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Abstract

A partitionn = p1+ p2 + - + pr With 1< p1 < po < - - - < py is callednon-squashing p1 +
-+ pj<pjy1for 1< j <k —1. Hirschhorn and Sellers showed that the number of non-squashing
partitions ofz is equal to the number of binary partitions:afHere we exhibit an explicit bijection
between the two families, and determine the number of non-squashing partitions with distinct parts,
with a specified number of parts, or with a specified maximal part. We use the results to solve a certain
box-stacking problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A correspondent, Claudio Buffara, recently asked for the solution to the following prob-
lem, originally proposed by Telmo Luis Correia Jr. We are givboxes, labeled, 2, . . ., n.
Fori =1,...,n, boxi weighsi grams and can support a total weight:ajrams. What
is f(n), the number of different ways to build a single stack of boxes in which no box will be
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squashed by the weight of the boxes above it? For exanipe,= 14, since we can form
the following stacks:

1 1 1
11 1 2 2 3 2 2 3
g, 1, 2, 3 4, 2, 3, 4 3, 4 4 3 4 A4

The other two possible stacks:

1
2 2
3 3
4, 4

are excluded, since2 3> 4 and the box labeled 4 would collapse in both cases.
To make this more precise, let us say that a partition of a natural numbeo k parts
is non-squashing when the parts are arranged in nondecreasing order, say

m=p1+p2+---+pr Withl<pi<pa<--- <px, 1)
we have

pit---+pi<pjy1 forl<j<ik-—1. (2)
If the boxes in a stack are labeled (from the tpp) p2, ..., px, the stack will not collapse

if and only if the partition is non-squashing. In the problem as stated, the boxes must also
have distinct labels and their sum cannot exc ). Therefore,f (n) is equal to the

total number of partitions of numbers from 0 ¢6J2rl) which are (i) non-squashing, (ii)

have distinct parts, and (iii) involve no part greater tharWe will give the solution in
Sections 7 and 8. In Sections 2 and 3 we study the numbers of non-squashing partitions and
non-squashing partitions with distinct parts. Sections 4, 5 and 6 deal with non-squashing
partitions with a given number of parts, a given number of distinct parts, and a specified
largest part, respectively. Some of these results are used in the final two sections, others are
included because they seem of independent interest.

2. Non-squashing partitions

Leta(n) denote the number of non-squashing partitions éfwas shown by Hirschhorn
and Sellers [1] thata(n) is equal to the number of “binary partitions” of that is, the
number of partitions of into powers of 2. See sequences A000123 and A0188[Y for
properties of the binary partition function and references to the extensive literature.

In fact, Hirschhorn and Sellers prove a more general results k&t be an integer. Let
us say that a partition (1) isnon-squashingf

(s —=D(pr+---+pj)<pjyr forl<j<i—1. 3)

L Hirschhorn and Sellers regard inequalities (2) as purely arithmetic conditions and do not mention stacking
problems.
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If the p; are the labels of the boxes in a stack, not only is no box squashed, no box even
comes within a factor of — 1 of being squashed. A non-squashing partition as defined in
the Introduction is 2-non-squashing.

Theorem 1 (Hirschhorn and Sellerfl]). The numbeu,(n) of s-non-squashing partitions
of n is equal to the number 6f-ary” partitions ofn, that is, the number of partitions of n
into powers of s

The following is an alternative proof of this result, which leads to a bijection between
the two families.

Proof. Leta](n) be the number of partitions afinto powers ofs, for some integes > 2.
Suppose

n=st+s?2+...45%

is such a partition, wherme> s. If at least one of the parts is 1 we can remove it and obtain
a partition ofn — 1 into powers ofs; if not, all thee; are greater than 0 and we can also
divide bys and obtain a partition of/s. Thereforea/ (n) satisfies the recurrence

a,(n — 1) if n 2 0 mods,

a;(n) = {a;(n — 1) +al(n/s) if n=0mods “

for n>s. The smallest for which there is a partition with more than one part,iso we
have the initial conditions

a.0=a,()=-=a,(s—1)=1. (5)
On the other hand, let
n=pi+p2+---+pr Wthl<pi<pa<---<px (6)

be ans-non-squashing partition af>s. If the largest parpy is strictly greater thars —
1)n/s, then the sum of the other parts is strictly less than and we can subtract 1 from the
largest part and obtain arnon-squashing partition af— 1. (We omit the straightforward
verification.) If the largest part is equal t®8 — 1)n/s (implying n = 0 mods), we can
also delete the largest part and obtain-aron-squashing patrtition af/s. Thereforega, (n)
satisfies the recurrence

as(n — 1) if n % 0 mods,

as(n — 1) +ay(n/s) if n =0 mods, ()

ag(n) = {

for n>s. The smallest for which there is a partition with more than one part isvhere
we have the partition with parts 1 and- 1), so we have the initial conditions

a;(0)=a;(H=---=as(s -1 =1 8)

Comparing (4), (5) with (7), (8), we conclude thdt(n) = a,(n) for all n >0 and all
s > 2, which is the main result df.]. O
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¢ (0)
1(1)
11 (10) 2(11)
; 21 (101) 3(111)

(100) 211 ! 31(1011) 22 (110) | 4111
(1001) 311 41 (10111) 32 (1101) 5(11111)
(10011) 411 321 51 42 33 6 (111111)

(1010) (101111 (11011)  (1110)

Fig. 1. Non-squashing partitions of the numbers.0, 6 arranged in tree structure. The binary labels are shown
in parentheses. (Every node has out-degree 2, but only edges between partitions @ @re shown.)

The above proof associates each partition (from either family) with a unique partition of
a smaller number. We can therefore arrange the partitions in each family into a rooted tree,
with the empty partition of O as the root nodégs. 1and2 show the beginnings of the
two trees for the case= 2. (Most of the time we will adopt the standard convention of
writing partitions with the parts in nonincreasing order.) Every node has two descendants
and (except for the root) one ancestor. We may label the edge leading from a partition of
n/s to a partition ofn with O (such edges are shown as broken lineSigs. 1and?2), and
the edge leading from a partition af— 1 to a partition ofz with 1 (the solid lines in the
figures).

This associates a unique binary string with each partition in either tree. A partition of
n in one tree receives the same binary string as the corresponding partitiomdhe
same position in the other tree. In this way we obtain a canonical numbering fer the
non-squashing partitions, a canonical numbering for the partitions into powersiod a
bijection between them.
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¢ (0)

1(1)

T

2 (10) 11 (11)
2 21 (101) 111 (111)
(100) 4 | 211(1011) 22 (110) ;1111 (1111)
(1001) 41 ;o 2111(10111) 221 (1101) 11111 (11111)

R

(10011) 411 42 21111 2211 222
(1010 (101112 (11011 (1110

111111 (111111)

Fig. 2. Binary partitions of the numbers .0., 6 arranged in tree structure. The binary labels are shown in
parentheses. (Every node has out-degree 2, but only edges between partitions d @re shown.)

Table 1shows the beginning of the bijection. The first column gives the binary string
u, the second column gives the correspondingpn-squashing partitio® («), the third
column gives the correspondingary partitionQ («), and the last column gives the number
n = n(u) that is partitioned by bot® () and Q ().

We note without proof the following properties of the bijection.

(i) For a nonzero string, the number of parts i® («) is equal to 1 plus the number of
0’s in u, and the number of parts i@ («) is equal to the number of 1's in
(i) Thinking of u now as the integer represented by the binary string, the numbenu)
(given in the last column of the table) that is partitioned by bBilx) and Q(u) is
defined by the recurrence
n(0)=0; nu)=snw)foru>1, nCu-+1)=nu)+1 foru=0

(sequences A087808, A090639, etc[ah).
(iiiy P(u) = Qu) if and only if u = (4F — 1)/3 for somek >1 (that is, ifu is the binary

string 10101 ..01).
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Table 1
Bijection between-non-squashing partition8(«) ands-ary partitionsQ ()
u P(u) O(u) n
0 [4) [ 0
1 1 1 1
10 s—1,1 s s
11 2 11 2
100 sts—1),s—1,1 52 52
101 s, 1 s, 1 s+1
110 2As —1),2 S, 8 25
111 3 11,1 3
1000 s2(s—1),s(s—1),5s—1,1 53 53
1001 s2—s+1s-11 52,1 241
1010 szfl,s,l sz,s 52+s
1011 s+1,1 s, 1,1 s+2
1100 3(s—1),2(s—1),2 52, 52 252
1101 2—-1,2 s,s,1 25+ 1
1110 3s—-1),3 S, 8,8 3s
1111 4 11,1,1 4
10000 S —1),s2(s —1),s(s —1),s—1,1 s4 s4
10001 35241 s(s—1),s—-1,1 s3,1 341
10010 (s—l)(sz—i-l),sz—s—i-l,s—l,l 53,s s34
10011 s2—s+42s—11 s2,1,1 5242
10100 s(sz -1, §2 — 15,1 ss, 52 §3 + 52
10101 52,51 52,5, 1 s24+s+1

u is the index (written as a binary number) ants the number that is being partitioned.

It is easy to go from the binary vector to the partitions and vice versa. To obtain the
non-squashing partitioR () corresponding to the binary vectorwe start with the empty
partition P (1) = ¥, and scan: from left to right (i.e. beginning with the most significant
bit):

e ifweseeal,theniP(u) =0 setP(u) =1, otherwise add 1 to the largest partrfu),
o if we see a 0, then iP(u) = ¥ set P(u) = 0, otherwise adjoin taP (1) a part equal to
s — 1 times the sum of the parts &f(u).

Example fors = 3. Suppose = 10110. The successive terms in the constructioP @f)
are

?,1,21 31,41, 1041.

Likewise, to obtain the partitio® («) into powers ofs, again we start with the empty
partition Q (1) = ¥, and scam from left to right:

o if we see a 1, then append a part of size Di@),
e ifwe see a0, then i® (u) = ¥ do nothing, otherwise multiply all the parts Of(u) by s.
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Example fors = 3. Again we take: = 10110. The successive terms in the construction
of Q(u) are
@,1,3,31 311 933.

Thus the bijection associates these two partitions oP1s) = 1041 andQ (u) = 933.
Finally, we note that the numbedgs(n) have the generating function

o o0 1
Z as(n) x" = 1_[ - 9)
n=0 i=0 1-x

3. Non-squashing partitions into distinct parts

From here on we consider only the case 2, that is, non-squashing partitions. One of
the restrictions in the box-stacking problem mentioned in the Introduction is that the parts
be distinct. In this section we investigate the numia@n of non-squashing partitions af
into distinct parts. The first few values bfn) forn =0, 1,2, ... are

1,1,1,2,2,3,4,5,6,7,9,10,13 14,18, 19, 24, 25,31, 32,40,41,50,...  (10)
(this is now sequence A088567(2)).

Theorem 2. The number#(n) satisfy the recurrence

b(0) = b(1) =1,
b(2m) = b(2m — 1) + b(m) — 1 for m>1,
b2m + 1) = b(2m) + 1 for m>1. (11)

The generating functioB (x) = > o ; b(n)x" satisfies
2

1 2
B(x)=——R8 -— 12
W=7 B0 - (12)
and is given explicitly by
9] 3_21'—1
=X 3 [jmo@—x%)

Proof. We obtain the partitions (hon-squashing and with distinct parts being understood)
of an odd number:2 + 1 by adjoining a part of sizer2+ 1 — j to a partition ofj, for
somej =0,1,...,m (since 2n + 1 — j > j, these are indeed non-squashing). Likewise,
we obtain the partitions of/2 by adjoining a part of size/i2 — j to a partition ofj, for
somej =0, 1, ..., m, exceptthatifi =m we cannot adjoin a part of sizeto the partition
consisting of a single:. Thus we have

b(0) = b(1) =1,
b@2m + 1) = b(0) + b(1) + - - - + b(m) for m>1,
b(2m) = b(0) + b(1) + - - - + b(m) — Lform >1, (14)
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from which (11) follows. After some algebra we find that (11) implies

2
B(x) = xB(x) + B(x?) —

1+x’ (15)

and after rearranging we obtain (12). Eq. (12) implies

1 ¥4
2y _ 4
B(x°) = ]__XZB(X ) — 1
and so on, and hence
oo [ee) Zi
1 x

B(x) = - — _ _ _

11:!)1_"2 ;Hlj:%(l—xz’)(lexz h

(o9) 2t

-1l 1_1x2f S v - (18)

= I —x?) L —x?)

To simplify this we make use of an identity froft]: if m1 <m2 <--- <my are positive
integers then

k y

k
1
1+;<1—)c'"1><1—xmz>---(1—x’"f'> :jnzll—xm" &

Applying this to the sum in (16) and simplifying, we eventually obtain (13)]

Corollary 3. (i) The sequenci®(n)} (see (10)has the property that the sequence of partial
sums

1,2,3,5,7,10, 14, 19, 25,32, 41,51, 64, 78,96, 115 139 164, ... (18)

coincides with the odthdexed subsequené€l), b(3), b(5), ... . The everindexed sub-
sequence(2), b(4), b(6), ... is obtained by adding. to the terms of18). (ii) b(n), the
number of norsquashing partitions of n into distinct paris equal to the number of parti-
tions ofn into powers o such that either all the parts are equal 1@r, if the largest part
has size?’ > 1, then there is also at least one part of s@e?.

Proof. (i) The first assertion is equivalent to the algebraic identity
B(x) _ B(Jx) — B(—/x)
1—x 2/x ’

which is easily verified using (15) and (16). The second assertion follows from (11). Property
(i) is an immediate consequence of (16}.]

(19)

Congruences satisfied lay (n) have been studied by many authors (see references in
[1]). Here, we record just one such result @r).
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Corollary 4. The value ob(n) mod 2is as follows(all congruences arenod 2):

b(0) = 1, (20)
if nis odd b(n) = b(n — 1) + 1, (21)
b(8m +2)=1,b(8m +6) =0, (22)
b(16m +4) =0, b(16m + 12) = 1, (23)
for m >0, b(16m) = b(8m), b(32m + 8) = 0, b(32m + 24) = 1. (24)

For m > 0, b(8m) is the value of the bit immediately to the left of the rightnioathen m
is written in binary

Proof. Eq. (21) follows from (11). To prove the first assertion in (22), we repeatedly apply
(11), obtaining

b(Bm+2)=b@m+1)+b@m+1)+1
= b(8m) + b(dm) + 1
=bBm —1)
=bBn—2)+1

b(8i — 6)
=b(2)=1.
The other claims in (22)—(24) are established in a similar way. It is easily checked that the
final assertion in the corollary is equivalent to (24). (The final assertion was discovered by

noticing that the subsequengg8m)} is, apart from the leading term, the same as sequence
A038189in[2].) O

4. Non-squashing partitions by number of parts

Leta(n, k) be the number of non-squashing partitions défito exactlyk parts.Table 2
shows the initial values of this function.
Theorem 5. The numbera(n, k) satisfy the recurrence
a(2m,k)=a2m — L k)+a(m,k—1) form>1k>1,
a@m+ 1 k)=a@m, k) form>1k>1, (25)
with initial conditions

a(0,00=1, a®m,0=0forn>1, a(n,k)=0fork=>n,
a(n,l)=1forn>1.
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Table 2
Values ofa(n, k), the number of non-squashing partitions:dghto exactlyk parts

n k

o
=
N
w
IN

Oo~NO O~ WNEO
[eNeoNeoNeoNoNololNololNololNolNoll
RPRRPRRPRRPRPRRRPRPRRREREO
oo, P, WWOWNNRELREL,OO
©C oo NNRPPFRPOOOO
A RANNPPOOOOOCOOO

In particular, each oddindexed row(except for rowl) in Table2 is a copy of the previous
row. If the duplicate entries are omittethe kth column has generating function

00 . xzk—z
lg) a(2m, k)x™ = (1—x)]_[];-;%(1—x2j), (26)
while if they are included we get the simpler expression
0 2k—1
> atm, bx" = —f 27)
k=0 [T=o(@—x?)

Eq. (27) implies that the number of non-squashing partitions of n with k parts is gual
to the number of partitions of — 2~ into powers of not exceedin@*~1, and also(ii)
to the number of binary partitions of n with largest paft1.

Proof. Recurrence (25) follows at once from the argument used to derive (7). The generating
functions then follow from the recurrence; we omit the details]

For example, thé = 3 column, omitting the odd-indexed terms, is
0,0,1,2,4,6,9,12 16, 20, 25, 30, 36,42, 49, 56,64, 72,81, ...,

which is the sequence of “quarter-squares”, that is,

aem9=3][3]
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with generating function

o )CZ
am, " = —-———
,; (1-x?(1—-x?)
(sequence A002620).

5. Non-squashing partitions intok distinct parts

Let b(n, k) be the number of non-squashing partitions: afto exactlyk distinct parts.
Table 3shows the initial values of this function.

Comparison of this table witliable 2suggests thafable 3is obtained by displacing the
kth column ofTable 2(for k >2) downwards by 22 positions. This is true, and we have:

Theorem 6. The number#(n, k) satisfy

b(n,0)=a(n,0) forn=0,
b(n,1)=a(@n,1) forn=0,
b(n,k)y=an — 22 k) forn=0,k>2. (28)

Table 3
Values ofb(n, k), the number of non-squashing partitions:ahto exactlyk distinct parts

n k

o
[
N
w
IN

oO~NO O WNPEO
O~N~NOOOUITORNDWWNNRERELPOOO
A DANMNNRFRPPFPOOOOOO
ADMNNNPPOOOOOOOOOOOO

©
0O0000000DO0OO0O0O0O0O0O0O0O R
PRPRPRRPRRPRRPRPRRPRRPPRERRRPRRPREO

NN O OO

e
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Also

o0 £3272
Y b x" = ——F——— fork>2. (29)
k=0 [T56(1 —x?)

Eqg. (29) implies that the number of nesguashing partitions of n with k distinct parts is
equal to the number of partitions of— 3 - 2¢=2 into powers of not exceedin@* 1.

Proof. For this discussion we write the parts in nondecreasing order. The non-squashing
partition (of some very large number) having the slowest growth begins

1,1,2,4,8,16,32,64, ..., (30)

while the non-squashing partition with distinct parts and the slowest growth is the sequence
7(1), 7(2), y(3), ... given by

1,2,3,6,12 24,48 96, ... (31)
with y(i) = i for i <3, y(i) = 3- 2=3 for i >3. The difference between (30) and (31) is
0,1,1,2,4,8,16,32,.... (32)

One can now verify that adding the initialterms of (32) term-by-term to the parts of a
non-squashing partition afinto k& parts provides a bijection with a non-squashing partition
of n into k distinct parts, and establishes the relations in (28).

For example, the non-squashing partitionaef 4, .. ., 8 intok = 3 parts are:

4:112,

5:113,

6:114 123,

7:115 124,

8:116 125 134 224. (33)

On the other hand, the non-squashing partitions ef6, . .., 10 intok = 3 distinct parts
are:

123
124,

. 125134 (34)
9 : 126135
10 : 127136 145 235

Adding 0 1, 1 term-by-term to the partitions in (33) yields the partitions in (34).
The generating function (29) now follows from (27) and (28]

0N

6. Non-squashing partitions into distinct parts with largest part m

Let ¢(n, k) be the number of non-squashing partitions:dfto distinct parts of which
the greatest is:. Table 4shows the initial values.
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Table 4

Values ofc(n, k), the number of non-squashing partitions:ahto distinct parts of which the greatestis(the
blank entries are zero)

n m
1 2 3 4 5 6 7 8 9 10 11 12

0 1

1 0 1

2 0 0 1

3 0 0 1 1

4 0 0 0 1 1

5 0 0 0 1 1 1

6 0 0 0 1 1 1 1

7 0 0 0 0 2 1 1 1

8 0 0 0 0 1 2 1 1 1

9 0 0 0 0 0 2 2 1 1 1
10 0 0 0 0 0 2 2 2 1 1 1
11 0 0 0 0 0 0 3 2 2 1 1 1
12 0 0 0 0 0 0 3 3 2 2 1 1 1
Theorem 7. (i) The nonzero values ofn, m) lie within a certain strip

cn,m)=0 ifm<n/2orif n<m.
(i) Form <n<2m,
m—1
c(n,m) = Z c(n —m,i). (35)
i=0

(iii) For m<n<2m,

b(n — m) if n<2m,

b(n —m)—1 if n=2m. (36)

c(n, m) :{

Proof. (i) The slowest-growing non-squashing partition into distinct parts is (31), so no
partition can have > 2m. The second assertion is immediate from the definitiar(ofm).

(i) This is a consequence of the fact that removing the largest part leaves a partition with
largest part<m — 1.

(iif) When the largest part is removed, we obtain a non-squashing partitior-@f into
distinct parts. Conversely, given a non-squashing partition-efm into distinct parts, we
obtain a partition ofz with largest parin by adjoining a part of size:, with the single
exception that we cannot adjoin a part of siz¢o the partition consisting of a single part
of sizem. O

7. Solution to the box-stacking problem

We can now give the solution to the box-stacking problem mentioned in the Introduction.
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Theorem 8. There is a bijection between naguashing stacks of boxes in which the largest
box has label n and nesquashing partitions d?» into distinct partsi.e.

f(n) = f(n—1) =b(2n). (37)
Proof. Let
I<pi<p2<---<pr=n

be a non-squashing stack of boxes in which the largest box haslatstl = py+- - -+ pr_1
(taker =0if k=1). Thernr < pry =n. If we increase the largest part by-» we obtain a non-
squashing partition ofi2 Conversely, supposep; < p2 <--- < py iS a non-squashing
partition of 2: into distinct parts. Let = p1+ - - - + pr—1. Thenr + py =2n, r < pi, which
impliesr <n < pr. So we may reduce the largest parkt@btaining a non-squashing stack
with largest part labeled. [

Eq. (37) could also be derived from the fact that

(n42rl) n 2n n
foy=Y" Y el =) el
i=0 j=0 i=0 j=0

Corollary 9. The numberg (n) have generating function

o0 B _
F(x) = Z% F)x" = ﬁ (38)

whereB(x) is given in Theoren2. Alsg, F(x) satisfies

At+0)? 2 xA-2

Fx) = e
W="T", 1— 21— x2)

(39)

Proof. From Theorem 8 we know that
fm)=b0)+b2)+---+b(2n),

SO

1 B(J/x)+ B(—/x)
1—x 2 '

So (38) will follow if we can show that

% — B(JT) + B(—/%).

However, from (19) we know that

F(x) =

2B _ p) — B,
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So we must show that

B(J/) = B(lx)_;" + Jff(;‘)

which follows immediately from (12). Eq. (39) then follows using (15).]
The first few values off (n) forn =0, 1, 2, ... are

1,2, 4,8,14, 23 36,54, 78, 109, 149 199 262, 339,434 548 686, . .. (40)

(sequence A089054).

The original version of the problem had+ 1 boxes labeled ., ..., n. Since the box

labeled 0 may be included in the stack or not, without changing the non-squashing property,
the answer to this problem isf2n).

8. Stacks with a given number of boxes

In this final section we determine the numbgi&z, k), the number of non-squashing
stacks of boxes in which the largest box has lalel and there are exactlyboxes in the
stack.Table 5shows the initial values of this function.

Theorem 10. We havef (n, 0) = 1forall n,and forn >1,k>1,

min{k—1,n—y(k)} n—y(k)

fo = Y > =9k +1—m)a(m, p). (41)

p=0 m=p

Table 5
Values of f (n, k), the number of stacks in which there are exakthpoxes and the largest box iSn

n k
0 1 2 3 4 5
0 1 0 0 0 0 0
1 1 1 0 0 0 0
2 1 2 1 0 0 0
3 1 3 3 1 0 0
4 1 4 6 3 0 0
5 1 5 10 7 0 0
6 1 6 15 13 1 0
7 1 7 21 22 3 0
8 1 8 28 34 7 0
9 1 9 36 50 13 0
10 1 10 45 70 23 0
11 1 11 55 95 37 0
12 1 12 66 125 57 1
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Proof. We first determinef (n, k) — f(n — 1, k), that is, the number of stacks
1<pi<pa<---<pk=n

in which the largest box is labeled Letg; = p; — y(i) fori =1, ..., k (cf. (31)), so that
0<q1<q2< - <gr =n —y(k).

Some of they; may be zero. The nonzero elements am@ng. ., gx—1 (if any) form a non-
squashing partition intp parts of some numbet between 0 ang,, where O0< p <k — 1.
Hence

fol—fn=Lk= " Y a(mp), (42)

m<n—y(k) p<k-1

and so

n T=y(k)

k-1
f =337 %" alm, p), (43)

p=0 1=k m=p

Eq. (41) follows when we collect terms.[]

References

[1] M.D. Hirschhorn, J.A. Sellers, A different view of m-ary partitions, Austral. J. Combin. 30 (2004) 193-196.
[2] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronichttp:ét
www.research.att.com/ ~njas/sequences/  , 2004.


http://www.research.att.com/njas/sequences/
http://www.research.att.com/njas/sequences/

	On non-squashing partitions
	Introduction
	Non-squashing partitions
	Non-squashing partitions into distinct parts
	Non-squashing partitions by number of parts
	Non-squashing partitions into k distinct parts
	Non-squashing partitions into distinct parts with largest part m
	Solution to the box-stacking problem
	Stacks with a given number of boxes
	References


