories, namely,
the coderived category of flat (or locally free) matrix factorizations of possibly infinite
rank and the coderived category of quasi-coherent matrix factorizations. Unless X
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is Gorenstein, this equivalence is not provided by the natural functor induced by the
embedding of DG-categories, but rather differs from it in that the tensor product
with the dualizing complex has to be taken along the way. A contravariant Serre
duality in the form of an auto-anti-equivalence of the absolute derived category of
coherent matrix factorizations is also obtained.

There was some attention paid to push-forwards of matrix factorizations re-
cently [31, 8, 32]. We approach this topic with our techniques, constructing the
push-forwards of locally free matrix factorizations of infinite rank for any morphism
of finite flat dimension between schemes of finite Krull dimension, and the push-
forwards of locally free matrix factorizations of finite rank for any such morphism
for which the induced morphism of the zero loci of w is proper. At the price of
having to adjoin the images of idempotent endomorphisms, the preservation of
finite rank under push-forwards is proven assuming only the support of the matrix
factorization [31] to be proper over the base.

Push-forwards of quasi-coherent matrix factorizations are well-defined for any mor-
phism of Noetherian schemes, and push-forwards of coherent matrix factorizations
exist under properness assumptions similar to the above. A general study of category-
theoretic and set-theoretic supports of quasi-coherent and coherent CDG-modules is
undertaken in this paper in order to obtain an independent proof of the preservation
of coherence under the push-forwards not based on the passage to the triangulated
categories of singularities.

A short appendix contains proofs of some basic facts about flat, locally projective,
and injective quasi-coherent graded modules which are occasionally used in the main
body of the paper.
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stimulating questions, and Dmitri Orlov for his insightful remarks on an early version
of this manuscript. Finally, I would like to thank an anonymous referee for detailed
suggestions on the improvement of the exposition. The author is partially supported
by a Simons Foundation grant and an RFBR grant.

1. Exoric DERIVED CATEGORIES OF QUASI-COHERENT CDG-MODULES

1.1. CDG-rings and CDG-modules. A CDG-ring (curved differential graded
ring) B = (B,d,h) is defined as a graded ring B = @,., B' endowed with an odd
derivation d: B — B of degree 1 and an element h € B? such that d*(b) = [h,b]
for all b € B and d(h) = 0. So one should have d: B® — B and d(ab) = d(a)b +
(—1)lelad(b); the brackets [—, —] denote the supercommutator [a, b] = ab— (—1)!%1*lba.
The element h is called the curvature element.

A morphism of CDG-rings B — A is a pair (f,a), with a morphism of graded
rings f: B — A and an element a € A, such that f(dgb) = daf(b) + [a, f(b)] for
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all b € B and f(hg) = ha + daa + a®. The composition of morphisms of CDG-rings
is defined by the obvious rule (f,a)o(g,b) = (fog, a+ f(b)). The element a is called
the change-of-connection element. A discussion of the origins of these definitions can
be found in the paper [33], where the above terminology first appeared (see also an
earlier paper [9], where the motivation was entirely different).

A left CDG-module M = (M,dy) over a CDG-ring B is a graded B-module
endowed with an odd derivation dy;: M — M compatible with the derivation d
on B such that d3;(m) = hm for all h € M. Given a morphism of CDG-rings
(f,a): B— A and a CDG-module (M, d) over A, the CDG-module (M, d’) over B
is defined by the rule d’'(m) = d(m) + am.

Given graded left B-modules M and N, homogeneous B-module morphisms
f: M — N of degree n are defined as homogeneous maps supercommuting with
the action of B, i. e., f(bm) = (=1)"*lbf(m). When M and N are CDG-modules,
the homogeneous B-module morphisms M — N form a complex of abelian groups
with the differential d(f)(m) = d(f(m)) — (=1)¥1f(d(m)). The curvature-related
terms cancel out in the computation of the square of this differential, so one has
d*(f) = 0. Therefore, left CDG-modules over B form a DG-category.

Two aspects of the above definitions are worth to be pointed out. First, the
CDG-rings or modules have no cohomology modules, as their differentials do not
square to zero. Second, given a CDG-ring B, there is no natural way to define a
CDG-module structure on the free graded B-module B (though B is naturally a
CDG-bimodule over itself, in the appropriate sense).

We refer the reader to [35, Section 3.1] or [34, Sections 0.4.3-0.4.5] for more detailed
discussions of the above notions. We will not need to consider any gradings different
from Z-gradings in this paper, though all the general results will be equally applicable
in the I'-graded situation in the sense of [30, Section 1.1].

1.2. Quasi-coherent CDG-algebras. Throughout this paper, unless specified oth-
erwise, X is separated Noetherian scheme with enough vector bundles; in other words,
it is assumed that every coherent sheaf on X is the quotient sheaf of a locally free
sheaf of finite rank. Note that the class of all schemes satisfying these conditions
is closed under the passages to open and closed subschemes [27, Section 1.2] and
contains all regular separated Noetherian schemes [13, Exercise I11.6.8].

Recall the definition of a quasi-coherent CDG-algebra from [35, Appendix B]. A
quasi-coherent CDG-algebra B over X is a graded quasi-coherent Ox-algebra such
that for each affine open subscheme U C X the graded ring B(U) is endowed with a
structure of CDG-ring, i. e., a (not necessarily Ox-linear) odd derivation d: B(U) —
B(U) of degree 1 and an element h € B*(U). For each pair of embedded affine
open subschemes U C V C X, an element ayy € B'(U) is fixed such that the
restriction morphism B(V) — B(U) together with the element a; form a morphism
of CDG-rings. The obvious compatibility condition is imposed for triples of embedded
affine open subschemes U C V C W C X.

A quasi-coherent left CDG-module M over B is an Ox-quasi-coherent (or, equiva-
lently, B-quasi-coherent) sheaf of graded left modules over B together with a family
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of differentials d: M(U) — M(U) defined for all affine open subschemes U C X
such that M(U) is a CDG-module over B(U) and the appropriate compatibility con-
dition holds with respect to the restriction morphisms of CDG-rings B(V) — B(U).
Specifically, for a quasi-coherent left CDG-module M one should have d(s)|y =
d(s|y) + apy s|y for any s € M(V).

Quasi-coherent left CDG-modules over a quasi-coherent CDG-algebra B form a
DG-category [35]. The complex of morphisms between CDG-modules N and M is
the graded abelian group of homogeneous B-module morphisms f: N' — M with
the differential d(f) defined locally as the supercommutator of f with the differentials
in N(U) and M(U). We denote this DG-category by B—qcoh.

We will call a quasi-coherent graded algebra B over X Noetherian if the graded
ring B(U) is left Noetherian for any affine open subscheme U C X. Equivalently,
B is Noetherian if the abelian category of quasi-coherent graded left B-modules is a
locally Noetherian Grothendieck category. In this case, the full DG-subcategory in
B—-qcoh formed by CDG-modules whose underlying graded B-modules are coherent
(i. e., finitely generated over B) is denoted by B—coh.

Given a quasi-coherent graded left B-module M and a quasi-coherent graded right
B-module NV, one can define their tensor product N'®z M, which is a quasi-coherent
graded Ox-module. A quasi-coherent graded left B-module M is called flat if the
functor — ®p M is exact on the abelian category of quasi-coherent graded right
B-modules. Equivalently, M is flat if the graded left B(U)-module M(U) is flat for
any affine open subscheme U C X. The flat dimension of a quasi-coherent graded
module M is the minimal length of its flat left resolution.

The full DG-subcategory in B—qcoh formed by CDG-modules whose underlying
graded B-modules are flat is denoted by B-qcohy, and the full subcategory formed
by CDG-modules whose underlying graded B-modules have finite flat dimension is
denoted by B—qcohg,. The similarly defined DG-categories of coherent CDG-modules
are denoted by B—cohyq and B—cohgy.

All the above DG-categories of quasi-coherent CDG-modules (and the similar ones
defined below in this paper) admit shifts and twists, and, in particular, cones. It
follows that their homotopy categories H°(B-qcoh), H(B-qcohy), HY(B-coh), etc.
are triangulated. Besides, to any finite complex (of objects and closed morphisms)
in one of these DG-categories one can assign its total object, which is an object of
(i. e., a CDG-module belonging to) the same DG-category [35, Section 1.2].

The DG-categories B—qcoh and B-qcohy also admit infinite direct sums. Hence
in these two DG-categories one can totalize even an unbounded complex by taking
infinite direct sums along the diagonals.

The DG-category B—qcoh also admits infinite products (which one can obtain using
the coherator construction from [39, Section B.14]), but these are not well-behaved
(neither exact nor local), so we will not use them.

1.3. Derived categories of the second kind. The nonexistence of the cohomology
groups for curved structures stands in the way of the conventional definition of the
derived category of CDG-modules, which therefore does not seem to make sense. The
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suitable class of constructions of derived categories for CDG-modules is that of the
derived categories of the second kind [34, 35].

Let B be a quasi-coherent CDG-algebra over X; assume that the quasi-coherent
graded algebra B is Noetherian. Then a coherent CDG-module over B is called
absolutely acyclic if it belongs to the minimal thick subcategory of the homotopy
category of coherent CDG-modules H°(B—coh) containing the total CDG-modules of
all the short exact sequences of coherent CDG-modules over B (with closed morphisms
between them). The quotient category of H°(B-coh) by the thick subcategory of
absolutely acyclic CDG-modules is called the absolute derived category of coherent
CDG-modules over B and denoted by D**(B-coh) [35].

For any quasi-coherent CDG-algebra B over X, a quasi-coherent CDG-module
over B is called coacyclic if it belongs to the minimal triangulated subcategory of
the homotopy category of quasi-coherent CDG-modules H°(B-qcoh) containing the
total CDG-modules of all the short exact sequences of quasi-coherent CDG-modules
over B and closed under infinite direct sums. The quotient category of H°(B-coh)
by the thick subcategory of coacyclic CDG-modules is called the coderived category
of quasi-coherent CDG-modules over B and denoted by D (B-qcoh) [34, 35].

Given an exact subcategory E in the abelian category of quasi-coherent graded left
B-modules, one can define the absolute derived category of left CDG-modules over B
with the underlying graded B-modules belonging to E as the quotient category of the
corresponding homotopy category by its minimal thick subcategory containing the to-
tal CDG-modules of all the exact triples of CDG-modules with the underlying graded
B-modules belonging to E. The objects of the latter subcategory are called absolutely
acyclic with respect to E (or with respect to the DG-category of CDG-modules with
the underlying graded modules belonging to E) [30].

So one defines the absolute derived categories D3P*(B-cohgq) and D*(B-cohy) as
the quotient categories of the homotopy categories H°(B—cohgy) and H°(B—cohy) by
the thick subcategories of CDG-modules absolutely acyclic with respect to B—cohggy
and B—-cohg, respectively.

When the exact subcategory E is closed under infinite direct sums, the thick sub-
category of CDG-modules coacyclic with respect to E is the minimal triangulated
subcategory of the homotopy category CDG-modules with the underlying graded
modules belonging to E, containing the total CDG-modules of all the exact triples of
CDG-modules with the underlying graded modules belonging to E and closed under
infinite direct sums. The quotient category by this thick subcategory is called the
coderived category of left CDG-modules over B with the underlying graded modules
belonging to E [34, 30].

Thus one defines the coderived category D°(5—qcohy) as the quotient categories
of the homotopy category H°(B-qcohy) by the thick subcategory of CDG-modules
coacyclic with respect to B-qcohy. The definition of the coderived category
De°(B—qcohgy) requires a little more care, since the class of graded modules of
finite flat dimension is not in general closed under infinite direct sums. An object
M € H°(B—qcohg,) is said to be coacyclic with respect to B—qcohgy if there exists
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an integer d > 0 such that M is coacyclic with respect to the exact category of
quasi-coherent CDG-modules of flat dimension < d. The coderived category of
quasi-coherent CDG-modules of finite flat dimension is, by the definition, the quo-
tient category of H®(B—qcohgy) by the above-defined thick subcategory of coacyclic
CDG-modules [30, Section 3.2].

Remark. One may wonder whether coacyclicity (absolute acyclicity) of quasi-
coherent CDG-modules (of a certain class) is a local notion. One general approach
to this kind of problems is to consider the Mayer—Vietoris/Cech exact sequence

0 \ M @Oc .jUa*j(*]aM - > ®a<5 jUaﬂMﬁ*j(*]aﬁUBM e 0

for a finite affine open covering U, of X. Since the inverse and direct images with
respect to affine open embeddings are exact and compatible with direct sums, they
preserve coacyclicity (absolute acyclicity). Hence if the restrictions of M to all U,
are coacyclic (absolutely acyclic), then so is M itself.

Alternatively, one can base this kind of argument on the implications of the
Noetherianness assumption, rather than the separatedness assumption. For this pur-
pose, one replaces a quasi-coherent CDG-module M with its injective resolution
(see Lemma 1.7(b)) before writing down its Cech resolution. In this approach, the
covering need not be affine, as injective coacyclic objects are contractible, and di-
rect images preserve contractibility; but it is important that the restrictions to open
subschemes should preserve injectivity of quasi-coherent graded B-modules (see [12,
Theorem I1.7.18] and Theorem A.3; cf. [39, Appendix B]).

When one is working with coherent CDG-modules, the Cech sequence argument is
to be used in conjuction with Proposition 1.5 below.

1.4. Finite flat dimension theorem. The next theorem is our main technical re-
sult on which the proofs in Section 2 are based.

Though we generally prefer the coderived categories of (various classes of) infinitely
generated CDG-modules over their absolute derived categories, technical considera-
tions sometimes force us to deal with the latter (see Remark 1.5). Therefore, let
Db*(B-qcohy), D"*(B-qcohgy), and DP(B-qcoh) denote the absolute derived cat-
egories of (flat, of finite flat dimension, or arbitrary) quasi-coherent CDG-modules
over a quasi-coherent CDG-algebra B.

Theorem. (a) For any quasi-coherent CDG-algebra B over X, the functor
D (B—qcohy) — D (B-qcohgy) induced by the embedding of DG-categories
B-qcohy — B-qcohgy is an equivalence of triangulated categories.

(b) For any quasi-coherent CDG-algebra B over X, the functor D**(B—qcohy) —
Db*(B—qcohygy) induced by the embedding of DG-categories B—qcohy — B—qcohgy is
an equivalence of triangulated categories.

(¢) For any quasi-coherent CDG-algebra B over X such that the underlying quasi-
coherent graded algebra B is Noetherian, the functor D®*(B-cohq) — D3 (B-cohgq)
induced by the embedding of DG-categories B—cohy — B—cohgy is an equivalence of
triangulated categories.



Proof. The proof follows that of [30, Theorem 3.2] (see also [34, Theorem 7.2.2]) with
some modifications. We will prove part (a); the proofs of parts (b-c) are completely
similar. (Alternatively, parts (b-c) can be deduced from Proposition 1.5(a-b) below.)

Given an affine open subscheme U C X and a graded module P over the graded ring
B(U), one can construct the freely generated CDG-module G*(P) over the CDG-ring
B(U) in the way explained in [35, proof of Theorem 3.6]. The elements of G*(P) are
formal expressions of the form p+ dq, where p, ¢ € P. Given a quasi-coherent graded
module P over B, the CDG-modules G (P(U)) glue together to form a quasi-coherent
CDG-module G*(P) over B. For any quasi-coherent CDG-module M over B, there
is a bijective correspondence between morphisms of graded B-modules P — M and
closed morphisms of CDG-modules GT(P) — M over B. There is a natural short
exact sequence of quasi-coherent graded B-modules P — G (P) — P[—1]. The
quasi-coherent CDG-module G*(P) is naturally contractible with the contracting
homotopy ¢p given by the composition G*(P) — P[—1] — GT(P)[-1].

Due to our assumption on X, for any quasi-coherent Ox-module I over X there
exists a surjective morphism & — K onto K from a direct sum & of locally free
sheaves of finite rank on X. Hence for any quasi-coherent graded B-module M
there is a surjective morphism onto M from a flat quasi-coherent graded B-module
P = D, B ®o, E:n], and for any quasi-coherent CDG-module M over B there
is a surjective closed morphism onto M from the CDG-module G*(P) € B—qcohy.
(In fact, parts (a-b) of Theorem can be proven without the assumption of enough
vector bundles on X, since there are always enough flat sheaves; see Remark 2.6 and
Lemma A.1.)

Now the construction from [35, proof of Theorem 3.6] provides for any object
M of B-qcohgy a closed morphism onto M from an object of B—qcohy with the
cone absolutely acyclic with respect to B—qcohgy. To obtain this morphism, one
picks a finite left resolution of M consisting of objects from B-qcohy with closed
morphisms between them, and takes the total CDG-module of this resolution. By [35,
Lemma 1.6], it follows that the triangulated category D(B-qcohgy) is equivalent
to the quotient category of H°(B—qcohy) by its intersection in H°(B-qcohg,) with
the thick subcategory of CDG-modules coacyclic with respect to B—qcohgy. It only
remains to show that any object of H°(B—qcohg) that is coacyclic with respect to
B—qcohgy is coacyclic with respect to B-qcoh.

Let us call a quasi-coherent CDG-module M over B d-flat if its underlying
quasi-coherent graded B-module M has flat dimension not exceeding d. A d-flat
quasi-coherent CDG-module is said to be d-coacyclic if it is homotopy equivalent
to a CDG-module obtained from the total CDG-modules of exact triples of d-flat
CDG-modules using the operations of cone and infinite direct sum. Our goal is to
show that any 0-flat d-coacyclic CDG-module is 0-coacyclic. For this purpose, we
will prove that any (d — 1)-flat d-coacyclic CDG-module is (d — 1)-coacyclic; the
desired assertion will then follow by induction.

It suffices to construct for any d-coacyclic CDG-module M a (d — 1)-coacyclic
CDG-module £ with a (d — 1)-coacyclic CDG-submodule K such that the quotient
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CDG-module £/K is isomorphic to M. Then if M is (d — 1)-flat, it would follow
that both the cone of the morphism K — £ and the total CDG-module of the exact
triple L — £ — M are (d — 1)-coacyclic, so M also is. The construction is based
on four lemmas similar to those in [30, Section 3.2].

Lemma A. Let M be the total CDG-module of an exact triple of d-flat quasi-coherent
CDG-modules M' — M" — M" over B. Then there exists a surjective closed
morphism onto M from a contractible 0-flat CDG-module P with a (d — 1)-coacyclic
kernel IC.

Proof. Choose 0-flat quasi-coherent CDG-modules P’ and P such that there exist
surjective closed morphisms P’ — M’ and P” — M"”. Then there exists a
surjective morphism from the exact triple of CDG-modules P’ — P’ @ P — P
onto the exact triple M’ — M"” — M"". The rest of the proof is similar to that
in [30]. 0

Lemma B. (a) Let K' C L' and K" C L be (d — 1)-coacyclic CDG-submodules in
(d — 1)-coacyclic CDG-modules, and let L'/K' — L"/K" be a closed morphism of
CDG-modules. Then there exists a (d — 1)-coacyclic CDG-module L with a (d — 1)-
coacyclic CDG-submodule IC such that L/K ~ cone(L' /K" — L"/K").

(b) In the situation of (a), assume that the morphism L' /K" — L" /K" is injective
with a d-flat cokernel Mgy. Then there ezists a (d—1)-coacyclic CDG-module Lo with
a (d — 1)-coacyclic CDG-submodule ICy such that Lo/Ko ~ M.

Proof. The proof is similar to that in [30]. OJ

Lemma C. For any contractible d-flat CDG-module M there exists a surjective
closed morphism onto M from a contractible 0-flat CDG-module L with a (d — 1)-
coacyclic kernel IC.

Proof. Let p: P — M be a surjective morphism onto the quasi-coherent graded
B-module M from a flat quasi-coherent graded B-module P, and p: G (P) — M
be the induced surjective closed morphism of quasi-coherent CDG-modules. Let
t: M — M be a contracting homotopy for M and tp: Gt(P) — GT(P) be
the natural contracting homotopy for G*(P). Then @ = ptp — tp: GH(P) — M
is a closed morphism of quasi-coherent CDG-modules of degree —1. Denote by u
the restriction of @ to P C G*(P). There exists a surjective morphism from a
flat quasi-coherent graded B-module Q onto the fibered product of the morphisms
p: P — M and u: P — M. Hence we obtain a surjective morphism of quasi-
coherent graded B-modules q: @ — P and a morphism of quasi-coherent graded
B-modules v: Q@ — P of degree —1 such that uq = pv.

The morphism ¢ induces a surjective closed morphism of quasi-coherent CDG-mod-
ules ¢: GT(Q) — GT(P). The morphism ¢ is homotopic to zero with the natural
contracting homotopy ¢tg = tpg. The morphism v induces a closed morphism of
CDG-modules 0: GT(Q) — G*(P) of degree —1. The morphism ¢p§ — ¥ is another
contracting homotopy for g. The latter homotopy forms a commutative square with

the morphisms p, pg, and the contracting homotopy ¢ for the CDG-module M.
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Let NV be the kernel of the morphism p¢: G*(Q) — M and K be the kernel of the
morphism p: Gt(P) — M. Then the natural surjective closed morphism r: N —
KC is homotopic to zero; the restriction of the map tpq — v provides the contracting
homotopy that we need. In addition, the kernel G*(kerq) of the morphism r is
contractible. So the cone of the morphism r is isomorphic to K & N1], and on the
other hand there is an exact triple G*(ker ¢)[1] — cone(r) — cone(idy). Since K
is (d — 1)-flat and ker ¢ is flat, this proves that IC is (d — 1)-coacyclic. It remains to
take L = G1(P). O

Lemma D. Let M — M’ be a homotopy equivalence of d-flat CDG-modules such
that M is the quotient CDG-module of a (d—1)-coacyclic CDG-module by a (d—1)-
coacyclic CDG-submodule. Then M is also such a quotient.

Proof. The proof is similar to that in [30]. O

It is clear that the property of a CDG-module to be presentable as the cokernel
of an injective closed morphism of (d — 1)-coacyclic CDG-modules is stable under
infinite direct sums. This finishes our construction and the proof of Theorem. O

Remark. The assertion of part (c¢) of Theorem 1.4 can be equivalently rephrased
with flat modules replaced by locally projective ones. Indeed, a finitely presented
module over a ring is flat if and only if it is projective.

In the infinitely generated situation of parts (a-b), flatness of quasi-coherent sheaves
is different from their local projectivity (which is a stronger condition), but the as-
sertions remain true after one replaces the former with the latter. The same applies
to Proposition 1.5(a) below. Indeed, by Theorem A.2, for any quasi-coherent graded
algebra B over an affine scheme U, projectivity of a graded module over the graded
ring B(U) is a local notion. Taking this fact into account, our proof goes through for
locally projective quasi-coherent graded modules in place of flat ones and the locally
projective dimension (defined as the minimal length of a locally projective resolution)
in place of the flat dimension.

When B = Oy, local projectivity of quasi-coherent modules is equivalent to local
freeness [2, Corollary 4.5]. Furthermore, in this case, assuming additionally that X
has finite Krull dimension, the classes of quasi-coherent sheaves of finite flat dimension
and of finite locally projective dimension coincide [37, Corollaire 11.3.3.2].

1.5. Fully faithful embedding. The next proposition is stronger than Theorem 1.4
in some respects, and is proven by an entirely different technique.

Proposition. (a) For any quasi-coherent CDG-algebra B over X, the func-
tor D*(B-qcohy) — D (B-qcoh) induced by the embedding of DG-categories
B—-qcohy — B—qcoh is fully faithful.

Furthermore, let B be a quasi-coherent CDG-algebra over X such that the under-
lying quasi-coherent graded algebra B is Noetherian. Then

(b) the functor D®$(B-cohq) — D(B-coh) induced by the embedding of
DG-categories B-cohq — B—coh 1is fully faithful;
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(c) the functor D¥®(B-coh) — D(B-qcoh) induced by the embedding of
DG-categories B-coh — B—qcoh s fully faithful;

(d) the functor D¥*(B-coh) —s D<(B-qcoh) induced by the embedding of
DG-categories B-coh — B—qcoh is fully faithful and its image forms a set of
compact generators for D<°(B—qcoh).

Proof. The proof of part (d) in the case when X is affine can be found in [35, Sec-
tion 3.11] (the part concerning compact generation belongs to D. Arinkin). The proof
in the general case is similar; and part (c) can be also proven in the way similar to [35,
Theorem 3.11.1]. Part (b) in the affine case is easy and follows from the semiorthog-
onality property of CDG-modules with projective underlying graded modules and
absolutely acyclic/contraacyclic CDG-modules [35, Theorem 3.5(b)], since finitely
generated flat modules over a Noetherian ring are projective. A detailed proof of
part (b) in the general case is given below; and the proof of part (a) (which does not
automatically simplify in the affine case) is similar.

We will show that any morphism & — £ from a CDG-module £ € H°(B-cohg) to
a CDG-module £ € H°(B-coh) absolutely acyclic with respect to B-coh can be an-
nihilated by a morphism P — £ into £ from a CDG-module P € H°(B-cohg) with
a cone of the morphism P — & being absolutely acyclic with respect to B—cohg.
By the definition, the CDG-module £ is a direct summand of a CDG-module ho-
motopy equivalent to a CDG-module obtained from the totalizations of exact triples
of CDG-modules in B—coh using the operation of passage to the cone of a closed
morphism repeatedly. It suffices to consider the case when L itself is obtained from
totalizations of exact triples using cones. We proceed by induction in the number of
operations of passage to the cone in such a construction of L.

So we assume that there is a distinguished triangle K — £ — M — K[1] in
H(B-coh) such that M is the total CDG-module of an exact triple of CDG-modules
in B—coh, while the CDG-module K has the desired property with respect to mor-
phisms into it from all CDG-modules F € H°(B-cohg). If we knew that the object M
also has the same property, it would follow that the composition &€ — £ — M can
be annihilated by a morphism F — & with F € H°(B-cohg) and a cone absolutely
acyclic with respect to B—cohg. The composition F — £ — L then factorizes
through IC, and the morphism F — K can be annihilated by a morphism P — F
with P € H°(B-cohg) and a cone absolutely acyclic with respect to B—cohg. The
composition P — F — & provides the desired morphism P — £.

Thus it remains to construct a morphism F — £ with the required properties an-
nihilating a morphism & — M, where M is the total CDG-module of an exact triple
of CDG-modules i/ — V — W. For any graded module N over B, morphisms of
graded B-modules N' — M of degree n are represented by triples (f, g, h), where
f: N — U is a morphism of degree n + 1, g: N — V is a morphism of degree n,
and h: N' — W is a morphism of degree n — 1. Denote the closed morphisms in
the exact tripled —V — Why j: U — Vand k: V — W.

Lemma E. Let N be a CDG-module over B and M be the total CDG-module of an

exact triple of CDG-modulesd — V — W as above. Then
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(a) the differential of a morphism of graded B-modules N' — M of degree n rep-
resented by a triple (f, g, h) is given by the rule d(f, g, h) = (=df, —jf +dg, kg—dh);
(b) when (f,g,h) is a closed morphism of CDG-modules of degree n and the mor-
phism of graded B-modules h: N — W can be lifted to a morphism of graded
B-modules t: N'— V of degree n — 1, the morphism (f, g, h) is homotopic to zero.

Proof. The complex of morphisms in the DG-category of CDG-modules Homg(N, M)
is the total complex of the bicomplex of abelian groups Homg(N,U) —>
Homg(N,V) — Homg(N,W). The formula in (a) is the formula for the dif-
ferential of a total complex.

Furthermore, the sequence 0 — Homp (N ,U) — Homp(N,V) — Homg(N, W)
is exact. Let Homyx(N, W) denote the cokernel of the morphisms of complexes
Homg(N,U) — Hompg (N, V); then Hompz (N, W) is a subcomplex of Homg(N, W)
and the total complex of the bicomplex Homg(N,U) — Homg(WN,V) —
Homy (N, W) is an acyclic subcomplex of Homg(N, M). Hence any cocycle in
Homp(N, M) that belongs to this subcomplex is a coboundary.

To present the same argument using our letter notation for morphisms, assume
that kt = h. Then k(dt — g) = dh — kg = 0, so there exists a morphism of graded
B-modules s: N' — U of degree n such that dt — g = js. Then jds = —dg = —j f,
hence ds = —f and d(s,t,0) = (f, g, h). O

Recall the notation G*(Q) for the CDG-module freely generated by a graded
B-module Q (see the beginning of the proof of Theorem 1.4).

Lemma F. Let M be the total CDG-module of an exact triple of CDG-modules
U— YV — W as above, and let Q be a graded B-module. Assume that a morphism
of graded B-modules p: Q — M of degree n with the components (f,g,h) is given
such that the component h: Q — W can be lifted to a morphism of graded B-modules
t: Q@ —V of degree n — 1. Let p: GT(Q) — M be the induced closed morphism of
CDG-modules of degree n and (f, g, fz) be its three components. Then the morphism of
graded B-modules h: GT(Q) — W can be lifted to a morphism of graded B-modules
t: GH(Q) — V of degree n — 1.

Proof. Notice that any closed morphism of CDG-modules G*(Q) — M is homo-
topic to zero, since the CDG-module G*(Q) is contractible. The conclusion of the
lemma is stronger, and we will need its full strength. The argument consists in a
computation in the letter notation for morphisms.

For any CDG-module A over B, morphisms of graded B-modules 7: Gt(Q) — N
of degree n — 1 are uniquely determined by their restriction to @ and the restriction
to Q of their differential dr, which can be arbitrary morphisms of graded B-modules
Q — N of the degrees n—1 and n, respectively. Extend our morphism¢: @ — V to
a morphism of graded B-modules £: GT(Q) — V of degree n—1 such that (df)|o = g.
Then ktlg = kt = h = h|g and (d(kt))|o = k(df)|lq = kg = kilo = (dh)|q by
Lemma E(a), hence ki = h. O
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Now represent a closed morphism & — M by a triple (f, g, h) of morphisms of
the degrees 1, 0, and —1, respectively. Let Q be a flat coherent graded B-module
mapping surjectively onto the fibered product of the morphisms k: V — W and
h: & — W (see the beginning of the proof of Theorem 1.4 again). Then there is a
surjective morphism of graded B-modules ¢: @ — £ and its composition with the
morphism h: & — W can be lifted to a morphism of graded B-modules t: Q@ — V
of degree —1. Consider the induced morphism of CDG-modules ¢: GT(Q) — £. By
Lemma F, the composition hg: GT(Q) — W can be lifted to a morphism of graded
B-modules t: GT(Q) — V of degree —1.

Let R denote the kernel of the closed morphism ¢. Then the cone F of the em-
bedding R — G*(Q) maps naturally onto £ with the cone absolutely acyclic with
respect to B-cohy. As a graded B-module, the CDG-module F is isomorphic to
GT(Q) @ R[1]; the composition F — & — M factorizes through the direct sum-
mand GT(Q), where it is defined by the triple (f¢, g4, hG). Since the morphism hg
can be lifted to V, so can the corresponding component F — W of the morphism
F — M. Thus the latter morphism is homotopic to zero by Lemma E(b). O

In some cases the use of Lemma F in the above proof of part (b) can be avoided.
Assume that X is a projective scheme over a Noetherian ring and the category of
coherent graded B-modules is equivalent to the category of coherent modules over
some coherent (graded) Ox-algebra A. In this situation, one takes Q to be the graded
B-module corresponding to the (graded) A-module induced from a large enough finite
direct sum of (shifts of) copies of a sufficiently negative invertible Ox-module; then
there is a surjective morphism of graded B-modules @ — £ and any morphism of
graded B-modules GT(Q) — W lifts to V.

Remark. We do not know how to extend the proof of Proposition 1.5(a-b) to the
coderived categories of quasi-coherent CDG-modules. Instead, this argument appears
to be well-suited for use with the contraderived categories (see [35, Section 3.3] for
the definition). In particular, it allows to show that the contraderived category of left
CDG-modules over a CDG-ring B with a right coherent underlying graded ring is
equivalent to the contraderived category of CDG-modules whose underlying graded
B-modules are flat (cf. [35, paragraph after the proof of Theorem 3.8]).

This is the main reason why we sometimes find it easier to deal with the absolute
derived rather than the coderived categories of infinitely generated CDG-modules
(cf. Remark 2.8). On the other hand, for the coderived category of quasi-coherent
CDG-modules we have the compact generation result (part (d) of Proposition), the
results and arguments of Sections 1.7, 1.10, 2.5, 2.9, etc. The conditions under which
these two versions of the construction of the derived category of the second kind for
a given class of CDG-modules lead to the same triangulated category are discussed
below in Section 1.6.

1.6. Finite homological dimension theorem. Let B-qcoh, denote the DG-cate-
gory of quasi-coherent CDG-modules over B whose underlying graded B-modules are
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locally projective (see Remark 1.4 and Theorem A.2). Denote by D(B-qcoh,,) and
Dabs(qucohlp) the corresponding coderived and absolute derived categories.

Theorem. The triangulated categories D°(B-qcohy,) and D*(B-qcoh,,) coincide,
i. e., every CDG-module over B that is coacyclic with respect to B-qcoh, is also
absolutely acyclic with respect to B-qcohy,.

Proof. The reason for this assertion to be true is that the exact category of locally
projective graded B-modules has finite homological dimension [27, Lemma 1.12] and
exact functors of infinite direct sums. If this exact category also had enough injectives,
the simple argument from [35, Theorem 3.6(a) and Remark 3.6] would suffice to
establish the desired D® = D" isomorphism for it (see also [34, Remark 2.1]). The
lengthy argument below is designed to provide a way around the injective objects
issue in this kind of proof.

Our aim is to show that for any closed morphism P — £ from a CDG-module
P € B-qcohy, to a CDG-module absolutely acyclic with respect to B-qcoh, there
exists an exact sequence 0 — Q4 — Q41 — -+ — Qg — P — 0 of
CDG-modules and closed morphisms in B-qcoh,, such that the induced morphism
from the total CDG-module of Q; — -+ — Qg to L is homotopic to zero. Here
d is a fixed integer equal to the homological dimension of the exact category of locally
projective graded B-modules, which does not exceed the number of open subsets in
an affine covering of X minus one.

Taking P = L and the morphism P — L to be the identity, we will then conclude
that P is isomorphic to a direct summand of the total CDG-module of Q; — - -+ —
Qy — P in H(B-qcoh,,). Hence an object of H°(B-qcoh,,) is absolutely acyclic
with respect to B-qcohy, if and only if it is isomorphic to a direct summand of the
total CDG-module of a (d + 2)-term exact sequence of CDG-modules from B-qcohy,
with closed morphisms between them. It will immediately follow that the class of
CDG-modules absolutely acyclic with respect to B-qcoh, is closed under infinite
direct sums, so it coincides with the class of coacyclic CDG-modules.

We can suppose that there exists a sequence of distinguished triangles ;_; —
Ki — M; — K;_1[1] in H°(B-qcohy,) such that Ky = 0, K, = £, and M, is
the total CDG-module of an exact triple U; — V; — W, of CDG-modules from
l’:)’chohIp for all 1 < ¢ < n. We will start with constructing an exact sequence
0— Q, — -+ — Q) — P — 0 with the above properties, but of the length n
rather than d. Then we will use the finite homological dimension property of locally
projective graded B-modules in order to obtain the desired resolution Q, of a fixed
length d from a resolution Q..

Lemma G. Let M be the total CDG-module of an exact triple U — V — W
of CDG-modules from B-qcoh,, and K — L — M — K[1] be a distinguished
triangle in H°(B-qcoh,). Then for any CDG-module P € B-qcoh, and a mor-
phism P — L in HO(qucohm) there exists an exact triple R — Q — P of
CDG-modules from B-qcohy, and a morphism R[1] — K in H°(B-qcoh,,) such
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that the composition F — P — L, where F is the cone of the closed morphism
R — Q, is equal to the composition F — R[1] — K — L in H°(B-qcohy,).

Proof. The argument is based on Lemmas E-F from Section 1.5. We can assume
that £ is the cone of a closed morphism M[—1] — K and fix a closed morphism
P — L representing the given morphism in the homotopy category. Arguing as in
the proof of Proposition 1.5, we can construct a surjective closed morphism Q' — P
onto P from a CDG-module Q" € B-qcoh,, such that the composition Q" — P —
L — M — W[—1] lifts to a morphism of graded B-modules Q" — V[—1]. Here
it suffices to apply the functor G to the fibered product of the morphisms of graded
B-modules P — W[—1] and V[-1] — W[—1], and use Lemma F.

Then the morphism @ — M is homotopic to zero with a natural contracting
homotopy (provided by the proof of Lemma E), so the morphism Q" — L factorizes,
up to a homotopy, as the composition of a naturally defined closed morphism Q" —
K and the closed morphism K — L. Set Q to be the cocone of the closed morphism
Q' — K; then we have a surjective closed morphism Q — Q' such that the
composition @ — Q" — K is homotopic to zero.

Let R be kernel of the morphism @ — P and F be the cone of the morphism
R — Q; then there is a natural closed morphism F — P. Using Lemma E and
arguing as in the end of the proof of Proposition 1.5 again, we can conclude that the
composition F — P — L — M is homotopic to zero. Indeed, the composition
F — M — WI[—1] lifts to a graded B-module morphism F — V[—1], since
F ~ Q& R[—1] as a graded B-module, the morphism F — M factorizes through
the projection of F onto Q, and the morphism Q — Q" — W[—1] lifts to a graded
B-module morphism Q — Q" — V[—1] by our construction.

Notice that the contracting homotopy that we have obtained for the closed mor-
phism F — M forms a commutative diagram with the closed morphisms Q — F,
Q — Q' and the contracting homotopy that we have previously had for the closed
morphism @ — M (since so do the liftings F — V[—1] and Q" — V[-1]).
This allows to factorize, up to a homotopy, the close morphism F — L as the
composition of a closed morphism F — K and the closed morphism £ — L in
such a way that the morphism F — K forms a commutative diagram with the
closed morphisms Q@ — F, Q — @', and the closed morphism Q" — K that we
have previously constructed. The composition @ — F — K, being equal to the
composition @ — Q' — K, is homotopic to zero; hence the morphism F — K
factorizes through the closed morphism F — R[1] in H°(B-qcoh,,). O

Applying Lemma G to the morphism P — £ and the distinguished triangle
Kn-i — L — M, — K,_1, we obtain an exact triple Rj; — Q; — P and
a morphism R{[1] — K,_1 in H°(B-qcoh,). Applying the same lemma again to
the morphism Rj[1] — K,_; and the distinguished triangle KC,,—o — K,—1 —
M1 — K,—2[1], we construct an exact triple R} — Q] — R{, and a morphism
R} [2] — K, —2, etc. Finally we obtain an exact triple R),_; — Q.,_; — R,_, and
a morphism R, _,[n] — Ky = 0.
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Let us check that the natural morphism from the total CDG-module of the complex
0O — R, , — Q _, — -+ — Qf to the CDG-module £ is homotopic to
zero. Denote this morphism by f,. It factorizes naturally through the cone Fy
of the closed morphism R — @, and the morphism F; — L is homotopic
to the composition Fy — R{[1] — K,,-1 — L. Hence, up to the homotopy, the
morphism f,, factorizes through the morphism f,,_; from the the total CDG-module of
the complex 0 — R, |, — 9, — -+ — Q) to K,,_; induced by the morphism
Ry[1] — K,—1. Continuing to argue in this way, we conclude that the morphism f
factorizes, up to a homotopy, through the morphism fy: R,,_;[n] — Ko = 0.

It remains to “cut” our exact sequence of an unknown length n to a fixed size d.
For this purpose, we will assume that n > d and construct from our exact sequence
of length n another exact sequence with the same properties, but of the length n — 1.
This part of the argument is based on the following lemma.

Lemma H. For any CDG-module M € B—qcoh,,, locally projective graded B-module
&, and a homogeneous surjective morphism of locally projective graded B-modules
& — M, there exist a CDG-module Q € B-qcohy,, a surjective closed morphism of
CDG-modules @ — M, and a homogeneous surjective morphism of locally projective
graded B-modules Q — &, such that the triangle @ — & — M commutes.

Proof. For any open subscheme U C X, one can simply define Q'(U) as the abelian
group of all pairs (¢ € ETYU), e € £'(U)) such that df (e) = f(€'), where f denotes
the morphism of graded B-modules & — M and d is the differential in M. The
action of B in Q is defined by the formula b(e/,e) = ((—1)be’ 4 d(b)e, be); the
differential in Q is given by the obvious rule d(¢’,e) = (he, €’). The morphism Q —
& is defined as (¢/,e) — e; the morphism Q@ — M, given by (¢/,e) —> f(e),
obviously commutes with the differentials.

It remains to check that the graded B-module Q is locally projective. This can
be done by comparing the above construction with the constructions of the freely
(co)generated CDG-modules G*(€) and G~ (&) from [35, proof of Theorem 3.6] (see
the beginning of the proof of Theorem 1.4). One can simply define G~ (&) as being
isomorphic to G*(&)[1]. Since M is a CDG-module, there is a natural closed mor-
phism of CDG-modules M — G~ (M). The CDG-module Q is the fibered prod-
uct of the surjective closed morphism of CDG-modules G=(£) — G~ (M) and the
closed morphism M — G~ (M); hence the graded B-module Q is locally projective.
The morphism Q — & is induced by the natural morphism of graded B-modules
G~ (&) — &. It forms a commutative diagram with the morphism & — M, since
the composition M — G~ (M) — M is the identity morphism. O

The exact sequence of CDG-modules 0 — R, ;| — Q! | — -+ — Q) —>

P — 0 represents a certain Yoneda Ext class of degree n between the locally pro-
jective graded B-modules P and R/_,. Since the homological dimension of the exact
category of such B-modules is equal to d and we assume that n > d, this Ext class
has to vanish. This means that there exists an exact sequence of locally projective
graded B-modules 0 — R! | — &,1 — -+ — & — P — 0 mapping to our
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original exact sequence, with the maps on the rightmost and lefmost terms being the
identity maps, such that the embedding of B-modules R!,_; — &,_1 splits.

As explained in [36, proof of Lemma 4.4], one can assume the morphisms & — Q)
to be surjective. Applying Lemma H, we obtain a surjective closed morphism of
CDG-modules Qy — Q) and a morphism of graded B-modules Qy — &, forming
a commutative triangle with the morphism & — Qf. Applying Lemma H to the
surjective morphism of fibered products Qp xg, & — Qo X gy Q), we obtain a
surjective closed morphism Q; — Q) and a closed morphism Q; — Q, forming a
commutative square with the closed morphisms Qy — Q9 and Q] — Q. Besides,
the sequence Q1 — Qy — P is exact at Qy. We also obtain a morphism of graded
B-modules Q; — & forming a commutative triangle with the morphisms to Q) and
a commutative square with the morphisms to &.

Proceeding in this way, we construct a sequence Q,, o — -+ — Qy — P — 0,
which is exact at all the middle terms, maps onto the sequence Q) , — -+ —
Qi — P by closed morphisms, and maps into the sequence &, 9 — -+ — & —>
P so that the triangle of the maps of sequences commutes. Finally, notice that
En1 =& axg  Q q,andset Q, 1 = Q, 2 xg Q. Then the exact sequence
of CDG-modules 0 — R, _, — Q1 — -+ — Qy — P — 0 maps onto

n—1
the exact sequence 0 — R),_, — Q) | — -+ — Q) — P — 0 by closed

n—1
morphisms, and this map of exact sequences factorizes through the exact sequence
of graded B-modules 0 — R, _; — &, — -+ — & — P — 0. The
composition of the morphism Q,,_1 — &,_1 with the splitting &,_; — R/,_; of the
embedding R]_; — &,-1 provides a graded B-module splitting Q,,_1 — R/,_; of
the embedding of CDG-modules R),_; — Q,,_1.

Denote by R,,_o the image of the morphism of CDG-modules Q,,_1 — Q,,_». The
morphism from the total CDG-module of the complex R, |, — Q. | — --- — O},
to the CDG-module £ is homotopic to zero, hence so is the morphism to £ from
the total CDG-module of the complex R! | — Q,-1 — -+ —> Qy. The lat-
ter morphism factorizes naturally through the total CDG-module of the complex
Rpu—a — Qno — -+ —> Qy. The cone of this closed morphism between two
total CDG-modules is homotopy equivalent to the total CDG-module of the exact
triple R/, | — Q,-1 — R,_2. Since this exact triple splits as an exact triple
of graded B-modules, its total CDG-module is contractible. Consequently, the mor-
phism between the total CDG-modules of R/, | — Q,.1 — -+ — Qp and
Rp_o — Q9 — --- — Qp is a homotopy equivalence.

It follows that the natural morphism from the total CDG-module of the resolution
Rpy—o — Qg — --+ — 9y of the CDG-module P to the CDG-module £ is

homotopic to zero, and we are done. O]

So far we have only considered flat coherent CDG-modules over quasi-coherent
CDG-algebras B whose underlying quasi-coherent graded algebras are Noetherian.
But the latter restriction is not necessary, as flat and locally finitely presented
(or, which is equivalent, locally projective and finitely generated) quasi-coherent
graded B-modules always form an exact subcategory of flat (or locally projective)
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graded B-modules. The notation B-coh), (understood in the obvious sense as the
DG-category of CDG-modules over B with coherent and locally projective underly-
ing graded B-modules) is synonymous to B—cohg (see Remark 1.4).

Corollary. The functor D*(B-cohy,) — D®(B-qcoh,,) induced by the embedding
of DG-categories B—cohy, — B-qcoh,, is fully faithful.

Proof. When B is Noetherian, one can show that the functor D*s(B-coh,) —
D*(B-qcoh,,) is fully faithful by comparing parts (a-c) of Proposition 1.5 (with the
flatness condition replaced by the local projectivity). In the general case, one proves
this assertion directly, using an argument similar to the proof of Proposition 1.5(a-b).
Then it remains to use the above Theorem. U

When every flat quasi-coherent graded module over B has finite locally projective
dimension (see Remark 1.4), one has D*(B-qcoh,) ~ D*°(B-qcohg) ~ D*°(B-qcohgy)
and D?**(B-qcoh,,) ~ D*3(B-qcohy) ~ D¥s(B-qcohsy) by appropriate versions of
Theorem 1.4. Consequently, it follows from Theorem above that D5(B-qcohy) =
D (B-qcohy) and D(B-qcohgy) = D®(B-qcohg,) in this case. Thus the functor
Ds(B-cohy) — D<(B-qcohy) is fully faithful; when B is Noetherian, so is the
functor D2P*(B—coh¢y) — D (B—qcohgy).

1.7. Gorenstein case. Here we establish a sufficient condition for the functor
D<°(B—qcoh;) — D°(B—qcoh) to be an equivalence of triangulated categories.

Let B-qcoh;,; denote the full DG-subcategory in B-qcoh consisting of the
CDG-modules whose underlying quasi-coherent graded B-modules are injective.
Furthermore, let B-qcohgy be the full DG-subcategory in B-qcoh consisting of
the CDG-modules whose underlying quasi-coherent graded B-modules have finite
injective dimension (i. e., admit a finite right resolution by injective quasi-coherent
graded B-modules). Let D°(B-qcohsy) and D?P(B-qcoh,y) denote the corresponding
derived categories of the second kind. (The difficulty in the definition of the latter
category, similar to the difficulty in the definition of D®(B-qcohgy) discussed in
Section 1.3, does not actually arise, as it is clear from part (a) of the next lemma.)

Lemma. (a) For any quasi-coherent CDG-algebra B over X, the natural functors
H°(B-qcohy,;)) — D**(B-qcohgy) — D(B-qcohyy) are equivalences of triangu-
lated categories.

(b) Let B be a quasi-coherent CDG-algebra over X whose underlying quasi-coherent
graded algebra B is Noetherian. Then the functor H°(B-qcoh;;) — D®(B-qcoh)
induced by the embedding B-qcoh,,, — B-qcoh is an equivalence of triangulated
categories.

Proof. Part (a) is provided by [35, Theorem and Remark in Section 3.6]. Part (b)
is a particular case of [35, Theorem and Remark in Section 3.7|, since the class of
injective quasi-coherent graded B-modules is closed under infinite direct sums in its
assumptions. (Cf. [20, Proposition 2.4].) O
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Proposition. Let B be a quasi-coherent CDG-algebra over X such that the quasi-
coherent graded algebra B is Noetherian and the classes of quasi-coherent graded
B-modules of finite flat dimension and of finite injective dimension coincide. Then the
functors D3(B—qcohg) — D®(B—qcohy) — D« (B—qcoh) induced by the embedding
B—-qcohy — B—qcoh are equivalences of triangulated categories.

Proof. Since B-qcohgy = B—qcohyy, the isomorphism of categories D2P*(B-qcohgy) =
D (B—qcohgy) follows from part (a) of Lemma. Applying Theorem 1.4, we obtain
the isomorphism of categories D®*(B—qcohy) — D%(B—qcohy). Similarly, it suf-
fices to compare parts (a) and (b) of Lemma in order to conclude that the functor
D (B—qcohsy) — D°(B—qcoh) is an equivalence of categories, hence so are the func-
tors D°(B-qcohy) — D®(B-qcohgy) — D°(B—qcoh). (Cf. [35, Section 3.9].) O

1.8. Pull-backs and push-forwards. Let f: Y — X be a morphism of sep-
arated Noetherian schemes with enough vector bundles, Bx be a quasi-coherent
CDG-algebra over X, and By a quasi-coherent CDG-algebra over Y. A morphism
of quasi-coherent CDG-algebras Bx — By compatible with the morphism 'Y — X
is the data of a CDG-ring morphism Bx(U) — By (V') for each pair of affine open
subschemes U C X and V C Y such that f(V) C U. This data should satisfy
the obvious compatibility condition: for any affine open subschemes U’ C U and
V' C V such that f(V') C U’, the square diagram of CDG-ring morphisms between
the CDG-rings Bx (U), Bx(U'), By(V), and By (V') must be commutative.

Let By — By be a morphism of quasi-coherent CDG-algebras compatible with
a morphism of schemes ¥ — X. Then for any quasi-coherent left CDG-module
M over Bx the quasi-coherent graded left module f*M = By ®;-15, f~'M over
By has a natural structure of quasi-coherent CDG-module over By. Similarly, for
any quasi-coherent left CDG-module A over By the quasi-coherent graded left mod-
ule f,N over Bx has a natural structure of quasi-coherent CDG-module over By.
These CDG-module structures are defined in terms of the CDG-ring morphisms
Bx(U) — By (V). The above constructions provide the underived direct and inverse
image functors, which can be viewed as triangulated functors f*: H°(Bx—qcoh) —
H°(By—qcoh) and f,: H°(By—qcoh) — H°(Bx—qcoh). The functor f, is right ad-
joint to the functor f*.

The derived inverse image functor Lf* is in general only defined on CDG-modules
satisfying certain finite flat dimension conditions. Restricting the functor f* to flat
CDG-modules, we obtain a triangulated functor H°(Bx—qcohy) — H°(By—qcohy),
which takes objects coacyclic with respect to Bxy—qcohy to objects coacyclic with
respect to By —qcohy, since the inverse image preserves infinite direct sums and short
exact sequences of flat quasi-coherent graded modules. Hence there is the induced
triangulated functor D°(Bx—qcohy) — D®(By—qcohg). Applying Theorem 1.4(a),
we construct the derived inverse image functor

Lf*: DCO(BX*qCOhﬂ:d) — DCO(BY*qCOhﬂ:d).

Restricting the functor f* to flat coherent CDG-modules, we obtain a triangu-
lated functor H°(Bx—cohg) — H°(By—cohg), which induces a triangulated functor
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D35 (By—cohy) — D (By—cohy). Assuming that the quasi-coherent graded alge-
bras Bx and By are Noetherian and applying Theorem 1.4(c), we construct the
derived inverse image functor

]Lf*Z DabS(BX*COhffd) — DabS(By*COhffd).

When f is an affine morphism, the direct image of quasi-coherent sheaves is an ex-
act functor (preserving also infinite direct sums), so the functor f,: H°(By—qcoh) —
H°(Bx—qcoh) induces a triangulated functor D*°(By—qcoh) — D®(Bx—qcoh). To
construct the derived direct image functor between the coderived categories in the
general case, we need to use injective resolutions.

From now on we assume that By and By are Noetherian; so Lemma 1.7(b) is ap-
plicable to By. Restricting the functor f, to the full subcategory H O(By*C]COhinj) -
H°(By—qcoh) and composing it with the localization functor H°(Bx—qcoh) —
D°(Bx—qcoh), we obtain the derived direct image functor

Rf.: D®°(By—qcoh) —— D*(Bx—qcoh).

Proposition. The functors Lf*: D**(Bx—cohgy) — D?*(By—cohgy) and Rf,: D®
(By—qcoh) — D<°(Bx—qcoh) are “partially adjoint” to each other in the following
sense: for any objects M € D™ (Bx—cohgqy) and N' € D®(By—qcoh) there is a natural
isomorphism of abelian groups

Hocho(BX,qcoh)(LxM, Rf*N) ~ Hocho(By,qcoh)(Ly}Lf*M, N),

where 1x: D3 (Bx—cohgy) — D<®(Bx—qcoh) and ty: D*(Bx—cohgy) —> D«
(By—qcoh) are the natural fully faithful triangulated functors.

Proof. The functors tx and ty are fully faithful by Theorem 1.4(c) and Proposi-
tion 1.5(b,d). Using Theorem 1.4(c), let us assume that M € D¥®(By—cohy). We
can also assume that N" € H%(By—qcoh;).

Then the left hand side is the (filtered) inductive limit of Homgo(g, - qeon) (M”, fiN)
over all morphisms M” — M in H°(Bx—qcoh) with a cone coacyclic with respect to
Bx—qcoh. According to the proofs of Proposition 1.5(b) and [35, Theorem 3.11.1], any
morphism from M to an object coacyclic with respect to Bx—qcoh factorizes through
an object absolutely acyclic with respect to Bx—cohg. Thus the above inductive limit
coincides with the similar limit taken over all morphisms M’ — M in H°(Bx—cohy)
with a cone absolutely acyclic with respect to Bxy—cohy.

By [35, Theorem 3.5(a), Remark 3.5, and Lemma 1.3], the right hand side is isomor-
phic to Homgo (s, qeon) (f*M, N) and to Hom go(s, qeom (f*M’, N), since the objects
of H°(By—qcoh;,;) are right orthogonal to any coacyclic objects in H%(By-qcoh). So
the assertion follows from the adjointness of the functors f* and f, on the level of
the homotopy categories of quasi-coherent CDG-modules. O

Remark. It is not immediately obvious from the above construction that the derived
functor R f, is compatible with the compositions, i. e., for g: Z — Y and f: ¥ —
X one has R(fg). ~ Rf, o Rg,. The problem is that the direct image functor f,
does not preserve injectivity of quasi-coherent graded modules in general. When the
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derived direct image functors are adjoint to appropriately defined derived inverse
images (see Section 1.9 below for some results of this kind), the problem reduces to
checking that the derived inverse images are compatible with the compositions, which
may be easier to see from our definitions.

One general approach to this problem is to replace injective quasi-coherent graded
B-modules with quasi-coherent graded B-modules that are flabby as sheaves of
graded abelian groups in our construction of the derived direct images. The class
of flabby sheaves of abelian groups is closed under infinite direct sums, since the
underlying topological space of the scheme is Noetherian; it is also always closed
under extensions and cokernels of injective morphisms. Whenever the quasi-coherent
graded algebra B is Noetherian, all injective quasi-coherent graded B-modules are
flabby by Theorem A.3. Therefore, the coderived category of flabby quasi-coherent
CDG-modules over B is equivalent to the homotopy category H O(qucohinj) by a
version of Lemma 1.7(b), hence it is also equivalent to the coderived category of all
quasi-coherent CDG-modules D*°(B-qcoh) (cf. the proof of Proposition 1.7).

The direct images preserve exact triples of flabby sheaves, so derived direct images
can be defined using flabby resolutions. The direct images also take flabby sheaves
to flabby sheaves, hence the desired compatibility of their derived functors with the
compositions of scheme morphisms follows.

Moreover, assuming additionally that the scheme has finite Krull dimension, the
absolute derived category of flabby quasi-coherent CDG-modules is equivalent to
D3bs(B—qcoh) by a dual version of Theorem 1.4(b), as the “flabby dimension” of any
quasi-coherent graded B-module is finite. This allows to define the derived direct
images on the absolute derived categories of quasi-coherent CDG-modules (another
approach to this question is to use the construction from the proof of Proposition 1.9
below). Notice that all our constructions of derived inverse images are also applicable
to the categories D2P*(B—qcoh).

Finally, let us point out that the functor Rf, has a right adjoint functor
f': D®°(Bx—qcoh) —— D*(By—qcoh).

Indeed, the triangulated category D (By—qcoh) is compactly generated by Propo-
sition 1.5(d), and the functor Rf, preserves infinite direct sums, since the class of
injective quasi-coherent graded By-modules is closed under infinite direct sums, due
to Noetherianity of By. So it remains to apply [24, Theorem 4.1].

1.9. Morphisms of finite flat dimension. Let f: Y — X be a morphism of
schemes as above, and By — By is a compatible morphism of quasi-coherent
CDG-algebras. We will say that the quasi-coherent graded algebra By has finite
flat dimension over Bx if (the left derived functor of) the functor of inverse image f*
acting between the abelian categories of quasi-coherent graded modules over By and
By has finite homological dimension. Equivalently, for any affine open subschemes
U C X and V C Y such that f(V) C U the graded right Bx(U)-module By (V)
should have finite flat dimension.
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A quasi-coherent graded Bx-module is said to be adjusted to f* if its derived
inverse image under f, as an object of the derived category of the abelian category
of quasi-coherent graded By-modules, coincides with the underived inverse image.
Denote the DG-category of quasi-coherent CDG-modules over By whose underlying
graded Bx-modules are adjusted to f* by Bx—qcoh; ,4. When Bx is Noetherian,
let Bx—cohy ,gj denote the similarly defined DG-category of coherent CDG-modules.
We will use our usual notation for the absolute derived and coderived categories of
these DG-categories of CDG-modules.

Lemma. Assume that the quasi-coherent graded algebra By has finite flat dimension
over Bx. Then

(a) the functor D®°(Bx—qcoh; ,4;) — D°(Bx—qcoh) induced by the embedding of
DG-categories Bx—qcohy_,q; — Bx—qcoh is an equivalence of triangulated categories;

(b) the functor D**(Bx—qcoh; ,4) — D (Bx—qcoh) induced by the embedding of
DG-categories Bx—qcoh_ .4 — Bx—qcoh is an equivalence of triangulated categories;

(c) if Bx is Noetherian, the functor D*(Bx—cohf .4) — DP*(Bx—coh) induced
by the embedding of DG-categories Bx—cohy ,q; — Bx—coh is an equivalence of
triangulated categories.

Proof. This is a version of Theorem 1.4, provable in the same way (cf. Corollary 2.6
below). The assertions hold, because any quasi-coherent graded Bx-module has a
finite left resolution consisting of quasi-coherent CDG-modules adjusted to f*, and
similarly for coherent CDG-modules. 0J

The functor of inverse image f*: H°(Bx—qcoh) — H®(By—qcoh) takes CDG-mod-
ules coacyclic with respect to Bx—qcoh; 4 to CDG-modules coacyclic with respect
to By—qcoh, and hence induces a triangulated functor D®(Bx—qcoh; .4;) —
De°(By—qcoh). Taking Lemma into account, we construct the derived inverse image
functor

Lf*: D*(Bx—qcoh) —— D“°(By—qcoh).
One shows that this functor is left adjoint to the functor Rf, constructed in 1.8 in
the way analogous to (but simpler than) the proof of Proposition 1.8.
When By and By are Noetherian, we construct the derived inverse image functor

Lf*: D*5(Bx-coh) —— D*3(By—coh)

in the similar way.
Let BY and ByF denote the quasi-coherent graded algebras with the opposite mul-
tiplication to Bx and By.

Proposition. When By’ has finite flat dimension over BY, the derived inverse image
functor Lf*: D°(Bx—qcohgy) — D<(By—qcohgy) constructed in 1.8 has a right
adjoint functor

Rf.: D®°(By—qcohgy) —— D“(Bx—qcohgy).
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Proof. Let {U,} be a finite affine covering of Y. To any object N € By—qcohgy,
assign the total CDG-module Ry, 1 fi N of the finite Cech complex

@af|Ua*(N|Ua) — ®a<6 f|UaﬂZ/{5*(N|UaﬂU5) —

of CDG-modules over By.

The terms of this complex belong to Bx—qcohgy, since the morphism fly: V — X
is affine and the quasi-coherent graded algebra By’ has finite flat dimension over
BY. So we have Ryy, 3 [N € Bx—qcohgy; it is clear that Ry, f« is a DG-functor
By—qcohgy — Bx—qcohg, taking coacyclic objects to coacyclic objects. Hence we
have the induced functor R f, between the coderived categories.

It remains to obtain the adjuction isomorphism

HomDCO(Bqucohffd)(Ma Rf*N) ~ HOcho(By,qcohde)(Lf*M’N)
for M € D®(Bx—qcohgy). Denote by A the total CDG-module of the finite complex
EUQ}N = (@a jUa*j;}aN — ®a<5 jUaﬂuﬂ*j(*]aﬂUﬂN —_ )

of CDG-modules over By (where ji,: V — Y denotes the embedding of an affine
open subscheme). Then we have Ry 1N =~ fN.. There is a natural closed
morphism N' — N, of CDG-modules over By with the cone coacyclic (and even
absolutely acyclic) with respect to By—qcohgy.

For any CDG-module Q € By —qcohgy, there is a natural map

w: HomDW(Bqucohffd)(Ma f* Q) — Home(Bychohffd)(Lf*Ma Q)

Indeed, by (the proof of) Theorem 1.4(a), any morphism M — f,Q in
H°(Bx—qcohgy) can be represented as a fraction formed by a morphism M’ — M
in H°(Bx—qcohg) with M’ € Bx-qcohy and a cone coacyclic with respect to
Bx—qcohgy, and a morphism M’ — £,Q in H°(Bxy—qcohgy). To such a fraction, the
map ¢ assigns the related morphism Lf*M = f* M’ — Q.

For a fixed M, the map 1 is a morphism of cohomological functors of the argument
Q € H°(By—qcohgy). Thus in order to show that it is an isomorphism for Q@ = N,
it suffices to check that it is an isomorphism for Q = jy,P for every affine V. C Y
and P € By |y—qcohgy. This follows from the adjunction isomorphism

HomDCO(Bqucohffd)(Ma f|V*P) ~ HomDCO(By|qucohde)(Lf|*VM> P)

and the similar isomorphism for the embedding jy, which hold because the functors
flv« and jy, are exact, the morphisms f|, and jy being affine. O

Remark. One can also use the above Cech complex approach in order to construct
a version of the derived functor Rf,: D®(By—qcoh) — D<(Bx—qcoh). One can
check that this construction agrees with the injective resolution construction from
Section 1.8, using the fact that the restrictions of injective quasi-coherent graded
By-modules to open subschemes are injective (Theorem A.3). Alternatively, in the
assumption of finite flat dimension of By over By, one checks that both constructions
provide functors right adjoint to L f*, hence they are isomorphic.
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This allows to conclude that the derived functors Rf, acting on arbitrary quasi-
coherent CDG-modules and quasi-coherent CDG-modules of finite flat dimension
form a commutative diagram with the natural functors from the coderived categories
of the latter to the coderived categories of the former.

1.10. Supports of CDG-modules. Let X be a Noetherian scheme. The set-
theoretic support of a quasi-coherent sheaf M on X is the minimal closed subset
T C X such that the restriction of M to the open subscheme X \ T vanishes. Given
a Noetherian quasi-coherent graded algebra B over X and a quasi-coherent graded
B-module M, the set-theoretic support T = Supp M of M is defined similarly. It
only depends on the underlying quasi-coherent Ox-module of M.

Let B be a quasi-coherent CDG-algebra over X whose underlying quasi-coherent
graded algebra B is Noetherian. Fix a closed subset T' C X. Denote by B-qcoh,
the full DG-subcategory in B—qcoh consisting of all the quasi-coherent CDG-modules
whose underlying quasi-coherent graded B-modules have their set-theoretic supports
contained in 7. The DG-category B—cohr of coherent CDG-modules with the set-
theoretic support in T is defined similarly.

Let D°(B—qcohy) and D3P*(B—cohr) denote the coderived and the absolute derived
category of these DG-categories of CDG-modules. Finally, let B-qcohy ;. denote the
DG-category of quasi-coherent CDG-modules over B whose underlying quasi-coherent
graded modules are injective objects of the abelian category of quasi-coherent graded
B-modules with the set-theoretic support contained in 7.

Proposition. (a) The functor H°(B-qcohs;,;) — D°(B-qcohy) induced by the
embedding of DG-categories B-qcohr . — B-qcohy is an equivalence of triangulated
categories.

(b) The functor D¥®(B-cohy) — D%(B-qcoh;) induced by the embedding of
DG-categories B-cohy — B—qcoh, is fully faithful and its image is a set of compact
generators of the target category.

(¢) The functor D®°(B-qcoh;) — D“(B-qcoh) induced by the embedding of
DG-categories B-qcoh, — B—qcoh is fully faithful.

(d) The functor D**(B-cohy) — D3(B-coh) induced by the embedding of
DG-categories B-cohr — B—coh is fully faithful.

Proof. Part (a) is essentially a particular case of [35, Theorem and Remark in Sec-
tion 3.7]. It is only important here that there are enough injective objects in the
abelian category of quasi-coherent graded B-modules supported set-theoretically in T’
and the class of such injective objects is closed under infinite direct sums. This is so
because the abelian category in question is a locally Noetherian Grothendieck cate-
gory (since X and B are Noetherian). Part (b) can be proven in the same way as the
results of [35, Section 3.11]. Part (d) follows from parts (b-c¢) and Proposition 1.5(d).

Finally, part (c) follows from part (a), Lemma 1.7(b), and the fact that any in-
jective object J in the category of quasi-coherent graded B-modules supported set-
theoretically in 7" is also an injective object in the category of arbitrary quasi-coherent
graded B-modules. The latter is essentially a reformulation of the Artin—Rees lemma.
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Indeed, it suffices to check that for any coherent graded B-module M and its
coherent graded B-submodule A, any morphism of quasi-coherent graded B-modules
¢: N — T can be extended to M. Let Z be a closed subscheme structure on the
closed subset 7" C X. Then there is an integer n > 0 such that the morphism ¢
annihilates ZN (where Zy is the sheaf of ideals of the closed subscheme Z). By
Lemma A.3, there exists m > 0 such that ZJ M NN C ZZN. Then there exists
a morphism M/ZTPM — J of quasi-coherent graded B-modules supported set-
theoretically in T" which extends the given morphism into J from the quasi-coherent

graded B-submodule N'/(ZFy M NN) C M/TFM. O
Let U C X denote the open subscheme X \ 7.

Theorem. (a) The functor of restriction to the open subscheme D(B—qcoh) —
D (B|y—qcoh) is the Verdier localization functor by the thick subcategory D (B—qcohy)
C D°(B—qcoh). In particular, the kernel of the restriction functor coincides with the
subcategory D°(B—qcohy).

(b) The functor of restriction to the open subscheme D2P*(B—coh) — D2b*(B|;—coh)
is the Verdier localization functor by the triangulated subcategory D®(B-cohr) C
D35 (B-coh). In particular, the kernel of the restriction functor coincides with the

thick envelope of (i. e., the minimal thick subcategory containing) D*(B-cohr) in
D3bs(B—coh).

Proof. Let j: U — X denote the natural open embedding. To prove part (a), con-
sider the functor Rj,: D(B|y—qcoh) — D°(B—qcoh) as constructed in Section 1.8.
The quasi-coherent graded algebra B|y being flat over B, the functor Rj, is right ad-
joint to the restriction functor j*: D°°(B-qcoh) — D(B|y—qcoh). Obviously, the
composition j*Rj, is the identity functor. It follows that the functor j* is a Verdier
localization functor by its kernel, which is the full subcategory consisting of all the
cones of the adjunction morphisms M — Rj,j*M, where M € D (3—qcoh).

Represent the object M by a CDG-module with an injective underlying quasi-
coherent graded B-module. By Theorem A.3, the quasi-coherent graded B|y-module
j*M is then also injective, so we have Rj,j* M = j,7* M. Obviously, both the kernel
and the cokernel of the closed morphism of CDG-modules M — j,j*M belong to
B—qcoh;, and it follows, in view of part (c) of Proposition, that the cone also belongs
to D(B-qcoh).

To prove part (b), notice first that any coherent CDG-module over B|y can be ex-
tended to a coherent CDG-module over B (because a coherent sheaf IC on U can be
extended to a coherent subsheaf of j,K), so the restriction functor is essentially surjec-
tive. Taking this observation into account, part (b) follows from part (a), part (b) of
the above Proposition, Proposition 1.5(d), and the standard results about localization
of compactly generated triangulated categories [23, Lemma 2.5 to Theorem 2.1]. O

Define the category-theoretic support supp M of a quasi-coherent CDG-module M
over B as the minimal closed subset 7' C X such that the restriction M|y of M to
the open subscheme U = X \ T is a coacyclic CDG-module over B|y. In other words,
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X \ supp M is the union of all open subschemes V' C X such that M|y is a coacyclic
CDG-module over By (see Remark 1.3). Obviously, one has supp M C Supp M.

The category-theoretic support of a coherent CDG-module M over B can be equiv-
alently defined as the minimal closed subset 7' C X such that the restriction M|y of
M to the open subscheme U = X \ T is absolutely acyclic. Indeed, any CDG-module
from B|y—coh that is coacyclic with respect to B|y—qcoh is also absolutely acyclic
with respect to B|y—coh by Proposition 1.5(d).

Corollary. (a) For any quasi-coherent CDG-module M over B with the category-
theoretic support supp M contained in T, there exists a quasi-coherent CDG-module
M over B such that M is isomorphic to M’ in D®(B-qcoh) and the set-theoretic
support Supp M’ is contained in T.

(b) For any coherent CDG-module M over B with the category-theoretic support
supp M contained in T, there exists a coherent CDG-module M’ over B such that
M s isomorphic to a direct summand of M’ in D®(B-coh) and the set-theoretic
support Supp M’ is contained in T.

Proof. Follows immediately from Theorem. U

Remark. One can prove that the restriction functor in part (a) of Theorem is a
Verdier localization functor without assuming the quasi-coherent graded algebra B
to be Noetherian. Indeed, one can construct a right adjoint functor Rj, to the
restriction functor 7* in the way similar to that of Proposition 1.9; then it is easy to
see that j*Rj, is the identity functor.

When B is Noetherian, the above Theorem can be generalized as follows. Let
S and T be closed subsets in X; set U = X \ 7. Then the restriction func-
tor D°(B—qcohg) — D°(B|y—qcohyng) is the Verdier localization functor by the
thick subcategory D®°(B-qcohng), and the restriction functor D¥*(B-cohg) —
D3b(B|—cohyng) is the Verdier localization functor by the triangulated subcategory
D35 (B-cohzrg). The proof is similar to the above.

It is not difficult to deduce from the latter results that the property of an object
of D°(B—qcoh) to belong to the thick envelope of D**(B-coh) is local in X. Using
the Cech exact sequence as in Remark 1.3, one can easily see that the property
of an object of D*(B—qcoh) to belong to D3*(B-qcohy) is also local. We do not
know whether the property of an object of D(B-coh) or D2**(B—qcohg) to belong
to D3s(B-cohy) is local, though (cf. Remark 2.13).

2. TRIANGULATED CATEGORIES OF RELATIVE SINGULARITIES

2.1. Relative singularity category. Recall that X denotes a separated Noether-
ian scheme with enough vector bundles. The triangulated category of singularities
DY, (X) of the scheme X is defined [27, Section 1.2] as the quotient category of the
bounded derived category DP(X—coh) of coherent sheaves on X by its thick subcat-
egory Perf(X) of perfect complexes on X.
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The perfect complexes, in our assumptions, can be simply defined as bounded
complexes of locally free sheaves of finite rank, so Perf(X) = DP(X-cohy) is the
bounded derived category of the exact category X—cohy of locally free sheaves of
finite rank on X. Equivalently, the perfect complexes are the compact objects of the
unbounded derived category of quasi-coherent sheaves D(X—qcoh) on the scheme X
[24, Examples 1.10-1.11 and Corollary 2.3].

Let Z C X be a closed subscheme such that Oz has finite flat dimension as
an Ox-module. In this case the derived inverse image functor ILi* for the closed
embedding i: Z — X acts on the bounded derived categories of coherent sheaves,
DP(X-coh) — DP(Z-coh). We call the quotient category of D°(Z—coh) by the thick
subcategory generated by the objects in the image of this functor the triangulated
category of singularities of Z relative to X and denote it by D%mg(Z /X).

Note that the triangulated category of relative singularities D%, (Z/X) is a quo-
tient category of the conventional (absolute) triangulated category of singularities
D%,y (Z) of the scheme Z. Indeed, the thick subcategory Perf(Z) C D*(Z-coh) is
generated by any ample family of vector bundles on Z, since any such family is a set
of compact generators of the unbounded derived category of quasi-coherent sheaves
D(Z—qcoh) on Z [24]; in particular, it is generated by the restrictions to Z of vector
bundles from X (see also Lemma 2.8).

The functor Li*: DP(X—-coh) — DP(Z-coh) induces a triangulated functor
i°: DY,,,(X) — D%,,(Z). Furthermore, since the sheaf 7,0y belongs to Perf(X),
the functor i,: D?(Z—coh) — DP(X-coh) takes Perf(Z) to Perf(X) (cf. [27,
paragraphs before Proposition 1.14]). Hence the functor 7, induces a triangulated
functor io: D%;,,(Z) — DY, (X) right adjoint to °. The triangulated category
D%mg(Z /X) is the quotient category of D%mg(Z ) by the thick subcategory generated
by the image of the functor ¢°.

When X is regular, any coherent sheaf on X has a finite resolution by locally free
sheaves of finite rank. So D%, (X) = 0, hence the triangulated categories D%, (%)
and DY, (Z/X) coincide. The converse is also true: the structure sheaf of the reduced
scheme structure on the closure of any singular point of X is not a perfect complex

on X, so D% (X) # 0 when X is not regular.

Sing
Remark. Roughly speaking, the triangulated category of relative singularities
D%,,,(Z/X) measures how much worse are the singularities of Z compared to the
singularities of X in a neighborhood of Z.

The basic formal properties of D¥,,,(Z/X) are similar to those of D%, (Z). When
the Ox-module Oy has finite flat dimension, the derived category D°(X—coh) is gener-
ated by coherent sheaves adjusted to i*. Let Ez,x denote the minimal full subcategory
of the abelian category of coherent sheaves on Z containing the restrictions of such co-
herent sheaves from X and closed under extensions and the kernels of epimorphisms of
sheaves. Then Ez, x is naturally an exact category and its bounded derived category
D®(E,/x) is equivalent to the thick subcategory of D°(Z-coh) generated by the de-

rived restrictions of coherent sheaves from X, so D%, (Z/X) = D(Z-coh)/DP(Ez/x).
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One can define the E-homological dimension of a coherent sheaf (or bounded com-
plex) on Z as the minimal length of a left resolution consisting of objects from E/x.
This dimension does not depend on the choice of a resolution (in the same sense as
the conventional flat dimension doesn’t). The thick subcategory DP(Ez/x) consists
of those objects of DP(Z—coh) that have finite E-homological dimensions.

Unlike in the case of perfect complexes, we do not know whether the property to
belong to Ez/x or Db(EZ/X) is local, though. In the case when Z is a Cartier divisor,
locality can be established using Theorem 2.7 below and Remark 1.3.

2.2. Matrix factorizations. Following [31], we will consider matrix factorizations
of a global section of a line bundle. So let £ be a line bundle (invertible sheaf) on X
and w € L(X) be a fixed section, called the superpotential.

Let B = (X, L,w) denote the following Z-graded quasi-coherent CDG-algebra
over X. The component B" is isomorphic to £2%? for n € 27 and vanishes for
n € 2Z+1, the multiplication in B being given by the natural isomorphisms £%"/2®,
LM/ £&M+m)/2  For any affine open subscheme U C X, the differential on B(U)
is zero, and the curvature element is w|y € B*(U) = L(U). The elements ayy defining
the restriction morphisms of CDG-rings B(V') — B(U) all vanish.

The category of quasi-coherent Z-graded B-modules is equivalent to the category
of quasi-coherent Z/2-graded Ox-modules, the equivalence assigning to a graded
B-module M the pair of O x-modules which we denote symbolically by U° = M? and
U'® L2 = M. Conversely, M" ~ UYr™42 , L£2%/2 for all n € Z (the meaning
of the notation in the right hand side being the obvious one). This equivalence of
abelian categories preserves all the properties of coherence, flatness, flat dimension,
local projectivity /localy freeness, etc. that we have been interested in in Section 1.

Following [20], we will consider CDG-modules over B = (X, £, w) whose underlying
graded B-modules correspond to coherent or quasi-coherent O y-modules, rather than
just locally free sheaves (as in the conventional matrix factorizations). A quasi-
coherent CDG-module over (X, £, w) is the same thing as a pair of quasi-coherent
Ox-modules U° and U' @ LZY? endowed with Ox-linear morphisms U° — U' ®
LP2 and U' ® LZY? — U° ®p, L such that both compositions U’ — U' @
L2 — U @0, L and U @ LOV? — U R, L — U' @p, LZ/? are equal to
the multiplications with w.

2.3. Exotic derived categories of matrix factorizations. The following corol-
lary is a restatement of the results of Section 1 in the application to the quasi-coherent
CDG-algebra B = (X, £, w). We will use the notation (X, £, w)—cohy (instead ot the
previously introduced B-cohyg) for the DG-category of locally free matrix factoriza-
tions of finite rank, and the notation (X, £, w)—qcohy (instead of the previously intro-
duced B-qcoh,,) for the DG-category of locally free matrix factorizations of possibly
infinite rank (see Remark 1.4). The rest of our notation system for various classes of
quasi-coherent CDG-modules over B = (X, £, w) remains in use.

In addition, we also denote by (X, £, w)—qcohyy the DG-category of quasi-coherent
CDG-modules of finite locally free/locally projective dimension over (X, L, w) (see
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Remark 1.4 again). Let D®((X, L, w)—qcohyy) and D3((X, L, w)—qcohyy) be the
corresponding derived categories of the second kind.

Corollary. (a) The functor D®°((X, L, w)—qcohy) — D((X, L, w)—qcohgy) induced
by the embedding of DG-categories (X, L, w)—qcohy — (X, L, w)—qcohgy is an equiv-
alence of triangulated categories.

(b) The functor D**((X, L, w)—qcohy) — D*((X, £, w)—qcohgy) induced by the
embedding of DG-categories (X, L, w)—qcohy — (X, L, w)—qcohgy is an equivalence
of triangulated categories.

(c) The functors D°((X, L, w)—qcoh,) — D((X, L, w)—qcohyy) and D*((X, L,
w)—qcohy) — D™((X, L, w)—qcohyy) induced by the embedding of DG-categories
(X, £, w)—qcoh; — (X, L, w)—qcoh,y are equivalences of triangulated categories.

(d) The triangulated categories D°((X, L, w)—qcoh,) and D ((X, L, w)—qcoh)
coincide, as do the categories D®((X, £, w)—qcohyy) and D***((X, £, w)—qcohyy). The
natural functors between these four categories form a commutative square of equiva-
lences of triangulated categories.

(e) When the scheme X has finite Krull dimension, the functors D°((X, L, w)
—qcoh) — D%°((X, L, w)-qcohy) and D*®((X, L, w)-qcoh,) — D®((X, L, w)
—qcohy) induced by the embedding of DG-categories (X, L, w)—qcohy — (X, L, w)
—qcohy, are equivalences of triangulated categories. The natural functors between these
four categories form a commutative square of equivalences.

(f) When the scheme X has finite Krull dimension, the triangulated category
D ((X, L, w)—qcohy) coincides with D®((X, £, w)—qcohy) and the triangulated cate-
gory D°((X, L, w)—qcohgy) coincides with D*((X, L, w)—qcohgy. The natural func-
tors between these four categories form a commutative square of equivalences.

(g) The functor D***((X, L, w)—cohy) — D***((X, L, w)—cohga) induced by the
embedding of DG-categories (X, L, w)—cohy — (X, L, w)—cohgy is an equivalence of
triangulated categories.

(h) The triangulated functors D((X, L, w)—qcohy) — D®((X, L, w)—qcohy)
— Ds((X, £, w)—qcoh) induced by the embeddings of DG-categories (X,L,w)
—qcohyy — (X, L, w)—qcohy — (X, L, w)—qcoh) are fully faithful.

(i) The triangulated functor D***((X, £, w)-cohy) — D¥®3((X, £, w)—coh) induced
by the embedding of DG-categories (X, L, w)—cohy — (X, L, w)—coh is fully faithful.

(j) The triangulated functor D((X, L, w)-cohg) — D®((X, L, w)-qcohy) in-
duced by the embedding of DG-categories (X, L, w)—cohy — (X, L, w)—qcohy is fully
faithful.

(k) The triangulated functor D3((X, £, w)-coh) — D3"((X, £, w)—qcoh) induced
by the embedding of DG-categories (X, L, w)—coh — (X, L, w)—qcoh is fully faithful.

(1) The triangulated functor D**((X, L, w)-coh) — D®((X, £, w)—qcoh) induced
by the embedding of DG-categories (X, L, w)—coh — (X, L, w)—qcoh is fully faithful
and its image forms a set of compact generators for D((X, L, w)—qcoh).

Proof. Parts (a-b) and (g) are particular cases of Theorem 1.4, and the proof of
part (c) is similar (see Remark 1.4). Part (g) also essentionally follows from Proposi-

tion 1.5(b) (and part (b) can be proven similarly). Parts (h-i) and (k-1) are particular
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cases of Proposition 1.5 (except for “locally free half” of part (h), which is similar to
the “flat half”). Part (d) is Theorem 1.6 together with part (c¢). Part (j) is Corol-
lary 1.6. Part (e) follows from parts (a-c) and Remark 1.4 (cf. the discussion in the
end of Section 1.6). Part (f) follows from parts (a-b) and (d-e); alternatively, it can be
proven directly in the way similar to part (d), using the fact that the exact category
of flat quasi-coherent sheaves on X has finite homological dimension when the Krull
dimension of X is finite. OJ

2.4. Regular and Gorenstein scheme cases. When the scheme X is regular or
Gorenstein, the assertions of Corollary 2.3 simplify as follows.

Corollary. (a) When the scheme X is Gorenstein of finite Krull dimension, the
functors D*((X, L, w)—qcohy) — D<((X, L, w)-qcohy) — D®((X, L, w)—qcoh)
induced by the embedding of DG-categories (X, L, w)—qcohy — (X, L, w)—qcoh are
equivalences of triangulated categories.

(b) When the scheme X is reqular of finite Krull dimension, the natural functors
between the categories D ((X, £, w)—qcohy), D®((X, L, w)-qcohy), D ((X, L, w)
—qcoh), and D ((X, L, w)—qcoh) form a commutative square of equivalences of tri-
angulated categories.

(c) When the scheme X is reqular, the natural functor D®((X, L, w)—cohy¢) —
D3bs((X, £, w)—coh) is an equivalence of triangulated categories.

Proof. Part (a) is a particular case of Proposition 1.7. Part (c¢) follows from
Corollary 2.3(g), since any coherent sheaf on a regular scheme has finite flat di-
mension. In the assumptions of part (b), the functor D**((X, L, w)-qcoh) —
De((X, £, w)—qcoh) is an isomorphism of triangulated categories by [35, Theo-
rem 3.6(a) and Remark 3.6], since the abelian category of quasi-coherent sheaves
on a regular scheme of finite Krull dimension has finite homological dimension and
enough injectives (cf. Theorem 1.6). The remaining assertions of part (b) follow
from Corollary 2.3(a-b), or alternatively from part (a). O

Assuming that X has finite Krull dimension, the assertions of Corollaries 2.3-2.4
may be summarized by the following commutative diagram of triangulated functors.
Here, as above, B denotes the quasi-coherent CDG-algebra (X, £, w):

= when X regular

Db*(B-cohyf) === D**(B-coh¢q)

Db%(B-coh)

=ab .
DB acoha) E;Zféi.
= S
Dco:abs (qucohlf) Dco:abS(B*qCOhde) = when X Gorenstein Dco(quCOh)
~ = = - -
= = when = when
D°=2b5(Bqcohy) regular D2b%(B-qcoh) regular
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The four categories in the left lower area are coderived categories coinciding with
absolute derived categories (of the same classes of quasi-coherent CDG-modules).
The five double lines between these four categories are equivalences, as is the upper
left horizontal line. All the arrows going down are fully faithful functors. The image
of the rightmost vertical arrow is a set of compact generators in the target category.
The only arrow going up is a Verdier localization functor.

Nothing is claimed about the long horizontal arrow in the right lower area of
the diagram in general; but when X is Gorenstein, this functor is an equivalence of
categories. When X is regular, all the arrows going right are equivalences of categories
(so the whole diagram reduces to one triangulated category with infinite direct sums,
containing a full triangulated subcategory of compact generators).

Recall also that, by Lemma 1.7, for any X we have a commutative diagram of
triangulated functors

HO(B-qcohyy) == D“="(B-qcohg) D (B-qcoh)

/

Db(B-qcoh)

with equivalences of categories in the upper line. The fully faithful embedding
D*(B-qcohgy) — D*(B-qcoh), which in the Gorenstein case (of finite Krull di-
mension) coincides with the embedding D"*(B-qcohg,) — DP*(B—qcoh), is always
right adjoint to the localization functor D***(B-qcoh) — D (B—qcoh).

Remark. When X is an affine Noetherian scheme of finite Krull dimension, the em-
beddings of DG-categories (X, £, w)-qcoh;, — (X, £, w)-qcohy — (X, L, w)—qcoh)
induce equivalences H®(B-qcoh,,) ~ D**(B-qcohy) ~ D" (B-qcoh) between the ho-
motopy category of (locally) projective matrix factorizations of infinite rank, the ab-
solute derived category of flat matrix factorizations, and the contraderived category of
arbitrary quasi-coherent matrix factorizations (see [35, Section 3.8]; cf. Remark 1.5).

2.5. Serre—Grothendieck duality. The aim of this section is to show that the
somewhat misterious long horizontal arrow in the above large diagram is actu-
ally a functor between two equivalent triangulated categories, for a rather wide
class of schemes X. The functor D((X, £, w)—qcohy) — D((X, L, w)—qcoh)
in the above diagram, which is induced by the embedding of DG-categories
(X, L, w)—qcohy — (X, L, w)—qcoh, is not the equivalence that we have in mind,
however (unless the scheme is Gorenstein). Instead, the equivalence between the
categories D°((X, L, w)-qcohy) and D<((X, L, w)-qcoh) is constructed using a
dualizing complex on X [12, Section V.2].

Before recalling the definition of a dualizing complex, let us discuss the notion of
the quasi-coherent internal Hom. Given quasi-coherent sheaves M and N over X, the
quasi-coherent sheaf Hom x_qc(M,N) is defined by the isomorphism Homop, (— Qo
M, N) ~ Homo, (—, Homx q(M,N)) of functors from the category of quasi-
coherent sheaves to the category of abelian groups. Equivalently, the quasi-coherent
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sheaf Homx_qc(M,N) can be obtained by applying the coherator functor [39, Sec-
tions B.12-B.14] to the sheaf of Ox-modules Homeo, (M, N). Whenever M is a co-
herent sheaf, the sheaf Homo, (M, N') of Ox-module internal Hom is quasi-coherent,
and Homy_qc(M,N) ~ Homo, (M, N).

Notice that the construction of the sheaf Homx o (M, N) is not local in general,
i. e., it does not commute with the restrictions of quasi-coherent sheaves to open
subschemes; when the sheaf M is coherent, it does.

Lemma. (a) For any injective quasi-coherent sheaf J over a separated Noetherian
scheme X, the functor M — Homx_q(M,T) is exact.

(b) For any flat quasi-coherent sheaf F and injective quasi-coherent sheaf J over
X, the quasi-coherent sheaves F @p, J and Homx q(F,J) are injective.

(¢c) For any injective quasi-coherent sheaves J' and J over X, the quasi-coherent

sheaf Homx_qc(J', T) is flat.

Proof. The second assertion of part (b) is obvious from the universal property defining
Homx_qc. To prove the first one, notice that injectivity of quasi-coherent sheaves over
a Noetherian scheme is a local property ([12, Lemma I1.7.16 and Theorem I1.7.18] or
Theorem A.3), a flat quasi-coherent sheaf over an affine scheme is a filtered inductive
limit of locally free sheaves of finite rank [3, No. 1.5-6], and injectivity of modules
over a Noetherian ring is preserved by filtered inductive limits.

The proof of parts (a) and (c) follows the argument in [21, Lemma 8.7]. Choose
a finite affine covering U, of the scheme X and consider the morphism J —
D, ju.+ji,J. Being an embedding of injective quasi-coherent sheaves, it splits,
so J is a direct summand of the direct sum of jy,.j;; J. Hence it suffices to prove
both assertions in the case when J = jy.J", where J” is an injective quasi-coherent
sheaf on an affine open subscheme V C X.

Now we have Homx_qc(M, jyJ") = jye Homy_qc (55 M, T"). Since V.— X is a
flat affine morphism, the functor jy, is exact and preserves flatness of quasi-coherent
sheaves. This proves part (a), and reduces part (c) to the case of an affine scheme
X = V. Then it remains to apply [5, Proposition VI.5.3]. O

For our purposes, a dualizing complex D% on X is a finite complex of injective quasi-
coherent sheaves such that the cohomology sheaves of D% are coherent and for any
coherent sheaf M over X the natural morphism of finite complexes of quasi-coherent
sheaves M — Homx_qc(Homx_qc(M, D% ), D%) is a quasi-isomorphism. Note that
it follows from the former two conditions on D% that the complex Hom x_qc(M, D)
has coherent cohomology sheaves. This makes the conditions imposed on D% actually
local in X, so the restriction D}, = D%|v of the complex of sheaves D% to an open
subscheme U C X is a dualizing complex on U.

Given a quasi-coherent CDG-algebra B over X, a quasi-coherent left CDG-module
M over B, and a complex of quasi-coherent sheaves F* on X, one can consider the
complexes of quasi-coherent left CDG-modules F* ®p, M and Homy q(F*, M)
over . Taking their totalizations (formed, if necessary, by taking infinite direct
sums along the diagonals), one constructs two triangulated functors H°(B-qcoh) —
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H°(B—qcoh) depending on a complex F*. Given a right CDG-module A over B
(see [35, Sections 3.1 and B.1]), one can similarly construct a complex of quasi-
coherent left CDG-modules Hom x_q (N, F*) over B, obtaining a triangulated functor
from the homotopy category of right CDG-modules H"(qcoh-B) to H°(B—qcoh).

In the particular case of matrix factorizations, we conclude that the covariant func-
tors F* ®@p, — and Homx_q(F*, —) take quasi-coherent matrix factorizations of a
potential w € L(X) to (complexes of ) quasi-coherent matrix factorizations of w, while
the contravariant functor Homy q.(—, F*) transforms quasi-coherent matrix factor-
izations of the opposite potential —w € L(X) into (complexes of) quasi-coherent
matrix factorizations of w. Of course, the quasi-coherent CDG-algebras (X, £, w)
and (X, £, —w) over a scheme X are naturally isomorphic, but we prefer to keep the
distinction between the two.

The next proposition provides the matrix factorization version of the conven-
tional (contravariant) Serre-Grothendieck duality for bounded complexes of coherent
sheaves. We assume that X is a separated Noetherian scheme with a dualizing com-
plex D%. Recall that any such scheme has finite Krull dimension [12, Corollary V.7.2].

Proposition. The triangulated functor Homx_qc(—, D%): H((X, £, —w)—-qcoh) —
H°((X, L, w)—qcoh) induces a well-defined triangulated functor D®((X, £, —w)—qcoh
— D**((X, £, w)—qcoh) taking the full triangulated subcategory D**((X, L, —w)
—coh) C D**((X, L, —w)—qcoh) into the full subcategory D ((X,L,w)-coh) C
Db*((X, £, w)—coh). The composition of the duality functors D***((X, L, w)—coh) —
D((X, £, —w)—coh) — D3((X, £, w)—coh) is the identity functor.

Proof. The functor Homx_qc(—, D% ) preserves absolute acyclicity, because DY is a
complex of injective quasi-coherent sheaves, so part (a) of Lemma applies. Given
a coherent matrix factorization M, the finite complex of matrix factorizations
Homx_qc(—, D%) has coherent cohomology matrix factorizations, so one can use its
canonical truncations in order to prove by induction that its totalization belongs to
the triangulated subcategory D2"*((X, £, w)-coh).

Finally, for any quasi-coherent matrix factorization M consider the bicomplex of
matrix factorizations Homx qc(Homx_qc(M, DY), D) and take its totalization in
the two directions where it is a complex, obtaining a complex of matrix factoriza-
tions. Then there is a natural morphism of finite complexes of matrix factorizations
M — Homx qc(Homx qc(M,D%), D% ), which is a quasi-isomorphism of com-
plexes of matrix factorizations when M is coherent. The induced closed morphism of
the total matrix factorizations is an isomorphism in D*((X, £, w)—qcoh), since the
totalization of a finite acyclic complex of matrix factorizations is absolutely acyclic. It
remains to use the fact that the functor D#**((X, £, w)-coh) — D**((X, £, w)—qcoh)
is fully faithful (see Corollary 2.3(k)) again. O

The next result is our covariant Serre-Grothendieck duality theorem for matrix fac-
torizations. It is the matrix factorization analogue of the similar results for complexes
of projective and injective modules [15, Theorem 4.2] and sheaves [21, Theorem 8.4].
It also strongly resembles the derived comodule-contramodule correspondence theory
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(see [35, Theorem 5.2], [34, Corollaries 5.4 and 6.3]; cf. Remark 2.4 above). Notice
that our proof is more akin to the arguments in [35, 34] than those of [15, 21] in that
we give a direct proof of the covariant duality independent of both the contravariant
duality and any descriptions of the compact objects in the categories to be compared.

Theorem. The functors Dx®o, —: H(((X, £, w)-qcohy) — H°((X, £, w)—qcoh;,;)
and Homx qc(D%, —): H*((X, L, w)-qcoh;;) — H°((X, L, w)-qcohy) induce mu-
tually inverse equivalences between the coderived categories D°((X, £, w)—qcohy) and
De((X, L, w)—qcoh).

Proof. Recall that H°((X, L, w)-qcoh;;) ~ D®((X, L, w)-qcoh) by Lemma 1.7(b)
and D**((X, £, w)—qcohy) = D®((X, L, w)—qcohy) by Corollary 2.3(f) (though we
will reprove the latter fact rather than use it in the following argument; see also Re-
mark 2.6 below and Lemma A.1). The functor D% ®e, —: H°(((X, £, w)-qcohy) —
H°((X, L, w)-qcoh; ;) obviously takes matrix factorizations coacyclic with respect to
(X, £, w)-qcohy to matrix factorizations coacyclic with respect to (X, £, w)-qcohy;,
which are all contractible. It remains to check that the induced functors are mutually
inverse.

Let £ be a matrix factorization from (X, L, w)—qcohy. As in the previous proof,
consider the bicomplex of matrix factorizations Homx (D%, D% ®o, £) and
take its total complex of matrix factorizations. Then there is a natural morphism
E — Homx ¢(D%, D% ®o, £) of finite complexes of matrix factorizations from
(X, L, w)—qcohg. To prove that the induced morphism of the total matrix factoriza-
tions is an isomorphism in D°((X, £, w)—qcohy), we once again use the fact that the
totalization of a finite acyclic complex of matrix factorizations is absolutely acyclic.
So it suffices to check that for any flat quasi-coherent sheaf F over X the natural
morphism F — Homy (D%, D% ®o, F) is a quasi-isomorphism of complexes of
flat quasi-coherent sheaves. This will be done below.

Similarly, let M be a matrix factorization from (X, £, w)-qcoh;,;. Consider the
morphism of finite complexes of injective matrix factorizations Dy ®p, Homx qc
(D%, M) — M. To prove that the cone of the induced morphism of the total
matrix factorizations is contractible, it suffices to check that for any injective quasi-
coherent sheaf J over X the natural morphism of complexes of injective sheaves
D% R0y Homx q(D%,J) — J is a quasi-isomorphism.

Let "D% denote a finite complex of coherent sheaves over X endowed with a
quasi-isomorphism "Dy — D%. Then the morphism Homx_qc(D%, Dk ®oy F) —
Homx q('D%, D% ®o, F) is a quasi-isomorphism for any flat quasi-coherent
sheaf F. The construction of the composition F — Homx_qc(D%, Dk @0y F) —
Homx o (DY, DY ®o, F) is local in X, so it suffices to check that the composition
is a quasi-isomorphism when X is affine. Then, using the passage to the filtered
inductive limit, we may assume that F is locally free of finite rank, and further that
F = Ox. It remains to recall that the morphism Ox — Homy (D%, DY) is a
quasi-isomorphism by the definition of DY%.

Let "D5% be a bounded above complex of flat quasi-coherent sheaves mapping quasi-

isomorphically to “D%. Then for any injective quasi-coherent sheaf J over X there
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are quasi-isomorphisms "Dy ®o, Homx qc(D%,J) — D% Roy Homx 4 (D%, J)
and "D ®o, Homx ¢ (D%, J) — "D Qo Homx_qc (DY, J) forming a commuta-
tive diagram with the evaluation morphisms into 7. Hence it remains to check that
the morphism "D% ®p, Homx_qc('D%,J) — J is a quasi-isomorphism, which is a
local question. Assume futher that "D% is a bounded above complex of locally free
sheaves of finite rank. Then there is a natural isomorphism of complexes of sheaves
"Dy @0y Homx qc(D%, T) =~ Homx qc(Homx q("D%, P%), J). The related mor-
phism Homx qc(Homx q("DP%,'D%),J) — J is induced by the natural morphism
of complexes Ox — Homx q("D%, D%). The latter is again a quasi-isomorphism
essentially by the definition of D%. O

From this point on we resume assuming that X has enough vector bundles.

Notice that the equivalence functor D% ®e, —: D°((X, L, w)-qcohs) —>
D((X, £, w)—qcoh) that we have constructed takes the full triangulated sub-
category D((X, L, w)—cohg) C D«((X, L, w)-qcohy) into the full triangulated
subcategory D((X, £, w)-coh) C D®((X, L, w)-qcoh). This is so because the
dualizing complex D% has bounded coherent cohomology sheaves.

Now we will use the above Proposition and Theorem in order to construct compact
generators of the triangulated category D<°((X, £, w)—qcohy) (cf. [16, 26]).

Consider the abelian category Z°((X, L, —w)-coh) of coherent matrix factoriza-
tions of —w and closed morphisms of degree 0 between them, and its exact subcat-
egory of locally free matrix factorizations of finite rank Z°((X, £, —w)-cohy). The
natural functor between the bounded above derived categories of our abelian cate-
gory and its exact subcategory D™ (Z°((X, £, —w)—cohy) — D~ (Z°((X, L, —w)—coh)
is an equivalence of triangulated categories.

The vector bundle duality functor Homy qc(—, Ox): Z°((X, L, —w)-cohy)°P —
Z°((X, L, w)—cohy) induces a triangulated functor D~ (Z°((X, £, —w)—cohy)°? —
DT (Z°(X, L, w)-cohi) taking bounded above complexes to bounded below ones. Here
D°P denotes the opposite category to a category D.

Let D (Z°((X, L, w)-qcoh,)) denote the bounded below derived category of the
exact category of locally free matrix factorizations of possibly infinite rank. Since the
bounded below acyclic complexes over any exact category with infinite direct sums
are coa