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Abstract

A partitionn = p1 + p2 + · · · + pk with 1�p1�p2� · · · �pk is callednon-squashingif p1 +
· · · + pj �pj+1 for 1�j �k − 1. Hirschhorn and Sellers showed that the number of non-squashing
partitions ofn is equal to the number of binary partitions ofn. Here we exhibit an explicit bijection
between the two families, and determine the number of non-squashing partitions with distinct parts,
with a specified number of parts, or with a specified maximal part. We use the results to solve a certain
box-stacking problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A correspondent, Claudio Buffara, recently asked for the solution to the following prob-
lem, originally proposed byTelmo Luis Correia Jr.We are givenn boxes, labeled 1, 2, . . . , n.
For i = 1, . . . , n, box i weighsi grams and can support a total weight ofi grams. What
isf (n), the number of different ways to build a single stack of boxes in which no box will be
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squashed by the weight of the boxes above it? For example,f (4) = 14, since we can form
the following stacks:

1 1 1
1 1 1 2 2 3 2 2 3

∅, 1, 2, 3, 4, 2, 3, 4, 3, 4, 4, 3, 4, 4.

The other two possible stacks:

1
2 2
3 3
4, 4,

are excluded, since 2+ 3> 4 and the box labeled 4 would collapse in both cases.
To make this more precise, let us say that a partition of a natural numberm into k parts

is non-squashingif when the parts are arranged in nondecreasing order, say

m = p1 + p2 + · · · + pk with 1�p1�p2� · · · �pk, (1)

we have

p1 + · · · + pj �pj+1 for 1�j �k − 1. (2)

If the boxes in a stack are labeled (from the top)p1, p2, . . . , pk, the stack will not collapse
if and only if the partition is non-squashing. In the problem as stated, the boxes must also
have distinct labels and their sum cannot exceed(

n+1
2 ). Therefore,f (n) is equal to the

total number of partitions of numbers from 0 to( n+1
2 ) which are (i) non-squashing, (ii)

have distinct parts, and (iii) involve no part greater thann. We will give the solution in
Sections 7 and 8. In Sections 2 and 3 we study the numbers of non-squashing partitions and
non-squashing partitions with distinct parts. Sections 4, 5 and 6 deal with non-squashing
partitions with a given number of parts, a given number of distinct parts, and a specified
largest part, respectively. Some of these results are used in the final two sections, others are
included because they seem of independent interest.

2. Non-squashing partitions

Leta(n) denote the number of non-squashing partitions ofn. It was shown by Hirschhorn
and Sellers1 [1] thata(n) is equal to the number of “binary partitions” ofn, that is, the
number of partitions ofn into powers of 2. See sequences A000123 and A018819 in[2] for
properties of the binary partition function and references to the extensive literature.

In fact, Hirschhorn and Sellers prove a more general result. Lets�2 be an integer. Let
us say that a partition (1) iss-non-squashingif

(s − 1)(p1 + · · · + pj )�pj+1 for 1�j �k − 1. (3)

1 Hirschhorn and Sellers regard inequalities (2) as purely arithmetic conditions and do not mention stacking
problems.
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If the pj are the labels of the boxes in a stack, not only is no box squashed, no box even
comes within a factor ofs − 1 of being squashed. A non-squashing partition as defined in
the Introduction is 2-non-squashing.

Theorem 1 (Hirschhorn andSellers[1] ). The numberas(n) of s-non-squashing partitions
of n is equal to the number of“s-ary” partitions ofn, that is, the number of partitions of n
into powers of s.

The following is an alternative proof of this result, which leads to a bijection between
the two families.

Proof. Let a′
s(n) be the number of partitions ofn into powers ofs, for some integers�2.

Suppose

n = se1 + se2 + · · · + sel

is such a partition, wheren�s. If at least one of the parts is 1 we can remove it and obtain
a partition ofn − 1 into powers ofs; if not, all theei are greater than 0 and we can also
divide bys and obtain a partition ofn/s. Therefore,a′

s(n) satisfies the recurrence

a′
s(n) =

{
a′
s(n − 1) if n /≡ 0 mods,

a′
s(n − 1) + a′

s(n/s) if n ≡ 0 mods
(4)

for n�s. The smallestn for which there is a partition with more than one part iss, so we
have the initial conditions

a′
s(0) = a′

s(1) = · · · = a′
s(s − 1) = 1. (5)

On the other hand, let

n = p1 + p2 + · · · + pk with 1�p1�p2� · · · �pk (6)

be ans-non-squashing partition ofn�s. If the largest partpk is strictly greater than(s −
1)n/s, then the sum of the other parts is strictly less thann/s, and we can subtract 1 from the
largest part and obtain ans-non-squashing partition ofn − 1. (We omit the straightforward
verification.) If the largest part is equal to(s − 1)n/s (implying n ≡ 0 mods), we can
also delete the largest part and obtain ans-non-squashing partition ofn/s. Therefore,as(n)

satisfies the recurrence

as(n) =
{

as(n − 1) if n /≡ 0 mods,

as(n − 1) + as(n/s) if n ≡ 0 mods,
(7)

for n�s. The smallestn for which there is a partition with more than one part iss (where
we have the partition with parts 1 ands − 1), so we have the initial conditions

as(0) = as(1) = · · · = as(s − 1) = 1. (8)

Comparing (4), (5) with (7), (8), we conclude thata′
s(n) = as(n) for all n�0 and all

s�2, which is the main result of[1]. �
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1 (1)

Fig. 1. Non-squashing partitions of the numbers 0, . . . , 6 arranged in tree structure. The binary labels are shown
in parentheses. (Every node has out-degree 2, but only edges between partitions of 0, . . . , 6 are shown.)

The above proof associates each partition (from either family) with a unique partition of
a smaller number. We can therefore arrange the partitions in each family into a rooted tree,
with the empty partition of 0 as the root node.Figs. 1and2 show the beginnings of the
two trees for the cases = 2. (Most of the time we will adopt the standard convention of
writing partitions with the parts in nonincreasing order.) Every node has two descendants
and (except for the root) one ancestor. We may label the edge leading from a partition of
n/s to a partition ofn with 0 (such edges are shown as broken lines inFigs. 1and2), and
the edge leading from a partition ofn − 1 to a partition ofn with 1 (the solid lines in the
figures).

This associates a unique binary string with each partition in either tree. A partition of
n in one tree receives the same binary string as the corresponding partition ofn in the
same position in the other tree. In this way we obtain a canonical numbering for thes-
non-squashing partitions, a canonical numbering for the partitions into powers ofs, and a
bijection between them.
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Fig. 2. Binary partitions of the numbers 0, . . . , 6 arranged in tree structure. The binary labels are shown in
parentheses. (Every node has out-degree 2, but only edges between partitions of 0, . . . , 6 are shown.)

Table 1shows the beginning of the bijection. The first column gives the binary string
u, the second column gives the correspondings-non-squashing partitionP(u), the third
column gives the correspondings-ary partitionQ(u), and the last column gives the number
n = n(u) that is partitioned by bothP(u) andQ(u).

We note without proof the following properties of the bijection.

(i) For a nonzero stringu, the number of parts inP(u) is equal to 1 plus the number of
0’s in u, and the number of parts inQ(u) is equal to the number of 1’s inu.

(ii) Thinking of u now as the integer represented by the binary string, the numbern=n(u)

(given in the last column of the table) that is partitioned by bothP(u) andQ(u) is
defined by the recurrence

n(0) = 0; n(2u) = sn(u) for u�1, n(2u + 1) = n(u) + 1 for u�0

(sequences A087808, A090639, etc. in[2]).
(iii) P(u) = Q(u) if and only if u = (4k − 1)/3 for somek�1 (that is, ifu is the binary

string 10101. . . 01).
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Table 1
Bijection betweens-non-squashing partitionsP(u) ands-ary partitionsQ(u)

u P (u) Q(u) n

0 ∅ ∅ 0
1 1 1 1

10 s − 1, 1 s s

11 2 1, 1 2
100 s(s − 1), s − 1, 1 s2 s2

101 s, 1 s, 1 s + 1
110 2(s − 1), 2 s, s 2s

111 3 1, 1, 1 3
1000 s2(s − 1), s(s − 1), s − 1, 1 s3 s3

1001 s2 − s + 1, s − 1, 1 s2, 1 s2 + 1
1010 s2 − 1, s, 1 s2, s s2 + s

1011 s + 1, 1 s, 1, 1 s + 2
1100 2s(s − 1), 2(s − 1), 2 s2, s2 2s2

1101 2s − 1, 2 s, s, 1 2s + 1
1110 3(s − 1), 3 s, s, s 3s

1111 4 1, 1, 1, 1 4
10000 s3(s − 1), s2(s − 1), s(s − 1), s − 1, 1 s4 s4

10001 s3 − s2 + 1, s(s − 1), s − 1, 1 s3, 1 s3 + 1
10010 (s − 1)(s2 + 1), s2 − s + 1, s − 1, 1 s3, s s3 + s

10011 s2 − s + 2, s − 1, 1 s2, 1, 1 s2 + 2
10100 s(s2 − 1), s2 − 1, s, 1 s3, s2 s3 + s2

10101 s2, s, 1 s2, s, 1 s2 + s + 1

u is the index (written as a binary number) andn is the number that is being partitioned.

It is easy to go from the binary vector to the partitions and vice versa. To obtain thes-
non-squashing partitionP(u) corresponding to the binary vectoru, we start with the empty
partitionP(u) = ∅, and scanu from left to right (i.e. beginning with the most significant
bit):

• if we see a 1, then ifP(u) = ∅ setP(u) = 1, otherwise add 1 to the largest part ofP(u),
• if we see a 0, then ifP(u) = ∅ setP(u) = 0, otherwise adjoin toP(u) a part equal to

s − 1 times the sum of the parts ofP(u).

Example fors =3. Supposeu=10110. The successive terms in the construction ofP(u)

are

∅, 1, 21, 31, 41, 1041.

Likewise, to obtain the partitionQ(u) into powers ofs, again we start with the empty
partitionQ(u) = ∅, and scanu from left to right:

• if we see a 1, then append a part of size 1 toQ(u),
• if we see a 0, then ifQ(u) = ∅ do nothing, otherwise multiply all the parts ofQ(u) by s.
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Example fors = 3. Again we takeu = 10110. The successive terms in the construction
of Q(u) are

∅, 1, 3, 31, 311, 933.

Thus the bijection associates these two partitions of 15:P(u) = 1041 andQ(u) = 933.
Finally, we note that the numbersas(n) have the generating function

∞∑
n=0

as(n) xn =
∞∏
i=0

1

1 − xsi
. (9)

3. Non-squashing partitions into distinct parts

From here on we consider only the cases = 2, that is, non-squashing partitions. One of
the restrictions in the box-stacking problem mentioned in the Introduction is that the parts
be distinct. In this section we investigate the numberb(n) of non-squashing partitions ofn

into distinct parts. The first few values ofb(n) for n = 0, 1, 2, . . . are

1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 18, 19, 24, 25, 31, 32, 40, 41, 50, . . . (10)

(this is now sequence A088567 in[2]).

Theorem 2. The numbersb(n) satisfy the recurrence

b(0) = b(1) = 1,

b(2m) = b(2m − 1) + b(m) − 1 for m�1,

b(2m + 1) = b(2m) + 1 for m�1. (11)

The generating functionB(x) = ∑∞
n=0 b(n)xn satisfies

B(x) = 1

1 − x
B(x2) − x2

1 − x2 , (12)

and is given explicitly by

B(x) = 1 + x

1 − x
+

∞∑
i=1

x3·2i−1

∏i
j=0(1 − x2j

)
. (13)

Proof. We obtain the partitions (non-squashing and with distinct parts being understood)
of an odd number 2m + 1 by adjoining a part of size 2m + 1 − j to a partition ofj , for
somej = 0, 1, . . . , m (since 2m + 1 − j > j , these are indeed non-squashing). Likewise,
we obtain the partitions of 2m by adjoining a part of size 2m − j to a partition ofj , for
somej =0, 1, . . . , m, except that ifj =m we cannot adjoin a part of sizem to the partition
consisting of a singlem. Thus we have

b(0) = b(1) = 1,

b(2m + 1) = b(0) + b(1) + · · · + b(m) for m�1,

b(2m) = b(0) + b(1) + · · · + b(m) − 1 for m�1, (14)
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from which (11) follows. After some algebra we find that (11) implies

B(x) = xB(x) + B(x2) − x2

1 + x
, (15)

and after rearranging we obtain (12). Eq. (12) implies

B(x2) = 1

1 − x2B(x4) − x4

1 − x4 ,

and so on, and hence

B(x) =
∞∏
i=0

1

1 − x2i
−

∞∑
i=1

x2i

∏i−1
j=0(1 − x2j

) (1 + x2i−1
)

=
∞∏
i=0

1

1 − x2i
−

∞∑
i=1

x2i

∏i−2
j=0(1 − x2j

) (1 − x2i
)
. (16)

To simplify this we make use of an identity from[1]: if m1 < m2 < · · · < mk are positive
integers then

1 +
k∑

j=1

xmj

(1 − xm1)(1 − xm2) · · · (1 − xmj )
=

k∏
j=1

1

1 − xmj
. (17)

Applying this to the sum in (16) and simplifying, we eventually obtain (13).�

Corollary 3. (i) The sequence{b(n)} (see (10))has the property that the sequenceof partial
sums

1, 2, 3, 5, 7, 10, 14, 19, 25, 32, 41, 51, 64, 78, 96, 115, 139, 164, . . . (18)

coincides with the odd-indexed subsequenceb(1), b(3), b(5), . . . . The even-indexed sub-
sequenceb(2), b(4), b(6), . . . is obtained by adding1 to the terms of(18). (ii) b(n), the
number of non-squashing partitions of n into distinct parts, is equal to the number of parti-
tions ofn into powers of2 such that either all the parts are equal to1 or, if the largest part
has size2i > 1, then there is also at least one part of size2i−1.

Proof. (i) The first assertion is equivalent to the algebraic identity

B(x)

1 − x
= B(

√
x) − B(−√

x)

2
√

x
, (19)

which is easily verified using (15) and (16).The second assertion follows from (11). Property
(ii) is an immediate consequence of (16).�

Congruences satisfied byas(n) have been studied by many authors (see references in
[1]). Here, we record just one such result forb(n).
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Corollary 4. The value ofb(n) mod 2is as follows(all congruences aremod 2):

b(0) ≡ 1, (20)

if n is odd, b(n) ≡ b(n − 1) + 1, (21)

b(8m + 2) ≡ 1, b(8m + 6) ≡ 0, (22)

b(16m + 4) ≡ 0, b(16m + 12) ≡ 1, (23)

for m > 0, b(16m) ≡ b(8m), b(32m + 8) ≡ 0, b(32m + 24) ≡ 1. (24)

For m > 0, b(8m) is the value of the bit immediately to the left of the rightmost1 when m
is written in binary.

Proof. Eq. (21) follows from (11). To prove the first assertion in (22), we repeatedly apply
(11), obtaining

b(8m + 2) ≡ b(8m + 1) + b(4m + 1) + 1

≡ b(8m) + b(4m) + 1

≡ b(8m − 1)

≡ b(8m − 2) + 1

≡ . . .

≡ b(8i − 6)

≡ . . .

≡ b(2) = 1.

The other claims in (22)–(24) are established in a similar way. It is easily checked that the
final assertion in the corollary is equivalent to (24). (The final assertion was discovered by
noticing that the subsequence{b(8m)} is, apart from the leading term, the same as sequence
A038189 in[2].) �

4. Non-squashing partitions by number of parts

Let a(n, k) be the number of non-squashing partitions ofn into exactlyk parts.Table 2
shows the initial values of this function.

Theorem 5. The numbersa(n, k) satisfy the recurrence

a(2m, k) = a(2m − 1, k) + a(m, k − 1) for m�1, k�1,

a(2m + 1, k) = a(2m, k) for m�1, k�1, (25)

with initial conditions

a(0, 0) = 1, a(n, 0) = 0 for n�1, a(n, k) = 0 for k > n,

a(n, 1) = 1 for n�1.
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Table 2
Values ofa(n, k), the number of non-squashing partitions ofn into exactlyk parts

n k

0 1 2 3 4

0 1 0 0 0 0
1 0 1 0 0 0
2 0 1 1 0 0
3 0 1 1 0 0
4 0 1 2 1 0
5 0 1 2 1 0
6 0 1 3 2 0
7 0 1 3 2 0
8 0 1 4 4 1
9 0 1 4 4 1

10 0 1 5 6 2
11 0 1 5 6 2
12 0 1 6 9 4
13 0 1 6 9 4

In particular, each odd-indexed row(except for row1) in Table2 is a copy of the previous
row. If the duplicate entries are omitted, the kth column has generating function

∞∑
k=0

a(2m, k)xm = x2k−2

(1 − x)
∏k−2

j=0(1 − x2j
)
, (26)

while if they are included we get the simpler expression

∞∑
k=0

a(m, k)xm = x2k−1

∏k−1
j=0(1 − x2j

)
. (27)

Eq. (27) implies that the number of non-squashing partitions of n with k parts is equal(i)
to the number of partitions ofn − 2k−1 into powers of2 not exceeding2k−1, and also(ii)
to the number of binary partitions of n with largest part2k−1.

Proof. Recurrence (25) follows at once from the argument used to derive (7).The generating
functions then follow from the recurrence; we omit the details.�

For example, thek = 3 column, omitting the odd-indexed terms, is

0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, . . . ,

which is the sequence of “quarter-squares”, that is,

a(2m, 3) =
⌊m

2

⌋ ⌈m

2

⌉
,
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with generating function

∞∑
k=0

a(2m, 3)xm = x2

(1 − x)2(1 − x2)

(sequence A002620).

5. Non-squashing partitions intok distinct parts

Let b(n, k) be the number of non-squashing partitions ofn into exactlyk distinct parts.
Table 3shows the initial values of this function.

Comparison of this table withTable 2suggests thatTable 3is obtained by displacing the
kth column ofTable 2(for k�2) downwards by 2k−2 positions. This is true, and we have:

Theorem 6. The numbersb(n, k) satisfy

b(n, 0) = a(n, 0) for n�0,

b(n, 1) = a(n, 1) for n�0,

b(n, k) = a(n − 2k−2, k) for n�0, k�2. (28)

Table 3
Values ofb(n, k), the number of non-squashing partitions ofn into exactlyk distinct parts

n k

0 1 2 3 4

0 1 0 0 0 0
1 0 1 0 0 0
2 0 1 0 0 0
3 0 1 1 0 0
4 0 1 1 0 0
5 0 1 2 0 0
6 0 1 2 1 0
7 0 1 3 1 0
8 0 1 3 2 0
9 0 1 4 2 0

10 0 1 4 4 0
11 0 1 5 4 0
12 0 1 5 6 1
13 0 1 6 6 1
14 0 1 6 9 2
15 0 1 7 9 2
16 0 1 7 12 4
17 0 1 8 12 4
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Also
∞∑

k=0

b(n, k)xn = x3·2k−2

∏k−1
j=0(1 − x2j

)
for k�2. (29)

Eq. (29) implies that the number of non-squashing partitions of n with k distinct parts is
equal to the number of partitions ofn − 3 · 2k−2 into powers of2 not exceeding2k−1.

Proof. For this discussion we write the parts in nondecreasing order. The non-squashing
partition (of some very large number) having the slowest growth begins

1, 1, 2, 4, 8, 16, 32, 64, . . . , (30)

while the non-squashing partition with distinct parts and the slowest growth is the sequence
�(1), �(2), �(3), . . . given by

1, 2, 3, 6, 12, 24, 48, 96, . . . (31)

with �(i) = i for i�3, �(i) = 3 · 2i−3 for i�3. The difference between (30) and (31) is

0, 1, 1, 2, 4, 8, 16, 32, . . . . (32)

One can now verify that adding the initialk terms of (32) term-by-term to the parts of a
non-squashing partition ofn into k parts provides a bijection with a non-squashing partition
of n into k distinct parts, and establishes the relations in (28).

For example, the non-squashing partitions ofn = 4, . . . , 8 intok = 3 parts are:

4 : 112,

5 : 113,

6 : 114, 123,

7 : 115, 124,

8 : 116, 125, 134, 224. (33)

On the other hand, the non-squashing partitions ofn = 6, . . . , 10 intok = 3 distinct parts
are:

6 : 123,
7 : 124,
8 : 125, 134,
9 : 126, 135,

10 : 127, 136, 145, 235.

(34)

Adding 0, 1, 1 term-by-term to the partitions in (33) yields the partitions in (34).
The generating function (29) now follows from (27) and (28).�

6. Non-squashing partitions into distinct parts with largest partm

Let c(n, k) be the number of non-squashing partitions ofn into distinct parts of which
the greatest ism. Table 4shows the initial values.
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Table 4
Values ofc(n, k), the number of non-squashing partitions ofn into distinct parts of which the greatest ism (the
blank entries are zero)

n m

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1
1 0 1
2 0 0 1
3 0 0 1 1
4 0 0 0 1 1
5 0 0 0 1 1 1
6 0 0 0 1 1 1 1
7 0 0 0 0 2 1 1 1
8 0 0 0 0 1 2 1 1 1
9 0 0 0 0 0 2 2 1 1 1

10 0 0 0 0 0 2 2 2 1 1 1
11 0 0 0 0 0 0 3 2 2 1 1 1
12 0 0 0 0 0 0 3 3 2 2 1 1 1

Theorem 7. (i) The nonzero values ofc(n, m) lie within a certain strip:

c(n, m) = 0 if m < n/2 or if n < m.

(ii) For m�n�2m,

c(n, m) =
m−1∑
i=0

c(n − m, i). (35)

(iii) For m�n�2m,

c(n, m) =
{

b(n − m) if n < 2m,

b(n − m) − 1 if n = 2m.
(36)

Proof. (i) The slowest-growing non-squashing partition into distinct parts is (31), so no
partition can haven > 2m. The second assertion is immediate from the definition ofc(n, m).

(ii) This is a consequence of the fact that removing the largest part leaves a partition with
largest part�m − 1.

(iii) When the largest part is removed, we obtain a non-squashing partition ofn − m into
distinct parts. Conversely, given a non-squashing partition ofn − m into distinct parts, we
obtain a partition ofn with largest partm by adjoining a part of sizem, with the single
exception that we cannot adjoin a part of sizem to the partition consisting of a single part
of sizem. �

7. Solution to the box-stacking problem

We can now give the solution to the box-stacking problem mentioned in the Introduction.
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Theorem 8. There is a bijection betweennon-squashing stacks of boxes inwhich the largest
box has label n and non-squashing partitions of2n into distinct parts, i.e.

f (n) − f (n − 1) = b(2n). (37)

Proof. Let

1�p1 < p2 < · · · < pk = n

be a non-squashing stack of boxes in which the largest box has labeln. Letr=p1+· · ·+pk−1
(taker =0 if k=1). Thenr �pk =n. If we increase the largest part byn−r we obtain a non-
squashing partition of 2n. Conversely, suppose 1�p1 < p2 < · · · < pk is a non-squashing
partition of 2n into distinct parts. Letr =p1 +· · ·+pk−1. Thenr +pk =2n, r < pk, which
impliesr < n < pk. So we may reduce the largest part ton, obtaining a non-squashing stack
with largest part labeledn. �

Eq. (37) could also be derived from the fact that

f (n) =
(

n+1
2 )∑

i=0

n∑
j=0

c(i, j) =
2n∑
i=0

n∑
j=0

c(i, j).

Corollary 9. The numbersf (n) have generating function

F(x) =
∞∑

n=0

f (n)xn = B(x) − x

(1 − x)2 , (38)

whereB(x) is given in Theorem2.Also, F(x) satisfies

F(x) = (1 + x)2

1 − x
F(x2) − x(1 − 2x2)

(1 − x)2(1 − x2)
. (39)

Proof. From Theorem 8 we know that

f (n) = b(0) + b(2) + · · · + b(2n),

so

F(x) = 1

1 − x

B(
√

x) + B(−√
x)

2
.

So (38) will follow if we can show that

2(B(x) − x)

1 − x
= B(

√
x) + B(−√

x).

However, from (19) we know that

2
√

xB(x)

1 − x
= B(

√
x) − B(−√

x).
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So we must show that

B(
√

x) = B(x) − x

1 − x
+

√
xB(x)

1 − x
,

which follows immediately from (12). Eq. (39) then follows using (15).�

The first few values off (n) for n = 0, 1, 2, . . . are

1, 2, 4, 8, 14, 23, 36, 54, 78, 109, 149, 199, 262, 339, 434, 548, 686, . . . (40)

(sequence A089054).
The original version of the problem hadn + 1 boxes labeled 0, 1, . . . , n. Since the box

labeled 0 may be included in the stack or not, without changing the non-squashing property,
the answer to this problem is 2f (n).

8. Stacks with a given number of boxes

In this final section we determine the numbersf (n, k), the number of non-squashing
stacks of boxes in which the largest box has label�n and there are exactlyk boxes in the
stack.Table 5shows the initial values of this function.

Theorem 10.We havef (n, 0) = 1 for all n, and forn�1, k�1,

f (n, k) =
min{k−1,n−�(k)}∑

p=0

n−�(k)∑
m=p

(n − �(k) + 1 − m)a(m, p). (41)

Table 5
Values off (n, k), the number of stacks in which there are exactlyk boxes and the largest box is�n

n k

0 1 2 3 4 5

0 1 0 0 0 0 0
1 1 1 0 0 0 0
2 1 2 1 0 0 0
3 1 3 3 1 0 0
4 1 4 6 3 0 0
5 1 5 10 7 0 0
6 1 6 15 13 1 0
7 1 7 21 22 3 0
8 1 8 28 34 7 0
9 1 9 36 50 13 0

10 1 10 45 70 23 0
11 1 11 55 95 37 0
12 1 12 66 125 57 1
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Proof. We first determinef (n, k) − f (n − 1, k), that is, the number of stacks

1�p1 < p2 < · · · < pk = n

in which the largest box is labeledn. Let qi = pi − �(i) for i = 1, . . . , k (cf. (31)), so that

0�q1�q2� · · · �qk = n − �(k).

Some of theqi may be zero. The nonzero elements amongq1, . . . , qk−1 (if any) form a non-
squashing partition intop parts of some numberm between 0 andqk, where 0�p�k − 1.
Hence

f (n, k) − f (n − 1, k) =
∑

m�n−�(k)

∑
p�k−1

a(m, p), (42)

and so

f (n, k) =
k−1∑
p=0

n∑
�=k

�−�(k)∑
m=p

a(m, p). (43)

Eq. (41) follows when we collect terms.�
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