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Chapter 11

Minimal Unsatisfiability and Autarkies

Hans Kleine Biining and Oliver Kullmann

The topic of this chapter is the study of certain forms of “redundancies” in
propositional conjunctive normal forms and generalisations. In Sections [11.1]-
we study “minimally unsatisfiable conjunctive normal forms” (and general-
isations), unsatisfiable formulas which are irredundant in a strong sense, and in
Sections 11.8/-11.13 we study “autarkies”, which represent a general framework
for considering redundancies. Finally in Section[11.14 we collect some main open
problems.

11.1. Introduction

A literal is a variable or a negated variable. Let X be a set of variables, then
lit(X) is the set of literals over the variables in X. Clauses are disjunctions of
literals. Clauses are also considered as sets of literals. A propositional formula in
conjunctive normal form (CNF) is a conjunction of clauses. CNF formulas will be
considered as multi-sets of clauses. Thus, they may contain multiple occurrences
of clauses. The set of all variables occurring in a formula ¢ is denoted as var(y).
Next we introduce formally the notion of minimal unsatisfiability. Please note
that in some of the older papers minimal unsatisfiable formulas are sometimes
called “critical satisfiable”.

Definition 11.1.1. A set of clauses {f1,..., f»} € CNF is called minimal un-
satisfiable if {f1,..., fn} is unsatisfiable and for every clause f; (1 < i < n) the
formula {f1,..., fi—1, fi+1,.. ., fn} is satisfiable. The set of minimal unsatisfiable
formulas is denoted as MU !

The complexity class DY is the set of problems which can be described as the
difference of two NP-problems, i.e., a problem Z is in D iff Z = X —Y where X
and Y are in NP. The D completeness of MU has been shown by a reduction of
the DP-complete problem UNSAT-SAT [PW88]. UNSAT-SAT is the set of pairs
(F, Q) for which F is unsatisfiable and G is satisfiable.

Theorem 11.1.1. [PW88] MU is D -complete.

IDepending on the author, instead of “minimal unsatisfiable formulas” also “minimally un-
satisfiable formulas” can be used (or is preferable).
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The idea of the proof is as follows. At first, we show that MU is in D. Let Y’
be the set of satisfiable CNF and let X be the set of CNF such that after removal
of any clause they are satisfiable. Then we obtain MU = X — Y and therefore
MU is in DP. For the hardness we assign to every pair of 3-CNF formulas (F, G)
a formula H(F,G), such that (F,G) is in UNSAT-SAT if and only if H(F, Q) is

minimal unsatisfiable:

o Let FF = {f1, ceey fn} be in 3-CNF with f; = (Li’1 V LZ"Q V Lz’g)

e For new variables z1,...,zp let m; = (x1 V- V&1 V&g V- Va,).
e We define
Hl(F) = /\ (fi\/ﬂ'i)/\ /\ (_‘Li,j\/ﬂ'i\/_‘xi)/\ /\ (_‘l‘i\/—\.ﬁj).
1<i<n 1<i<n,1<j<3 1<i<j<n

e Let G ={g1,...,9m} be in 3-CNF with g; = (L} ; V Lj, V L 3).
e For new variables y1,...,ym let o, = (Y1 V- VY1 Vyir1 V- Vyp).
o We define

Hy(G) = N (@vedn N Liveiv-z)n N\ (V)

1<i<n 1<i<m,1<5<3 1<i<j<m
ALV eV ym).

e Then we have Hy(G) is unsatisfiable. Moreover, F' is unsatisfiable if and
only if H1(F) € MU, and G is satisfiable if and only if Hs(G) € MU.

e For Hi(F) = \;0; and Ha(G) = \; 7; we define H(F,G) =\, ;(0; V 75).

e Then (F,G) is in UNSAT-SAT if and only if H(F,G) is in MU.

11.2. Deficiency

A very interesting measure for the complexity of formulas is CNF is the so-called
“deficiency” which indicates the difference between the number of clauses and the
number of variables.

Definition 11.2.1. Let F' be a formula in CNF with n clauses and k variables.
Then the deficiency of F is defined as d(F) = n — k. Further, we define the
mazimal deficiency as d*(F) = max{d(G) | G C F}.

Let k-CNF be the set of CNF-formulas with deficiency (exactly) k. Then the
satisfiability problem for k-CNF is NP-complete. That can be shown easily by
a reduction to SAT. Similarly, let CNF*(k) be the set of formulas with maximal
deficiency k, i.e. {F € CNF : d"(F) = k}. In [FKS02] it has been shown that the
satisfiability problem for these classes is solvable in polynomial time.

The set of minimal unsatisfiable formulas with deficiency k is denoted as
MU(k). It has been shown in [AL86] that any minimal unsatisfiable formula
has a deficiency greater than 0, that means, every minimal unsatisfiable formula
contains more clauses than variables. With respect to deficiency, one of the main
results is the following

Theorem 11.2.1. [FKS02] For fized integer k the problem MU(k) is solvable in
polynomial time.
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Instead of asking whether a formula is in MU(k) we may be interested in
whether a formula contains a MU(k)-subformula. This problem (i.e., the set of
formulas) is denoted by sup-MU(k) and is NP-complete [Sze01, KZ02a].

Formulas in conjunctive normal form can be represented as matrices (“variable-
clause matrices”). The columns are the clauses and for each variable there is a
row.

Example 11.2.1. For example, the formula F' = (z1 V 2 V 23) A (21 V 223) A
(mxo Va3) A (—xy Vas) A (—xy V g V —xg) can be written as

1 T T 1
T2 X2 T2 X2
T3 7r3 T3 X3

If the order of the variables is fixed then sometimes we replace the positive occur-
rence of a variable by the symbol '+’ and the negative occurrence by the symbol
'—'. For the fixed order x1, s, r3 and the formula given above, we have

+4+ --
+ —+-
+-+ -

The transposed of the variable-clause matrix is called the “clause-variable
matrix”, and is studied further (as a matrix over {—1,0,4+1}) in [Kul03]; see
Subsection [11.11.3.2| for further details on matrix representations of formulas.

11.2.1. Splitting

For a formula FF € MU and a variable = we can assign the value true to x and
reduce the formula by removing any clause with z and deleting any occurrence
of —x. The formula we obtain is unsatisfiable and therefore contains at least one
minimal unsatisfiable formula. If we perform the assignment also for —x then we
get two MU-formulas (a choice for each branch), and in this sense the assignment
and the reduction splits the formula F' into two MU-formulas. The splitting can
be used to investigate the structure of MU-formulas and is a helpful tool for
proofs; for an early reference see [KB99].

Definition 11.2.2. For ' € MU and a variable z of F' there exist formulas
B.,C, B_, in which neither x nor —x occur such that

1. the formula F' can be represented as
F={aVfi,...,eVf}UB, UCUB_,U{-2Vg1,...,mxVg};

2. {f1,..., fs}UB,UC, denoted by F,, is in MU, and {¢1,...,g:} UB-,UC,
denoted by F.;, is in MU. F, and F-, may consist of the empty clause
only.

We call (Fy, F-;) a splitting of F on x.
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Example 11.2.2. Continuing Example[11.2.1] we obtain the splitting

Fop, = (22 V 23) A (m3) A (D2 V T3)
Fyy = (mz2 Vas) A (z2) A (ma2 V —as).

The corresponding matrix representations are

T2 X2 X2 T2 T2
Tr3 I3 I3 ’ X3 T3 ’
For all k, all F € MU(k), all variables « in F' and all splittings (Fy, F.,) of
F on x we have:

1. d(Fy),d(F-;) < k (see Corollary 7.10 in [Kul03], considering the larger
class of “matching lean” clause-sets as discussed later in Subsection11.11.2).

2. If all variables occur positively as well as negatively at least twice, then
d(Fy),d(F-z) < k (Theorem 2 in [KB00]; see Lemma 3.9 in [Kul00a] for
a somewhat stronger statement, also considering the larger class of “lean”
clause-sets as discussed later in Subsection .

. . . . . 3. If k > 2, then (by Lemma 3.10 in [Kul00a]) there is some variable z’ such

that for some splitting (F/, F,/) we have d(F,/) < k and d(F-,/) < k.
Such a variable can be computed in polynomial time.

That by splitting the deficiency can be reduced has to do with the “expansion”
of variables, and is discussed further in Section 4.4 in [Kul07a]. If the common
part of both formulas, C', is empty, we call the splitting disjunctive. We say a
formula has a unique splitting for a variable x, if there exists exactly one pair
of splitting formulas (F,, F_,). In general, splittings are not unique. If a MU-
formula F' has a disjunctive splitting on « then however the disjunctive splitting
on z is unique. See Section 3 in [KZ03] for further investigations into splittings.

11.2.2. Structure of MU(1) and MU(2)

A class of MU-formulas with deficiency 1 is the set Horn-MU of minimal unsat-
isfiable Horn formulas. That together with the linear-time decidability can easily
be shown by an induction on the number of variables. But MU(1) contains more
formulas. The structure of MU(1)-formulas is well understood. Every MU(1)-
formula can be represented as a basic matriz and vice versa [DDKB98|. Basic
matrices are defined inductively as follows:
1. (—|— —) is a basic matrix.
2. If B is a basic matrix then

() (%)

are basic matrices, where by, by are non-null row vectors without + resp.

without —.
3. If By and B, are basic matrices and by, by are as above, then
B 0
b1 bs
0 Bo
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is a basic matrix.

Here, “ 47 represents a positive literal, and “—" a negative literal. We usually

omit zeros and write them as blank fields. The rows belong to the variables and
the columns to the clauses.

Example 11.2.3. The formula x A -~z has the basic matrix (+ 7). For the
formula (21 V x2) A (m21) A (mxe V 23) A (mxe V —23) we have the basic matrix

_l’__
+ —_ —
+7

Since basic matrices have a disjunctive splitting, we can always find a disjunc-
tive splitting for MU(1)-formulas. Moreover, it is easy to see that any minimal
unsatisfiable Horn formula is in MU(1), whereas for 2-CNF minimal unsatisfi-
able formulas with an arbitrary deficiency can be constructed. For an approach
based on a tree representation of the elements of MU(1) see [Kul0Oa]. We re-
mark that the class MU(1) has been studied rather extensively from the point
of view of “qualitative matrix analysis”; see Subsection [11.12.1 for some general
introduction.

With respect to the structure of the matrices for greater deficiencies only very
few results are known. For example, every MU(2)-formula in which each literal
occurs at least twice has the following form except for renaming [KB0O:

T1 71 X2t Tp—1 Wp 1
T2 T2 T3 - Tn r1 T2
T3 X3
Tn Ly

See [SD97] for some initial study on MU(3) and MU(4).

11.3. Resolution and Homomorphism

It is well-known that in the worst-case resolution refutations of unsatisfiable for-
mula require super-polynomially many resolution steps. For fixed deficiency, for
each ' € MU(k) there is a resolution refutation with not more than 2*~!n reso-
lution steps. The proof follows immediately by splitting property 3] from Section
[I1.2.1 together with the characterisation of MU(1) from Subsection

It is easy to see that MU(k) is closed under (1,x*)-resolution (also called
singular DP-resolution) for every k. That means, if F = {LV f,=LV g;,~LV
92, -, LV gst+ F' € MU(k) and L as well as =L do not occur in F’, then
{fVag,fVga....f Vgs} + F/ € MU(k). Please note that the literal L occurs
only once in the formula, and that we simultaneously resolve on all clauses with
literal L. In that sense, (1, *)-resolution is a restricted version of hyperresolution.

We say a formula is read-once refutable if the formula has a resolution refu-
tation tree in which each input clause is used at most once, and such a refutation
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is called a read-once refutation. ROR is the class of read-once refutable formu-
las and known to be NP-complete [IM95]. The following example is a formula
for which a read—once refutation exists, no proper subformula has a read-once
refutation, but the formula is not minimal unsatisfiable.

Z U DX O a6 ay Tz U
-y -b-y-bzxb y a
b —x

Let ROR-MU(k) be the set of minimal unsatisfiable formulas with deficiency
k for which a read-once refutation exists. ROR-MU(k) is decidable in polynomial
time for any fixed k& [KZ02a]. For the class Sup-ROR-MU(k) := {F | 3G €
ROR-MU(k) : G C F} it has been shown in [KZ02a, |Sze01] that the decision
problem is NP-complete. In [FSWO06] it has been shown that the Short Resolution
Refutation (SRR) and the Small Unsatisfiability Subset (SUS) problems are likely
not fixed-parameter tractable, however the restrictions to planar formulas or to
formulas with fixed bounds on clause-length and variable-occurrence are fixed-
parameter tractable. Here SRR is the problem whether for a parameter ¢ a
refutation with at most ¢ steps exists, and SUS is the problem of deciding whether
a formula contains an unsatisfiable sub-formula with at most ¢ clauses.

In [Sze01] homomorphisms for CNF-formulas have been introduced as a tool
for proving the unsatisfiability of formulas. For CNF-formulas H and F', a map-
ping ¢ : lit(H) — lit(F) is called a homomorphism from H to F if ¢(—x) =
—¢(x) for every variable z, and ¢(H) = {¢(h) | h € H} C F, where ¢(h) =
{&(L1),...,&(Lm,)} for a clause h = {Ly, ..., Ly, }. According to [Sze01], for ev-
ery tree resolution proof T one can find in polynomial time a formula H € MU(1)
and a homomorphism ¢ : H — pre(T'), where pre(T) is the set of all premises of
T (i.e., the clauses labelling the leaves) such that ¢(H) = pre(T), and |H| equals
the number of leaves of T.

Let C be a class of CNF-formulas. We define HOM(C) as the set of pairs
(F, G) of CNF-formulas such that a homomorphism from F' to G exists with image
all of G. The problem HOM (Horn-MU) is NP-complete. Clearly, the problem is
in NP. The completeness can be shown by a reduction to the 3-colouring problem
for graphs. Furthermore, for fixed k& > 1 the problem HOM(MU(k)) is NP-
complete, even we allow another fixed parameter ¢ > 1 and consider all pairs
(F,G) with FF € MU(k) and G € MU(¢) [KX05].

We say (H, ¢) is a representation of F'if ¢ : H — F' is a homomorphism with
¢(H) = F; so HOM(C) is the set of all pairs (F,G) such that F' can be made
a representation of G. Let (H,¢) be a representation of F', where F' and H are
minimal unsatisfiable formulas. If the shortest resolution refutation of F' requires
m steps then the shortest refutation for H needs at least m steps [KZ02b]. For
all k,¢ > 1 and for all F' € MU(k) a representation of F' by a MU(¢)-formula can
be computed in polynomial time.

A homomorphism ¢ with ¢(H) = F is termed clause—preserving for H and
F if H and F have the same number of clauses. As a consequence of results
shown in [Sze01] and [KZ02b], we have that for every formula F for which a
disjunctive splitting tree exists, we can find a formula H € MU(1) for which a
clause-preserving homomorphism ¢ with ¢(H) = F exists, and vice versa.
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11.4. Special Classes

In this section we present some MU-problems for restricted classes of formulas
and some additional constraints.

11.4.1. 2-CNF-MU

For every k > 1 there is a formula F' € 2-CNF-MU(k), the set of minimal un-
satisfiable formulas with deficiency k consisting of 2-clauses. Whether a 2-CNF-
formula is in MU can be decided in linear time. In a 2-CNF-MU formula, each
literal occurs at most twice. Every 2-CNF-MU formula can be reduced by itera-
tive (1,%)-resolution in linear time to a 2-CNF-MU formula in which each literal
occurs exactly twice. These formulas have the following structure except for re-
naming
Tl 72 Tp—1 Tp 1 X2 Tp—1 Tp
<x2 T3 -+ Ty X1 X T3 e T —\xl) ’

11.4.2. Hitting Formulas

Let HIT := {F € CNF |Vf,g € F,f # g3L € f : =L € g} denote the set of
“hitting formulas”, formulas in which every pair of clauses has a complementary
pair of literals. Let HIT-MU be the set of minimal unsatisfiable hitting formulas.
In [Iwa89], a satisfiability algorithm has been introduced which counts for a given
formula the number ¢(F') of falsifying truth assignments (total assignments which
for at least one clause falsify every literal in it). If the number is ¢(F') = 2", where
n is the number of variables, then the formula is unsatisfiable, and otherwise
satisfiable. The idea of this counting is based on “independent” sets of clauses. A
set of clauses S is termed independent if every pair of (different) clauses contains
no complementary pair of literals. The calculation of ¢(F) can be expressed as
follows for a formula F' = {f1,---, fm}:

s(F)= S Y (-pittoanher®)

1<i<m S€IND;(F)

where IND,;(F') := {S C F | S independent and |S| =4}. F is a hitting formula
if and only if IND;(F) = () for ¢ > 2; thus for F' € HIT we have

o(F) = Yoo

fEF
It follows for F' in HIT:

LY sep2 W<
2. Y pep2 VWl <1 <= F eSAT;
3. Ypep2 Wl =1+= FeMU.
A special class of hitting clause-sets are k-regular hitting clause-sets, where be-

tween two different clauses always ezactly k complementary (or “clashing”) pairs
of literals exist. A k-regular hitting clause-set for k # 1 is satisfiable, due to the
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completeness of resolution. The unsatisfiable 1-regular hitting clause-sets have
been characterised in [Kul04a] as those elements of MU(1) which are “saturated”
or “maximal” (see below); an alternative combinatorial proof (not using methods
from linear algebra as in [Kul04a]) has been given in [SSTO7].

11.4.3. Stronger forms of minimal unsatisfiability

Let A <, B denote the polynomial reducibility between A and B (i.e., A can
be polynomially reduced to B), while A =, B is an abbreviation for A <, B
and B <, A. It is known that MARG-MU, MAX-MU and Almost-Unique-MU
are DP-complete, while Unique-MU =, Unique-SAT <, Dis-MU, where these
classes are defined as follows:

1. Mazimal formulas MAX-MU: A clause f of an MU-formula F' is called
mazximal in F if for any literal L occurring neither positively nor negatively
in f the formula obtained from F' by adding L to f is satisfiable. Then
F € MAX-MU if f is maximal in F for any f € F. Another notion used
in the literature is “saturated clause-sets”

2. Marginal formulas MARG-MU: A formula F € MU is called marginal
w.r.t. a literal L if removing an arbitrary occurrence of L from F' pro-
duces a non-minimal unsatisfiable formula. We say F' is marginal if F' is
marginal w.r.t. all literals occurring in F'. Or in other words, a formula is
marginal if and only if removing an arbitrary literal always leads to a non-
minimal unsatisfiable formula. The set of marginal formulas is denoted as
MARG-MU.

3. Unique minimal unsatisfiable formulas Unique-MU: Based on the well-
known concept of Unique-SAT, the set of formulas having exactly one
satisfying truth assignment, we define the class Unique-MU as the class
of MU-formulas F for which for any clause f € F we have F — {f} €
Unique-SAT.

4. Almost unique formulas Almost-Unique-MU: A weaker notion which de-
mands that except for one clause f, the reduced formula F — {f} must be
in Unique-SAT.

5. Disjunctive Formulas Dis-MU: We define F' € Dis-MU if F € MU and
for any a € var(F') every splitting of F' on z is disjunctive. Please note,
that in case of a disjunctive splitting on a variable x the splitting on x is
unique.

See [KZ07a] for more information on these classes.
11.4.4. Regarding the number of literal occurrences

For fixed k > 3, the problem “k-CNF-MU”, recognising minimal unsatisfiable
formulas in k-CNF, remains D*-complete. The D*-completeness of k-CNF-MU
follows from the D*-completeness of MU. We only have to replace longer clauses
with shorter clauses by introducing new variables and by splitting the long clauses.
Let k-CNF? be the class of k-CNF-formulas in which each literal occurs at least
p times. It has been shown in [KBZ02] that 3-CNF-MU?, and for any fixed k > 4
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and any p > 2 the classes k-CNF-MU? are D¥-complete. But whether a formula
in 3-CNF-MU exists in which each literal in F' occurs at least 5 times is not
known. More results can be found for example in [KZ02a].

11.4.5. Complement-invariant formulas

A formula F' is complement-invariant if for every clause {Li,..., Ly} € F also
the complemented clause is in F', that is {=Ly,...,=Lg} € F. A complement-
invariant F', which additionally consists only of positive and negative clauses, can
be identified with the underlying variable-hypergraph U(F'), whose vertices are
the variables of F' while the hyperedges are the variable-sets of clauses of F. It
is easy to see that such F is satisfiable if and only if U(F) is 2-colourable (i.e.,
vertices can be coloured using two colours such that no hyperedge is monochro-
matic), while F' is minimally unsatisfiable if and only if U(F") is minimally non-
2-colourable (or “critically 3-colourable”), i.e., G is not 2-colourable but remov-
ing any hyperedge renders it 2-colourable. In this way critical-3-colourability
of hypergraphs is embedded into the study of minimal unsatisfiable formulas.
Complement-invariant formulas have been studied at various places, but appar-
ently the first systematic treatment is in [Kul07b]. The deficiency of complement-
invariant formulas F' is less useful here, but the reduced deficiency d.(F) :=
d(U(F)) is the central notion, where the deficiency d(G) of a hypergraph is the
difference of the number of hyperedges and the number of vertices. As shown in
[Sey74] (translated to our language), the reduced deficiency of minimally un-
satisfiable F'(G) is at least 0. Solving a long outstanding open question, in
[RST99, McC04] it was shown (again, in our language) that the decision problem
whether a complement-invariant formula is minimally unsatisfiable with reduced
deficiency 0 is decidable in polynomial time; more on the strong connections to
the satisfiability problem the reader finds in [Kul07b], while in Subsection[11.12.2
of this chapter we further discuss this problem from the point of view of autarky
theory.

11.4.6. Weaker forms of minimal unsatisfiability

The question whether an arbitrarily given formula can be transformed into a
minimal unsatisfiable formula by replacing some literals with their complements
has been studied in [Sze05]. It has been shown in [Sze05] that the problem
whether a formula is satisfiable and remains satisfiable under such replacements
is TI5 -complete.

The class of formulas which are the union of minimally unsatisfiable formulas
has been studied at different places; see for example [KLMS06, Kul07a]. A gener-
alisation of minimal unsatisfiability based on autarkies is discussed in Subsection

11.4.7.
11.4.7. Generalising minimal unsatisfiability for satisfiable formulas
Similarly to minimal unsatisfiable formulas, where removing a clause leads to

a satisfiable formula, we say a formula F' is clause-minimal (or “irredundant”)
if removing a clause f from F' results in a formula not equivalent to F, i.e.
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F—{f}#F. Let CL-MIN := {F € CNF |Vf € F : F—{f}# F} and CL-MIN(k)
the set of CL-MIN-formulas with deficiency k. The problems CL-MIN and SATN
CL-MIN are known to be NP-complete [PW88]. Furthermore, we have MU =
UNSAT N CL-MIN;, and for any fixed k the problem CL-MIN(k) is NP-complete
[KZ05]. Further results one finds in [Kul07a].

11.4.8. Extending minimal unsatisfiable formulas

The extension problem is the problem of determining whether for pairs of formulas
(F, H) there is a formula G for which F + G=H and var(G) C var(H + F).
Without any restriction this question is equivalent to whether H = F (that
is, whether H implies F'). The latter problem is known to be coNP-complete.
Now we are looking for extensions for MU-formulas. Let MU-EXT = {F | 3G :
F + G € MU and var(G) C var(F)}. Then we have MU-EXT = CL-MIN.
Suppose, a CNF-formula F' can be extended to a minimal unsatisfiable formula.
Then it is easy to see that F' is clause minimal. For the inverse direction suppose
F € CL-MIN is satisfiable. Let {t1,---,%,} be the set of satisfying (total) truth
assignments for F' and let G consist of the r clauses exactly falsified by the
assignments ¢;; then F 4+ G is in MU. More details and further classes can be
found in [KZ05]

11.5. Extension to non-clausal formulas

In this section, we will extend the notion of “minimal unsatisfiability” and “defi-
ciency” to non-clausal propositional formulas, where for the sake of a simplified
representation we only allow the operations “binary and”, “binary or” and “not”.
Furthermore we study only formulas in “negation normal form”, where we have
negations only at the leaves, i.e., we study binary nested and’s and or’s of lit-
erals. The length of a propositional formula is the number of occurrences of
literals. More formally, the length can be defined as ¢(L) = 1 for a literal L and
LFANG)=LFVG)=LUF)+{G). The number of occurrences of A-symbols in
a formula F is denoted by #a(F'), whereas #. (F) is the number of V-symbols.
Obviously, we have (F) = 1+ #4(F) +#v(F) (since the operations are binary).
Following [KZ07b], we define:

Definition 11.5.1. Let F be a propositional formula in negation normal form
with n(F) variables. The cohesion D(F) is defined as D(F) = 1+ #4(F) — n(F).

Example 11.5.1. The formula F = (x Ay) V (-2 A (2 V —y)) has the cohesion
D(F) =1+ #x(F)—n(F) =1+2—-3=0. An application of the distributive law
FAGVH)=FANG)V (F A H) may change the cohesion. For example, from
F =z A (z Vy) we obtain the formula F’ = (z A ) V (2 A y). The cohesion of F'
is —1 and the cohesion of F’ is 0.

For propositional formulas in negation normal form the so-called “Tseitin
procedure” generates satisfiability-equivalent formulas in CNF. Two formulas F
and G are satisfiability-equivalent, if F' is satisfiable if and only if G is satisfiable.
For F a propositional formula in negation normal form, the Tseitin procedure
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replaces step by step subformulas of the form (Fy; A Fy) V F3 by the formula
(zV F1) A\ (2V F3) A (—z V F3) for a new variable z. Let ts(F) denote a formula in
CNF obtained from F' by this Tseitin procedure, eliminating the non-determinism
in the procedure in some (arbitrary) way. Because the Tseitin procedure adds as
many A-symbols as new variables, we obtain D(ts(F)) = D(F).

Lemma 11.5.1. Let F be a propositional formula in negation normal form. Then
we have D(F) = 4(F) — #y(F) — n(F). and if F € CNF, then D(F) = d(F).

Minimal unsatisfiability is defined for formulas in conjunctive normal form.
The formulas are unsatisfiable, and after eliminating an arbitrary clause the for-
mulas are satisfiable. In non-clausal formulas, instead of the deletion of a clause
we will remove so-called “or-subformulas” based on a representation of formulas
as trees:

e If the formula is a literal L, the associated tree T7, is a node labelled with
L.

e For a formula F'A G (resp. F'V G) let Tr and T be the associated trees.
Then we have a root labelled with A (resp. V ) and the subtrees T% and
T. That means, the successor nodes of the A-node (resp. V-node) are the
roots of Tr and Tg.

Please notice that the leaves of the tree are labelled with the literals of the formula.
Let T be the associated tree of a formula. An or-subtree of T is a subtree T’,
whose root is either an V-node or a literal which is successor of an A-node. An
or-subtree T” of T is again a representation of a propositional formula, say Fy,
which is a subformula of the propositional formula of F. The formula Fp: is
called an or-subformula of F. In case of formulas in conjunctive normal form, the
or-subformulas are exactly the clauses.

Example 11.5.2. For the formula (—y) A (((z Vy) Aa) V —z) the associated tree
is

N
O\
Y
7N,

and the four or-subformulas are (—y), ((x Vy) Aa) V (—z2), (zV y), and a.

In case of a propositional formula F' (as always in negation normal form),
an or-subformula of F' is a subformula of F'. For formulas in conjunctive normal
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form, that is a conjunction of clauses, a satisfiable formula remains satisfiable
after the deletion of any clause. Similarly, after the deletion of an or-subtree in a
satisfiable formula the formula is still satisfiable. That follows from the definition
of or-subtrees, because the predecessor node of an or-subtree is an A-node, and
so the deletion of an or-subtree does not decrease the truth-value of the formula
at that A-node, while the formulas are in negation normal form and thus all
operations are monotonically increasing.

Definition 11.5.2. A propositional formula F' in negation normal form is in
MU* if F is unsatisfiable and eliminating an arbitrary or-subformula yields a
satisfiable formula. The set of formulas in MU with cohesion (exactly) k is
denoted by MU (k).

It can easily be shown that for a CNF-formula being minimally unsatisfi-
able and being element of MU" are equivalent properties. By the property of
the Tseitin procedure, and the results known for MU and MU(k) the following
theorem holds [KZ07b].

Theorem 11.5.2. The following holds for the motion of minimal unsatisfiable
propositional formulas according to Definition|11.5.2:

1. MU* is D¥ -complete.
2. For F € MU* we have D(F) > 1.
3. For fized k, MU* (k) is decidable in polynomial time.

There is an alternative definition of the class MU*, based on the complemen-
tation of literal occurrences. Let MU, be the set of unsatisfiable formulas F' such
that for all literal occurrences of F' its replacement by its complement renders
the formula satisfiable. Obviously, for formulas in CNF, any formula in MUy, is
in MU and vice versa. For the general case, MU* = MU}, can be shown by an
analysis of the Tseitin procedure ts(F).

11.6. Minimal Falsity for QBF

The concept of minimal unsatisfiability for CNF can be extended to QCNF, the
class of closed quantified Boolean formulas in prenex form and with matrix in
CNF; see Chapter 7 in [KBL99] for a general introduction to quantified proposi-
tional logic. All formulas F' in QCNF have the form F = Q1x1 - - - Qnz, f, where
Q; € {3,V} and f is a propositional formula in conjunctive normal form using
(only) the variables x1,...,z,. Q11 Qnx, is the prefix of F, and f is called
the matriz of F. The set of existential variables is denoted by varz(F'), while
var(F) is the set of all variables. Let F = Q121 -+ - Qnapnf, F' = Qiz1 -+ Quanf’
be two QCNF formulas with the same prefix. We say that F’ is a subformula of
F, denoted by F' C F, if f’ is a subformula of f. Let Qf be a formula in QCNF
with prefix Q. Then f5 is the conjunction of clauses we obtain after the deletion
of all occurrences of literals with universal variables from f. Please note, that the
propositional formula fj5 may contain multiple occurrence of clauses. A formula
Q(fi A+ A fn) in QCNF is called minimal false, if the formula is false and for
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any clause f; the formula Q(f1 A+ A fi—1 A fix1 A+ A fn) is true. The class of
minimal false formulas is denoted as MF.

The minimal falsity problem MF is PSPACE-complete [KZ06]. That can eas-
ily be shown by means of the PSPACE-completeness of the satisfiability problem
for QCNF. Since the satisfiability problem for quantified Boolean Horn formulas
(QHORN) and formulas with matrix in 2-CNF (Q2-CNF) is solvable in polyno-
mial time, the minimal falsity problems for both classes are solvable in polynomial
time, too. The notion of deficiency and maximal deficiency can be extended to
QCNEF, taking only the existential variables into account.

Definition 11.6.1. [KZ06]

1. Let FF = Qf € QCNF with m clauses. The deficiency is defined as d(F') =
m — |varg(f)].

2. The maximal deficiency of F' is defined as d"(F) := max{d(F’) : F’ C F}.

3. Let k be fixed. The set of minimal false formulas with deficiency k is
defined as MF(k) = {F : F € MF and d(F) = k}.

Some of the methods and techniques well-known for MU(k) can be adapted
in order to prove similar results. For example, a formula F' is termed stable if
for any proper subformula F’ C F, d(F’) < d(F'). The notion of stable QCNF
formulas can be understood as a generalisation of matching lean CNF formulas
[Kul03]. A formula F' € CNF is matching lean if and only if d(F') < d(F) for
each proper subformula F’ C F’; see Subsection [11.11.2] By Definition[11.6.1} F
is stable if and only if F|5 is matching lean. Corollary 7.12 in [Kul03] says that
the largest matching lean subformula can be computed in polynomial time. This
implies that the largest stable subformula can also be computed in polynomial
time.

Theorem 11.6.1. [KZ08a] Let F' = Qf be a formula in QCNF.

1. If fi3 is satisfiable or d*(F) <0, then F is true.
2. If F € MF, then F is stable.
3. Any minimal false formula has deficiency strictly greater than 0.

Besides MF(1), which is solvable in polynomial time as shown later in this
section, the computational complexity of MF(k) is open, where only some non-
trivial upper bounds are known.

Theorem 11.6.2. [KZ06] Let k be fized.

1. The satisfiability problem for QCNF with maximal deficiency k is in NP.
2. The minimal falsity problem MF (k) for QCNF is in DT .

The proof of Theorem[11.6.2/makes use of the size of models of satisfiable for-
mulas in QCNF with maximal deficiency k. Let F' = Vz13y1Vaodys - - - Vo Jyi f
be a formula in QCNF. The formula is true if and only if there are Boolean func-
tions (formulas) p; : {0,1}* — {0,1} for i € {1,...,k} (depending on z1,...,x;)
such that

VoV flyn/p(@), - yk/pe(@e, - o)
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is true. fly1/p1,...,yx/pk] denotes the formula obtained by simultaneously re-
placing in the matrix the occurrences of the existential variables y; by the formulas
pi- In general a sequence of Boolean functions M = (p1,- -+, pi) is called a model
for F' if the formula is true for these functions. We assume that the Boolean
functions p; are represented as propositional formulas. If the Boolean functions
p; are given as CNF-formulas, then we call M a CNF-model for F.

Theorem 11.6.3. [KZ08a] For any k > 1 and any true QCNF formula F' = Qf
with mazximal deficiency d*(F) =k, there is a set U with at most 2**/3 universal
variables such that F' has a CNF-model M = (p1,..., pm) where the formulas p;
are constants or fulfil var(p;) C U and have at most 2¥ clauses.

The size of the model functions only depends on k. By guessing a set U of
size less than or equal to 2%*/3 and model formulas p;, and replacing z; by p;, we
obtain a universally quantified formula with universal variables in U. Since k is
fixed, the satisfiability of these formulas can thus be decided in polynomial time.

QEHORN (QE2-CNF respectively) is the set of formulas in QCNF with
F = Qf for which fj5 is a Horn formula (2-CNF formula respectively). That
means, the existential part of the matrix is in HORN (2-CNF respectively). The
satisfiability problem for both classes is PSPACE-complete. Through unfolding
these formulas by setting the universal variables to true and false, we get an ex-
istentially quantified Horn formula (2-CNF formula respectively). Since any true
QCNF formula with maximal deficiency k£ > 0 has a model over at most 24k/3
universal variables, the length of the unfolded formula can be bounded polyno-
mially in the length of the initial formula. Since the satisfiability of Horn and
2-CNF formulas is decidable in polynomial time, we obtain the following result.

Lemma 11.6.4. Let k be fixed.

1. The satisfiability problem for formulas in QEHORN and QE2-CNF with
mazimal deficiency k is solvable in polynomial time.

2. The minimal falsity problem for formulas in QEHORN and QE2-CNF
with deficiency k can be decided in polynomial time.

Formulas in MF(1) are closely related to formulas in MU(1). Every formula
F = Qf in MF(1) has a matrix fj3 € MU(1). But the other direction does not
hold. A simple counterexample is as follows.

Example 11.6.1. Consider
F=Vz3y (mxVy)A(xV-y).

(mzVy)A(xV-y))s = (-zAz) € MF(1), but the formula F' is satisfiable (by
the model y = x).

Theorem 11.6.5. [KZ08a] The minimal falsity problem MF(1) is solvable in
polynomial time.

The polynomial-time algorithm is based on the following observations:

1. The satisfiability problem for QCNF formulas with maximal deficiency 1
is solvable in polynomial time.
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2. For any true QCNF formula with d"(F) = 1, there exists at most one uni-
versal variable y, such that there is a model in which the model functions
are either the constants 0 or 1, or the formulas y or —y.

3. The clauses of a MF(1)-formula must satisfy some properties on the con-
nectivity of clauses.

11.7. Applications and Experimental Results

The core problems of relevant applications in this area is to extract minimal
unsatisfiable sub-formulas (“MUS’s”) of a CNF-formula, where more precisely
three levels can be distinguished:

1. finding some “small” unsatisfiable sub-formula;
2. finding some minimal unsatisfiable sub-formula (MUS);
3. finding a smallest minimal unsatisfiable sub-formula.

Additionally we are also interested in finding all MUS’s. Regarding finding
“small” unsatisfiable sub-formulas, [BS01, Bru03] enhance and modify DPLL-
solvers so that they target “hard clauses”, from which the unsatisfiable sub-
formula is obtained. [ZMO04] also only finds “small” unsatisfiable sub-formulas,
but uses the resolution refutation found by conflict-driven SAT solvers. Regarding
finding MUS’s, a natural and simple algorithm is given in [vWO08], while learning
of conflict-driven SAT solvers is exploited in [OMAT04], and [GMP06, GMP07a]
use the information obtained by local search solvers on maximally satisfiable
sub-formulas (see [GMPO7b] for generalisations regarding constraint satisfaction
problems). For finding smallest MUS’s, in [Bru05] ideas from linear programming
are applied to special classes of CNF-formulas, while a general branch-and-bound
algorithm is given in [MLAT05]. Regarding finding all MUS’s, [LS05] exploit
the duality between MUS’s and maximally satisfiable sub-formulas (“MSS’s”;
the generalisation for non-boolean variables and irredundant clause-sets is given
in Lemma 6.11 in [Kul07a]). Finally, connecting MUS’s with “autarkies” (as a
weaker form of redundancies), we mention [KLMSO06, LS08].

11.8. Generalising satisfying assignments through “autarkies”

At several places did we already encounter the notion of an “autarky”. In the
subsequent sections we give an overview on the emerging theory of autarkies.

11.8.1. Notions and notations

In the previous section the “logical aspect” of SAT has been emphasised, and thus
the basic objects of study were called “formulas”. Autarky theory takes a more
combinatorial turn and needs to take full account of “syntactical details”, and
thus we will now speak of clause-sets, which are (here only finite) sets of clauses,
where a clause is a finite and complement-free set of literals. Some useful notions:

e The empty clause is denoted by L := (), while the empty clause-set is
denoted by T := {).
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e For aliteral x we denote the underlying variable by var(x), while for a clause
C we define var(C) := {var(x) : x € C}, and var(F) := |Jocp var(C) for a
clause-set F'.

e The number of clauses of a clause-set F' is ¢(F) := |F| € Ny, while the
number of variables is n(F') := |var(F)| € Ny.

An important step is to emancipate the notion of a partial assignment, which
is a map ¢ : V. — {0,1} where V is some finite set of variables (possibly the
empty set); we use var(y) := V to denote the domain of 012 Using w(0) = p(v),
partial assignments are extended to literals (over their domain). The application
of a partial assignment ¢ to a clause-set F' is denoted by ¢ * F, and is defined
as the clause-set obtained from F' by first removing all clauses satisfied by ¢,
and then removing from the remaining clauses all literal occurrences which are
falsified by . Partial assignments ¢, can be combined by the operation ¢ o ¢
which is the partial assignment with domain the union of the domains of ¢ and
1, while (¢ 01)(v) is defined as ¢ (v) if possible and otherwise ¢(v). Using () for
the empty partial assignment, we have the following fundamental laws:

px T =T
(p*(Flqu):(p*Flugﬂ*Fg
leF=1epxF

A clause-set F' is satisfiable if it has a satisfying assignment ¢, that is, fulfilling
p* F' = T (while a “falsifying assignment” fulfils 1 € ¢ x F'). We need some
specific notions to fix the variables involved in satisfying assignments:

Definition 11.8.1. For a clause-set F' and a set of variables V with var(F) C V
let mody (F') by the set of satisfying assignments ¢ with domain exactly V', while
we use mod(F) := mody,.r) (F).

Satisfying partial assignments in the sense of Definition with a fixed
domain including all variables in F', are called “total satisfying assignments”. We
denote the restriction of a partial assignment ¢ to the domain V Nvar(yp) by ¢|V
for a set V' of variables. Finally, for a partial assignment ¢ we denote by C¢ for
e € {0,1} the clause consisting of exactly the literals = with ¢(x) = &; thus CQ
consists of the literals falsified by ¢, the “CNF representation” of ¢, while C;
consists of the literals satisfied by ¢, the “DNF representation” of .

Partial assignments assign truth values 0, 1 to values, and their operation on
clause-sets F' by @* F" handles literals accordingly; a simpler operation is that by a
(finite) set V of variables, where now literals involving these variables are simply
crossed out, and we write V x F' for this operation. While for partial assignments

20ften partial assignments are identified with clauses, interpreting them as setting their
literals to 1 (for CNF); for a systematic treatment however this convenient “trick” is better
avoided, and we put emphasis on the different roles played by clauses and partial assignments.
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the above laws just reflect, that we have an operation of the monoid of partial
assignments (see Subsection[I1.9.1) on the (upper) semilattice of clause-sets, here
now we have the operation of finite sets of variables as (upper) semilattice, with
set-union as composition, on the (upper) semilattice of clause-sets, with the laws
Va(WxF)= VUW)xF, 0« F=F, VT =T, V*(FUF,) =VxFiUV x Fy,
and also L € F= 1 €V xF.

In order to give some examples, we need some notation for specific partial
assignments, and we use for example “(x — 1,y — 0)” to denote the partial
assignment which sets variable  to 1 (i.e., true) and y to 0 (i.e., false); instead
of variables also literals can be used here.

Example 11.8.1. Using four (different) variables a,b,z,y and the clause-set
F:={{a,b},{z,a},{y,a,b}, {T,y,b}} we have (x — 1,y — 0) x F = {{a, b}, {b}}
and {a,z} * F' = {{b}, L, {y, b}}.

Often we need to select clauses containing some variables from a given set of
variables, and we do this by Fy := {C € F : var(C) NV # 0} for clause-sets F’
and sets of variables V. Finally we need to restrict clause-sets F' to some set V'
of variables, and, generalising a standard notion from hypergraph theory, we use
F[V] for this operation, defined by

F[V]:= (var(F)\ V) x Fy.

Note that we have F[V] = ((var(F)\V)*F)\{L}. Finally we remark that for more
combinatorially-oriented investigations often clauses need to occur several times,
and thus (at least) multi-clause-sets are needed; the reader finds the generalisation
of the considerations here to multi-clause-sets in [Kul07a], while in Subsection
[11.11.3.2 we discuss the more general notion of “labelled clause-sets”.

11.8.2. Autarkies

Now we come to the fundamental notion of an “autarky”. The term was coined
by [MS85] for a partial assignment whose application produces a sub-clause-set,
while implicitly used in works like the similar [Luc84] or in the earlier [EIS76].
Since these works took a more “logical” point of view (they were just concerned
with deciding satisfiability, not with more detailed structural investigations), the
underlying notion of an “autarky” was ambiguous w.r.t. whether contractions
of clauses after application of partial assignments was taken into account or not.
This ambiguity is resolved by distinguishing between “weak autarkies” and “(nor-
mal) autarkies”:

Definition 11.8.2. A partial assignment ¢ is called a weak autarky for F if
@+ " C F holds, while ¢ is an autarky for F' if ¢ is a weak autarky for all
sub-clause-sets F” of F.

Every satisfying assignment for F' is an autarky for F. Thus every partial
assignment is an autarky for T.

Example 11.8.2. The partial assignment (b — 0) is a weak autarky for F' :=
{{a},{a,b}}, but not an autarky for F. The partial assignment (b — 1) is an
autarky for F'.
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The basic fact about (weak) autarkies is the observation:
If p is a weak autarky for I, then @ x F' is satisfiability equivalent to F .

(For every partial assignment ¢ we have that from ¢ x F' being satisfiable follows
F being satisfiable, while the other direction, that if F' is satisfiable then ¢ F' is
satisfiable, follows from ¢ x F' C F.) A well-known reduction for SAT-solving is
the elimination of pure literals, and this is a special case of an “autarky reduction”
(see Subsection[11.8.3]for the treatment of full autarky reduction).

Example 11.8.3. A pure literal (also called “monotone literal”) for a clause-set
F is a literal « such that T does not occur in F' (i.e., T ¢ |J F). Every pure literal
x for F yields an autarky (x — 1) for F. In Example[11.8.2] literals a, b are pure
literals for F'. See Subsection[11.11.1 for more on “pure autarkies”.

Autarkies are easily characterised by

© is an autarky for F' if and only if for every clause C € F
either ¢ does not “touch” C, i.e., var(¢) Nvar(C) = 0,
or ¢ satisfies C, i.e., o x {C} =T.

Weak autarkies are allowed to touch clauses without satisfying them, if the result-
ing clause (after removal of falsified literals) was already present in the original
clause-set. Since we regard it as essential that an autarky for a clause-set is also an
autarky for every sub-clause-set, the fundamental notion is that of an “autarky”;
see Subsection [11.8.4/for a discussion. The basic characterisations of autarkies in
terms of satisfying assignments are given by the following equivalent statements
(for arbitrary clause-sets F' and partial assignments ¢):

1. ¢ is an autarky for F'
2. iff ¢ is a satisfying assignment for Fl,. ()
3. iff ¢ is a satisfying assignment for Flvar(y)].

The following properties of autarkies are considered to be the most basic
ones (leading to an “axiomatic” generalisation in Section [11.11), for arbitrary
clause-sets F', partial assignments ¢ and sets V' of variables:

1. () is an autarky for F'. In general, ¢ is an autarky for F' iff the restriction
p|var(F) is an autarky for F, and ¢ is called a trivial autarky for F if
var(p) Nvar(F) =0 (i.e., iff p|var(F) = ()).

2. If ¢ is an autarky for F, then ¢ is also an autarky for F' C F.

3. If ¢,1 are autarkies for F' then also i o ¢ is an autarky for F. More
generally, if ¢ is an autarky for F' and v is an autarky for ¢ F', then ¢pop
is an autarky for F.

4. If var(p) NV =, then ¢ is an autarky for V * F iff ¢ is an autarky for F.

¢ is an autarky for F iff ¢ is an autarky for FFU {L}.

6. If v is an autarky for F', and F’ is isomorphic to F' (by renaming variables
and flipping polarities; compare Subsection11.9.5), then applying the same
renamings and flipping of polarities to ¢ we obtain an autarky ¢’ for F’.

o

An autark subset (or “autark sub-clause-set”) of F' is some F’ C F which is
(exactly) satisfied by some autarky ¢ for F, ie., F/ = F\ (¢ * F). T is an
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autarky sub-clause-set of F', and if Fy, Fy are autark sub-clause-sets of F', then
so is F1 U Fy. It follows that there is the largest autark sub-clause-set of F'.

11.8.3. Autarky reduction and lean clause-sets

Given an autarky ¢ for clause-set F', we can reduce F' satisfiability-equivalent to
@+ F. A clause-set F' is called lean if no autarky-reduction is possible, that is, if
every autarky for F is trivial. This notion was introduced in [Kul00b], and further
studied in [Kul03, Kul07a]. Examples for lean clause-sets are T, all minimally
unsatisfiable clause-sets, and clause-sets obtained from lean clause-sets by the
extension rule of extended resolution (see Lemma 3.2 in [Kul00b]). Except of T,
every lean clause-set is unsatisfiable, and F is lean iff FU{ L} islean. If F' is lean,
then so is V x F' and the restriction F[V]. The union of lean clause-sets is again
lean, and thus, as with autark subsets, the lean sub-clause-sets of a clause-set
form a set stable under union, with smallest element T, while the largest element
is called the lean kernel and denoted by N,(F).

Another possibility to define the lean kernel is by using that autarky reduction
is confluent: By repeating autarky-reduction for a clause-set F' as long as possible,
i.e., until we arrive at a lean sub-clause-set F’ C F, we obtain the lean kernel
Na(F) = F’ (here the letter “N” stands for “normal form”). The lean kernel can
be characterised in many other ways:

1. N,(F) is the largest lean sub-clause-set of F.

2. F\ N,(F) is the largest autark subset of F.

3. The decomposition F' = N, (F)U(F\N,(F)) is characterised as the unique
decomposition F' = Fy U Fy, F; N Fy = (), such that

(a) Fy is lean, and
(b) var(Fy) = Fy is satisfiable.

4. So N,(F) is the unique F’ C F such that F’ is lean and var(F') * (F'\ F’)
is satisfiable.

The operator N, is a kernel operator, that is, we have N,(F') C F, F C G =
N.(F) C N, (G), and N, (N,(F)) = N, (F); furthermore we have N, (F) = T iff F/
is satisfiable, while N, (F) = F iff F is lean.

We now consider the fundamental duality between autarkies and resolution.
A precursor of this duality in the context of tableaux calculi has been established
in [Van99] (see especially Theorems 5.2, 5.3 there); in Subsection [11.10.2] we will
further discuss this work. We recall the resolution rule, which allows for “parent
clauses” C, D which clash in exactly one literal x, i.e., CN D = {x}, to derive the
“resolvent” R := (C'\{z})U(D\{Z}). A resolution refutation for F is a (rooted)
binary tree labelled with clauses, such that the leaves are labelled with clauses
from F', every inner node is labelled by a resolvent of its two children, and the root
is labelled with 1. F'is unsatisfiable iff it has a resolution refutation. We remark
that such resolution refutations do not allow for “dead ends”, and that handling
“full resolution”, i.e., resolution in dag-form, where clauses can be parent-clauses
for several resolution steps, can be achieved in this framework by not counting
nodes of the tree but only counting different clauses. A basic observation is that
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a clause C' € F containing a pure literal cannot be used (i.e., label a leaf) in any
resolution refutation, since we can never get rid off this pure literal. This can be
generalised to the fact that if ¢ is an autarky for F' satisfying some leaf clause of
a resolution tree, then ¢ also satisfies every clause on the path from this leaf to
the root (the autarky condition prevents the possibility that all satisfied literals
vanish together). Thus a clause satisfied by some autarky cannot be part of any
resolution refutation. In Section 3.3 in [KulOOb] it was shown that also the reverse
direction holds.

Theorem 11.8.1. For every clause-set F the lean kernel N,(F) consists of ex-
actly the clauses from F which can be used in some (tree) resolution refutation of
F (without dead-ends). In other words, there exists an autarky satisfying some
clause C € F if and only if C' cannot be used in any resolution refutation of F'.

Theorem [11.8.1]yields a method for computing the lean kernel, which will be
discussed in Subsection[11.10.3.

11.8.4. Remarks on autarkies vs. weak autarkies

A weak autarky ¢ for a clause-set F' is not an autarky for F' iff there exists
some F’ C F such that ¢ is not a weak autarky for F’; e.g., in Example [11.8.2]
(b — 0) is not a weak autarky for {{a,b}} C F = {{a},{a,b}}. So the property
of being a weak autarky is not inherited by sub-clause-sets, which makes weak
autarkies a more fragile, “accidental” or “non-algebraic” concept. Nevertheless,
weak autarkies share many properties with autarkies:

1. If ¢ is a weak autarky for I, and ¢ a weak autarky for ¢ * F', then 1) o
is a weak autarky for F' (this follows by definition).

2. Consider a weak autarky v for F'; as mentioned, if ¢ is not an autarky for
F then v is not a weak autarky for some sub-clause-set F’ of F. However
1) is a weak autarky for each F’ C F such that there is a weak autarky ¢
for F with F/ = ¢ % F (since if ¢ is not a weak autarky for F’ anymore,
then the “absorbing” clause C' € F for some “new” clause ¥ * D = C,
D € F’, created by 1, must have vanished, which in this case means that
e*x{C} =T, implying ¢ x {D} = T, and thus also D vanished).

3. It follows that the composition of weak autarkies is again a weak au-
tarky. So the weak autarkies for a clause-set F' form a sub-monoid of
(RASS, o, (), containing the autarky monoid Auk(F') (see Section[11.9 for
the autarky monoid).

4. Furthermore reduction by weak autarkies is confluent, yielding a (well-
defined) sub-clause-set of N, (F).

11.9. The autarky monoid

We have already mentioned that the composition of autarkies yields again an
autarky. This fundamental observation was made in [Oku00], and it initiated
the study of the autarky monoid in [KulOOb], continued in [KMTO08]. In this
subsection we discuss the basic features of the autarky monoid. Some prerequisites
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from algebra are used, and the following literature might help to provide the
missing (always elementary) definitions: [Lau06] in Chapters 1 - 4 provides basic
material on algebraic structures and hull (“closure”) systems; [Bou89], Sections
61.1 - §1.5, presents the basics on monoids, groups and operations in a systematic
way, while Chapter I in [Lan02] presents such material (including categories)
in a somewhat more advanced fashion; regarding category theory an accessible
introduction is given by the first two chapters of [Pie91].

11.9.1. The monoid of partial assignments

Since “autarky monoids” are sets of autarkies together with the composition of
partial assignments, we need to take a closer look at the monoid RASS of all
partial assignments. Starting with an arbitrary set VA of “variables”, we obtain
the set LZ7T of literals (uncomplemented and complemented variables), the set
CL of clauses (finite and clash-free sets of literals) and the set CLS of clause-sets
(finite sets of clauses), while RASS is the set of maps ¢ : V' — {0,1} for some
finite V' C VAP The monoid (PASS, o, () of partial assignments (together with
the composition of partial assignments, and the empty partial assignment as the
neutral element) has the following properties:

1. RASS is generated by the elementary partial assignments (v — ¢) for
variables v € VA and € € {0,1}. The defining relations between elemen-
tary partial assignments (those relations which specify the composition of

RASS) are

(a) (v—e)ofv—e)=(v—e)
(b) (v —=e)o(w—¢e)=(w—e)o(v—e)forv#w.

For a partial assignment ¢ € RASS we have the unique representation
© = Opevar(p) (v — @(v)) (using the commutativity of elementary partial
assignments for different variables).

2. The closure (hull) of a finite set P C RASS of partial assignments under
composition (i.e., the generated monoid) is again finite (since every partial
assignments involves only finitely many variables).

3. RASS is idempotent, i.e., for all ¢ € RASS we have ¢ o ¢ = ¢.

4. The following assertions are equivalent for ¢, ¢ € RASS:

(a) p,1 commute (i.e., p o) =1 o p);
(b) ¢, are compatible (i.e., Vv € var(y) Nvar(y) : p(v) = ¥ (v));
(c) there exists a partial assignment § € RASS with ¢ C 6 and ¢ C 6.

3The set VA may be some finite set; more useful would be the choice VA = N, while actually
for a theoretical study the choice of VA as a universe of set theory (a set stable under all set-
theoretical operations) is most appropriate. Literals are best represented via LI7 := VAx{0, 1},
where 0 stands for “uncomplemented”. And a map f with domain X is a set {(z, f(z)) : z € X}
of ordered pairs, so that a partial assignment is formally the same as a clause, namely a set
of pairs (v,¢€), only that now the interpretation is the opposite: while a literal (v,e) € C in a
clause C' means “v shall not get value €7, an assignment (v,e) € ¢ for a partial assignment ¢
means that v gets value ¢; this duality reflects that clauses are part of a CNF representation
of the underlying boolean function, while (satisfying) partial assignments are part of a DNF
representation.
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For a partial assignment ¢ € RASS the submonoid RASS(¢) = {¢ €
RASS : ¢ C ¢} of partial assignments contained in ¢ is commutative, and
for every finite commutative submonoid M of RASS there exists a partial
assignment ¢ with M C RASS(y).

5. The partial order C between partial assignments@ has the following prop-
erties:

(a) () is the smallest element; there is no largest element iff VA is not
empty, and there are no maximal elements iff VA is infinite.

(b) The infimum of any set ) # P C RASS of partial assignments is the
intersection of the elements of P.

(¢) P C RASS has an upper bound iff P is finite and all elements of P
are pairwise compatible, and in this case P has a supremum (namely
the union).

(d) The order is right-compatible with the composition, that is, for partial
assignments @, 9,0 € RASS with ¢ C 1) we have po C1pof.

However, the order is not left-compatible with the composition, so
for example we have (v — 0) D (), but (v — 1)o(v —0) = (v — 0) 2
(v —1)o ) = (v— 1),

(e) The order is identical with the natural right-compatible order of the
monoid RASS, that is, ¢ C 1 < 1h o ¢ = ¢ (while var(p) C var(¢)) <
poth=1p).

(f) Since the smallest element is the neutral element, RASS is “right non-
negative”, and we always have ¢ C ¢ o (while we only have var(y) C

var(p o ¢)).

6. The formation of the domain of partial assignments, i.e., the map var, is a
(surjective) homomorphism from the monoid RASS to the monoid of finite
subsets of VA together with union, that is, var(¢ o ) = var(y) U var(z))
and var({)) = 0. Restricted to the commutative submonoid RASS(p) for
some ¢ € RASS, var is an isomorphism from RASS(y) to P(var(y)) (the
powerset of the domain of ¢).

A natural representation of RASS as a transformation monoid is obtained
as follows: Assume 0,1 ¢ VA, let VA" :== VAU {0,1}, and define the operation
* 1 PASS x VA" — VA by p*v = () for v € var(p), and ¢ * z = x
otherwise. Now we have () xx = x and (p o) xx = p* (¢ * x) for z € VA
Furthermore the operation is faithful, i.e., for ¢ # 1 there is x € VA’ with @ xx #
1 x x. The corresponding injective monoid-morphism from RASS into the set of
transformations of VA’ represents partial assignments ¢ and their composition
by transformations (¢ * z)zcpar : VA" — VA’ and their composition.

11.9.2. Autarky monoid and autarky semigroup

As already mentioned, the composition of autarkies is again an autarky, which
can be easily seen as follows: Consider autarkies ¢, for F, that is, for all F/ C F

4o C 9 holds iff var(p) C var(zh) and Vv € var(p) : p(v) = 9(v); we have o C 1 iff Cg C sz)
iff O}, C C,
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we have o« F' C F' and ¢ « I/ C F’. Now we have (po¢))« F' = o (¢ x F') C
ex F" CF" for F" .=« F' C F’, and thus (¢ 0 v) is an autarky for F.

Definition 11.9.1. For a clause-set F' € CLS the autarky monoid, denoted
by Auk(F'), is the sub-monoid of RASS given by all autarkies for F', while the
autarky semigroup is Auks(F) := Auk(F) \ {()}. For performing computa-
tions, the restricted versions Auk'(F) := {p € Auk(F) : var(¢) C var(F)} and
Auks'(F) := Auk™(F) \ {()} are preferable.

Remarks:

1.

Auk(F), Auk'(F') are submonoids of RASS, where Auk"(F) is always fi-
nite, while Auk(F) is infinite iff VA is infinite. Auks(F), Auks'(F) are
subsemigroups of RPASS \ {()}.

. Auk(F) is obtained from the elements of Auk'(F') by extending them ar-

bitrarily on variables not in var(F).

For every set X the “right-null semigroup” is the semigroup (X, *) with
xxy :=y. Now the set mod(F') of total satisfying assignments for a clause-
set F'is a right-null sub-semigroup of Auks"(F), and if F' is satisfiable, then
this set equals the set of “maximal autarkies”, as discussed below.

Some simple examples, where we know the full autarky monoid:

. Fis lean iff Auk*(F) = {()} iff Auks"(F) = 0.
. Consider the unique clause-set F' with var(F) = {vy,...,v,} (n > 1)

which is equivalent (as CNF) to the condition v1 & --- ® v, = ¢ € {0, 1},
where “@” is exclusive-or (F consists of 2"~ ! clauses, each involving all
variables). Now every non-trivial autarky for F is a satisfying assignment,
and every satisfying assignment involves all variables, and so the restricted
autarky semigroup of F is the right-null semigroup on the set of the 27!
satisfying assignments.

Basic properties of the autarky monoid are as follows:

1.

2.

Let var(Auk(F')) := var(Auk"(F)) := U e aue (r) var(e). Then the largest
autark subset of F'is Fiar(Auk(F))-

Since Auk”(F) is finite, Auk”"(F') has maximal elements, called mazimal au-
tarkies, and for every maximal autarky ¢ we have var(y) = var(Auk(F)),
while F'\ (o F') is the largest autark subset of F'. We denote the set of max-
imal autarkies of F' by Auk](F'). Note that F is lean iff Auk](F) = {()}.
The maximal autarkies of F' are exactly the total satisfying assignments for
Flvar(Auk(F))]. So Auk](F) is a right-null sub-semigroup of Auks'(F).
If F is satisfiable, then Auk((F') = mod(F).

The minimal elements of the restricted autarky semigroup Auks'(F') are
called minimal autarkies. F' has a minimal autarky iff F' is not lean, and
the minimal autarkies are exactly the atoms of the partial order Auk®(F).
(One could thus speak of “atomic autarkies”, but it seems that the slightly
different contexts for “maximal” and “minimal” autarkies do not cause
confusion.) We denote the set of minimal autarkies of F' by Auk|(F) (so
F is lean iff Auk|(F) =0).
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If only the autark subsets are of interest (not their certificates, i.e., their
associated autarkies), then the (upper) semilattice (with zero)

Auk’(F):={F' CF | 3o € Auk(F) : px F =F\ F'}

of autark subsets is to be studied (the operation is just set-union, the neutral
element is T). The canonical homomorphism ® : Auk(F) — Auk®(F) given by
o — F\ (px F) is surjective, and the inverse image of T is the set of trivial
autarkies. Also the restriction ® : Auk"(F) — Auk®(F) is surjective, and in
general also the restriction is not injective.

11.9.3. Finding (semi-)maximal autarkies

Given any nontrivial autarky, we can efficiently find some (contained) minimal
autarky by the observation made in [KMTO08], that “within” a partial assignment
autarky search is easy:

Definition 11.9.2. For any submonoid M resp. subsemigroup S of RASS and
for a partial assignment ¢ € RASS we denote by M(yp) := M N RASS(p) resp.
S(p) := SNPRASS(p) the submonoid resp. subsemigroup of M resp. S obtained
by restriction to partial assignments contained in .

Lemma 11.9.1. Consider a clause-set F' € CLS and a partial assignment ¢ €
RASS. Then Auk(F)(p) has a (unique) largest element o, which can be effi-
ciently computed as follows:

1. Let ¢g := ¢.

2. If pg is an autarky for F, then stop. Otherwise, choose C' € F with
var(p) Nvar(C) # 0 and ¢ * {C} # T, choose v € var(p) Nvar(C), let v
be the restriction of ¢ to var(eo) \ {v}, and repeat this step.

For a given clause-set F with V := var(F), the map ¢ € {¢p € RASS :
var(p) C V} — g € Auk*(F), which assigns to every partial assignment the con-
tained largest autarky, is obviously surjective. Such autarkies ¢y which are largest
elements of some Auk(F')(p) for total assignments ¢ (i.e., var(y) = var(F')) are
called semi-mazimal autarkies. In Subsection [11.10.1] some applications are dis-
cussed.

Corollary 11.9.2. Given a nontrivial autarky ¢ for a clause-set F', we can effi-
ciently compute some minimal autarky po € Auk|(F) (with vo C ¢).

Proof. Try removing assignments from ¢ and obtaining a smaller nontrivial au-
tarky by Lemma|11.9.1 until a minimal autarky is obtained. O

11.9.4. Generating autarkies

Now we are considering generating sets of the autarky monoid, i.e., subsets E
of Auk"(F) such that the generated submonoid is Auk®(F) itself. The autarky
monoid has the potential to give a succinct representation of a large set of satis-
fying assignments: Though there are even more autarkies than satisfying assign-
ments, a generating set might nevertheless be much smaller.



“p0lcll'mus” — 2008/11/16 — 15:59 — page 363 — #25

Chapter 11. Minimal Unsatisfiability and Autarkies 363

Example 11.9.1. For n > 0 we consider the (well-known) satisfiable clause-set
F = {{vy,w1},...,{vn,w,}} with 2n variables (well-known for not having a
short DNF-representation). The structure of Auk®(F') is as follows:

e There are 2n minimal autarkies (v; — 1), (w; — 1).

e |mod(F)| = 3", where the satisfying (total) assignments, which are also
the maximal autarkies here, are all combinations of the three satisfying
assignments for the clauses {v;, w;}.

e |Auk'(F)| = 6™, where the autarkies are all combinations of the six au-
tarkies for the clauses {v;, w;}.

e Using E; := {(v; — 1), (w; — 1), (v; = L,w; — 0),(w; — 1,v; — 0)}, the
set B :=J_, E; is a generating set for Auk’(F) of size 4n.

So a basic question is to obtain interesting notions of generating sets for
autarky monoids. Only at first glance it might appear that the minimal autarkies
are sufficient to compute at least the learn kernel, but the following example
shows that this is clearly not the case.

Example 11.9.2. Minimally unsatisfiable Horn clause-sets have deficiency 1;
moreover, the Horn clause-sets with n > 0 variables, which are even saturated
minimally unsatisfiable, are up to the names of the variables exactly the clause-
sets Hy, := H) U{{v1,...,7n}}, where

H;L = {{vl}a {ﬁa ’1}2}7 {m7 V3, ?]3}, SRR {Tla R 7vn—lavn}}'

For example HO = {J-}7 Hl = {{vl}a{m}} and H2 = {{U1}7{ﬁ7 U2}7{U711@}}'
It is not hard to see that

Auk'(H)) = {0, (v, — 1), (vn_1,0n — 1), ..., {v1,...,v, — 1) }.

So Auk'(H]) as a partial order is a linear chain with n + 1 elements, with () as
smallest element and with ¢,, := (v1,...,v, — 1) as largest element; for example
Auk*(HL) = {(), (va — 1), {(v1,v9 — 1)}. For n > 1 the only minimal autarky is
(vp, — 1).

So what can we say about a generating set G of the (restricted) autarky
semigroup Auks'(F)? Clearly every minimal autarky for F must be element of G,
and, more generally, every directly indecomposable autarky ¢ € Auks'(F) must
be in G, which are characterised by the condition that whenever ¢ = 1)1 o 19
for ¢1,12 € Auk*(F) holds, then ¢y = ¢ or 12 = ¢ must be the case. The
directly indecomposable autarkies for Example [11.9.1 are exactly the elements
of the generating set E given there, but the following example shows that the
directly indecomposable autarkies in general do not generate all autarkies.

Example 11.9.3. Let F := {{vy,vs,v3}, {v1,72,73}}. For a partial assignment
¢ and a set of variables V with V Nvar(p) = 0 let us denote by [p]y the set of all
partial assignments v with ¢ C ¢ and var(¢) C var(¢)UV. Using ¢ := (v — 1),
w2 = (v2 — l,v3 — 0) and @3 := (v2 — 0,v3 — 1) we have Auks'(F) =
(1] (02,05} U [02){us} U [03]{0s}, whence [Auks™(F)| = 3% +3+3—-1—1 = 13.
There are three minimal autarkies, namely 1, @9, @3, and four further directly



“p0lcll'mus” — 2008/11/16 — 15:59 — page 364 — #26

364 Chapter 11. Minimal Unsatisfiability and Autarkies

indecomposable autarkies, namely (v; — 1,v3 — ¢) and (v; — 1,u3 — &) for
e € {0,1}. These seven elements generate eleven of the thirteen (non-trivial)
autarkies, leaving out ¢z o (v; — 0) and @3 o (v; — 0).

Given a set E C Auk'(F') of autarkies, instead of allowing all compositions of
elements of E it makes sense to only allow “commutative compositions”, that is we
only consider subsets E' C E of pairwise commuting (pairwise compatible) partial
assignments and their composition o,¢ gr¢; note that due to the imposed commu-
tativity here we do not need to take care of the order, and due to idempotency also
no exponents need to be considered. We call E a commutatively generating set
for Auks"(F') if the set of commutative compositions of E is Auks'(F'), while we
speak of a commutatively semi-generating set, if the commutative compositions
of E at least yield all semi-maximal autarkies (different from (); recall Subsection
The generating set E in Example [11.9.1 is also a commutatively gener-
ating set; Example [11.9.1]is just a combination of variable-disjoint clauses, and
we conclude this subsection by discussing the autarky-monoid and its generation
for singleton clause-sets (the smallest non-trivial examples).

Example 11.9.4. Consider a clause C, and let F' := {C} and n:=n(F) = |C].

e There are n minimal autarkies (i.e., |[Auk|(F)| = n).

o |Auk"(F)| = 3" — (2™ — 1) (the non-autarkies are all partial assignments
using only value 0, except of the empty partial assignment).

e For n > 1 there are 2" — 1 maximal autarkies (i.e., |[Auk](F)| = 2™ —
1), which are also the satisfying assignments, while if n = 0, then F is
unsatisfiable and lean.

e Every semi-maximal autarky is also a maximal autarky.

e There are n+ n(n — 1) directly indecomposable autarkies, namely the min-
imal autarkies plus the partial assignments (x — 1,y — 0) for z € C' and
y € C\{z}.

e The set I of directly indecomposable autarkies is a (smallest) generating
set, and it is also a commutatively generating set.

e If we replace the n minimal autarkies in I by the single autarky (z — 1 :
x € C), obtaining I, then I’ is a commutatively semi-generating set (of
size n(n — 1) + 1).

11.9.5. The autarky monoid as a functor

In [Sze03] the basic form of categories of clause-sets has been introduced (recall
Section [11.3), called €£& here, and which is defined as follows:

1. The set of objects of €£S is CLS.

2. For a clause-set F' let lit(F') := var(F') U var(F') be the set of literals over
F (which occur in at least one polarity; for a set L of literals we use
L:={z:xz€L}).

3. Now a morphism f : F' — G from clause-set F' to clause-set G is a map
[ lit(F) — lit(G) with the following two properties:

5We could also speak of “compatibly generating”. Using “sign vectors” instead of partial
assignments, according to Definition 5.31 in [BK92] we could also speak of “conformally gener-
ating”.
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(a) f preserves complements, i.e., for x € lit(F) we have f(Z) = f(x).
(b) f preserves clauses, i.e., for C' € F we have f(C) € G, where f(C) :=
{f(z) 2z € C}.

The isomorphisms in €£GS are the standard isomorphisms between clause-sets, al-
lowing the renaming of variables accompanied with flipping polarities. Extending
[Sze03] (Section 3) we can now recognise F' € CLS — Auk(F) as a contravari-
ant functor from €LS to the category MON of monoids (objects are monoids,
morphisms are homomorphisms of monoids):

Lemma 11.9.3. The formation of the autarky monoid is a contravariant functor
Auk : €L£6 — MOMN, where for a morphism f : F — G between clause-sets the
homomorphism Auk(f) : Auk(G) — Auk(F) assigns to the autarky ¢ € Auk(G)
the partial assignment Auk(f)(¢) given as follows:

1. the domain of Auk(f)(¢) is the set of variables v € var(F) such that

var(f(v)) € var(p);
2. for v € var(Auk(f)(p)) we set Auk(f)(p)(v) := o(f(v)).

Proof. First for ¢ € Auk(G) and ¢ := Auk(f)(p) we need to show ¢ € Auk(F).
So consider a clause C € F touched by . Thus there is z € C such that o(f(x))
is defined. Now ¢ touches f(C), so there is 2’ € C with ¢(f(z')) = 1, i.e,
Y(2') = 1. To see that Auk preserves identities we just note that idp = idyi(r),
and then Auk(idr) = idauk(r). Finally consider morphisms f : F — G and
g : G — H in €£6; we have to show Auk(go f) = Auk(f) o Auk(g), and this
follows directly from the definitions. O

Also Auk® yields a functor. We remark that the coproduct in €£& is the
variable-disjoin sum, and the functor Auk® anti-preserves coproducts, i.e., maps
the variable-disjoint sum of clause-sets to the product of their autarky-monoids.

11.9.6. Galois correspondences

Finally we consider the Galois correspondence given by the autarky notion. Con-
sider the set CL of clauses and the set RASS of partial assignments. We have two
fundamental relations between clauses and partial assignments:

1. Sy is the set of pairs (C,p) € CL x RASS such that ¢ is a satisfying
assignment for {C}, that is, o * {C} = T.

2. S; is the set of pairs (C,¢) € CL x RASS such that ¢ is an autarky for
{C}, that is, o« {C'} € {T,{C}}.

If we use the alternative representation RASS’ := CL of partial assignments by
clauses containing the literals satisfied by the partial assignment, i.e., a partial
assignment ¢ corresponds to the clause C’}w then we obtain the corresponding
relations S) = {(C,D) € CL x RPASS’ : CN D # 0} and S} = {(C,D) €
CLXxPASS :CND#0=CnND#0D}.

Given the “polarities” Sp,S1, we obtain (as usual) Galois correspondences
(Xo,Yp) resp. (X1,Y1) between the partial orders (P(CL),C) and (P(RASS), C),
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given as X; : P(CL) — P(RASS) and Y; : P(RASS) — P(CL) defined by

Xi(F):={peRASS | VC € F: 5;,(C,p)}
Yi(P):={CeCL|VpeP:5(C,p)}

for F CCL and P C RPASS. Using mod™*(F) := {p € RPASS : o x F = T} for the
set of all satisfying partial assignments for F', we see that

Xo(F) = mod*(F), Xi(F)= Auk(F)

for sets of clauses F|9 As it is well known, Z; := Y; 0 X; for i € {0,1} yields a
closure operator on P(CL) (i.e., Z;(F) D F, Z;(Z;(F)) = Z;(F) and FF C G =
Zi(F) C Z;(@)). It is a well-known generalisation of the fundamental duality-law
for the formation of the transversal hypergraph, that Zy(F) is just the set of all
clauses C' which follow logically from F, i.e., Zo(F) ={C € CL: F |= C}. Using
RASS’ instead of RPASS, we have Y; = X; for i € {0,1}, and thus the semantical
closure Zy(F') can be understood as Zy(F) = mod*(mod™(F)) =: mod™ (F).
And analogously we can understand the autarky closure Z1(F'), the largest set of
clauses with the same autarky monoid as F, as Z(F) = Auk(Auk(F)); thus we
write the autarky closure as Auk?(F) := Z;(F). Some simple properties of the
autarky closure are (for all F' C CL):

1. Auk®(T) =T (also mod™(T) = T).

2. L € Auk®*(F), and thus Auk®(F) D FU{Ll} (while L € mod**(F) iff F is
unsatisfiable).

3. We have var(Auk®(F)) = var(F). This is quite different from mod**,
where for F' # T we have var(mod™ (F)) = VA, since mod**(F) is stable
under addition of super-clauses.

4. A clause-set F is lean iff Auk®(F) = {C € CL : var(C) C var(F)}, that is,
iff Auk®(F) contains all possible clauses over var(F) (in other words, iff
Auk?(F) is as large as possible).

5. Auk®(F) is stable under resolution, that is, if C, D € F with CND = {z},
then R € Auk®(F) for the resolvent R := (C'\ {z}) U (D \ {Z}).

6. Auk? (F) is stable under the composition of partial assignments considered
as clauses, that is, if C, D € Auk?(F) then also (C'\ D) U D € Auk®*(F).

11.10. Finding and using autarkies

In this section we discuss the methods which have been applied to find autarkies,
and what use has been made of those autarkies. First some remarks on the
complexity of the most basic algorithmic problems. The class of lean clause-sets
has been shown in [Kul03] to be coNP-complete, and thus finding a non-trivial
autarky is NP-complete. By Corollary [11.9.2 also finding a minimal autarky is
NP-complete, while by contrast deciding whether for a given clause-set F' and
partial assignment ¢ it is ¢ a maximal autarky for F' is coNP-complete (if ¢ is
an autarky for F', then ¢ is a maximal autarky iff F'\ (¢ * F) is lean). As shown
in [KMTO08], the “autarky existence problem” is self-reducible, that is, given an

6This includes, of course, clause-sets, which we defined as finite sets of clauses.
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oracle for deciding whether a clause-set is lean, one can efficiently find a maximal
autarky. Lemma 8.6 in [Kul03] shows how (just) to compute the lean kernel given
such an oracle. In [KMTO08] one finds complexity characterisations of other basic
tasks related to autarkies. In Subsection 11.11.6 we will discuss a refined list of
the basic algorithmic problems of autarky theory.

11.10.1. Direct approaches

At first sight it might appear that time O(3"(¥ )) is needed to exhaustively search
for a non-trivial autarky in a clause-set F, since there are 3"() partial assign-
ments. However, we can find all semi-maximal autarkies (recall Subsection[11.9.3)
in time 0(2”(F )) by running through all total assignments ¢ and determining the
maximal autarky o C @ for F (this was first observed in [KMTO08]). Thus the
lean kernel can be computed in time 6(2”(F )) (for arbitrary clause-sets, using lin-
ear space). See Subsection[11.10.8 for applications of this method in local search
solvers (while in Corollary [11.10.2 the bound O(2"(¥)) is improved for restricted
clause-length).

The direct backtracking approach searching for an autarky is closely related
to the tableau calculus, when focusing on a specific clause to be satisfied by some
autarky, and we further comment on this subject in Subsection [11.10.2] From a
somewhat more general perspective, searching for an autarky can be considered
as a constraint satisfaction problems where variables have 3-valued domains; yet
there are no experiences with this approach, but in Subsection [11.10.4] we discuss
the reduction of the autarky search problem to SAT.

11.10.2. Autarkies and the tableau-calculus

A (standard) tableau-based SAT solver starts with a “top” clause C' € F', chooses
aliteral z € C, and tries recursively to refute that (x — 1) could be extended to a
satisfying assignment for F' (this is then repeated for all literals in C, with the goal
to conclude unsatisfiability of F' at the end). It has been observed in [Van99] that
this process should better be considered as the natural form of searching for an
autarky for F satisfying C, since in case the solver gets stuck, that is, cannot finish
the unsatisfiability-proof based on x (and thus cannot proceed to the other literals
in C), we actually found an autarky (z — 1) C ¢ for F, so that we can repeat
the whole process with ¢ x F* C F, and either finally find F' unsatisfiable (that
is, find some subset F’ C F unsatisfiable with N, (F) C F’), or can compose the
various autarkies ¢ found in the repetitions of this process to a (global) satisfying
assignment. This view of the (standard, propositional) tableau calculus yields
an explanation why SAT solvers are usually faster: Exhaustively searching for
an autarky is a somewhat harder task than just (exhaustively) searching for a
satisfying assignment (especially to determine that there is none), and so for the
clause-based branching performed by a tableau-solver the top clause C is split
into |C| branches (z — 1) for z € C, while a SAT solver can use some order
C = {z1,...,zx} and set in branch ¢ additionally to z; — 1 also z; — 0 for
j < i (where for the autarky search the z; stay unassigned). Roughly spoken,
SAT only needs to search through 2" (total) assignments, while tableau search
somehow needs to search through 3™ partial assignments. However for instances
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having “nice” autarkies (not too small, not too big), the autarky approach should
have merits. The approach from [Van99] has been extended by parallel processing
in [Oku00], exploiting that the composition of autarkies again is an autarky (and
so we can combine autarkies found in parallel), while applications are discussed
in [VO99).

11.10.3. Computing the lean kernel by the autarky-resolution duality

Based on the duality between autarkies and resolution (recall Theorem [11.8.1),
the following meta-theorem has been given (in variations) in [Kul01, Kul07a] for
computing the lean kernel:

Theorem 11.10.1. Consider a class C C CLS of clause-sets, an “upper bound”
function f : C — Rxo and an algorithm A defined on inputs F' € C with the
following properties:

1. C is stable under restriction, that is, for all (finite) V.C VA and oll F € C
we have F[V] € C.

2. The running time of % on input F' € C is O(f(F)).

3. f is monotone w.r.t. restriction, that is, for V.C VA and F € C we have
F(FIV)) < £(F).

4. A for input F either returns a satisfying partial assignment pp for F or
a non-empty set of variables O # Vi used in some resolution refutation F.

Then for input Fy € C we can compute the lean kernel as well as an autarky
realising the lean kernel (a “quasi-mazimal autarky”) in time O(f(Fy)) as follows:

o Let I':= Fy.
o Run 2 on F. If the output is a satisfying assignment ¢, then return (F, ¢),
while if the output is a set V' of variables then let F := F[V] and repeat.

For the pair (F,¢) computed we have F = N,(Fp), ¢ € Auk(Fp) and o Fy = F.

Given a quasi-maximal autarky, we can determine the variables which are
in the lean kernel but not in the largest autark subset, and then by arbitrary
extension we can also compute a maximal autarky. It is not too complicated to
provide a backtracking SAT solver (look-ahead or conflict-driven) without much
space- or time-overhead with the ability to output in case of unsatisfiability the set
of variables involved in the resolution refutation found; note that we do not need
the resolution refutation itself, which can require exponential space, but only
the set of variables involved, computed recursively bottom-up from the leaves,
cutting off branches if the branching variable is not used as resolution variable!7
For example, we can use C = CLS, f = b"¥) where b depends on the maximal
clause-length of F, and for 2 the classical CNF algorithm from [MS85, Luc84]
(branching on a shortest clauses, and using the autarky found when no clause is
shortened; see Subsection 11.10.5), and we obtain:

Corollary 11.10.2. For a clause-set F' € CLS let tk(F') € Ny denote the mazi-
mal clause-length. Then a mazimal autarky for input F € CLS can be computed

"This realises “intelligent backtracking” also for conflict-driven solvers, and is implemented
in the OKsolver-2002.
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in time O(Tg(((?)_l

of Zzl;(lF)_l x~% =1 (see Subsection 7.3.2 in Chapter 7 on branching heuristics).
For inputs restricted to 3-CNF we have tk(F) < 3, where 7(1,2) = 1.618...,

that is, a mazimal autarky for inputs F in 3-CNF can be computed in time
O(1.619"(1),

), where Tu(py—1 = 7(1,...,tk(F) — 1) is the solution x > 1

It is not known to what extend the improved k-CNF bounds can be applied:
Closest is [Kul99b], but as shown in [Kul99¢], the use of blocked clauses cannot
be simulated by resolution, so the meta-theorem is not applicable (at least prima
facie). All other algorithms are based on some form of probabilistic reasoning, and
thus in case of unsatisfiability do not yield (in some form) resolution refutations,
so also here the meta-theorem (Theorem [11.10.1) is not applicable.

An application of the computation of the lean kernel to the problem of finding
“unsatisfiable cores” in clause-sets is discussed in [KLMSO06] (concentrating espe-
cially on the different roles of clauses, like “necessary”, “potentially necessary”,
“usable” or “unusable” clauses).

11.10.4. Reduction to SAT

A translation of the autarky search problem to SAT has been introduced in
[LS08], considering applications similar to those mentioned in [KLMSO06]; the
basic method used for the translation is the use of “clause indicator variables” for
clauses satisfied by the autarky, and using also “variable indicator variables” to
indicate whether an original variable is used by the autarky. The experimental
results suggest that this works complementary to the method used in [KLMSO06]
(see the previous Subsection [11.10.3): Computation of the lean kernel via the
autarky-resolution duality, based on a conflict-driven solver here, tends to use
many iterations, while the algorithm of [LS08] searches directly for the largest
autark subset (to express this, the clause-indicator variables are used, together
with “AtMost”-constraints).

There are many variations possible for such translations, but the basic trans-
lation, encoding autarkies for clause-set F' exactly as satisfying assignments of
A(F), is simple: For every variable v € var(F) introduce three variables a, . for
e € {0,1, *}, where “«” stands for “unassigned”, and a, . means that v shall get
“value” €; so we have n(A(F)) = 3n(F). A literal x over var(F) is interpreted
by the positive literal a(z) over var(A(F')), where for positive literals v we set
a(v) := ay 1, while for negative literals 7 we set a(7) := a, 0. Now a clause C € F'
yields |C| many clauses of length |C|, namely for each x € C the “autarky clause”
Cyp :={a@)} U{aly) : y € C\ {z}} (which requires that if one literal x is set to
false, then some other literal y must be set to true). Then A(F') consists of the
clauses C,, for C' € F and z € C together with the ALO-clauses, that is, for every
variable v € var(F) the (positive, ternary) clause {ay 0, ay1,ap 4}, and together
with the AMO-clauses, that is for each v € var(F) and ¢,¢’ € {0,1, %}, € # ¢’ the
(negative, binary) clause {@y ¢, Gy }. Obviously we have a natural bijection from
mod(A(F)) to Auk*(F) (note that every satisfying (partial) assignment for A(F)
must actually be total). A problem now is that to express non-triviality of the
autarky, we need the long clause {G,» : v € var(F)} (containing all variables); to
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avoid this clause of maximal length, and to obtain more control over the autarky
obtained, [LS08] uses the above mentioned indicator variables.

11.10.5. Autarkies for worst-case upper bounds

Apparently the first application of “autarkies” (without the name, which was
invented 10 years later) can be found in [EIS76], where they are used to show
that 2-SAT is decidable in polynomial time. This very simple method works as
follows for a clause-set F' with maximal clause-length rk(F') < 2: Consider any
literal = in F, and let the partial assignment ¢, be obtained from (z — 1) by
adding all inferred unit-clause propagations for F. If L € ¢, % F, then F is
satisfiability-equivalent to (z — 0) x " and we eliminated one variable. Otherwise
we know that all clauses in ¢, * F' must have length at least 2, and thus, due to
rk(F) < 2, ¢, is an autarky for F' — so in this case F' is satisfiability equivalent
to ¢, * F', and again at least one variable has been eliminated.

If F has unrestricted clause-length, then in case of L ¢ ¢, * F' and where fur-
thermore @, is not an autarky for F' (which can be easily checked), we know that
F must contain a clause C of length 2 < |C| < 1k(F)—1 (note that this generalises
the above argument). Applying this argument to both branches ¢, pz has been
exploited in [MS85] for improved k-SAT upper bounds (and in this article also
the notion of an “autark assignment” has been introduced). Basically the same
argument, but in a different form, has been used in [Luc84]; see [KL97, KL98]
for discussions (the point is while [MS85] checks whether ¢, ¢z are autarkies for
the current “residual” clause-set (at each node of the search tree), [Luc84] only
checks the special cases which are actually needed to prove the bound).

These ideas have been systematically extended in [Kul99b], on the one hand
generalising autarkies to “Br-autarkies”, allowing for the application of an arbi-
trary reduction and the possible elimination of blocked clauses afterwards. And
on the other hand, the notion of a weak k-autarky is introduced (where “weak”
is added now according to the general distinction between “weak autarkies” and
“autarkies”) for k > 0, which is a partial assignment ¢ such that |(p* F)\ F| < k;
note that weak 0O-autarkies are exactly the weak autarkies. For £ > 1 in general
@ * I is no longer satisfiability-equivalent to F', however the point is that, using
N := (¢ * F)\ F for the set of new clauses created by ¢, for every partial as-
signment ) with var(y) C var(N) (thus var(¢) Nvar(p) = @) and ¢ * N = T
(i.e., ¢ satisfies N) the partial assignment ¢ is a weak autarky for v * FI8 Tn
[Kul99b| this k-autarky principle has been applied by considering a complete
branching (¢1,...,%,,) for N (i.e., covering all total assignments), where then
those branches 1; satisfying N can be augmented by ¢. In Subsection [11.13.2
we discuss another possibility to exploit this situation, by adding “look-ahead
autarky clauses”.

Finally we mention the “black and white literals principle” ([Hir00]), which
generalises the “generalised sign principle” from [KL97], and which reformulates
the “autarky principle” (that applying an autarky yields a satisfiability-equivalent

SThe proof is: (1o % (¥ % F)) \ (¥ F) = ((po ) % F)\ (4 x F) = (o) * F) \ (¥ % F) =
W (o x )\ (x F) C (6 (NUF)\ ($% F) = (b N)U (% F))\ (% F) = T.
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clause-set) in such a way that it becomes easily applicable as a source for reduc-
tions in worst-case upper-bound proofs (see [KL98] for a discussion).

11.10.6. Incomplete autarky search in complete SAT solvers

The basic idea from [MS85], as explained in Subsection is to check the
assignments ¢, (obtained by adding all inferred unit-clause propagation to a
test-assignment @ — 1) for being an autarky (in which case there is no need to
branch). This has been implemented in the 0Ksolver-2002 (see [Kul98, KulOQ]ﬁ,
incorporating the ideas from [Kul99b]:

e Now arbitrary binary splitting are considered (and not clause-branching as
in [MS85]).

e The assignments ¢, occur naturally when performing “failed-literal reduc-
tion”.

e The branching heuristics is based on counting new clauses, and the autarky-
test is actually necessary to avoid branches without “progress” (i.e., with
zero new clauses).

See Subsection 7.7.4.1 in Chapter 7 on the general theory of branching heuristics
for more information. This type of “ad-hoc” and “enforced” autarky search has
also been applied (with variations) in the march solvers.

11.10.7. Employing autarkies in generalised unit-clause-propagation

Unit-clause propagation can be strengthened to failed-literal reduction, and fur-
ther to arbitrary levels (corresponding to levels of generalised Horn formulas);
see [Kul99a] for a thorough treatment and an overview on the literature. There,
through the use of oracles, special poly-time procedures for finding autarkies (e.g.,
finding “linear autarkies”; see Subsection [11.10.9) are employed, enhancing the
hierarchies by adding more satisfiable instances to each level.

This approach only uses autarkies at the leaves (to ensure confluence); in a
more ad-hoc manner in [DE92] the assignments found when searching for enforced
assignments at the various levels of the hierarchy (generalising the approach from
Subsection 11.10.6]in a certain way) are directly checked for the autarky property.

11.10.8. Local search

Local search solvers search through total assignments, and each such total assign-
ment can be inspected for being an autarky, according to Lemma 11.9.1] A first
implementation one finds in UnitMarch (enhancing the local search solver Unit-
Walk; see [Hv08]). Combinations with other local search solvers might become
interesting in the future (especially when adapting the heuristics to the new goal
of finding autarkies). Direct local search through partial assignments should also
be interesting, but has not been tried yet.

9this “historic” solver is now part of the 0Klibrary (http://www.ok-sat-library.org)
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11.10.9. Polynomial-time cases

Most classes of clause-sets, where basic tasks like autarky finding or computation
of the lean kernel can be performed in polynomial time, are handled by special
types of autarkies, which is the subject of the following Section [11.11l Here
we only comment on the most prominent cases, and especially how they can be
handled by the techniques discussed in the current section (considering general
autarkies); see [KMTO8] for a more elaborated study.

We already mentioned in Subsection[11.10.5/that the consideration of clause-
sets F in 2-CNF (every clause contains at most two literals) was at the beginning
of “autarky theory”. And it is easy to see that actually if F' is not lean then
there must be some literal z such that ¢, (which was the extension of (x — 1)
by unit-clause propagations) is an autarky (see [KMTO08] for more details). So
the autarky-existence problem is in P for 2-CNF, and (since 2-CNF is stable un-
der the application of partial assignments) also the lean kernel is computable in
polynomial time. This method for finding autarkies is covered by the method dis-
cussed in Subsection [11.10.6] for finding “ad-hoc enforced autarkies”, and thus is
actually implemented in look-ahead solvers like the 0Ksolver-2002 or the march-
solvers (see Subsection [11.10.6). Another way to handle 2-CNF is by Theorem
[11.10.1, where for finding a resolution-refutation one could also apply the stability
of 2-CNF under the resolution rule (though finding a resolution refutation by a
backtracking solver is more efficient). Finally every autarky for F' in 2-CNF is
a special case of a “linear autarky”, as discussed in Subsection [11.11.3, and thus
can be handled also by the special methods there.

In a certain sense “dual” to 2-CNF is the class of clause-sets F' such that every
variable occurs at most once positively and at most once negatively. Minimally
unsatisfiable such F' are exactly the marginal minimally unsatisfiable clause-sets of
deficiency 1. It is well known (and trivial) that by DP-resolution (un)satisfiability
for this class is decidable in polynomial time, so we can find easily a resolution
refutation, while by using self-reduction we can also find a satisfying assignment;
so again by Theorem [11.10.1 we obtain that the computation of the lean kernel
(and the computation of a maximal autarky) can be done in polynomial time.
Another approach is given by the observation that every autarky for such F' must
be a “matching autarky”, as discussed in Subsection[11.11.2, and thus we can use
the (poly-time) methods from there. Finally, minimal autarkies of F' correspond
to the cycles in the conflict multigraph of F' (compare [Kul04a] for the notion of
the conflict (multi-)graph), and thus we can find them by finding cycles.

Finally we mention that also for Horn clause-sets we can compute the lean
kernel in polynomial time by Theorem [11.10.1. Again this can be handled also
by linear autarkies (see Subsection 11.11.3).

11.10.10. Final remarks on the use of autarkies for SAT solving

Until now, the applications of autarky search to practical SAT solving have been
rather restricted, mostly focusing on searching autarkies directly in the input,
while autarky search at each node of the search tree, as discussed in Subsection
[11.10.6, just checks whether “by chance” the partial assignments at hand are
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actually autarkies. Now in special cases autarky search as preprocessing will
help, but stronger results can only be expected when systematically searching
for autarkies at each node of the search tree. We close this section by showing
(by example) that under “normal circumstances” relevant autarkies are created
deeper in the search tree. Consider an input clause-set F', and we ask how many
autarkies we obtain after application of a partial assignment ¢. To simplify
the discussion, we assume that F' is unsatisfiable (these are also the relevant
hard cases created at least during search). The basic intuition is that we obtain
the more autarkies the more “redundancies” are contained in F'. By definition
an unsatisfiable clause-set is “irredundant” iff it is minimally unsatisfiable, and
minimally unsatisfiable clause-sets are lean. Now there are stronger “degrees k
of irredundancy”, achieved by requiring that for every partial assignment ¢ with
n(p) < k for some given k we have that ¢*F' is minimally unsatisfiable. Minimally
unsatisfiable F' are characterised by k = 0, saturated minimally unsatisfiable F' by
k = 1, and unsatisfiable hitting clause-sets F' by k = oo; see Chapter 6 in [Kul07a]
for investigations of these issues. So from the autarky-perspective unsatisfiable
hitting clause-sets are the most intractable cases — whatever partial assignment
is applied, never any autarky arises. On the other end of the spectrum we have
marginal minimally unsatisfiable clause-sets F' of deficiency 1 — here already for
n(p) = 1 the clause-set ¢ * F' decomposes in variable-disjoint components, one of
them minimally unsatisfiable (again marginal minimally unsatisfiable of deficiency
1), while all other components are satisfiable (and actually “matching-satisfiable”;
see Subsection [11.11.2), and so we have (easy, relevant) autarkies. For practical
applications, instances will not even be minimally unsatisfiable, and typically also
are assembled from several parts, and thus the appearance of relevant autarkies
not too deep down the search tree is to be expected.

11.11. Autarky systems: Using weaker forms of autarkies

In this section we consider restricted notions of autarkies, which allow to find such
restricted autarkies in polynomial time, while still sharing many of the properties
with general autarkies. The first example for a special form of autarkies, “linear
autarkies”, was introduced in [Kul00Ob], and the general properties of the forma-
tion F' — Auk(F) of the (full) autarky monoid have been parallelled with the
properties of the sub-monoid F' — LAuk(F) < Auk(F) of linear autarkies. Based
on these investigations, in [Kul03] various forms of “autarky systems” have been
introduced, axiomatising the basic properties. Some preliminary study on further
generalisations can be found in [Kul01], while the notions have been revised and
adapted to clause-sets with non-boolean variables in [Kul07a].

In the light of Lemma an appropriate definition of an “autarky sys-
tem” would be that of a contravariant functor A : €£6 — IMON such that the
canonical inclusion (of sub-monoids) is a natural transformation .4 — Auk. But
since the study of such categorical notions in the context of SAT has not really
started yet, we refrain here from such functorial formulations, and call an autarky
system a map A defined on all clause-sets such that A(F') is a sub-monoid of
Auk(F) for all F € CLS, and such that for F; C F» we have A(F,) C A(F}). The
most basic examples of autarky systems are A = Auk, the full autarky system,



“p0lcll'mus” — 2008/11/16 — 15:59 — page 374 — #36

374 Chapter 11. Minimal Unsatisfiability and Autarkies

and A = ({{)})reccs, the trivial autarky system. From an autarky system .4 we
obtain the restricted system A'(F) := A(F)NAuk"(F), which is again an autarky
system if A is “standardised” (that is, variables not it F' do not matter; see below
for the definition). The restricted version is especially important for practical
considerations, however for theoretical investigations mostly the “full” versions
(also using variables not in F') are more convenient. As before, we call the min-
imal elements of A"(F) \ {L} minimal A-autarkies, and the maximal elements
of A'(F) mazimal A-autarkies. If A" is an autarky system, then all maximal
autarkies have the same domain (use the same variables).

A clause-set F' is called A-lean if A(F') contains only trivial autarkies. Using
A-autarky reduction instead of autarky reduction, i.e., reduction F' ~» ¢ x F' for
¢ € A(F), generalising Subsection11.8.3]we obtain the A-lean kernel N 4(F) C F,
the largest A-lean sub-clause-set of F'; note that due to the anti-monotonicity
condition for an autarky system, A-autarky reduction still is confluent. Again we
have that N 4(F) = F holds iff F'is A-lean, while in case of N 4(F') = T we call F/
A-satisfiable. The lean kernel formation F' +— N 4(F') is again a kernel operator.
The union of A-lean clause-sets is A-lean, and N 4(F') is the union of all A-lean
sub-clause-sets of F.

If there exists ¢ € A(F) with ¢ x F = T, then F is A-satisfiable, but the
reverse direction does not hold in general. In other words, using A-autark subsets
of F' as sub-clause-sets satisfied by some A-autarky for F', we again have that
the union of A-autark subsets is again an A-autark subsets, and thus there is a
largest A-autark subsets, where the largest A-autark subset is disjoint with the
largest lean subset N 4(F') — however we do not obtain a partition of F' in this
way, and additional properties of autarky systems are needed. We do not want to
discuss various forms of strengthened autarky systems, but we only consider the
strongest form, called a normal autarky system, which comprises the six basic
properties of autarkies listed in Subsection[11.8.2. More precisely, we require the
following five additional properties (for all partial assignments ¢, 1, all clause-sets
F and all finite sets V of variables):

standardised ¢ € A(F) < ¢|var(F) € A(F);

iterative if ¢ € A(F) and ¢ € A(p * F'), then ¢ o ¢ € A(F);

invariant under variable elimination if var(¢) NV = (), then p € A(F) <
pe AV« F);

L-invariant A(F) = A(FU{Ll});

invariant under renaming if F’ is isomorphic to F, then the same isomor-
phism turns Auk(F) into Auk(F”).

(Note that for the functorial definition of an autarky system mentioned above, the
property of invariance under renaming is automatically fulfilled.) If A is a normal
autarky system, then the restricted system A" is an autarky system which fulfils
all additional properties except of being standardised (that is, A" is iterative,
invariant under variable elimination, |-invariant and invariant under renaming).
If A1, Ay are (normal) autarky systems, then also F' — A;(F) N Ax(F) is a
(normal) autarky system,10

10More generally, arbitrary intersections of (normal) autarky systems are again (normal)
autarky systems, and we obtain the complete lattice of autarky systems and the complete
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We assume from now on that A is a normal autarky system, which can be
justified by the fact that every autarky system has a unique strengthening which
is a normal autarky system (just by adding the “missing” autarkies). Now for all
clause-sets F' there is an A-maximal autarky ¢ with o+ F' = N 4(F'), especially F’
is A-satisfiable iff there is ¢ € A(F) with ¢ x F = T. Regarding the full autarky
system, from an autarky ¢ with ¢ x F' = N,(F') we can easily obtain a maximal
autarky ¢’, by adding arbitrary assignments for variables in var(F' \ ¢ * F') which
do not already have a value (and also variables not in F' need to be removed).
However for arbitrary (normal) autarky systems this might not be possible, and
so we call A-autarkies ¢ with ¢ * F = N 4(F) quasi-mazimal. Every A-maximal
autarky is A-quasi-maximal.

If Fis A-lean, then also V * F and F[V] are A-lean for (finite) sets V' of
variables, and every clause-set F' O F with var(F’) = var(F) is A-lean as well 11
The A-autark subsets of I, i.e., the subsets Iy, (. for ¢ € A(F), can be charac-
terised as the A-satisfiable subsets Fy for V' C var(F'), where furthermore Fy is
A-satisfiable iff F[V] is A-satisfiable. The set of A-autark subsets of F' is closed
under union, with smallest element T and largest element F' \ N 4(F). The par-
tition of F' into N4(F') and F'\ N4(F) (where some part can be empty) has, as
before, several characterisations; it is the partition of F' into the largest A-lean
and the largest A-autark subset, or, equivalently, if F' = F; U F5, where F} is
A-lean and var(Fy) = Fy is A-satisfiable, then Fy; = N4(F) and Fy» = F \ N4(F)
(and also the other way around; note that disjointness of Fy, F» actually follows
from var(Fy) * F» being satisfiable). A-satisfiability is “self-reducible” in the sense
that (in the same way as for the full autarky system) from an oracle deciding .A-
leanness we obtain efficiently a way for computing the lean kernel (see Lemma
8.6 in [Kul03]); however for also computing an A-quasi-maximal autarky (as in
[KMTO08]) additional conditions on the autarky system A are needed.

11.11.1. Pure autarkies

In Example[11.8.3 we have already seen that every pure literal = for a clause-set
F induces an autarky (z — 1) € Auk(F). This is not yet an autarky system,
since we do not have closure under composition. So we call a partial assignment
© a simple pure autarky for F if for all literals = with () = 1 we have T ¢ | F}
the set of all simple pure autarkies is denoted by PAuto(F). In this way we
obtain an autarky system F' — PAuty(F'), which also is standardised, invariant
under variable elimination, |-invariant, and invariant under renaming, however
not iterative (applying a simple pure autarky can create new pure literals).

Example 11.11.1. For F := {{a,b},{b}} we have PAuto(F) = {(),(a — 1)},
and so the unique PAutp-maximal autarky is (¢ — 1). However this is not a
satisfying assignment for F', despite the fact that F' is PAutg-satisfiable.

lattice of normal autarky systems, and the corresponding closures (hulls; as always in algebra).

1'We remark here that for formal clause-sets, which correspond to the notion of a hypergraph
and are pairs (V, F) for sets V of variables and clause-sets over V (so that now “formal variables”
are allowed, i.e., elements of V\var(F')), A-leanness of (V, F’) implies V' = var(F’), since otherwise
a non-trivial autarky would exist.
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To obtain a normal autarky system, according to the general theory we con-
sider PAut(F’), which is the closure of PAutg(F') under “iteration” of autarkies.
So the elements of PAut(F) are the partial assignments ¢,, o - -- o 1, where ¢;
is a simple pure autarky for F;_;, where Fy := F and F;;11 := ;41 * F;. The
elements of PAut(F') are called pure autarkies.

Given any autarky system A, it is natural to study which random clause-sets
(say, in the constant-density model, fixing a clause-length k > 2, and considering
all k-uniform clause-lists of length ¢ over n given variables as equally likely) are
A-satisfiable. Experimental evidence seems to suggest that at least the “natural”
autarky systems considered here all show a threshold behaviour (below a certain
threshold density every clause-list is almost surely A-satisfiable, above that den-
sity almost surely none). Only for pure autarkies this has been finally rigorously
established in [Mol05], proving that for all k > 2 a threshold exists, at the density
2 =1fork=2and at - =1.636... for k = 3.

11.11.2. Matching autarkies

The notion of “matching autarkies” is based on the work in [FV03], which intro-
duced “matched clause-sets”, that is, clause-sets F' with d"(F) = 0 (recall Defini-
tion[11.2.1'2), which are the matching satisfiable clause-sets using our systematic
terminology for autarky systems (that is, clause-sets satisfiable by matching au-
tarkies). Perhaps the earliest work where matching autarkies are implicitly used
is [AL86]. Matching satisfiable sub-clause-sets of a clause-set F' as the indepen-
dent sets of a transversal matroid have been used in [Kul00a] to show that SAT
for clause-sets with bounded maximal deficiency can be decided in polynomial
time. The first thorough study of matching lean clause-sets (clause-sets without
non-trivial matching autarkies) one finds in [Kul03], completed (and extended to
clause-sets with non-boolean variables) in [KulO7a]. As shown there, the basic
tasks like finding a maximal matching autarkies can be performed in polynomial
time. The structure of the matching autarky monoid has not been investigated
yet.

As introduced in [Kul03], “matching autarkies” are partial assignments which
satisfy in every clause they touch a literal with underlying unique variable.

Definition 11.11.1. A partial assignment ¢ is called a matching autarky for a
clause-set F' if there is an injection v : Fi,(,) — var(yp) such that for all clauses
C € Fiar(y) there is a literal x € C with v(C) = var(x) and ¢(z) = 1.

Clearly every matching autarky is in fact an autarky. The set of matching
autarkies is denoted by MAuk(F') resp. MAuk*(F) (considering only matching
autarkies with variables in F).

Example 11.11.2. If every literal occurs only once, then every autarky is a
matching autarky; see for example Example 11.9.11 As the simplest exam-
ple where some autarkies are left out consider F' := {{v1},{v1,v2}}; we have
MAuk*(F) = {(), {(va — 1), (v; — 1,v2 — 1)} (note that (v; — 1) is an autarky
for F' but not a matching autarky). While F' is still matching satisfiable, the
clause-set {{v1,va}, {v1,73}, {v1,v2}} is satisfiable but matching lean.

12we remark that also the notion of “deficiency” was introduced in [FV03]
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Using multi-clause-sets F' instead of clause-sets, a partial assignment ¢ is
a matching autarky for F iff F[var(y)] is matching satisfiable (we have to use
multi-clause-sets in order to avoid the contraction of clauses).

Example 11.11.3. (v — 1) is not a matching autarky for F := {{v}, {w}, {v, w}},

and accordingly as multi-clause-set F'[var(y)] consists of two occurrences of the
clause {v}, and thus is not matching satisfiable. But as a clause-set we would
obtain F[var(p)] = {{v}} which is matching satisfiable.

The operator F' — MAuk(F) yields a normal autarky system, but only for
multi-clause-sets; for clause-sets we have an autarky system which fulfils all prop-
erties of normal autarky systems except of being invariant under variable elim-
ination. The matching satisfiable clause-sets are exactly the clause-sets with
d"(F) = 0, while the matching lean clause-sets are exactly the clause-sets F with
VE' C F:d(F') < d(F) (thus d"(F) = d(F), and if F # T, the d(F) > 1). This
generalises the fact from [AL86] that minimally unsatisfiable clause-sets have de-
ficiency at least 1. More on matching autarkies one finds in Section 7 of [Kul03],
and in Section 4 of [KulO7a].

11.11.3. Linear autarkies

The notion of a “linear autarky”, introduced in [Kul0Ob], was motivated by the
applications of linear programming to SAT solving in [vWO00] (see Theorem 2
there). The basic notion is that of “simple linear autarkies”, yielding an autarky
system which fulfils all conditions of a normal autarky system except of being
iterative, which then is repaired by the notion of a “linear autarky”. Let a variable
weighting be a map w : VA — Qs, that is, every variable gets assigned a positive
rational number (real numbers could also be used). We extend the weighting
to literals and clauses, relative to a partial assignment ¢, as follows (using an
arithmetisation of “false” by —1 and “true” by +1):

e For a literal = let sgn,, () := 0 if var(x)
if p(x) = 1, while sgn(z) := —1if p(z) =

e Now for a literal x let wy(z) := sgn,,(z) - (var( ).

e And for a clause C' we define w,(C ) Y owec Wo(T),

¢ var(p), otherwise sgn,, () := +1

Note that for clauses C' we have w,(C) = —w,(C). Now we can state the
definition of “simple linear autarkies” (as introduced in [Kul0Ob]):

Definition 11.11.2. A partial assignment ¢ is a simple linear autarky for a
clause-set F' if there exists a weighting w : VA — Q~¢ such that for all C' € F we
have w,(C) > 0.

Clearly a simple linear autarky is an autarky, and also clearly we only need
to consider the variables actually occurring in F. Defining linear autarkies as
the closure of simple linear autarkies under iteration we obtain a normal autarky
system.
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11.11.3.1. Comparison to pure and matching autarkies

Example 11.11.4. Every pure literal = for a clause-set F' yields a simple linear
autarky (x — 1), certified by any constant weighting. The partial assignment
(11 — 1,v9 — 2) is a (satisfying) simple linear autarky for the matching lean
clause-set {{v1,va},{v1,72}, {U1,v2}} from Example [11.11.2] again certified by
any constant weighting. The partial assignment ¢ := (v1,v2,v3 — 1) is not a
simple linear autarky for F := {{v1,72,73}, {{v1,v2}},{vs}}, since if it had a
certificate w, then w(v3) < 0 in the first clause, so from 0 < w({v1,72,73}) =
w({v1,72}) + w(v3) we obtain w({v1,v2}) > —w(v3) > 0, but w({v7,v2}) =
—w({v1,73}), and thus the second clause gets a negative weight. On the other
hand, ¢ is a matching autarky for F.

So it might seem that simple linear autarkies and matching autarkies are
incomparable in strength, however this is misleading: every clause-set which has
a non-trivial matching autarky also has a non-trivial simple linear autarky, as
shown in [Kul0Ob] (by basic linear algebra one shows that a matching satisfiable
clause-set F' # T must have a non-trivial simple linear autarky, and thus F' must
be linearly satisfiable (by iteration); using invariance under variable elimination
this is lifted to arbitrary non-matching-lean F'). So the linearly-lean kernel of a
clause-set is always contained in the matching-lean kernel. In Example [11.11.4]
the clause-set F' has the simple linear autarky (v; — 1,v2 — 1), and while the
partial assignment ¢ is not a simple linear autarky, it is actually a linear autarky.

Example 11.11.5. Consider F' := {{v1,73,03}, {v1, v2, U3}, {v1,72,v3}}. The
partial assignment ¢ := (vy,ve,v3 — 1) is a matching autarky for F' but not
a simple linear autarky; furthermore ¢ is a minimal autarky for F' and thus ¢
is also not a linear autarky. So we see that, although the reduction power of
linear autarkies is as least as big as the reduction power of matching autarkies (in
this example, (v1,v2 — 0) is a simple linear autarky for F'), there are matching
autarkies which do not contain any non-trivial linear autarkies.

11.11.3.2. Matrix representations of clause-sets

Now we turn to the question of finding linear autarkies in polynomial time. This
is best done by translating the problem into the language of linear programming.
For a clause-set F' consider the clause-variables matrix M (F) of size ¢(F') x n(F).
Let us emphasise that this is different to the use of matrices in Example [11.2.1,
where matrices only are used for an economic representation, while here now
“mathematical” matrices are used, with entries from {—1,0,4+1} C Z, where the
rows correspond to the clauses of F' (in some order), and the columns correspond
to the variables of F' (in some order). Now F' is linearly lean if and only if M (F')-
Z > 0 has the only solution # = 0, and furthermore every solution Z corresponds
to a simple linear autarky by the same arithmetisation as used before, i.e., 0
corresponds to “not assigned”, +1 corresponds to “true” and —1 corresponds to
“false”. Thus by linear programming we can find a non-trivial linear autarky (if
one exists).

Via linear autarkies, several basic cases of poly-time SAT decision are covered.
Using a constant weighting, we see that every autarky for a clause-set F' in 2-
CNF (every clause has length at most 2) is a simple linear autarky, and thus every
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satisfiable 2-CNF is linearly satisfiable. [van00] applies linear autarkies to ¢-Horn
formulas, while in [Kul99a] it is shown how satisfiable generalised Horn clause-sets
(in a natural hierarchy of generalised Horn clause-sets, covering all clause-sets)
can be captured by linearly satisfiable clause-sets (used as an oracle to amplify
the general hierarchy studied in [Kul99a]). For more on linear autarkies see
[Kul00b, Kul03], while [Kul06] contains more on “balanced” linear autarkies (see
Subsection [11.11.4]). In general the field of linear autarkies appears still largely
unexplored; for example there seems to be a threshold for linear satisfiability
of random 3-CNF at around density 2 (i.e., having twice as many clauses as
variables).

Since matrix representations of satisfiability problems are at least of great
theoretical value, we conclude this subsection on linear autarkies by some general
comments on technical problems arising in this context. First, what is a “ma-
trix”?! The appropriate definition of the notion of a (general) matrix is given in
[Bou89], where a matriz over a set V is defined as a triple (R, C, f), where R, C are
arbitrary sets (the “row indices” and the “column indices”), and f: Rx C — V
gives the entries of the matrix. It is important to note that for row and col-
umn indices arbitrary objects can be used, and that no order is stipulated on
them. In this context it is appropriate to introduce labelled clause-sets (corre-
sponding to general hypergraphs) as triples (V, Fy, F'), where V| Fy are arbitrary
sets (the “variables” and the “clause-labels”), while F' : Fy — CLS(V) maps
every clause-label to a clause over V. Note that labelled clause-sets can have
formal variables, i.e., variables v € V not occurring in the underlying clause-set
(v ¢ var(F(Fp))), and that clauses can occur multiple times (furthermore clauses
have “names”). Now we have a perfect correspondence between finite matrices
over {—1,0,+1} and finite labelled clause-sets, more precisely we have two ways
to establish this correspondence, either using the clause-variable matriz, which
assigns to (V, Fy, F') the matrix (Fy, V, F') (where F'(C,v) is 1 or 0, depending
on whether v occurs in F(C') positively, negatively or not at all), or using the
variable-clause matriz (V, Fy, F") (with F”'(v,C) := F'(C,v)). Standardised ma-
trices use row-sets R = {1,...,n} and column-sets C' = {1, ..., m} for n,m € Ny,
and in this way also “automatically” an order on the rows and columns is estab-
lished (so that standardised matrices can be identified with “rectangular schemes
of values”). Ironically this less appropriate notion of a matrix (with its ambiguous
treatment of order) is common in the field of combinatorics, so that, in the spirit
of [BR91], in this context we call the above matrices “combinatorial matrices”. In
the context of the autarky part of this chapter, clause-variable matrices (as well
as its transposed, variable-clause-matrices) are combinatorial matrices, so that
we save us the ordeal of having to determine somehow an order on variables and
clauses!/!3

Clause-sets do not allow formal variables nor multiple clauses, and thus their
clause-variable matrices don’t have zero columns nor identical rows. Thus when
we speak of a matrix corresponding to a clause-set, then by default we consider
clause-variable matrices, and the matrices don’t contain zero columns or identical

13Tn Subsection [11.12.2] we will consider the determinant of (square) clause-variable matrices,
and the determinant of a combinatorial matrix is only determined up to its sign — fortunately
actually only the absolute value of the determinant is needed there!
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rows (while when considering labelled clause-sets no such restrictions are applied).
11.11.4. Balanced autarkies

We now consider the important (normal) autarky system of “balanced autarkies”
which, unlike pure, matching and linear autarkies, has an NP-complete search
problem (as the full autarky system): the main motivation behind balanced au-
tarkies perhaps can be understood as providing a bridge from hypergraph theory
to satisfiability theory.

Definition 11.11.3. A partial assignment ¢ is a balanced autarky for a clause-set
F if ¢ an autarky for F' as well as for FF = {C': C € F}, or, in other words, if
in every clause C' € F touched by ¢ there are satisfied literals as well as falsified
literals.

Some basic facts about balanced autarkies are as follows:

1. Balanced autarkies yield a normal autarky system.

2. Balanced-satisfiable clause-sets, i.e., clause-sets satisfiable by balanced au-

tarkies, are exactly the instances of NAESAT (“not-all-equal-sat”), that

is, clause-sets which have a satisfying assignment which in every clause
also falsifies some literals.

¢ is a balanced autarky for F iff ¢ is an autarky for F U F.

4. For complement-invariant clause-sets, i.e., where F = F holds, the bal-
anced autarkies are exactly the autarkies. Especially, the satisfying partial
assignments of complement-invariant clause-sets are exactly the balanced-
satisfying assignments.

5. A complement-invariant clause-set F' is satisfiable iff the underlying variable-
hypergraph U(F) = (var(F), {var(C) : C € F}) is 2-colourable.!*

e

An example for a class of balanced lean clause-sets (having no non-trivial
balanced autarky) is the class of clause-sets F'\ {C} for F' € MU(1) and C € F
(note that every such F'\ {C} is matching satisﬁable)E

Regarding the intersection of the autarky system of balanced autarkies with
the autarky systems presented until now, balanced linear autarkies seem most
important (that is, linear autarkies which are also balanced, constituting a strong
autarky system).

14 A hypergraph is a pair (V, E), where V is the set of “vertices”, while E, the set of “hyper-
edges”, is a set of subsets of V. A 2-colouring of a hypergraph (V, E) is a map f: V — {0,1}
such that no hyperedge is “monochromatic”, i.e., the 2-colourings of F' correspond exactly to
the satisfying assignments for the (complement-invariant) clause-set F>((V, E)) := EUE (using
the vertices as variables).

15That every such F'\ {C} is balanced lean can be shown by induction on n(F'). The assertion
is trivial for n(F) = 0, so assume n(F) > 0. F must contain a variable v occurring positively
and negatively only once. If v ¢ var(C), then we can apply the induction hypothesis to F’
obtained from F by (singular) DP-resolution on v. If on the other hand there is no such v, then
F is renamable to a Horn clause-set, so, since F' is unsatisfiable, F' must contain a unit-clause
{z} € F, and we can apply the induction hypothesis to F’/ obtained from F by (singular)
DP-resolution on var(z).
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Example 11.11.6. The clause-set F = {{v1,v2,v3},{v1,v2,73}, {v1,V2,v3}}
from Example is balanced satisfiable (for example by setting all vari-
ables to 1 or setting all variables to 0), while F' is balanced linearly lean (has no
non-trivial balanced lean autarky).

Balanced linear autarkies for a clause-set F' can be found easier than general
linear autarkies, by just solving a system of linear equations (not linear inequali-
ties), namely they correspond to the solution of M (F') -z = 0 (recall Subsection
[11.11.3). As already alluded to in Subsection [11.4.5] they have been implicitly
used in [Sey74]: While matching autarkies are used to show that minimally unsat-
isfiable clause-sets have a deficiency at least 1, balanced linear autarkies are used
to show that minimally non-2-colourable hypergraphs have deficiency at least 0
(where we define the deficiency of a hypergraph (V, E) as |E| — |V, the difference
of the number of hyperedges and the number of vertices). Slightly more general,
any clause-set F' which is balanced linearly lean has d(F') > 0, which follows
directly from the matrix characterisation of balanced linear autarkies; actually
for such F' we have the stronger property d”(F) = d(F) (Lemma 7.2 in [Kul06]).
For more on the relation of balanced autarkies to combinatorics see Subsections

11.12.1}/11.12.2.
11.11.5. Generalising minimally unsatisfiable clause-sets

In [Kul07b] the notion of minimally A-unsatisfiable clause-sets F' has been
introduced for arbitrary (normal) autarky systems A, which are clause-sets F
which are A-unsatisfiable but where every strict sub-clause-set is A-satisfiable.
The motivation is as follows: The hypergraph 2-colouring problem for a hyper-
graph G = (V, E) (where V is a finite set of vertices, and E is a set of subsets
of V) can be naturally expressed as the satisfiability problem for the clause-set
F5(G) (as already mentioned in Subsections 11.4.5/[11.11.4), using the elements
of V' as variables, while the clauses are the hyperedges H € F itself (which be-
come now “positive clauses”) together with the complements H (which become
“negative clauses”). The notion of minimally non-2-colourable hypergraphs (or
critically 3-colourable hypergraphs) has been studied intensively in the literature
(see for example Chapter 15 in [JT95]). It is easy to see that G is minimally non-2-
colourable if and only if F5(G) is minimally unsatisfiable. Analogously to clause-
sets, for hypergraphs G we can consider the deficiency d(G) := |E(G)| — |V(G)].
It has been shown in [Sey74] that d(G) > 0 holds for minimally non-2-colourable
hypergraphs. The situation is very similar to d(F) > 1 for minimally unsat-
isfiable clause-sets, and indeed, while the proof of this property for clause-sets
relies on matching autarkies, for hypergraphs we use balanced linear autarkies
instead (thus replacing matching theory by linear algebra; see [Kul06] for some
initial investigations on this subject). Deciding the class MU(1) in polynomial
time has been discussed in Subsection [11.2.2] while the analogous problem for
hypergraphs, deciding whether a square hypergraph (of deficiency 0) is minimally
2-colourable, is actually a much more difficult problem, which was finally resolved
in [RST99, McC04] (see Subsection[I11.12.2). Now satisfiability of the elements of
MU(1) after removal of a clause is of a very special kind, namely they are match-
ing satisfiable, and analogously satisfiability of square minimally non-2-colourable
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hypergraphs after removal of a hyperedge is covered by balanced linear satisfiabil-
ity (regarding the translation F5(G)). So we have several natural and important
cases of a restricted kind of minimal unsatisfiability, namely where satisfiabil-
ity after removal of a clause yields an A-satisfiable clause-set for some (feasible)
autarky system A. And instead of requiring that the whole clause-set must be un-
satisfiable, we only need it to be A-unsatisfiable; thus minimal A-unsatisfiability
at the same time strengthens and weakens the notion of minimal unsatisfiability.

Regarding the full autarky system Auk, minimal Auk-unsatisfiability is just
minimal unsatisfiability. And every minimally unsatisfiable clause-set is min-
imally A-unsatisfiable for every autarky system .A. The minimally matching
unsatisfiable (i.e., minimally MAuk-unsatisfiable) clause-sets F are exactly the
matching lean clause-sets of deficiency 1, which includes MU(1), while all other
such F' are satisfiable.

We have already seen another generalisation of (ordinary) minimal unsatisfia-
bility, namely the notion of .A-lean clause-sets. Now minimal unsatisfiable clause-
sets F' are not just lean, but they are “minimally lean” in the sense that every
strict sub-clause-set except of T is not lean, so one could introduce the notion of
“minimally A-lean clause-sets” — however the reader can easily convince himself
that a clause-set F' is “minimally A-lean” iff F' is minimally A-unsatisfiable. So
to arrive at a new notion, we have to be more careful, and instead of demanding
that every strict sub-clause-set of F' except of T is not A-lean, we require that
after removal of any single clause we obtain a non-A-lean clause-set. We have
arrived at the notion of a barely A-lean clause-set, which generalises the notion
of a “barely L-matrix” in [BS95] (see Subsection 11.12.1 below).

Generalising the notion of an “L-indecomposable matrix” in [BS95] (again,
compare Subsection[11.12.1), in [Kul07b] also the notion of an .A-indecomposable
clause-set has been introduced. This notion applies to A-lean clause-sets, where
an A-lean clause-set F' by definition is .A-decomposable if the clause-variable ma-
trix M (F) can be written as (4 %) for non-empty matrices A, B (having at least
one row and one column) corresponding to clause-sets Fy, F5 which are A-lean
(then the pair (Fy, F») yields an A-decomposition of F'). Note that since we are
dealing here with clause-sets, B may not contain repeated rows (as in Definition
4 of [Kul07bh]), which is justified when only Theorem [11.11.T is considered, since
if F' is barely .A-lean, then no contraction can occur in an A-decomposition.

Example 11.11.7. Consider two (different) variables a, b and the clause-set F' :=
Fy U F}, where Fy := {{a},{a}} and Fj := {{a,b},{@,b}}. We consider the full
autarky system. Now F is barely lean, but not minimally unsatisfiable, and an
autarky-decomposition of F' is given by Fy, I for Fy := F[{b}] = {{b}, {b}}. The
clause-set F' := Fy U FY for F} := F} U {{a,b}} has no autarky-decomposition
as a clause-set (but see below), and it is lean but not barely lean.

The basic theorem now is ([Kul07b]):

Theorem 11.11.1. Consider a normal autarky system A. Then a clause-set F
with at least two clauses is minimally A-unsatisfiable if and only if F' is barely
A-lean and A-indecomposable.

If the autarky system .A is sensitive to repetition of clauses (as are matching
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autarkies; recall Example[11.11.3), then multi-clause-sets or even labelled clause-
sets (which additionally allow for formal variables and for clause-labels; recall Sub-
section [11.11.3.2) are needed. For the above definition of A-(in)decomposability
then labelled clause-sets are used instead of clause-sets, and so the submatrices
A, B may contain zero columns and repeated rows (but note that if A or B con-
tains a zero column then the corresponding labelled clause-set cannot be A-lean).

Example 11.11.8. Considering F’ = {{a},{a}, {a,b}, {a, b}, {a,b}} from Ex-
ample 11.11.7] as a multi-clause-set, it has now the autarky-decomposition con-
sisting of {a} + {@} and {b} +2- {b}. And the clause-set {{a}, {@}, {a, b}, {@,b}}
is matching lean (but not barely matching lean), and as a clause-set it has no
matching-autarky-decomposition, while as a multi-clause-set it has the matching
autarky decomposition consisting of {a} 4+ {@} and 2 - {b}.

An A-lean labelled clause-set F' = (V, Fy, F*) has an A-autarky decompo-
sition if and only if there exists § C V' C V such that the clause-label-set
Fy .= {C € Fy : var(F*(C)) C V'} is not empty and the labelled clause-set
Fy = (V' F}, F*|F}) is A-lean (this corresponds to the matrix A in the above
definition, while F» = F[V \ V']; note that leanness of F» is implied by leanness
of F', and that in general zero rows in B can be moved to A).

11.11.6. The basic algorithmic problems

To conclude this section on autarky systems, we collect now the basic algorithmic
problems concerning autarkies. First we need notations for the various classes
of clause-sets involved; consider a class C C CLS of clause-sets and a normal
autarky system A. By A-SAT(C) resp. A-UNSAT(C) we denote the A-satisfiable
resp. A-unsatisfiable clause-sets in C, by A-LEAN(C) the A-lean clause-sets in
C, by A-MU(C) the minimally A-unsatisfiable clause-sets in C, and finally by
A-BRLEAN(C) resp. A-INDEC(C) the barely A-lean clause-sets resp. the A-
indecomposable clause-sets in C. If A is not mentioned, then the default is the
full autarky system, and if C is not mentioned, then the default is the class CLS
of all clause-sets. Thus MU(k) = MU({F € CLS : d(F) = k}), while LEAN is
the set of all lean clause-sets.

The basic decision problems are now as follows, as “promise problems”, that
is, where F' € C is already given:

1. The AUTARKY EXISTENCE PROBLEM for A and C is to decide whether
F € CLS\A-LEAN(C) holds, while its negation, the LEANNESS PROBLEM,
is to decide F' € A-LEAN(C).

2. The SATISFIABILITY PROBLEM for A and C is to decide whether F' €
A-SAT(C) holds, while its negation, the UNSATISFIABILITY PROBLEM, is
to decide F' € A-UNSAT(C).

3. The MINIMAL UNSATISFIABILITY PROBLEM for A4 and C is to decide
whether F' € A-MU(C) holds.

4. The BARELY LEANNESS PROBLEM is to decide F' € A-BRLEAN(C).

5. The INDECOMPOSABILITY PROBLEM is to decide F' € A-INDEC(C).

If we can solve the satisfiability problem “efficiently”, and C is stable under
formation of sub-clause-sets (i.e., if F' € C and F' C F, then also F’ € C), then
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by definition we can solve “efficiently” the minimal unsatisfiability problem. If
we can solve “efficiently” the autarky existence problem, and C is stable under
formation of sub-clause-sets, then by definition the barely leanness problem can
also be solved “efficiently”.

The most basic functional problems are as follows (again for input F' € C):

1. The LEAN KERNEL PROBLEM for 4 and C is the problem of computing the
lean kernel N 4(F).

2. The NON-TRIVIAL AUTARKY PROBLEM for A and C is the autarky existence
problem together with the computation of some non-trivial autarky in case
it exists.

3. The QUASI-MAXIMAL AUTARKY PROBLEM for A and C is the problem of
computing some quasi-maximal autarky.

If we can solve the non-trivial autarky problem “efficiently”, and C is stable
under formation of sub-clause-sets, then by iteration we can solve “efficiently” the
quasi-maximal autarky problem. Obviously solving the quasi-maximal autarky
problem implies solving the non-trivial autarky problem and the lean kernel prob-
lem, and solving the lean kernel problem implies solving the satisfiability problem
and the autarky existence problem. Call C stable if C is stable under formation
of sub-clause-sets and under crossing out variables (that is, if F' € C, then for any
set V of variables we have V = F' € C); stability implies stability under applica-
tion of partial assignments and under restrictions.'® Now the proof of Lemma 8.6
in [Kul03] yields an algorithm, which for stable classes allows to derive from an
“efficient” solution of the autarky existence problem an “efficient” solution of the
lean kernel problem; however, as already mentioned at the end of the introduction
to Section [11.11} in order to solve also the non-trivial autarky problem further
conditions on 4 are needed.

Theorem [11.10.1 yields a method for computing maximal (general) autarkies
for classes C which are stable under restriction and for which we can solve the
satisfiability problem and the unsatisfiability problem in a functional sense. It is
not known whether Theorem|11.10.1 can be generalised to more general autarky
systems. Regarding the full problems (unrestricted autarkies and unrestricted
clause-sets), as already remarked in the introduction to Section[11.10, the autarky
existence problem is NP-complete and the leanness problem is coNP-complete. Of
course, the (full) satisfiability problem is NP-complete, the (full) unsatisfiability
problem coNP-complete, and the full minimal unsatisfiability problem is Df-
complete. Finally, (full) barely leanness decision is D-complete ([KMT08]),
while for the (full) indecomposability problem it is only known that it is in Iy
(the second level of the polynomial hierarchy).

Considering the classes CLS(k) := {F € CLS : d"(F) = k} (and still unre-
stricted autarkies; note that these classes are stable under sub-clause-formation),
the satisfiability problem is not only polynomial-time solvable for fixed k (recall
Section [11.2), but it is also fixed-parameter tractable in k ([Sze04]), and fur-

16 Expressed in terms of clause-variable matrices, stability of C corresponds to the property of a
class of {—1, 0, +1}-matrices to be stable under formation of submatrices (i.e., under elimination
of rows and columns). So “stability” is (the in our opinion essential) half of the conditions on
a semicentral class of clause-sets in the sense of [Tru98] (Section 5.2).
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thermore also finding a satisfying assignment resp. a tree resolution refutation is
fixed-parameter tractable. On the other hand, the lean kernel problem is known
to be decidable in polynomial time for fixed k (Theorem 4.2 in [Kul00a]), but it is
not known whether this problem is also fixed-parameter tractable. Whether solv-
ing the non-trivial autarky problem is decidable in polynomial time is not known
(only for £ =1 we know how to compute a quasi-maximal autarky, by first com-
puting a quasi-maximal matching autarky, and then using that a matching-lean
clause-set of deficiency 1 is minimally unsatisfiable iff it is unsatisfiable). The
basic problem with the classes CLS(k) is that they are not stable under crossing
out variables. Nothing is known here about the indecomposability problem.

Further complexity results regarding (the autarky system of) balanced au-
tarkies (and unrestricted clause-sets) one finds in Subsection[11.12.2l

11.12. Connections to combinatorics

We need some good notions for some important properties of clause-sets in relation
to standard notions from combinatorics: The degree of a literal | in a clause-set
F is the number of clauses C' € F with | € C, while the degree of a variable v in
a clause-set F' is the sum of the degrees of the literals v and v. Note that these
degrees are the degrees of literals and variables in the bipartite literal-clause graph
resp. the bipartite variable-clause graph, while the length of a clause is its degree
in any of these two most basic graphs related to clause-sets. Regarding a whole
clause-set, one needs to distinguish between minimal literal-degree and maximal
literal-degree and between minimal variable-degree and mazimal variable-degree.
A clause-set F is called literal-regular if every literal in var(F') U var(F') has the
same (literal-)degree, while F' is called variable-regular if every variable in var(F’)
has the same (variable-)degree. Finally F is called uniform if all clauses of F
have the same length.

A well-known field of activity relating SAT and combinatorics concerns the
question how low the maximal variable-degree can be pushed in a k-uniform
minimally unsatisfiable clause-set. These investigations started with [Tov84], with
the most recent results in [HS05, HS06]. A related extremal problem is considered
in [SZ08], where instead of the maximal variable-degree the number of edges in
the conflict graph of a k-uniform minimally unsatisfiable clause-set is minimised,
where the conflict graph of a clause-set F' has the clauses of F' as vertices, with
an edge joining two vertices iff they have at least one conflict 17

Further differentiations are relevant here: Instead of considering arbitrary
minimally unsatisfiable clause-sets, on the one hand we can restrict attention to
hitting clause-sets (i.e., the conflict graph is a complete graph), and on the other
hand we can require variable-regularity or, stronger, literal-regularity. Another
regularity condition is conflict-reqularity, where the conflict-multigraph (now al-
lowing parallel edges) is required to be regular. First investigations regarding
hitting clause-sets are found in [SS00, [SST07], continued in [HKO08]. Here we
cannot go further into this interesting field, but we will only consider relations to
combinatorics which are related to the notion of deficiency.

17"Note that we take the notion of a “graph” in the strict sense, namely where an edge is a
2-subset of the vertex set, and thus loops or parallel edges are not possible.
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Especially for hitting clause-sets (and generalisations) the field concerning
biclique partitioning (and the hermitian rank) is of interest, relating the notion of
deficiency to eigenvalues of graphs and quadratic forms; for first explorations of
the connections to SAT see [Kul04a, GKO05] (further extended in [Kul07a, HK08]).
Again due to space constraints we cannot go further in this direction, but we will
restrict our attention to relations which directly concern autarkies.

11.12.1. Autarkies and qualitative matrix analysis

“Qualitative matrix analysis” (“QMA”; see [BS95] for a textbook) is concerned
with matrices over the real numbers, where matrices A, B are considered equiv-
alent if they have the same sign matrices, i.e., sgn(A) = sgn(B) (these are
{-1,0,+1}-matrices), and where questions from matrix analysis (starting with
solvability of systems of linear equations) are considered “modulo” this equiva-
lence relation.

As an example consider the notion of a non-singular (square) matrix A (over
R): A is non-singular iff det(A) # 0, while A is sign-non-singular (short: an SNS-
matriz) iff every matrix B with sgn(B) = sgn(A) is non-singular (for example,
(1 3') is an SNS-matrix, while (12) is not). We remark that from det(A) =
det(A") it follows that A is sign-non-singular iff its transposition A" is sign-non-
singular. In the subsequent Subsection [11.12.2] we will discuss the connections
between SNS-matrices and SAT in more detail.

Motivated by [DD92], in [Kul03] the basic translations between SAT and
QMA have been outlined; it seems justified to call QMA “SAT in disguise”, but
with a rather different point of view. Recall from Subsections|11.11.3,[11.11.4,
that linear autarkies resp. balanced linear autarkies of a clause-set F' correspond
to the solutions of M(F)-# > 0 resp. M(F) - & = 0. Taking these systems of
(in)equalities only “qualitatively”, that is, the entries of M (F') can be changed
when only their signs are preserved, we arrive at exactly all autarkies resp. all
balanced autarkies for F (restricted to var(F')). This is the basic connection
between SAT and QMA; more precisely, the details are as follows.

The class of all real matrices B with sgn(B) = sgn(A4) is denoted by Q(A)
(the “qualitative class of A”). Recall from Subsection[11.11.3/that linear autarkies
¢ for clause-sets F' correspond to solutions of M (F) - & > 0, where M (F) is the
clause-variable matrix, via the association & — ¢z for partial assignments with
var(pz) C var(F) given by sgn, (I) = sgn(Zyar()) for literals I over F' (that

is, I € var(F') Uvar(F). By the same translation from real vectors to partial
assignments, (arbitrary) autarkies of F' correspond to the solutions of A - & > 0
for A € Q(M(F)) (all together), while balanced autarkies of F' correspond to
the solutions of A- & = 0 for A € Q(M(F)). Furthermore, satisfying (partial)
assignments for F' correspond to the solutions of A-Z > 0 for A € Q(M(F))
Now the basic dictionary between SAT and QMA is as follows, where, corre-
sponding to the convention in [BS95], clause-sets are represented by their variable-
clause-matrix, the transposition of the clause-variable matrix (often characterisa-
tions in QMA are based on the characterisations of the above qualitative systems

I8Where “a > b” for vectors a,b (of the same length) means that a; > b; for all indices 4.
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A-Z>0,A-Z=0and A-Z > 0 via Gordan’s transposition theorem (and its
variations)):

e Balanced lean clause-sets correspond to L-matrices (matrices A such that
all B € Q(A) have linearly independent rows, that is, from ¢* - B = 0
follows ¢ = 0).

e Lean clause-sets correspond to L1 -matrices (matrices A such that for all
B e Q(A) from §* - B > 0 follows § = 0).

e Unsatisfiable clause-sets correspond to sign-central matrices (matrices A
such that for all B € Q(A) there is ¥ > 0, & # 0 with B - 2 = 0)1%, while
minimally unsatisfiable clause-sets correspond to minimal sign-central ma-
trices (sign-central matrices, where elimination of any column destroys
sign-centrality).

e Minimally unsatisfiable clause-sets of deficiency 1 (i.e., the elements of
MU(1)) correspond to S-matrices (matrices A with exactly one column
more than rows, which are L-matrices, stay L-matrices after elimination of
any column, and where there exists & > 0 with A - Z = 0). The saturated
elements of MU(1) correspond to mazimal S-matrices (where changing any
0 to %1 renders the matrix a non-S-matrix).

e Thus SNS-matrices are exactly the square L-matrices. And, as already
mentioned in Subsection [11.11.4] from every F € MU(1) we obtain an
SNS-matrix by choosing C' € F' and considering the variable-clause matrix
(or the clause-variable matrix) of F'\ {C}.

For some more details on these correspondences see [Kul03]. The exploration of
the connections between SAT and QMA has only been started yet, and interesting
collaborations are to be expected in this direction.

11.12.2. Autarkies and the even cycle problem

Consider the following decision problems:

e Is a square hypergraph minimally non-2-colourable? (the “square critical
hypergraph decision problem”)

e Is a square matrix an SNS-matrix? (the “SNS-matrix decision problem”)

e By multiplying some entries of a square matrix A by —1, can one reduce the
computation of the permanent of A to the computation of the determinant
of A? (“Polya’s permanent problem”)

e Does a directed graph contain a directed cycle of even length? (the “even-
cycle decision problem”)

All these problems are closely linked by direct translations (see [McC04] for a
systematic account, containing many more equivalent problem@). Whether any
(thus all) of these problems is solvable in polynomial time was a long-standing
open problem, finally (positively) solved in [RST99, McC04]. Now by putting
SAT in the centre, the equivalence of these problems becomes very instructive.

Ythe equivalence to unsatisfiability follows directly from Gordan’s transposition theorem
20regarding the traditional combinatorial point of view, which unfortunately excludes SAT
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11.12.2.1. The equivalence of the basic problems

We already mentioned hypergraph colouring in Subsections[11.4.5 and [11.11.5,
introducing the deficiency d(G) of a hypergraph and the reduced deficiency d,(F')
of a complement-invariant clause-set (as d.(F) := d(U(F)), where L(F) is the
variable-hypergraph of F'). So every minimally unsatisfiable complement-invariant
clause-set F has d,(F') > 0, and the square critical hypergraph decision problem
is up to a different encoding the same as the problem of deciding whether a
complement-invariant clause-set F' with d,(F') = 0 is minimally unsatisfiable, but
where F' is a “PN-clause-set”, that is, every clause is either positive or nega-
tive. Now the standard reduction of arbitrary clause-sets F' to PN-clause-sets
(introducing a new variable and a new binary clause for each “mixed” literal-
occurrence), symmetrised by using the same variable for a clause C and its comple-
ment C, translates complement-invariant clause-sets into complement-invariant
PN-clause-sets while maintaining the reduced deficiency, and thus we see that
by this simple transformation the square critical hypergraph decision problem
is the same problem as to decide whether an (arbitrary) complement-invariant
clause-sets of reduced deficiency 0 is minimally unsatisfiable.

By the results of Subsection [11.12.1, the SNS-matrix decision problem is
(nearly) the same problem as to decide whether a clause-set F' with d(F) =0 is
balanced lea, which is the same problem as to decide whether a complement-
invariant clause-set F' with d,(F) = 0 is lean. So we need to find out for
complement-invariant clause-set F' with d,(F’) = 0, what the precise relationship
is between the problem of deciding leanness and deciding minimal unsatisfiability.
Since a clause-set F' is minimally balanced unsatisfiable iff F' U F is minimally
unsatisfiable, this is the same as the relationship between the problem of deciding
balanced leanness and deciding minimal balanced unsatisfiability for clause-sets
FO with d(Fo) = 0,

For clause-sets F' with deficiency d(F) = 1, minimal unsatisfiability is equiv-
alent to (that is, is implied by) being lean. Analogously one could expect for
complement-invariant clause-sets F' with d,(F) = 0, that leanness implies mini-
mal unsatisfiability, or equivalently, that balanced leanness for Fj with d(Fp) = 0
implies minimal balanced unsatisfiability — however this is not the case, as the
trivial examples F' = {{a}, {a}, {b}, {b}} resp. Fy = {{a}, {b}} shows (the reason
is roughly that 141 = 2 while 0+0 = 0, and so a balanced lean Fj with deficiency
zero can contain a non-empty balanced lean strict sub-clause-set with deficiency
zero). The first key here is Theorem [I1.11.1, which yields that a clause-set Fj
is minimally balanced unsatisfiable iff F' is barely balanced lean and balanced
indecomposable. The second key is that for balanced lean Fy with d(Fp) = 0
the autarky decompositions (Fy, Fy) w.r.t. balanced autarkies are exactly the Ag-
autarky decompositions (Fy, Fy) with d(Fy) = d(F2) = 0 of Fy w.r.t. the smallest
normal autarky system Ag (note that every clause-set is Ap-lean; see Theorem 13,
Part 3 in [Kul07b]). Now these .4o-decompositions are the decompositions asso-
ciated to the notion of a “partly decomposable matrix” (see Theorem 13, Part 4
in [Kul07b], and Subsection 4.2 in [BR91]), and thus can be found in polynomial
time. So we can conclude now: Given on the one hand an algorithm for deciding

2lthere are trivial differences due to clause-sets not having multiple clause-occurrences
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whether Fy with d(Fp) = 0 is balanced lean, to decide whether Fy with d(Fp) =0
is minimally balanced unsatisfiable, we first check whether Fj is balanced lean,
and if this is the case then we check whether M (F}) is not partly decomposable
(that is, whether M (Fp) is “fully indecomposable”) — Fj is minimally balanced
unsatisfiable iff both tests are passed. On the other hand, assume now that an
algorithm is given for deciding whether Fy with d(Fp) = 0 is minimally balanced
unsatisfiable. Here one needs to add the observation that if (Fy, Fy) is an Ag-
autarky decomposition of F', then F' is A-lean iff both Fy, Fy are A-lean (for any
normal autarky system .A). So for given Fy first we check whether Fp is minimally
balanced unsatisfiable — if this is the case then Fj is balanced lean. Otherwise
we search for an 4p-decomposition (Ay, As) with d(A;) = d(A3) = 0 — if no such
decomposition exists then Fj is not balanced lean while otherwise Fj is balanced
lean iff both F, Fy are balanced lean (applying the whole procedure recursively).

Considering the determinant computation via the Leibniz expansion, it is
quite straightforward to show that a square matrix A is an SNS-matrix iff det(A) #
0 and per(|A]) = |det(A)| holds, where |A| is obtained from A by taking absolute
values entrywise, and per(A) = > g [T 1 Ai @) This establishes the basic
connection to Polya’s permanent problem. We remark that for a clause-set F' with
d(F) = 0 the number of matching satisfying assignments for F is per(|M(F)]).
Finally, by considering the decomposition of permutations into cycles, it is also
straightforward to show that a reflexive digraph G (every vertex has a loop) has
no even (directed) cycle iff its adjacency matrix (a square {0, 1}-matrix, with all
entries on the main diagonal equal to 1 due to reflexivity of G) is an SNS-matrix.?2

11.12.2.2. Generalisations and strengthenings

Let us now recapitulate the poly-time decision results in the light of the general
algorithmic problems from Subsection [11.11.6. We introduced already the con-
vention that for a class C C CLS of clause-sets, C(k) is the class of F' € C with
d"(F) = k (note that for F € MU we have d*(F) = d(F)). In general, for some
function f : C — R we write Cr=y, := {F € C : f(F) = k}, and similarly Cr<y
and so on; so MU(k) = MUq—. The class of complement-invariant clause-sets
is denoted by CI := {F € CLS : F = F}, while the autarky system of balanced
autarkies is denoted by the prefix “B”.

Let us denote by MUCI := MU(CI) the class of all complement-invariant
minimally unsatisfiable clause-sets F', and so by MUCI4,— for k& € Ny the sub-
class of clause-sets of reduced deficiency k is denoted. We know

MUCI = | J MUCIq,—,
keNy

where MUCIy4,—¢ is decidable in polynomial time (as discussed in Subsection
11.12.2.1). Furthermore we denote by BMU := B-MU the class of minimally

221f we have given an arbitrary {0, 1}-matrix A (possibly with zeros on the diagonal), and we
want to reduce the SNS-decision problem for A to the even-cycle problem, then we use that if
det(A) # 0 then by row-permutation of A we can transform A into a matrix with 1-constant
main diagonal (while this transformation does not alter the SNS-property).
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balanced unsatisfiable clause-sets F', and thus by BMU(k) for k& € Ny the sub-
class given by d(F') = k is denoted. So

BMU = | J BMU(k),
keNg

where BMU(0) is decidable in polynomial time (again, as discussed in Subsection
[11.12.2.1). Note that BMU can be phrased as the class of “minimally not-all-
equal-unsatisfiable clause-sets”. And note that, as with MU(k), for F' € BMU we
have d"(F) = d(F). Analogously to the MU(k)-hierarchy, the following conjecture
seems natural:

Conjecture 11.12.1. The MINIMAL UNSATISFIABILITY PROBLEM for classes of
complement-invariant clause-sets with bounded reduced deficiency is solvable in
polynomial time. That is, for every k € Ny the class MUCIq, 1 is decidable in
polynomial time. Equivalently, all BMU(k) for k € Ny are decidable in polynomial
time. Another equivalent formulation is that for all fixed k¥ € Ny the problem
whether a hypergraph with deficiency & is minimally non-2-colourable is decidable
in polynomial time.

Similarly we define LEANCI := LEAN(CI) as the class of complement-
invariant lean clause-sets, while BLEAN := B-LEAN denotes the class of bal-
anced lean clause-sets (recall that for F € BLEAN we have d*(F) = d(F)). So
LEANCI = {J, ¢y, LEANCIy, = and BLEAN = (J, .y, BLEAN(K). As discussed
in Subsection[11.12.2.1, for £ = 0 in both cases we have poly-time decision.

Conjecture 11.12.2. The AUTARKY EXISTENCE PROBLEM for classes of comp-
lement-invariant clause-sets with bounded reduced deficiency is solvable in poly-
nomial time. That is, for every & € Ny the class LEANCIq,—; is decidable in
polynomial time. Equivalently, all BLEAN(k) for k € Ny are decidable in polyno-
mial time. Another equivalent formulation is that for all fixed k& € Ny the problem
whether a matrix over {—1,0,+1} (or, equivalently, over {0,1}) with exactly k
more columns than rows is an L-matrix.

It needs to be investigated whether the reductions from Subsection [11.12.2.1]
can be generalised, so that we obtain analogously the equivalence of Conjecture
[11.12.2 to Conjecture[11.12.1. Finally we note that for MU(k) we actually have
fixed-parameter tractability, and so we also conjecture the strengthening:

Conjecture 11.12.3. The decision problems in Conjecture[11.12.1 are not just
poly-time decidable for each (fixed) k € Ny, but they are also fixed-parameter
tractable in this parameter, i.e., there exists a time bound f(¢, k) for decision of
MUCI depending on k and the number £ of literal occurrences in the input, which
is of the form f(¢,k) = a(k) - £? for some function o and some constant 3.

The analogous problem to Conjecture [11.12.2, namely to decide LEAN(k),
is not known to be fixed-parameter tractable, and so we refrain from conjectur-
ing that also for the problems in Conjecture we have fixed-parameter
tractability.
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11.12.2.3. Solving SAT problems by autarky reduction

While in the previous Subsection[11.12.2.2 we considered the basic decision prob-
lems as outlined in Subsection[11.11.6] we now turn to the functional problems as
discussed there. Recall that for the classes CLS(k) we do not just have minimally
unsatisfiability decision, but stronger satisfiability decision in polynomial time
(even fixed-parameter tractability), and furthermore we can solve the lean-kernel
problem in polynomial time (but currently it is not known whether the non-trivial
autarky problem, or, here equivalent, the quasi-maximal autarky problem, can be
solved in polynomial time). Different from the approaches used for CLS(k), which
where satisfiability- or unsatisfiability-based, here now our approach is autarky-
based, fundamentally relying on the following “self-reducibility conjecture”.

Conjecture 11.12.4. Given a square non-SNS matrix A over {—1,0,+1}, one
can find in polynomial time a “witness” matrix B € Q(A) over Z (with the same
sign pattern as A) which is singular.

There are two avenues for proving Conjecture[11.12.4: “constructivising” the
proofs in [RST99, McC04], or refining the method from [KMTO08] for finding an
autarky when only given a decision procedure for leanness (the problem here is,
similar to the classes CLS(k), that we do not have stability under crossing out
variables nor under addition of unit-clauses). A witness according to Conjecture
yields a non-trivial balanced autarky for the clause-set corresponding
to A. In order to make use of this, analogously to d* we need to introduce
the mazimal reduced deficiency d:(F ) for a complement-invariant clause-set F,
defined as the maximum of d,(F”) for complement-invariant F’ C F’; by definition
we have d (F) > 0. Now [Kul07b] shows the following, using SATCI := SAT(CT)
for the satisfiable complement-invariant clause-sets and BSAT := B-SAT for the
balanced satisfiable clause-sets (i.e., not-all-equal satisfiable clause-sets).

Theorem 11.12.1. Given Conjecture [11.12.], we obtain poly-time decision of
SATClyx_g, that is, SAT decision for complement-invariant clause-sets with maz-
imal reduced deficiency 0. Equivalently, we obtain poly-time decision of BSAT(0),
that is, NAESAT decision in poly-time for clause-sets F with d"(F) = 0.

Stronger, we can compute a quasi-mazximal autarky for complement-invariant
clause-sets F with df (F) = 0. And, equivalently, we can compute a quasi-mazximal
balanced autarky for clause-sets F with d*(F) = 0.

Given the positive solution of Polya’s problem, Theorem [11.12.1 (that is,
the possibility of computing a quasi-maxima autarky) actually is equivalent to
Conjecture [11.12.4. The natural generalisation of Conjecture 11.12.4] thus is as
follows.

Conjecture 11.12.5. The QUASI-MAXIMAL AUTARKY PROBLEM for classes of
complement-invariant clause-sets with bounded maximal reduced deficiency is
solvable in polynomial time, that is, for every k € Ny there exists a poly-time
procedure for computing for complement-invariant clause-sets F with d; (F) = k
a quasi-maximal autarky. Equivalently, quasi-maximal balanced autarkies can be
computed in poly-time for d” (F) = k. Or, equivalently, there exists a polynomial-
time procedure for deciding whether a matrix A over {—1,0,+1} with (exactly)
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k more columns than rows is an L-matrix, and computing in the negative case a
singular matrix B € Q(A) over Z.

As discussed in general in Subsection [11.11.6, on the one hand Conjecture
[11.12.5 implies poly-time decision for all SATCIy+_;, and, equivalently, poly-
time decision of all BSAT(k) (that is, NAESAT ‘decision for clause-sets with
maximal deficiency k), and thus implies Conjecture [11.12.1. And on the other
hand Conjecture[11.12.5 implies also Conjecture[11.12.2.

Finally we remark that by the process of “PN-separation”, as discussed at
the beginning of Subsection [11.12.2.1, every complement-invariant clause-set F’
can be transformed into a complement-invariant PN-clause-set F’ (i.e., a hyper-
graph 2-colouring problem) such that F’ is equivalent to F' w.r.t. the properties
of being satisfiable, minimally unsatisfiable and lean, and where d,(F’) = d(F)
and d)(F') = d}(F). Actually it is easier to perform this transformation on one
“core half” of F, a clause-set Fy with F' = Fy UFy: then the properties being pre-
served by Fy ~ Fj are balanced satisfiability, minimal balanced unsatisfiability
and balanced leanness, and we have d(F}) = d(Fp) and d*(F}) = d"(Fp). Thus
the various problems discussed in this subsection can be phrased as hypergraph-
2-colouring problems, and the matrices occurring can be restricted to {0,1}-
matrices.

11.13. Generalisations and extensions of autarkies

In Subsection [11.8.4 we have already commented on the (slight) generalisation
given by the notion of a “weak autarky” (compared to (ordinary) autarkies). In
this final section we will discuss more substantial generalisations, either concern-
ing the autarky notion itself (in Subsections/11.13.1}[11.13.2), or concerning more
general frameworks (in Subsections[11.13.3,11.13.4).

11.13.1. Safe partial assignments

The most general case of “safe assignments” are satisfiability-preserving partial
assignments @, i.e., where ¢ x F is satisfiability equivalent to F. This poses
very mild restrictions on ¢: if F' is unsatisfiable, then every ¢ is satisfiability-
preserving, while ¢ is satisfiability-preserving for satisfiable F' iff there exists a
satisfying (total) assignment extending . If ¢ is satisfiability-preserving for F,
then also every ¢’ C ¢ is satisfiability-preserving for F', and for satisfiable F' the
satisfiability-preserving partial assignments are exactly the ¢’ C ¢ for the total
satisfying assignments .

A satisfiability-preserving partial assignment amounts to specifying certain
additional constraints which do not destroy satisfiability. The analogous notion of
a satisfiability-preserving clause for a clause-set F is a clause C such that FU{C'}
is satisfiability-equivalent to F'. Examples for satisfiability-preserving clauses for
F are clauses which follow logically from F. If C is satisfiability-preserving for
F, then also every super-clause of C' is satisfiability-preserving for F'. Any C is
a satisfiability-preserving clause for any unsatisfiable F', while C' is satisfiability-
preserving for a satisfiable F' if and only if there exists z € C such that (z — 1)
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is satisfiability-preserving for F'. So for a literal z the clause {«} is satisfiability-
preserving for F' iff the partial assignment (x — 1) is satisfiability-preserving for
F, and satisfiability-preservation of clauses in general weakens these cases, while
satisfiability-preservation of partial assignments strengthens them.

Lemma 11.13.1. Consider a clause-set F' and compatible partial assignments
w, Y such that ¢ is satisfiability-preserving for ¢ x F. Then for every literal
T € C’i, the clause C’fj) U {z} is satisfiability-preserving for F.

Proof. If ¢ x F' is unsatisfiable, then CSJ follows from F', and thus Cg is satisfia-
bility-preserving for F. If ¢ x F' is satisfiable, then also (¢ o ) x F' is satisfiable,
thus ¢ o ¢ = 1) o @ is satisfiability-preserving for F, and so is (x — 1). O

The composition of satisfiability-preserving partial assignments in general
is not again satisfiability-preserving. The notion of a safe partial assignment
provides a restriction having this property, where ¢ is safe for a clause-set F' if
for every partial assignment ¢ with ¥ * FF = T we have ¢ x (¢ x F) = T as
well (i.e., if ¢ is a satisfying assignment, then so is ¢ o ¢). Every weak autarky
is safe, for unsatisfiable clause-sets again every partial assignment is safe, and
more generally every enforced partial assignment ¢ (i.e., every satisfying total
assignment for F' is an extension of ¢) is safe. Every safe partial assignment
is satisfiability-preserving. The safe partial assignments for F' yield a monoid
(with Auk(F') as sub-monoid), as is easily checked (using just the fundamental
properties of the operation of RASS on CLS).

11.13.2. Look-ahead autarky clauses, and blocked clauses

Recall the notion of a weak k-autarky ¢ for F from Subsection [11.10.5] defined
by the condition that for the set N(p, F) := (¢ *x F) \ F of new clauses created
by the application of ¢ to F we have |[N(p, F')| < k. For any partial assignment
¥ with ¢« N = T and var(¢) C var(N) and for every 2’ € C;, then by Lemma
11.13.1/the look-ahead autarky clause CSJ U {z'} is satisfiability-preserving for F.
In the special case of ¢ = ¢, as discussed in Subsection 11.10.5] the choice
7' = x is appropriate. For a look-ahead autarky clause we actually can allow
a slightly more general case, just given arbitrary partial assignments 1), ¢ with
var(p) N var(y) = @ such that ¢ is a weak autarky for ¢ % F: In this case
must satisfy all clauses of N(p, F') except of those which after application of ¢
are already contained in v x F'.

Recall the notion of a blocked clause for clause-set F w.r.t. € C (introduced
in [Kul99b], and further studied in [Kul99c]), that is, for every clause D in F'
with T € D there is yp € C\ {z} with yp € D. Let Cp := C \ {z}, and consider
the partial assignment p¢, := (y — 0 : y € Cp). Now the blocking-condition is
equivalent to the literal x being pure for ¢c, * F, and thus C is a look-ahead
autarky clause for F. So look-ahead autarky clauses generalise blocked clauses,
where for the latter it is shown in [Kul99¢] that their addition to clause-sets cannot
be simulated by (full) resolution (even if we only use C' without new variables).

Thus addition of look-ahead autarky clauses by a SAT solver could be an
interesting feature; though one would expect that the full power of extended
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resolution is only unleashed by allowing blocked clauses with new variables, nev-
ertheless the special case of look-ahead autarky clauses considered above, given
by some partial assignment ¢, we naturally have “at hand” in a SAT solver, could
become interesting in the future. In the OKsolver-2002 the special case of a weak
1-autarky has been implemented as an experimental feature: if C' = {aq,...,ax}
(k > 2) is the (single) new clause, then for 1 < i < k the k binary clauses {a;, 2}
can be added.

Finally we should remark that addition of look-ahead autarky clauses is a
form of “local learning”, that is, the added clauses are valid only at the cur-
rent (“residual”) node in the backtracking tree, and need to be removed when
backtracking.

11.13.3. Beyond clause-sets

Autarkies for generalised clause-sets, using non-boolean variables v and literals
“p # & for (single) values € in the domain of v, are studied in [Kul07a], and
some first applications to hypergraph colouring one finds in [Kul06]. As we have
seen in Section[11.12.2] the hypergraph 2-colouring problem is captured by con-
sidering complement-invariant clause-sets, which can be reduced to their core
halfs, that is, to the underlying hypergraphs, by considering balanced autarkies.
Now for k-colouring, variables with uniform domain Z; = {0,...,k — 1} are
considered, and weak hypergraph-colouring (no hyperedge is monochromatic) is
captured by weakly-balanced autarkies, which are autarkies where every touched
clause contains at least two different assigned values, while strong hypergraph-
colouring (every hyperedge contains all colours) is captured by strongly-balanced
autarkies, autarkies where every touched clause contains all possible k assigned
values.

Another route of generalisation is to consider boolean functions (in some
representation, for example BDD’s as in [FKS*04]) instead of clauses, and, more
generally, arbitrary sets of constraints. Just replacing “clause” by “constraint”
in the basic condition “every touched clause is satisfied”, and allowing partial
assignments for constraints (satisfying the constraint iff all total extensions satisfy
it), we obtain a straight-forward generalisation.

Regarding QBF, a powerful framework is here to consider QCNF-problems
as satisfiability problems, that is the universal variables are “eliminated” while
we seek substitutions for the existential variables by boolean functions in the pre-
ceeding universal variables such that a tautology is created (that is, every clause
becomes a tautology). Now an autarky in this setting is a partial substitution of
existential variables by boolean functions (depending on the universal variables
on which the existential variable depends) such that the substitution either does
not touch a clause or makes it a tautology. The simplest case is to consider only
constant functions, that is we search for standard CNF-autarkies of the matrix
where all universal variables are crossed out.

11.13.4. An axiomatic theory

A first approach towards an “axiomatic theory”, extending [Kul04b], is given in
[Kul01], (in principle) comprising all extensions mentioned in Subsections[11.13.1
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and T1.13.3] The basic idea is to consider the operation x of a monoid (Z,o,¢)
of “instantiators” (like partial assignments) on a lower semilattice (P, A, T) of
“problem instances” (like clause-sets with union). We obtain the induced partial
order P; < P, for problem instances given by P < Py i< PyAP, = P;. Now weak
autarkies for problem instances P € P are instantiators ¢ € 7 with p x P < P,
while autarkies fulfil the condition p* P’ < P’ for all P’ < P. Given the multitude
of notions of autarkies, such a general theory should become indispensable at some
time in the future.

11.14. Conclusion

An important structural parameter for satisfiability problems about clause-sets
(CNF-formulas) and QBF-formulas is the (maximal) deficiency. Various hierar-
chies based on the notion of (maximal) deficiency emerged, with some poly-time
results established, and most open:

1. For deciding minimally unsatisfiability see Section [11.2, while more gen-
erally in Subsection[11.11.6 satisfiability decision (and more) is discussed,
and a general framework is given (with still open problems in this context).

2. Deciding the tautology/falsity property for quantified boolean formulas is
discussed in Section

3. “Not-all-equal satisfiability” (with the normal deficiency), or, equivalently,
complement-invariant clause-sets with the reduced deficiency, is considered
in Section [11.12.2] (see especially Subsection [11.12.2.3] for open problems
and conjectures).
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