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Abstract: This paper reviews some popular localization techniques used in mobile robotics. Further-
more, an adaptation of the classical formulation of the Indirect Kalman Filter (IKF) has been imple-
mented by means of fusing different kinds of sensors (such as odometry and radar-compass system). Two
different formulations of the IKF have been compared with popular localization techniques, through real
tests using a tracked mobile robot available at the University of Almerı́a.
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1. INTRODUCTION

It is well-known that one of the main issues in mobile robotics
is the robot localization, that is the process in which a mobile
robot determines its current position and orientation. Two of
the most popular solutions are odometry and dead-reckoning
(Barshan and Durrant-Whyte [1995]), (Borenstein and Feng
[1996]). These techniques can be considered as relative or local
localization. Other authors use absolute or global techniques as
GPS (Durrant-Whyte and Leonard [1991]) or a combination of
both. On the other hand, some efforts are being developed at the
probabilistic estimation techniques field. The more representa-
tive approach is the Kalman Filter (Goel et al. [1999]), (Kim
et al. [1996]), (Nebot et al. [1997]), (Roumeliotis et al. [1998]).

Currently, a tracked mobile robot is available at the University
of Almeria (Spain), see Figure 7. Some works have been devel-
oped studying the navigation control of this vehicle (González
et al. [2007]), (González et al. [2008]). The goal of this vehicle
is to operate inside greenhouses. For that purpose, this paper
presents a comparative study of some of the most popular lo-
calization techniques in the mobile robotics community. The
objective of this study is to check what is the most appropri-
ate localization technique for the integration in the navigation
control architecture.

One of the techniques analyzed has been odometry, where
the calibration of the wheel radius is the main issue, so that
a comparison has been performed between an ideal situation
and that with wheel radius uncertainty. Another selected tech-
nique has been a combination of radar and magnetic compass
measurements, this solution has been adopted to remove the
typical drawback of Inertial Navigation Systems (growth of
errors due to integration of measurements). Finally, a Kalman
Filter is used to estimate the localization of the mobile robot.
This solution has been adopted because it is expected that the
position estimate fusing both previous localization techniques
(odometry and radar-compass) will be more accurate (Maybeck
[1979]).

The paper has been organized as follows: in section 2 a review
of the localization strategies used in mobile robotics is per-

formed. In section 3 a brief introduction to the Kalman Filter is
addressed and the proposed solution based in the adaptation to
the Indirect Kalman Filter is detailed. Section 4 shows real tests
carried out using a real mobile robot available at the University
of Almerı́a. Finally, some conclusions and future research are
presented in section 5.

2. LOCALIZATION IN MOBILE ROBOTS

This section reviews the basic ideas about localization in mobile
robotics. The main groups of localization strategies are: relative
or local localization and absolute or global localization. An
alternative to previous strategies are the techniques which use
probability to fuse different sources of information to estimate
the position of the vehicle. The main advantages and drawbacks
of each technique are also summarized.

2.1 Relative or local localization

Relative localization techniques are based on determining in-
crementally the position and orientation of a robot from an
initial point. To provide this information it uses various on-
board sensors, such as encoders, gyroscopes, accelerometers,
etc. (Siegwart and Nourbakhsh [2004]).

The most used relative localization techniques are odome-
try and dead-reckoning (odometry and inertial navigation sys-
tems). Odometry employs simple geometric equations (kine-
matics of mobile robot) with wheel encoders that provide angu-
lar velocities of the wheels (or tracks). By integrating previous
equations the position and orientation of the vehicle is calcu-
lated.

The main drawbacks of odometry (and dead-reckoning) are
(Borenstein and Feng [1996]), (González et al. [2008]): (i)
Due to encoder measurements are integrated, the noise is also
integrated, thus it causes an unbounded growth of the error
along time and distance. (ii) Odometry is based on the as-
sumption that wheel revolutions can be translated into linear
displacement relative to the floor. This assumption is limited on
slip surfaces. These are called non-systematic errors. (iii) Other
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type of errors are called systematic errors which relates to un-
equal wheel diameters, uncertainty about the effective distance
between wheels centers, limited encoder resolution, etc.

2.2 Absolute or global localization

The absolute localization techniques determine the position of
the robot with respect to a global reference frame (Durrant-
Whyte and Leonard [1991]), for example, using beacons or
landmarks. The most popular technique is GPS which is based
on satellite signals to determine the absolute position (longi-
tude, latitude and altitude) of an object on the Earth.

In the case of absolute localization the error growth is mitigated
when measurements are available. The robot position does not
depend on time and initial position.

The main problems of the techniques based on landmarks
are: (i) It requires a costly installation of the markers on the
area where the robot operates. (ii) The mobile robot can only
navigate over the area in which landmarks are located. (iii)
Between landmarks the robot cannot determine its localization
(Wang [1988]).

In relation to the GPS the main drawbacks are: (i) Small
accuracy of data. This problem is solved using Differential GPS
or GPS with RTK corrections (Lenain et al. [2004]). (ii) The
sampling time is relatively large (greater than 1 second). For
some kind of mobile robot applications this sampling time is
quite slow. (iii) The GPS signal can be lost in closed spaces. It is
only useful in outdoor free spaces. (iv) High cost of Differential
GPS systems.

2.3 Probabilistic localization

Probabilistic techniques are based on estimating the localiza-
tion of the mobile robot combining measurement data and prior
knowledge about the system and measuring devices, in such a
way that the error is statistically minimized. The most extended
techniques are based on Kalman Filter (Welch and Bishop
[2001]), (Maybeck [1979]). One of these techniques is SLAM
(Simultaneous Localization and Mapping) (Durrant-Whyte and
Bailey [2006]), (Tardos et al. [2002]). In SLAM, localization
proceeds as Kalman Filter does, but updating the map. The new
features or observations added to the map are represented by
a statistical distribution because the unknown exact value of
robot’s position. One of the drawbacks of SLAM is the asso-
ciated computational effort because large data structures (map,
covariance matrices, etc.) needs to be created and updated to
each feature obtained by the robot (Siegwart and Nourbakhsh
[2004]).

Another research works are based on the Extended Kalman
Filter (EKF) which is used in nonlinear systems. The basic idea
of EKF is to start with a nonlinear system, and then find a linear
system whose states represent the deviations from a nominal
trajectory of the nonlinear system (Simon [2006]). Particle
filtering also constitutes a localization method for mobile robots
(Thrun et al. [2005]). It uses multiple copies (particles) of the
state, each one associated with a weight. An estimate of the
state is obtained by the weighted sum of all the particles. The
main drawback is that the quality of the solution increases with
the number of samples, that is, it may require exponential time
(Thrun et al. [2005]).

3. KALMAN FILTER

A Kalman Filter is simply an optimal recursive data processing
algorithm (Maybeck [1979]). It combines all available mea-
surement data, plus prior knowledge about the system and
measuring devices, to produce an estimate of the desired vari-
ables in such a manner that the error is minimized statistically
(Maybeck [1979]). Furthermore, it supposes the system can be
described through a linear model, and system and measurement
noises are white and Gaussian ones (Thrun et al. [2005]).

There are two formulations of the Kalman Filter: total state
space (direct formulation) and error state space (indirect for-
mulation). In the direct formulation, the filter estimates the
states of the system, which are used by the control loop, that
is, the filter actuates as an observer (figure 1). The advantage
of this formulation is that the available information is weighted
optimally rather than operated upon by fixed gains and inte-
grator. Some drawbacks are (Maybeck [1979]): (i) Due to the
fact that the filter is needed in the control loop (observer), if
the filter fails, the entire navigation system fails. The mobile
robot cannot operate without the filter. (ii) The filter requires
a sampling period similar to the controller, which could cause
that the filter cannot operate correctly.

Fig. 1. Direct Kalman Filter

In the indirect formulation, the state is obtained combining
a primary set of sensors (i.e. odometry) and the difference
between these sensors with auxiliary measurements (i.e. radar-
compass), such as shown in Figure 2. The advantages of this
configuration are: (i) The system can operate without the filter,
because at least the main set of sensors can calculate the
position of the robot. (ii) The filter can run at relatively slow
rate. The drawback is that the real states of the system are not
estimated, only the errors between different sources.

Fig. 2. Indirect Kalman Filter

Depending on the treatment of the error estimates, there are two
types of linear Indirect Kalman Filter (IKF) implementations:
feedforward and feedback (Maybeck [1979]).

These formulations use odometry with calibrated wheel ra-
dius and effective distance between wheels centers to avoid
systematic errors and the radar-compass system to avoid non-
systematic errors due to slip compensation (González et al.
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[2008]). The strategy followed is summarized in figure 3.
Firstly, the error between the reference position and odom-
etry, and the error covariance matrix are determined. Then,
the Kalman gain is computed using the radar-compass noise
covariance matrix. Finally the difference between odometry and
radar-compass positions are used to estimate the error, and the
error covariance matrix is updated.

Fig. 3. Proposed strategy using IKF with odometry and radar-
compass

3.1 Kinematic Model

As well-known the motion of a mobile robot is expressed as
the relative movement of the attached frame (R) to the mid-
point of the vehicle (O′) with respect to a global or inertial base
frame (G), such as Figure 4 shows. The approach presented in
this paper to implement the two formulations of the IKF are
based in the kinematic model of a differential-drive mechanism
(Siegwart and Nourbakhsh [2004]) to determine the position,
because the mobile robot used for our tests has this configura-
tion (González et al. [2007]).

Fig. 4. Kinematic model of a differential-drive mechanism

In the case of odometry the kinematic model is

xodo
k+1 = xodo

k + Ts
wr

2
[φr + φl] cos θodo

k + εx,

yodo
k+1 = yodo

k + Ts
wr

2
[φr + φl] sin θodo

k + εy, (1)

θodo
k+1 = θodo

k + Ts
wr

b
[φr − φl] + εθ,

where podo = [xodo yodo θodo]T is the position and orien-
tation of the robot using odometry, k is the discrete sampling
time, Ts is the sampling time, φi is the angular velocity mea-
sured by the encoders of wheel j, j = {r, l} = {right, left}, b
is the distance between wheels centers of the vehicle, wr is the
wheel radius, and ε is a Gaussian white noise.

Using the radar-compass system, the previous equation can be
rearranged as

xrc
k+1 = xrc

k + Tsvm cos θrc
k + δx,

yrc
k+1 = yrc

k + Tsvm sin θrc
k + δy, (2)

θrc
k+1 = θrc

k + Tsωm + δθ,

where vm is the linear velocity of the vehicle measured with the
radar, ωm is the angular velocity of the vehicle measured with
the magnetic compass, and δ is a Gaussian white noise.

3.2 Feedforward Indirect Kalman Filter

The Feedforward formulation estimates the error to compensate
the position determined by odometry. In this formulation, the
reference position, and those estimated by odometry and by
radar-compass are used to determine the error estimation. The
disadvantage of this approach is that error due to odometry can
grow unbounded because the filter has not any feedback.

As commented above, firstly the error between reference and
odometry position is determined,

êk|k =

⎡
⎣ êx

k|k
êy
k|k

êθ
k|k

⎤
⎦ =

⎡
⎢⎣

xref
k|k − xodo

k|k
yref

k|k − yodo
k|k

θref
k|k − θodo

k|k

⎤
⎥⎦ , (3)

where ref is related to the reference.

The predicted error is the same that the error between reference
and odometry,

êk+1|k = Aêk|k, (4)

generally in the IKF formulation state matrix A is equal to the
identity matrix of the same size that the state space. In this case
A = I3. Then, error covariance matrix P is calculated. Later
this matrix is used to determine the Kalman gain,

Pk+1|k = APk|k + Qodo, (5)

where Qodo matrix is the noise covariance matrix of odometry.
This matrix will be experimentally determined using the vari-
ance of each component of the position,

Qodo =

⎡
⎣ σ2(ex

odo) 0 0
0 σ2(ey

odo) 0
0 0 σ2(eθ

odo)

⎤
⎦ . (6)

In the next step, the Kalman gain K is calculated. This gain
weights the difference between the external sources of infor-
mation (odometry and radar-compass positions) and estimated
error,

K = Pk+1|k[Pk+1|k + Rrc]−1, (7)

where Rrc matrix is the noise covariance matrix of radar-
compass. This matrix is obtained following the same procedure
that Qodo matrix,

Rrc =

⎡
⎣ σ2(ex

rc) 0 0
0 σ2(ey

rc) 0
0 0 σ2(eθ

rc)

⎤
⎦ . (8)
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Then, the error state is estimated using the Kalman gain (K)
and the error between odometry and radar-compass as

êk+1|k+1 = êk+1|k + K(zk − êk+1|k), (9)

where

zk =

⎡
⎢⎣ xodo

k|k − xrc
k|k

yodo
k|k − yrc

k|k
θodo

k|k − θrc
k|k

⎤
⎥⎦ . (10)

The difference z − êk+1|k is called residual or innovation.

Now, the error covariance matrix is updated,

Pk+1|k+1 = (I3 −K)Pk+1|k. (11)

Finally, the optimal estimates of error committed by the odom-
etry are subtracted from the odometry data, to yield optimally
estimated localization,

p̂k+1|k+1 = podo
k+1|k+1 − êk+1|k+1. (12)

This process should be repeated at each sampling time.

These steps are summarized in figure 5.

Fig. 5. Feedforward Indirect Kalman Filter

3.3 Feedback Indirect Kalman Filter

The process to implement the Feedback formulation is similar
to the previous one. The key difference is that the errors are fed-
back into the odometry to correct it. The most straightforward
means of generating the feedback implementation is to write the
system and filter equations in terms of corrected states. Using
the next equation

p̂k|k = podo
k|k − êk|k, (13)

knowing that podo is defined as (1), and substituting ê by (9), it
holds,

podo
k+1|k+1 − êk+1|k+1 = (podo

k|k − êk|k)− (14)

−K(podo
k|k − prc

k|k − êk|k) + TsBkυk,

where

Bk =

⎡
⎣ cos θodo

k 0 0
0 sin θodo

k 0
0 0 1

⎤
⎦ , υk =

[
vm

ωm

]
. (15)

Grouping terms in (14), it produces,

p̂k+1|k+1 = p̂k|k −K(p̂k|k − prc
k|k) + TsBkυk. (16)

As in the previous formulation this process should be repeated
at each sampling time. Previous equation represents the feed-
back formulation of IKF where K is calculated as in (7).

The feedback formulation is summarized in figure 6.

Fig. 6. Feedback Indirect Kalman Filter: strategy implemented

3.4 Fault-tolerance in radar

A fault-tolerant procedure to account for erroneous data from
radar has been implemented. This is because radar sensitivity
can become erroneous, with changes in reflection levels under
not appropriate soil conditions. This issue have been solved
modifying the Kalman gain. When radar readings are erroneous
(during a long time are equal to zero and the encoders and
compass readings are different from zero, and when radar
reading are quite noisy), the Kalman gains is imposed to zero
and the radar-compass position does not affect the error state
estimation.

4. RESULTS

This section discusses a comparison of different localization
techniques implemented in the real mobile robot. The mobile
robot called Fitorobot is available at the University of Almerı́a
(figure 7). It is a tracked vehicle designed to work in green-
houses, and equipped with some sensors and a computer to
operate autonomously (González et al. [2007]). The purpose of
this tracked mobile robot is to operate in greenhouse where slip
inevitably occurs. For that reason, the approach in which radar-
compass is fused with odometry will obtain the best behavior
in this type of terrains. As explained in (González et al. [2008])
radar and encoders are used to calculate the slip which is taken
into account by the main controller.

Currently the mobile robot is equipped with few sensors for
localization purposes, for that reason we have only compared:
Odometry simulating a calibrated track’s radius and a non-
calibrated track’s radius 1 ; radar-compass with fault-tolerant
procedure and without fault-tolerant procedure; feedforward
IKF, and feedback IKF. In future works, we will compare
absolute localization techniques as GPS to the current results.

The real track’s radius of the testbed is 0.15 [m] but the
calibrated track’s radius is 0.10 [m]. The distance between
tracks centers is 0.5 [m]. The noise covariance matrices Qodo

and Rrc experimentally determined are

Qodo =

[ 12 0 0
0 25 0
0 0 10

]
, Rrc =

[ 1 0 0
0 2 0
0 0 0.5

]
(17)

1 Because a track is different to a wheel some experimental tests have been

carried out to find out the relationship between the linear velocity of the vehicle

and the angular velocities of the tracks. That is the reason, by which appears

two different radius.
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Fig. 7. Mobile robot Fitorobot

In order to test the performance of the localization techniques
the mobile robot was teleoperated over an U-shaped reference
trajectory over a terrain with two different areas (one in which
the radar performance is fine and another in which the radar
does not work well). The size of the trajectory was approx-
imately 14 meters long and 10 meters width. This type of
trajectories are common in greenhouses. Because the vehicle
was teleoperated the real trajectory followed by the mobile
robot differs slightly from the reference trajectory. This is the
reason of why errors in localization techniques are higher that
expected.

As can be seen in Figure 8, the trajectories using Kalman Filters
fit correctly the reference trajectory (taking into account the
errors due to teleoperation described above). Techniques based
on odometry show an unacceptable behavior in the turns. At
the end of the test, there is a slight difference between the
reference and the trajectories obtained using the localization
methods, this fact is due to the commented difference between
the reference trajectory and the real teleoperated trajectory.

The errors can be better observed from Figure 9. To calculate
these errors, the Euclidean norm (between the error in the
forward and lateral directions) has been used. As expected,
the error using odometry grows considerably, because it has
a bad behavior in long trajectories and in turns. Furthermore,
the error for all the techniques grows unchecked, because
the vehicle moves in an open-loop experiment. Seeing these
results, it is demonstrated that odometry is not appropriate to
estimate the position of a mobile robot, above all, when the
trajectory has several turns. The lesser error is achieved using
the feedback IKF. Relative errors between the other techniques
with respect to the feedback IKF using the mean value (of
the errors) are: feedforward IKF 2.70%, radar-compass (fault
tolerant procedure) 5.26% and radar-compass (no fault tolerant
procedure) 73.33%.

Finally, Figure 10 shows the measurements of encoders (angu-
lar velocity of wheels) and radar (linear velocity of the vehi-
cle). At time instants (80-100) seconds is possible to see some
erroneous peaks due to radar readings (terrain with different
reflectivity properties). Figure 11 shows the orientation mea-
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sured by the magnetic compass. It is possible to check the two
consecutive 90-degrees turns.

5. CONCLUSIONS AND FUTURE RESEARCH

This paper reviews some popular localization techniques used
in mobile robotics. Special attention has been shown for the
Indirect Kalman Filter. Real tests have demonstrated that both
IKF formulations implemented have a minimum error. The
feedback formulation has the best performance, because as dis-
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cussed, the filter is fedback with the current errors in odometry.
As expected odometry shows a bad behavior, above all in turns.

In future, Kalman Filter localization techniques will be inte-
grated with navigation controllers in a real mobile robot, and
absolute localization techniques will be tested.
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