Cooperating knowledge-based
systems for environmental
decision support

N M Avouris

The paper discusses the applicability of cooperating know-
ledge-based system (CKBS) techniques in environmental
decision support. The reasons for using CKBSs are given first.
Existing environmental CKBSs are discussed, with special
emphasis on a typical example, the Distributed Chemical
Emergencies Manager (DCHEM). The methodological frame-
work applied to the building of DCHEM, the knowledge acqui-
sition technique used, and the architecture of the developed
system are also described.
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Environmental management is a human activity that has
the objective of reducing broadly understood risks result-
ing from the interaction between our social system and
its natural environment, and in particular mitigating the
impact of technology on this environment. In the frame
of this activity, environmental managers require sophisti-
cated tools with which to solve the multifaceted critical
environmental management problems that face all levels
of our societies. This is particularly important as we
rapidly move into an era of limits.

Knowledge-based systems can play an important role
in this context. Some of the reasons are as follows:

e The high complexity of environmental problems.
Environmental decision makers often need to under-
stand, in a limited time, physical and biological pro-
cesses in relation to socioeconomic conditions and
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applicable legislative frameworks. Decision support
tools, incorporating past experience and relevant
expertise, can be useful in this context.

e The multidisciplinary nature of environmental
problems. This has as a consequence the unavailabi-
lity of some necessary expertise when it is required.
Knowledge-based systems, incorporating this miss-
ing expertise, can support decision makers.

@ The ‘objective’ power of knowledge-based systems,
in a highly subjective problem solving context, can
provide systems of a regulatory nature, which are
often needed.

Despite the urgency and the importance of the problems,

the number of reported knowledge-based environmental

decision support systems remains relatively low, not
matching the advances of knowledge-based techniques in
areas like medicine, manufacturing, business, finance
and industrial control. The reasons should be sought
partly in the inherent difficulties of the domain and
partly in the inadequacy of the widely used knowledge-
based techniques. In a survey' of 181 expert systems
applications, environmental decision support systems
were noticeably missing. One reason for this, as argued
by Hushon? in a survey paper, is ‘that environmental
expert systems require expertise in a number of areas and
that the heuristics for environmental decision making are
not codified’. The number of reported systems has
improved recently, but the great majority of the deve-
loped prototypes cover specific, narrow domains, and are
based on traditional rule-based approaches®~.

In this paper, it is argued that techniques proposed by
the emerging field of distributed artificial intelligence
(DAI) are suitable for tackling environmental decision
support problems and can improve the effectiveness of
environmental decision support systems. This is demon-
strated first through a discussion of some typical cases of
the application of DAI techniques in the field and second
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through a detailed description of a particular example
which demonstrates the benefits and the limitations of
this approach.

In the following section, the key features of environ-
mental problem solving are described. Subsequently, an
overview of DAI is provided, with an emphasis on coo-
perating KB systems. The main characteristics of these
systems are described and matched to the features of
environmental problems. In the subsequent section, a
survey of existing environmental CKBSs is included and
a discussion on the reasons for the use of CKBS tech-
niques in each case is also provided. The following
sections of the paper contain a more detailed description
of the DCHEM system. The CKBS shell CooperA used
for its development, the knowledge acquisition process,
the system architecture and the performance are also
discussed. General remarks on the applicability of the
DCHEM system experience to other complex appli-
cations are also included in the last section of the paper.

ENVIRONMENTAL PROBLEM SOLVING
CHARACTERISTICS

The key characteristics of environmental problem solv-
ing (not necessarily unique to this field) are as follows:

e Environmental problems are multidisciplinary by
nature. In a definition of environmental science3, it is
stated that ‘a continuous compromise is required in
the tension between the inter-disciplinary breadth
and the depth of disciplinary knowledge demanded
for understanding and solution of environmental
problems’. As a consequence, in most environmental
management situations, a single expert who can
solve the problem entirely does not exist. Coopera-
tive problem solving is therefore most widely used.

e Conlflict is inherent in environmental problem solv-
ing®. The complexity of the fields and the multiplicity
of views and interests involved call for mechanisms
of reconciliation of disparate, often conflicting goals
and contradictory information. Sociologists’
modelling the process of environmental decision
making, identify the existence of conflict and advo-
cate the importance of negotiation and consensus
making in this process.

e Physical systems are hard to model and understand.
Human-made systems can be described through a
finite number of states, and therefore deep models of
their behaviour can be produced. In contrast, our
physical environment is dynamic in nature. Attempts
to model it can only be based on gross simplifica-
tions or shallow models.

e Problem solving heuristics are highly subjective and
thus hard to generalise and codify, while many alter-
native methodologies are used by different domain
experts, owing to their diverse backgrounds.

e There is often a strong spatial distribution involved.
The scale can differ widely, from the globe, which is
studied in the case of global environmental change,

to the problems of a narrow geographical area. This
dimension often necessitates splitting the problems
into subareas and subsequently combining the
results.

o Information collected from the environment is often
imprecise, uncertain or erroneous. The application
of multiple complementary problem solving tech-
niques can often reduce this uncertainty.

Many of these characteristics, e.g. the third, fourth and
sixth, are strong arguments in favour of the application
of KB techniques. However, others, like the first, second
and fifth, require the adaptation of the existing
approaches to distributed problem solving paradigms.
It should be observed that, since the described features
are not unique for this class of problem, the subsequently
proposed techniques are of more general applicability.

OVERVIEW OF DISTRIBUTED ARTIFICIAL
INTELLIGENCE

Distributed artificial intelligence is a relatively new field
of research and technology concerned with the study and
construction of automated systems that support coordi-
nated intelligent behaviour in a group of semiautono-
mous computational elements, called agents. ‘These
agents, when faced with a problem that can be solved
effectively through cooperation, work together by identi-
fying the sub-problems each should solve, possibly from
different viewpoints, solving them concurrently and inte-
grating their results™.

A brief overview of this field is provided here; for more
details, consult References 10-14.

The research work on the theoretical foundations of
DALl is inspired by fields like sociology, group interaction
and coordination theory!>!", which provide paradigms
for distributed problem solving. Traditional application
areas of DAI techniques have been speech and language
processing, like the HEARSAY II experiment!s, manu-
facturing and robotics'®, air traffic control?, distributed
sensing and interpretation, like DVMT2.2, industrial
monitoring and control??, However, as the power of dis-
tributed processing systems increases and more advanced
cooperative algorithms and languages emerge, it is
expected that DAI techniques will spread into new com-
plex application areas.

Environmental applications have not been the focus of
the DAI field so far. However a limited number of
experiments have been reported, which are briefly dis-
cussed in this paper.

The reasons for selecting a distributed problem solving
approach in a given application, can be the following
among others®:

e an endeavour to reduce a high problem complexity
by functionally decomposing problem solving,

e the physical distribution of the problem, which
makes a centralised solution not feasible,
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e a need to facilitate knowledge acquisition and
modelling from multiple experts,

e aneed for improved robustness and reliability, which
can be achieved by applying multiple complementary
problem-solving methods by different agents,

e the reusability of heterogeneous preexisting compo-
nents,

e a graceful degradation of the system response when
there is degradation of input data or failure of por-
tions of the system,

e increased performance due to parallelism,

e flexibility in user interaction and support for user
understanding?,

e extendability, i.e. as the system grows and increases
in complexity, a distributed system is more adaptable
to change.

Many of these reasons can be found in environmental
applications, as described above. It seems therefore that
distributed problem solving is a natural paradigm to be
considered for many complex environmental support
systems.

Cooperating knowledge based systems

A DAI system is described according to a number of
parameters. These include the number of the agents in
the system, the degree of agent heterogeneity in terms of
knowledge and functionality, the granularity (size and
complexity of the single agent), the degree of interaction,
the task decomposition and result synthesis technique
used, the negotiation and conflict resolution protocols
etc.

A cooperating knowledge-based system, or cooperat-
ing expert system, is a special case of a DAI system, in
which the complexity of the individual agents is high,;
agents can be heterogeneous, independent problem solv-
ing modules, usually based on KB architectures.

In a typical scenario, a number of possibly preexisting
expert systems, representing distinct areas of expertise
and narrow problem solving domains, are needed to
accomplish a task. Through the CKBS, they are incor-
porated in distinct agents. These agents model the capa-
bilities of the expert systems and provide them with
social behaviour. Interactions among the CKBS agents
permit cooperative building up of the final solution,
which it would otherwise not be possible to obtain with
the independent modules.

Communication and distributed control in CKBSs is
effected through alternative mechanisms (see Figure I):

® Shared global memory (a well known example is the
blackboard architecture?>?%). Blackboard systems
have evolved from the production system approach
of the first generation expert systems where the indi-
vidual production rules have been replaced by bigger
knowledge modules called knowledge sources (KSs).
These are typically small-to-medium granularity
CKBSs.
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Figure 1 Communication; (a) blackboard, (b) message passing

® Message passing (e.g. the actor model?’-28); Messages
are exchanged asynchronously among the agents.
Complex protocols based on message passing can be
developed for task allocation, permitting contracting
and muitiagent negotiation?, or multiagent plan-
ning'2,

Often a combination of blackboards and message
passing is used?. It should be observed that a single
blackboard architecture may be both vulnerable and a
potential bottleneck?, while in a multiple blackboard
architecture the semantics of keeping them consistent
reverts to message passing.

Recently, research work in concurrent object based
systems has produced a number of message-passing
languages®' which are proposed as powerful tools for
building CKBSs. Well known pioneering examples of
message-passing CKBS architectures have been pro-
posed by Gasser et al. (MACE)®, Lesser et al
(DVMT)?, and the ARCHON project®-3,

The CooperA platform3* described in some detail in
this paper, belongs in this class of experimental proto-
types. It has been built for studying multiagent systems
and has been used as an implementation platform for our
case study, the DCHEM environmental decision support
system.

The main features of a message-passing CKBS are
described below in terms of a typical model for the indi-
vidual agent and an interagent cooperation support
mechanism.

CKBS agent description

A CKB agent is a semiautonomous computing element
with its own closed knowledge world model, reasoning
and communication mechanisms.

Each individual agent consists of two parts, as shown
in Figure 2:

e the problem solving part (PS), containing a goal
hierarchy, which can be controlled by the overlaying
Cooperation Layer; the PS is typically a knowledge-
based system,
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Figure 2 CKB agent

e the cooperation layer (CL), of a similar structure in
all agents, which controls the problem solving part in
such a way that the individual agent demonstrates
cooperative behaviour towards the other agents; the
CL provides the necessary services for the integ-
ration. of the PS component into the multiagent
environment.

The cooperation layer manages interaction with the
other agents and relates the local activity of the intelli-
gent system to the global problem solving. This is
achieved through a control mechanism (the agent engine
(AE)) which uses a set of data structures:

e a model of the other agents (agent acquaintances
model (AAM)) used for planning cooperation and
interaction,

e a model of the underlying problem solving compo-
nent (self model), used for planning and controlling
local activities,

e acommunication module which, by using the AAM,
effects interaction with the other agents.

The AE operates asynchronously and at higher level of
control than the inference engine of the problem solving
part which acts on domain-specific knowledge.

A communication mechanism and an interagent co-
operation language, based on a typology of exchanged
messages, need to be defined in a CKBS. A common data
model is also required in which the cooperation layer
concepts are expressed.

The coherent behaviour of the multiagent system is
guaranteed by either the explicit or the implicit represen-
tation of the common system goals and provision for
negotiation and conflict resolution mechanisms.

Cooperation control in CKBS

One issue of particular importance in CKBSs is the
coherency of distributed problem solving, that is, the
effect that the local actions have on the global conver-
gence towards the solution. In CKBSs reported in the
literature, this issue is tackled through various mecha-
nisms. The main ones are as follows:

® Hierarchical or centralised organisations: The agents
have specific ‘roles’ in a hierarchical structure. As a
result, within a specific context, the control relations
among them have been decided by their roles. These
systems do not have high flexibility, but usually have
good performance in engineering or business
domains. An example of such a system is the organi-
sation implementation of MACE?2 and ARCHON3.

® Negotiation based interaction: The agents compete
for resources and task execution through bidding
and contractual mechanisms. A well known example
is the Contract Net protocol®. Other examples are
negotiation-based cooperation, implemented in
argumentation and industrial conflicts resolution’,
and the concept of the domain-independent conflict
resolution heuristic knowledge, advocated by Klein*
and applied in cooperative design.

® Functionally accurate cooperation: This is an
approach, often used in physically distributed
problems, like distributed sensory networks, where
the solution has to be built incrementally by dislo-
cated agents. According to this approach, agents
need not have all the necessary information locally to
solve their subproblems. They coordinate their
activity by exchanging partial solutions (functionally
accurate, but not exact) of their subproblems. The
distributed vehicle monitoring experiment (DVMT)
is a well known example of this approach?\-37.

In environmental decision making, one has to study the
specific problem characteristics in order to select the
appropriate cooperation control regime. Often flexibility
in distributed problem solving is needed, since, as des-
cribed in the introduction, the resolution of conflicts is
necessary. In this case, the second approach has advan-
tages. Many environmental monitoring systems, on the
other hand, have many common characteristics with the
third approach. Finally, in many cases, the robustness of
the first approach is required. The CooperA shell, des-
cribed in more detail below, does not explicitly support
either of these control mechanisms.

SURVEY OF CKB SYSTEMS IN
ENVIRONMENTAL APPLICATIONS

A number of cooperative knowledge-based environmen-
tal decision support systems have been reported in the
literature. They are surveyed in this section, in relation to
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the CKBS features presented above, and the domain
characteristics that have led to their design decisions.

e A CKBS developed in the domain of air quality

control is the DUSTPRO system*. According to its
developers, the reason for opting for such a para-
digm is the high complexity of the domain. A
number of expert systems have been built which are
concerned with specific possible sources of dust in an
indoor industrial environment (a mine). One expert
system deals with improving the cutting technique,
according to the specific minerals and conditions,
another expert system deals with the possible mal-
functioning of the ventilation equipment etc. The
system is built around a blackboard architecture

and specific modules have been introduced for the -

housekeeping of the system, e.g. for keeping track of
a session.

Cooperating KB systems techniques have also been
implemented in the STORMCAST system*#, which
has been built for supporting storm forecasting over
a wide area (the Scandinavian peninsula). STORM-
CAST is based on multiple similar KB systems which
reside on distinct processing nodes and are geo-
graphically dislocated. The nodes of the system cover
separate overlapping geographical areas; however,
the exchange of data and solutions is necessary,
especially among adjacent nodes. The distribution of
problem solving is a result of the inherent physical
distribution of the problem and requirements of
robustness and redundancy in a problem solving
capacity. The characteristics of STORMCAST are
typical of a class of distributed environmental moni-
toring applications. Other examples of CKBSs are a
distributed air pollution monitoring system for a
metropolitan area*! and a river monitoring system*.
A system of particular interest is the Low Clouds
Prediction System (LCPS)*, based on a blackboard
architecture, which was developed for the Atmos-
pheric Environment Service of Canada. In this case,
multiple complementary methodologies are used.
The available reasoning components are (a) a system
based on the physical rules that govern meteorologi-
cal phenomena, through the so-called physical prin-
ciples forecaster flowchart, which establishes the
conditions necessary for the presence of low clouds
by the thermal and humidity profiles of the atmos-
phere, (b) statistical prediction models, and (c) heur-
istic approximations, applied when it is necessary or
more efficient. When the data necessary for applying
a are unavailable, incomplete or erroneous, modules
b and c act in support. This characteristic of the
system, to reduce the uncertainty of the problem by
applying alternative reasoning techniques or know-
ledge bases, is a typical use of CKBSs. It simulates
the problem solving behaviour of a group of experts
who apply various problem solving methodologies
and expertise in relation to a given formulated
problem. The coupling of numeric and symbolic

components, necessary in many environmental man-
agement problems, can be achieved by this type of
CKBS.

The PHOENIX system is a fire-fighting simulator
developed for managing forest fires at the Yellow-
stone National Park, USA. PHOENIX is a multi-
agent planner, the agents of which cooperate
through a message passing protocol. A number of
agents have been defined, each with a specific role, in
relation to a simulated forest fire. One agent is the
fire boss, who constructs the top level plan and coor-
dinates activities. Other agents are the fire fighters
(e.g. bulldozers) who analyse the high level plan deli-
vered to them by the fire boss and plan their activity
in more detail, while they interact with the fire boss
and the environment (the fire). PHOENIX agents
can have both cognitive and reflective behaviours,
and so they can build a long-term plan for cutting a
fire line while moving in a reflective way, for instance
moving back in order to avoid the advancing fire.
The reason for building PHOENIX as a distributed
system is that the fire-fighting problem is spatially
distributed and complex. Most fires are too big for a
single agent to control. This is simulated in the
system, since each fire fighter has a limited view and
knowledge of the situation; it needs therefore to
coordinate its activity and plans with the others and
the fire boss in order to accomplish the fire-abate-
ment task. Simulators are tools commonly used for
environmental decision support. Apart from the
coarse-grain cognitive agents, like the PHOENIX
ones, purely reflective, fine-grain multiagent systems
have been reported in experiments of the simulation
of ecologicdl modelling and artificial life*, which,
however, fall outside the scope of the CKBSs des-
cribed here.

Finally, a CKBS based on a multiagent message
passing architecture is the DCHEM (Distributed
Chemical Emergencies Manager) system?, which
supports decision making in relation to environmen-
tal emergencies in installations involving toxic sub-
stances. The reason for selecting a CKBS approach
in DCHEM is the high complexity and the existence
of multiple experts in the domain, with distinct areas
of expertise. DCHEM is discussed in more detail in
this paper and is used as a test case in our presen-
tation of environmental distributed problem solving.

Summarising the characteristics of the applications dis-
cussed, it is observed that the reasons for using distri-
buted problem solving techniques are related either to (a)
the multidisciplinary nature of environmental appli-
cations, resulting in the high complexity of the problems,
the modularity of the expertise, and the diversity and
complementarity of the problem solving methodologies,
or (b) to the geographical dislocation of the problem and
the problem solving components. These characteristics
have been identified earlier as being typical of many
complex environmental problems.

The systems described are compared in Table 1.
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Table 1 Distributed environmental management systems

System Domain Architecture Type of distribution Rationale for CKB system
DUSTPRO Air quality control Blackboard Functional High complexity )
STORMCAST Storm forecasting MA negotiation Geographical Physical distribution
LCPS-AES Weather prediction Blackboard Multiple methods Increased reliability
PHOENIX Fire fighting MA planner Distribution simulator High complexity

DCHEM Chemical emergencies MA negotiation Functional Multiple expertise
COOPERA: A CKBS SHELL applications. This environment allows experimentation

The CooperA (Cooperating Agents) CKBS environment
was built at JRC Ispra and used for the development of
the distributed environmental decision support system
DCHEM, discussed below. A more extensive description
of CooperA can be found in References 34, 46 and 47.
The CooperA shell belongs to a class of multiagent plat-
forms developed over the last few years* for experimen-
tation with cooperative problem solving. Other examples
of such systems are MACE?2, DVMT2, MICE#® and
ARCHON?3, CooperA is an early example of such a-shell
that is especially suitable for building knowledge-based
applications, since it is built as an extension of a KB
environment supporting many knowledge representation
formalisms. CooperA was mainly used for experimen-
tation with heterogeneous KB systems, and it has many
limitations in terms of the efficient use of distributed
processing techniques. ARCHON was built later, imple-
menting the main concepts of CooperA in a more
efficient way. Despite the performance limitations, Coo-
perA is a typical example of a CKBS shell, demonstrat-
ing the main characteristics of these architectures.

Overview of CooperA

CooperA has been designed and developed as a CKBS
programming environment that supports the coopera-
tion of heterogeneous distributed semiautonomous
knowledge-based systems presented to the user via a
customised user interface. These modules, the application
agents, can be incrementally and selectively integrated
into the system. Each expert module incorporates a self
description mechanism, which allows the shell to inte-
grate it into the agent group during the configuration
phase. Thus various alternative agent configurations can
be tested for the solution of a certain problem, thus
simulating alternative expert groups being available for
problem solving.

The user of CooperA can interact with the agents -
through the user interface agent. Special attention has
been paid to the user interface which incorporates the
active modelling of the system, so that the user can see
the flows of interaction among the agents. This helps in
the comprehension of the distributed problem solving
activity. .

CooperA has been built on top of CRL-Lisp, which is
an object oriented extension of Common Lisp support-
ing schemata (frames). The KnowledgeCraft knowledge
engineering environment is used for developing CooperA

with different reasoning mechanisms and knowledge rep-
resentation formalisms, integrating heterogeneous
problem solving elements.

The main parts of the environment are shown in
Figure 3, in which the software layers making up the
CooperA shell can be seen:

e at the bottom layer, CRL Lisp and the reasoning
mechanisms (CRL Prolog, OPS) supplied by the
KnowledgeCraft environment, available for building
the agent problem solving components,

e the cooperation support layer, in which agent invo-
cation, agent scheduling and the message passing
mechanism are implemented,

e the agent definition layer (agents are defined in this
layer as instantiations of the agent template; each
agent inherits behaviours like message sending and
message receiving, and is associated with specific
problem solving methods),

e the user interface layer, in which the user interface
agent also resides.

A brief description of the agent structure, the co-
operation control mechanisms applied and the user inter-
face are included in the following sections.

Description of CooperA agent

A CooperA agent consists of a cooperation and a
problem solving component. A number of data struc-
tures are contained in the cooperation layer of the agent,
supporting problem solving and interaction activities:

® Asynchronous communication is performed through
two queues: the outgoing-messages queue (out-q)
from which the outgoing messages are transmitted,
and the incoming-messages queue (in-q) that receives
and handles incoming messages. When an agent
receives a request, it queries accordingly its own local
world of knowledge or activates its problem solving
component.

¢ Each agent contains a self model containing the attri-
butes my-skills and unsatisfied-goals. The former
contains the knowledge relative to its own capacities,
while the latter contains reference to unsatisfied
goals with associations with other agents that can
satisfy them. The attribute status of an agent
describes the current status of its activity (new, inac-
tive, running and waiting) during execution.
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® The CooperA agent acquaintance models are struc-

tured as follows. The yellow-pages-table contains a
description of all the acquaintances of the agent who
are in a position to satisfy goals that the agent is
interested in. The metaphor used is that of a yellow
pages directory. The interested-in-table contains
information about agents who are interested in the
agent skills. These tables are dynamically created
during the initialisation of the agents, taking into
consideration the participants of the particular
group of agents and the goal structure of the agent.
The dictionary data structure contains a directory of
associations between concepts, locally defined and
used by an agent, and global terms, defined in the
frame of the communication protocol. The structure
of the dictionary for agent, is

{dictionary,

Figure 3 CooperA multiagent environment, CooperA agent and CooperA message structure

local-concept; global-concept; goal,

.

where (local-concept;) is a slot referring to a local
symbol, {global-concept;) is the globally known
name of the local concept and (goal;) represents the
goal associated with local-concept;. Global concepts
are shared by all agents. If the same global concept is
related to a {local-concept,) of another agent, the
two concepts are considered to refer to the same
symbol in a virtual global name space of the agent’s
community.

The coherence of the distributed problem solving activity
depends a great deal on an accurate semantic mapping of
the concepts defined in the frame of the various know-
ledge bases by the knowledge engineers, as discussed
below, in the DCHEM development description.
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User interaction in CooperA

The user interface agent is a standard agent provided to
application developers by the CooperA environment.
The UIA has the same structure as the other CooperA
agents and communicates with them through the same
message passing protocol. The UIA has a dual objective:
to represent the user in the agent group, and to present
the agent activity to the user.

The concept of the UIA can be found in many similar
systems. For more information on the design of CKBS
user interfaces and the architecture of the UIA, refer to
References 50-53. The UIA in CooperA represents the
user as a boundless domain of knowledge in the group of
agents. For this reason the UIA has some special features
as far as acquaintance modelling and message structur-
ing are concerned. There is a special type of message,
user-request, that refers to the communication of the
agents with the UTA. The knowledge necessary for sup-
porting user dialogue is usually owned by the agent
making the request. Therefore this additional knowledge
is passed to the UIA, which takes care of the presen-
tation details (graphics, windowing system etc.) for
visualising the request and managing the dialogue. After
an interaction, the UIA takes care of forming the reply
message according to the results of the dialogue with the
user, and passing it to the requesting agent or any other
agents interested in it, performing the necessary message
translation and transmission.

A customized user interface has also been developed
(the CooperA Workbench), which permits the user dyna-
mically to configure the system and see the flows of
interaction among the agents, as shown in Figure 4. This
special attention of CooperA to user interaction is par-
ticularly important for environmental support appli-
cations, which are characterised by strong user-interac-
tion requirements.

CooperA has been used for the development of the
DCHEM system. The main phases of this development
process are described in the following sections.

DISTRIBUTED CHEMICAL EMERGENCIES
MANAGER

The Distributed Chemical Emergencies Manager is a
decision support system in the field of chemical accidents
management. This is a typical environmental manage-
ment problem, in which, following an accident in a site
where suspected chemicals are stored or used, an assess-
ment of the situation needs to be performed rapidly in
order to decide on the appropriate response. Knowledge
based techniques have already been proposed for this
problem’-%. For a number of reasons, e.g. multiple
expertise and high complexity, the use of CKBS tech-
niques seems a suitable choice. The main fields of exper-
tise involved in chemical emergencies management are
chemistry, engineering knowledge of the equipment
involved, accident-site geography, mitigation techniques
and applicable regulations.

DCHEM is concerned with a specific class of environ-
mental emergencies, the management of accidents
involving electrical equipment containing toxic chemi-
cals. An example is that of polychlorinated biphenyls
(PCBs), a class of hazardous chemical substances used
widely*’. Accidents of this type (e.g. leaks, fires, explo-
sions) have some common characteristics, although they
can occur in diverse locations and under different cir-
cumstances. It has been recorded that most of the acci-
dents are a consequence of overloading of the equip-
ment. These events have resulted in a leak of the toxic
substances to the working or general environment. In the
case of rupturing of the container, hazardous material is
spilled on the ground and can be transported via the soil,
surface waters and, in extreme cases, underground
waters. In the case of explosion or fire due to overheating
of the toxic materials, new and more dangerous sub-
stances can be formed, such as PCB transformed in fur-
anes (PCDFs) and dioxins (PCDDs). In this case,
because of the existence of contaminated gases and dust,
the main pathway can be the atmosphere.

Determining the threat of the release is often the first
step in the management of these emergencies. In the
process of achieving this, decision makers need expertise
in different domains, and need to process information
referring to the accident circumstances that is usually
imprecise and incomplete.

The decision support system had to incorporate the
knowledge of a group of experts in the various domains
involved. Therefore DCHEM development involved a
knowledge-acquisition phase, using multiple experts.
This phase is briefly discussed below.

Building an environmental CKBS: issues of
knowledge acquisition

Most knowledge elicitation and knowledge-base build-
ing techniques make the assumption that there is a single
domain expert, whose knowledge is extracted and used.
In complex domains where more than one expert is
involved, there is a need to mediate among them, and
take into consideration their diverse problem solving
techniques during knowledge acquisition. The problem
of knowledge acquisition from multiple experts has
already received the attention of the AI community.
Techniques and tools have been proposed in order to
elicit the knowledge from multiple experts and combine
the results into a single coherent expert system at design
time’#-%, Lious!, for instance, proposes the use of consen-
sus building mechanisms, like group repertory grid
analysis, group discussion and voting. Synergy among
the experts and a coherent knowledge base is claimed to
be the result of this process. Ignizio® suggested, as a
possible approach, the use of a knowledge base cloned
from one expert, the key expert, to build a prototype,
and then the other domain experts being allowed to
critique the results. The proposed development cycle
closes with obtaining the key expert’s view of the
comments. However, when the experts have no mastery
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across the entire domain, but their expertise covers only
portions of the domain, then the use of such techniques
presents difficulties.

A comprehensive structured approach is proposed by
Lekkas et al.% in relation to multiagent system analysis
and design. According to this methodology, the domain
knowledge is first modelled during the knowledge acqui-
sition phase, following a technique based on generic
tasks. The existence of one or more experts, however,

does not affect this process according to the methodo-
logy. Then the problem is decomposed into a number of
problem-solving tasks. A number of parameters are iden-
tified that characterise the problem and drive this
problem decomposition. Subsequently, during system
design, these tasks are allocated to problem solving
agents. Thus there is no relation between the origin of the
expertise and its allocation in the finally implemented
system.
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A novel approach has been applied in DCHEM which
has been adapted from the techniques described. This
approach takes into consideration the existence of muil-
tiple experts representing distinct areas of expertise. This
decomposition is modelled in the designed CKB system
in the form of agents. Thus the implicit assumption of
this approach is that the problem decomposition reflects
the domain experts. The innovative aspect of the metho-
dology is that it is based on two interleaved phases of
knowledge acquisition: the domain-problem-solving
knowledge elicitation and the cooperation and conflict-
resolution knowledge elicitation phases. Thus the specific
characteristic of our approach is that the conflict-resolu-
tion and cooperation knowledge is also elicited and
introduced separately in the system, so that it can be used
to coordinate the agent’s activity at runtime.

The knowledge acquisition phase is described in more
detail below.

DCHEM knowledge acquisition

The top-down knowledge elicitation approach used in
the DCHEM project is described in Figure 5. A key
domain expert was initially. identified who provided a
task framework for the evaluation of the threat-estima-
tion top goal. Through this process, identification of the
subdomains of expertise was made possible. The fact that
the knowledge involved could be organised in relatively
independent units which could contribute to the solution
in a dynamic way, according to the specific characteris-
tics of a particular situation, led us to establish the fact
that a decoupling of the various modules was necessary
in the next phase of knowledge acquisition.

A number of small independent subprojects were
spawned at this stage. The subdomain experts had differ-
ent perspectives and backgrounds, and applied diverse
problem solving methodologies. The same knowledge
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engineer was not used to model all the different know-
ledge bases. Thus it was inevitable that the independently
extracted knowledge and prototypes built presented
diversities and used heterogeneous formalisms which
best suited each particular subproblem. Each indepen-
dent subproject had as input the specific subgoal and an
overview of the context (other subdomains, top-goal
structure etc.). The output was an expert system module
and requirements for interaction with other parts of the
system and/or the user. Interactions used a predefined
protocol which was based on a set of simple primitives:
(request-data (agent-x)), (deliver-reply <{agent-x)),
(request-goal {agent-x)), (deliver-result (agent-x)),
(user-request {id)), (user-reply {(id)).

At this stage, it was not possible to decide on the
binding of all the interactions, since only ‘weak’ acquain-
tance models were available. The detailed specification of
the other modules was not known, and multiple bindings
were often possible and had to be decided at runtime,
according to the situation, the available information and
the status of the agents.

The agents were built and tested as independent proto-
types, with their user satisfying the interaction with the
rest of the system.

The cooperation knowledge acquisition phase
followed, which involved a number of plenary sessions
with the participation of the experts team, who critiqued
the independent modules and detected conflicts at the
points of interaction. The result of these sessions was the
building of the cooperation layer primitives in each
module, which took the form of the acquaintance models
(vellow-pages-table and interested-in-table) in the agents
and of the dictionary translation mechanism. ‘

The interaction aspects addressed during this phase
were as follows:

o It was established what information was owned by
which expert module and in what form.

® The common representation and semantic mapping
were performed for the parts of knowledge used in
agent interactions. Examples of discrepancies which
had to be solved are as follows:

o Syntactic heterogeneity: If agent A, knows that
substance= PCB and 4, queries if the relation
SUBSTANCE (PCB) is true, translation
between the two formalisms is required.

o Semantic conflicts: Conflicts, for example those
due to different abstraction levels, need to be
resolved. If agent 4, knows that there is a {lake)
near the accident and A, asks whether there is
{surface-water) nearby, in order to coordinate
the two agents, there is a need to introduce addi-
tional relations between the concepts (lake) and
(surface-water).

e Decisions have to be made about the control rela-
tions between agents. For instance if 4, requests the
satisfaction of goal G, from A4,, while 4, is busy with
G,, a decision has to be made about who exercises
authority in this context.

e Conlflicts and deadlocks, when identified, have to be
resolved. If expert E, (and therefore agent A4,) estab-
lishes that under certain conditions goal G, = (V)
and expert E, (A4,) for the same conditions believes
that G, = {(¥,), then the conflict has to be resolved
(for instance by using a third expert’s opinion) and
the mechanism for resolving the conflict has to be
registered in order for it to be included in the co-
operation layer of the CKBS.

Strong interleaving of the two knowlehge acquisition
phases described was necessary for there to be conver-
gence to a coherent system performance.

DCHEM ARCHITECTURE

Five agents were built following the process described.
The number of agents built is typical of many CKBSs of
high granularity*. The DCHEM agents form a hierarchy
in terms of the goal structure of the main threat-estima-
tion task. The top-goal is owned by the threar-estimator
(TE) agent, who is activated by the UIA when evaluation
of the top goal is requested. Thus agent TE is at the top
of the agent hierarchy controlling the other agents.

This design decision in DCHEM, which is not neces-
sarily typical of environmental CKBSs, is worth discuss-
ing at this point. The consequence of this design is that
DCHEM is strongly dependent on the TE. If the TE fails
or breaks down, the system cannot produce a solution.
An alternative approach could have been to distribute
the top-level goal (threat-estimation) to a number of
agents, who, according to the circumstances (accident
characteristics), could dynamically decide on who would
take the leading role and build up the solution, coordi-
nating the group. For instance, in an accident with a
strong toxicity threat, the substance-identifier agent
would lead the group, while in a fire accident where the
threat comes mostly from thermodegradation, the pejor-
ative transformation agent would take control.

In such a scenario, a negotiation phase involving the
agents and possibly the user would be required initially
in order to decide the roles. Also, knowledge redundancy
would have been necessary, since the top-goal structure,
in a modified form, has to be owned by different agents.
The result of such an approach is expected to be higher
robustness, more flexibility, and adaptive behaviour of
the system under different conditions.

The reason why DCHEM designers opted for a hier-
archical control is partly related to the particular group
of experts involved, which maintained a strong hierarchi-
cal structure. Thus the division of expertise and the
control regime of the system reflects the community of
the domain experts involved. It is evident that this is a
side effect of the knowledge acquisition technique used.

*Most of the reported high-granularity CKBSs are made up of 2-10
agents.
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A brief description of the agents shown in Figure 6 and
their main interactions is as follows:

e The TE contains the expertise of the key-domain
expert, and it can evaluate the emergency combining
the high-level goals of the other specialised agents
(see the following example):

If the involved substance in the accident is (PCB), //
provided by SSI agent and {due to a fire) (PCB)
can be transformed into {dioxin), // provided by
PJT and the amount of released substance is
{quite high), // provided by REQ and the sub-
stance can be {dispersed easily) in the area, //
provided by MIG

Then it is estimated that the potential danger of the
threat is (high) and protective measures { M) are
recommended.

o The suspected-substance-identifier (SSI) determines
what the suspected initial substance involved in the
accident is. SSI bases its reasoning on information
about the observational aspects of the unknown sub-
stance, description of the equipment involved and
information from labels and documents. It may
request the user to perform certain analytical tests or
do additional observations. The knowledge con-
tained in SSI is a combination of heuristics and
knowledge of physical and chemical properties of
this class of chemical substances (see the following
example):

If the substance is contained in {electrical trans-

former of class 7R,) and according to the label,
the transformer is manufactured before 1981
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Then it is {very-likely) that the substance is (PCB).

The reasoning is supported by a chemical substances
database. SSI can request confirmation of certain
subgoals by the PJT and REQ agents, as described in
the following.

The pejorative-transformation agent (PJT) establishes
the likelihood of potential dangerous transforma-
tions of the chemical substances involved. The mole-
cular structure of many substances can change over
time, following complex chemical processes, like
thermodegradation. PJT establishes such a danger,
on the basis of a circumstantial description of the
accident and the substance. PJT can make some
assumptions about the class of the initial substance
involved, overlapping partially with the goal struc-
ture of SSI. PJT’s chemical substance identification
is based on chemical classification rather than
detailed information about the commercial product
involved. This is a case in which the two agents can
arrive at conflicting views. One possible solution to
this problem is to build control in such a way that
PJT starts its reasoning only when SSI has firmly
established the (initial-substance) goal. An alterna-
tive is to, using partial overlapping, let PJT make
some assumptions about (initial-substance) and
proceed with reasoning about possible {pejorative-
transformations). If, in the meantime, SSI's verdict
on (initial-substance) is in conflict with PJT’s
assumption, negotiation between PJT and SSI needs
to take place, which may result in backtracking of
one of the agents. Circumstantial information needs
to be shared by PJT and SSI. If, for instance, during
reasoning, PJT needed to know the container type, it
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would first query other agents, like SSI, and, if not
satisfied, would refer to the user.

o The migration agent (MIG) determines the possibi-
lity of the migration of the substance via different
pathways such as ground, air, drains, food, and sur-
face and underground water in the surrounding
environment. This depends on the physical proper-
ties and the quantities of the substance as well as the
characteristics of the surrounding environment.
MIG bases its reasoning on information supplied by
SSI and PJT, with which it needs to interact, and a
description of the pathways, requested from the user,
or, in an alternative configuration, it can be
requested by a geographical information system®,

e Finally, the released-quantity estimator (REQ) esti-
mates the released and residual quantities of the
chemical substances involved. The estimation can be
either numerical calculation based on measurements
of the containers involved or estimations based on
heuristics about the types of the containers, infor-
mation volunteered by the on-site observers about
released quantities etc. REQ serves agents PJT and
MIG who request the result of its estimation (resi-
dual-quantity) and (released-quantity); however,
MIG needs, in order to achieve its goal, information
such as (initial-substance) and circumstantial infor-
mation. :

From this description of DCHEM agents, it is evident
that all agents need observational and contextual infor-
mation related to the accident. Since more than one of
them may need the same information, they use their
acquaintance models for the generation of queries. A
hierarchy of possible destinations can be established so
that a query of the form

(request {x) from agents {(4,>, (4,), (43))
can be executed in the following form:

((request (x) from {4,))

if (not-satisfied) or (time-limit)

then

request ({x) from {4,)) . ..) until the end of the list.

A default assumption in order to avoid (null) query
replies is that, at the end of such a list, the UIA is always
added, i.e. knowledge that cannot be provided by other
agents is solicited from the user, who is considered a
superexpert.

The problem solving components of DCHEM agents
have been implemented in diverse languages. A limi-
tation, however, imposed by the CooperA shell is that
the only allowed formalisms are standard Lisp, Prolog
and OPS-5, and their extensions CRL-Lisp, CRL-Prolog
and CRL-OPS. In our case, the MIG and SSI agents
were built as rule bases using CLR-OPS. The PJT agent
was built in CRL-Prolog. Finally the REQ and TE
agents were implemented in CRL-Lisp.

Observations on DCHEM performance

e The prototype developed had a performance similar
to that of a previously developed nondistributed
expert system® in the same domain.

o DCHEM demonstrated, however, increased flexibil-
ity and robustness, in terms of goal satisfaction in
conditions of reduced reasoning capability. Thus, for
instance, using the dynamic configuration feature of
CooperA, reduced agent sets were used for handling
the top goal. For example, when the agent set (TE,
PJT, MIG, REQ) was given the {threat-estimation)
goal, the system could arrive at the same conclusion
as the full configuration, through a more detailed
query to the user and a more intense interagent com-
munication.

e The transparency of the problem solving was greatly
increased by using this CKBS technique. The inter-
mediate subgoals were clearly identified, and the
interagent interactions facilitated the user’s under-
standing of the progress of the problem solving. This
was particularly supported by the dynamic visualisa-
tion feature of the CooperA workbench (see Figure
4).

e One limitation of this approach was the reduced
coherency in the dialogue with the user. While, in a
single-agent system, the user is requested to provide
information which follows the line of reasoning, in a
CKBS, the user can be forced to participate in inter-
leaved dialogues with no apparent coherence, which
can cause mental confusion.

e When semantic mapping was not properly per-
formed among the various knowledge bases, effects
were observed on the user dialogue such as that in
the following example, in which semantically equiva-
lent information is requested from the user by two
agents:

(Provide colour of released substance, {brown,
yellow, light-yellow)»?)

(Please describe the suspected liquid (dark) or
(light-coloured }?)

In general, the achievement of homogeneous interac-
tion styles between the various agents and the user
was found to be a particularly difficult task. A pos-
sible solution to this can be the introduction of a user
modelling component at the user interface module
which will ‘interpret’ and maintain a trace of the user
dialogue, as suggested in Reference 50.

e Finally, the high modularity of the distributed
system facilitates debugging and maintenance of the
knowledge bases. The extendability of the system has
also improved, since the introduction of new agents
in the system is supported by the architecture. Thus,
in the hypothetical case in which a new knowledge
base relating to a different class of chemicals was
made available, a new agent containing this know-
ledge would be introduced and the existing agents’
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cooperation layers accordingly adapted in order to
enable them to interact with the new component.
This feature is particularly important in environmen-
tal domains, in which knowledge is highly volatile.

CONCLUSIONS

The relation between the emerging field of distributed
artificial intelligence and in particular cooperating know-
ledge based systems and environmental decision support
has been the focus of this paper. A general conclusion of
this study has been that there is a strong correlation
between the requirements of environmental problem
solving and the proposed CKBS techniques. Thus it is
expected that further introduction of CKBS in this field
will increase the effectiveness of KB techniques, support-
ing the solution of complex environmental problems.

A survey of typical examples of existing CKBS envir-
onmental applications was undertaken. For the systems
presented, the rationale for using CKBS techniques and
the characteristics of the specific domain that led to such
a decision have been discussed. Generalisation of the
design decisions was also attempted in the frame of the
survey. The conclusion is that the main reasons why
CKBSs were used in environmental problem solving are
related to the existence of multiple experts, a high geo-
graphical distribution of the problem-solving agents in
cases of environmental monitoring systems, the need for
the application of alternative problem solving methods
in order to increase solution reliability, and the building
of distributed environmental simulators.

A specific environmental CKBS was also described, in
order to demonstrate in more detail the typical charac-
teristics of such a solution and identify limitations and
difficulties of the design process. In particular, the phases
of knowledge acquisition involving multiple experts,
coherency building among disparate knowledge bases,
conflict identification and conflict resolution, and the
selection of an adequate interagent control paradigm
have been identified as key steps during system design.

DCHEM presents high modularity, extendability and
maintainability. Through the architecture used, hetero-
geneous knowledge components are integrated into the
system. However, the design and development process
has increased in complexity: new phases have been intro-
duced, such as coordination-knowledge elicitation and

" distributed control paradigm selection, as described in
the examples discussed.

In relation to perspective work, it is felt that an area of
particular importance for environmental decision
making is that of negotiation protocols and consensus-
building techniques. In DCHEM, the hierarchical nature
of the control structure required limited use of such
techniques. However in general, many emerging CKBS
negotiation techniques can fall on fertile ground in com-
plex environmental applications.

In conclusion, it is believed that the investigation of
the applicability of CKBS techniques in environmental
problems advocated by this paper can be beneficial to

both environmental science and artificial intelligence. On
the one hand, environmental researchers and system
developers can be supported in seeking innovative archi-
tectures for the development of KB systems in these
domains, and, on the other hand, DAI researchers can
improve our methodological and architectural frame-
works and distributed problem solving algorithms in
order to meet the challenge of this highly demanding
application area. It is hoped that, through the increased
interaction of the two fields, our societies can ultimately
improve performance in the tasks of environmental man-
agement and other complex problem solving domains.
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APPENDIX

Acronyms and abbreviations

AAM:
ARCHON:

CKBS:
CooperA:
DAL
DCHEM:

DVMT:

agent acquaintances model

Architecture for Cooperating Hetero-
geneous On-Line Systems (Esprit P2256)
cooperating knowledge-based systems
Cooperating Agents System (JRC system)
distributed artificial intelligence
Distributed Chemical Emergencies
Manager

Distributed Vehicle Monitoring Testbed
(University of Amherst, USA, system)

MACE:

MICE:

MIG:
PIT:

REQ:
SSI:

TE:
UIA:
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Multi-Agent Computing Environment
(University of Southern California, USA,
system)

Michigan  Cooperation  Environment
(University of Michigan, USA, testbed)
(DCHEM agent) migration agent
(DCHEM agent) pejorative transforma-
tion agent

(DECHEM agent) released quantity esti-
mator

(DCHEM agent) suspected substance
identifier

(DCHEM agent) threat estimator

user interface agent

IR



