
CDMRI’08

September 10th, 2008

Kimmel Center, New York City, USA

http://picsl.upenn.edu/cdmri08

Editors:
Daniel Alexander (University College London, UK)

James Gee (University of Pennsylvania, USA)
Ross Whitaker (University of Utah, USA)

WORKSHOP ON

COMPUTATIONAL

DIFFUSION MRI





Preface

Over the last decade interest in diffusion MRI has exploded. The technique
provides a unique insight into the microstructure of living tissue and enables
in-vivo connectivity mapping of the brain. Tractography and connectivity
mapping give fundamental new insights in neuroscience and neuroanatomy.
Furthermore, microstructural changes or abnormalities are often the earliest
signs of disease or tissue regeneration, and thus diffusion MRI promises to
have an important clinical impact. The variety of clinical applications is
expanding rapidly and includes detection of lesions and damaged tissue,
prognosis of functional impairment and neurosurgical planning.

Computational techniques are critical to the continued success and de-
velopment of diffusion MRI and to its widespread transfer into the clinic.
New processing methods are essential for addressing issues at each stage
of the diffusion MRI pipeline: acquisition, reconstruction, modeling and
model fitting, image processing, fiber tracking, connectivity mapping, vi-
sualization, group studies and inference. This workshop, held under the
auspices of the 11th International Conference on Medical Image Computing
and Computer Assisted Intervention, MICCAI 2008, provides a snapshot of
the current state of the art and gives some insight into the future of diffusion
MRI analysis.

A highlight of the program is the invited presentations by two very
promising young investigators in the field, Thomas Fletcher and Saad Jbabdi,
to whom we are grateful for their participation. We are also indebted to
members of the Program Committee for ensuring the quality of the pre-
sented work, as well as chairing sessions, at the meeting. Gary Hui Zhang
deserves particular recognition for his management of the workshop website
and production of the electronic proceedings.

It is our distinct pleasure to welcome participants to CDMRI’08, and to
provide this record of the exciting work represented at the workshop.

September 2008 Daniel Alexander
James Gee
Ross Whitaker
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Estimation of the axonal radius from diffusion MR data
in directionally heterogeneous tissues

Rosario Sance1, Andrés Santos1, Marı́a J. Ledesma–Carbayo1, Timothy Behrens2, and
Saad Jbabdi2

1 Department of Electronic Engineering, Universidad Politécnica de Madrid, Madrid (Spain)
2 Center for Functional Magnetic Resonance Imaging of the Brain, Oxford, UK

Abstract. Diffusion-weighted Magnetic Resonance imaging is sensitive to self–
diffusion of water molecules, which in turn is influenced by tissue geometry and
composition. Recent models have attempted to relate the former to the latter, by
including microstructural properties such as axonal radius in the signal equation,
but the orientation of the axonal bundles was assumed to be known a priori. This
restriction limits the application of such models to locations where white matter
orientation is well defined, such as in the spinal cord. We present an extension
of a previously proposed model that includes directional heterogeneity in the dis-
tribution of axonal orientations, using a spherical harmonic decomposition. We
prove on simulations the feasibility of estimating the model parameters, includ-
ing axonal radius, both in directionally homogenous and heterogeneous tissue
configurations.

Key words: Diffusion imaging, tissue modelling, spherical harmonics, axon ra-
dius.

1 Introduction

Accessing micro-structural information about the in-vivo brain is crucial to our under-
standing of normal brain function, and its breakdown in disease. Diffusion weighted
Magnetic Resonance Imaging (dMRI) has the potential to provide access to some inter-
esting features of the microstructure. For example, the sensitivity of the diffusion MR
signal to tissue orientation has enabled neuroscientists to infer the orientation of white
matter fibre tracts from the in-vivo brain, and use this information to virtually dissect
cerebral large-scale connections [1]. Other local structural parameters influence the dif-
fusion signal. For example, the degree of myelination, the caliber or the packing of
axonal fibre bundles all are thought to influence the diffusion signal, by creating barri-
ers that hinder the random walk of water molecules [2]. The diffusion tensor model [3]
captures some of these features. For instance, the local orientation of white matter tracts
is captured by the principal eigenvector of the diffusion tensor. This property made the
tensor model extremely popular in the early days of tractography, the technique of trac-
ing white matter tracts in vivo using diffusion MR data. Other models have since then
been adopted to overcome some of the limitations of the tensor model for representing
fibre orientations, such as partial volume effects [4–6] or accounting for the uncertainty
in the estimate of the fibre orientations [7].
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The shape of the diffusion tensor has also provided useful information about the
local structure. The most common measures that are calculated from the diffusion ten-
sor, fractional anisotropy (FA) and mean diffusivity (MD) are so sensitive to clinical
pathology that dMRI is now the most popular technique for in-vivo research into white
matter diseases. Changes in FA and MD have been reported in numerous neurological
and psychiatric disorders (e.g. [8] for a review of applications in Multiple Sclerosis),
as well as in studies of brain plasticity in healthy subjects [9, 10]. However diffusion
tensor-derived measures are not very specific, as one may conclude from the plethora
of different diseases that show similar variations in diffusivity. Changes in MD and FA
are thought to be due to various biophysical features, but it is not clear to which extent.
When researchers witness a change in FA, they cannot specifically relate this change to
an underlying tissue parameter such as axonal geometry, or myelination. The ability to
measure such biophysical parameters in-vivo would clearly have an impact on clinical
research. This is the main motivation behind the current effort to develop models to
infer biophysical parameters directly from the dMRI data, taking the signal models a
step further.

Models for restricted diffusion in various tissue geometries have been proposed
since the early days of diffusion imaging [11–13], relating the measured MR signal to
geometrical characteristics of the medium. The most interesting model for the diffusion
in white matter was the model for restricted diffusion in cylinders (e.g. [12]). Assaf
and colleagues [14] transposed this model to diffusion in brain tissues. They proposed
a model where diffusion within a brain voxel was a mixture of hindered (tensor-like)
and cylindrically restricted diffusion, including thereby the axonal radius in the signal
model. They have shown on ex-vivo data that the axonal radius can be estimated with
a great degree of accuracy. A recent analysis in [15] has shown the feasibility of such
experiments in-vivo, provided an optimised choice of the scanning parameters.

A crucial assumption in Assaf’s model was that the orientation of the tissues (axon
bundles) was fixed and known a priori. This meant that their experiments could only be
made on locations where white matter bundles had a known homogenous orientational
structure, such as in the spinal cord. Here we propose to extend this approach to account
for variability in the orientation of axonal fibres. We used a spherical harmonic (SH) de-
composition to model the distribution of axonal orientations whitin a voxel [16]. This
is an important advance since it would potentially allow us to estimate axonal diame-
ter distributions throughout the whole brain white matter, where orientation is a priori
unkown, or heterogenous within a voxel (i.e. crossing fibres), or even within the grey
matter.

2 Methods

2.1 Two-compartments model

The diffusion model proposed in [14] consists of two non-exchanging compartments
related to two different diffusion processes occurring within a voxel: an extra–cellular
compartment with hindered diffusion and an intra–cellular compartment with cylindri-
cal restricted diffusion. The overall signal is the sum of the contributions from both
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compartments:
S = S0 [(1− ν)Sh + νSr] , (1)

where ν is the intra-cellular volume fraction, S0 is the diffusion signal value when no
pulsed gradient is applied.

As in [17], we model hindered diffusion in the extra-cellular compartment as an
isotropic gaussian diffusion, i.e. a mono-exponential diffusion signal with scalar dif-
fusivity d. Hinderance in this compartment reflects the tortuosity of the extracellular
matrix, as well as increased viscosity inside glial cells or the imposed by cell mem-
branes. In the case of a standard spin-echo experiment, the signal equation writes:

Sh = exp
{
−td|q|2

}
, (2)

where t = ∆ − δ/3 is the effective diffusion time, q = γGδ is the diffusion wave
vector when a gradient G = Gn̂ of duration δ is applied, and ∆ is the diffusion time.
The second compartment models diffusion within infinite cylinders with equal radii R
and impermeable walls. Restricted diffusion within a single cylinder decomposes into
the product of parallel and perpendicular diffusion components:

Sc = Sc⊥Sc‖, (3)

We use the same expressions for Sc⊥ and Sc‖ as in [15], which we rewrite here for
clarity:

Sc‖ = exp{−tdq2‖}

Sc⊥ = exp{−2
q2⊥
δ2
F(d,R, δ,∆,G)},

(4)

where q⊥ and q‖ are the components of the wave vector q across and along the cylin-
der axis respectively. F(d,R, δ,∆,G) is a function that accounts for cylinder geome-
try (through R), medium effective diffusivity (d), and NMR experimental parameters
(δ,∆,G) to create the restricted component of the signal [12]. Intuitively, it results from
an analytical derivation of the Fourier transform of a truncated gaussian diffusion pro-
file, when the truncation occurs within a cylindrical geometry.

2.2 Spherical convolution

Finally, the contributions of each cylinder are summed up to give the signal from the
restricted compartment. Denoting f(θ, φ) the spherical distribution of axonal orienta-
tions, the restricted component writes:

Sr(q) =
∫∫

f(θ, φ)Sc(q) sin(θ)dθdφ. (5)

In order to estimate the distribution of axon orientations f(θ, φ), we represent it using
a –truncated– spherical harmonic decomposition:

f(θ, φ) =
L∑

l=0

L∑
m=−L

flmYlm(θ, φ). (6)
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Estimating the distribution f(θ, φ) will then simply consist of estimating the coeffi-
cients flm in the spherical harmonics basis. Following developments similar to [17],
equation (5) writes:

Sr(θ′, φ′) = πe−
2|q|2F
δ2

∑
lm

flmCl

(
|q|2(td− 2F/δ2)

)
Ylm(θ′, φ′). (7)

In the above equation, (θ′, φ′) indicate the orientation of the diffusion gradient G, and
Cl is a function that results from convolving the signal from a single cylinder with one
basis function. A formula for Cl(x) can be found in [17].

2.3 Inference

Model parameters were estimated using Bayesian inference. We used Metropolis Hast-
ings, a variation on Markov Chain Monte Carlo (MCMC) algorithms, to get samples
from the posterior distributions on all model parameters. The noise model was consid-
ered to be Rician with unknown variance that was also estimated from the data. We
used uniform priors on S0, R and ν and broad gamma priors for d and the noise vari-
ance. MCMC was run for 80000 iterations, with a sampling rate or one every 400 after
a burn–in period of 40000 jumps to attain convergence, yielding 100 samples from the
marginal posterior distribution on model parameters.

3 Results and discussion

3.1 Simulated signals

We have simulated data that could potentially be acquired in vivo, i.e. constrained by the
limits of the current hardware in MR scanners and acquisition time. Gradient strength
was set to G=70mT/m, and the duration of the diffusion gradients to δ=12ms. We used
a combination of diffusion factor values b-values and diffusion gradient orientations
in order to have a good balance between capturing the features of the signal related
to tissue orientation on the one hand, and to cylindrical restriction on the other hand.
The latter results in a non-exponential decay that can be captured if one uses a range
of b-values. One hundred and twenty data points were generated, consisting of ten data
points with no diffusion weighting, and eleven sets data points with diffusion weighting.
Each of these sets consisted of ten data points with a diffusion gradient oriented along
one of ten random orientations. The full set of 110 orientations was chosen to yield an
even coverage of the sphere. The b-values were gradually increased from 1000 to 5000
s/mm2, by increasing the diffusion time ∆. Figure 1 pictures this scheme, representing
each gradient orientation with a stick in a sphere. The length of the sticks is proportional
to the b-value applied along this orientation.

Data were simulated using a Rician noise with a SNR of 30. Three tissue configu-
rations were simulated, by varying the fibre orientation distribution f(θ, φ): isotropic,
single fibre and crossing fibres. Moreover, the experiment was repeated with five differ-
ent axon radius values ranging from 1µm to 20µm. We chose a diffusivity value of d =
10−3mm2/s and a intra-cellular volume fraction of ν = 0.7.
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Fig. 1. Representation of the diffusion gradient scheme used for the simulated data.
Each stick shows the diffusion of a diffusion gradient. The length of the sticks is pro-
portional to the applied diffusion factor value b.

3.2 Posterior distributions

Figure 2 shows the histograms of the marginal posterior distributions on model pa-
rameters given by MCMC sampling. Overall, the estimation of the axon radius is very
accurate for all tissue configurations, except for small radii (as predicted also by the
simulations made in [15]). We note also that the estimation is overall more accurate, i.e.
the variance of the posterior distribution is smaller, for the crossing fibre scenario than
for an isotropic tissue model.

4 Conclusions and future work

Many publications have previously dealt with ex–vivo experiments and excised tissue
for estimating brain tissue microstructural features. We tackle here the same problem
with simulations mimicking in–vivo protocols. We extended a previous white matter
diffusion model by implementing the orientation distribution function of the cylinders
modeling the axons. A single value for the axon radius has been assumed per voxel. In
the future, this can easily be extended to a distribution of axonal radii.

Our inference results based on simulated datasets with realistic SNR illustrate the
potential of such a method in estimating microstructural tissue parameters like the axon
radius and orientation in the whole brain, including crossing fibre areas and grey matter.
In order to extend these results to the clinical practice, further work on real data is
required for validation, e.g. via a direct comparison with histology.
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Fig. 2. Histograms of the posterior distribution on model parameters using MCMC sam-
pling. (a) axon radius, (b) diffusivity, (c) relative size of the restricted compartment.
Colours indicate different axon radii. Columns from left to right: isotropic, single fibre
and crossing fibres.
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A tissue model of white matter undergoing
tissue swelling

Matt G Hall1 and Daniel C Alexander1

Centre for medical image computing (CMIC)
Department of Computer Science.

University College London, Gower Street, London, WC1E 6BT, UK.
m.hall@cs.ucl.ac.uk

Abstract. We describe a model of oedema in white matter. White mat-
ter is modeled as parallel cylinders with radii chosen from a gamma dis-
tribution fitted to histological images. Cylinders expand due to the onset
of oedema and are allowed to deform due to pressure from neighbours.
Cylinders that would overlap are deformed along the chord of intersec-
tion, which allows cylinder deformation and abutment to be handled
explicitly. Diffusion is modeled as a set of spins executing Brownian mo-
tion and reflected by the walls of the cylinders.

We synthesise diffusion-weighted measurements and compare them to the
predictions of an analytical model of diffusion in parallel cylinders based
on the CHARMED model. We find that the diffusion-weighted signal
increases more rapidly when the effects of abutting cylinders are taken
into account and that the effect is of sufficient magnitude potentially to
be detectable in vivo.

1 Introduction

Diffusion-weighted MR Imaging (DWI) measures the diffusive motion of water in
vivo in the direction of an applied magnetic field gradient. Particle scattering de-
pends on the tissue microstructure, and diffusion MRI supports inferences about
the underlying microstructure. For example, diffusion tensor imaging (DTI) [1]
fits a diffusion tensor to six or more diffusion-weighted images on the assumption
of Gaussian-distributed water-molecule displacements. The principle direction of
the diffusion tensor provides an estimate of white-matter fibre orientations. Trac-
tography techniques follow the principle direction point-to-point through the
image to reconstruct macroscopic fibre trajectories and infer brain connectivity.
These techniques have emerged as powerful tools for probing both anatomy [2,
3] and pathology [4].

One of the first and most successful clinical applications of DWI is the di-
agnosis of ischemic stroke. In the long term, ischemic insults result in a loss of
structure in tissue and an increase in the observed diffusivity in the region of the
lesion [4]. This change in diffusion contrast had been shown to be more sensitive
than other forms of imaging [5]. The model presented here can be applied to
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any type of white matter oedema, but we will concentrate on comparisons with
acute ischemia.

Interestingly, the short term behaviour of the diffusivity in the region of the
lesion is markedly different to the longer term. In the first 4 hours after ischemic
insult, the diffusivity falls, indicating reduced diffusion during this period [5].
The reason for this reduction in diffusivity is not clear, and one mechanism
that has been suggested is that tissue swelling leads to a reduced extracellular
volume fraction, and hence a reduced contribution to the overall signal from the
less restricted extracellular compartment.

Benveniste et al [6] and VanGelderan et al [7] model the changes using a
fast-exchange two compartment model:

ADC = VIDI + (1− VI)DE (1)

where VI is the intracellular volume fraction and DI and DE are the intra- and
extracellular diffusivities respectively.

Halpern [8] proposed a tissue model of periodic array of cell membranes in
which membrane permeability decreases in the aftermath of ischemia, although
Szafer [9] points out that this model overestimates the influence of these mem-
branes on observed ADC. They point out that at long diffusion times the ex-
tracellular space can be modeled using a tortuosity approximation. The effect
of tissue swelling leading to increased tortuosity in the extra cellular space was
explored by Norris [10] and Latour [11].

Synthetic diffusion weighted data provides the facility to explore the effects of
various pathological scenarios on the measured diffusion-weighted signals. Here
we model swelling white matter tissue and explore the changes in diffusion signal
as swelling occurs.

We generate synthetic data in two ways: using an analytical model similar
to the CHARMED model [12] in which white matter is modeled as a collection
of parallel cylinders with controlled volume fraction, and also in a Monte-Carlo
model. In the Monte-Carlo model tissue is modeled as parallel cylinders with
distributed radii, but here cylinders are allowed to deform and abut when their
edges touch.

As cylinders increase in size, clusters of mutually abutting cylinders begin
to form. As swelling continues these clusters join together and rapidly form a
system-spanning cluster that segments the extracellular space into two, greatly
increasing restriction to diffusion. This effect is known as the percolation thresh-
old and we observe that the formation of such clusters has a large effect on the
observed diffusion-weighted signal over and above that due to reduced extracel-
lular volume fraction due to cell swelling.

The rest of this paper is structured as follows. Section 2 discusses previous
data synthesis models (section 2.1). Section 3 discusses the tissue models used
here in detail. Section 4 describes the experiment performs and presents results,
which are discussed in section 5.
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2 Background

This section briefly reviews diffusion imaging as well as previous work on gener-
ating synthetic diffusion-weighted MR data.

2.1 Models of diffusion-weighted MR data

Models of the diffusion process in various tissues have been used to gain insight
into tissue structure by providing ground truths to validate diffusion MR analy-
ses, or fitting to a set of experimental results to measure a parameter of interest.
Models in the literature fall into two broad categories: analytical, in which some
solution or approximate solution of the diffusion equation in an environment
reflecting tissue structure is used to generate diffusion-weighted signals, and nu-
merical whereby either the diffusion process is simulated directly with a chosen
tissue model or numerical solutions to the diffusion equation are obtained.

Analytic models typically use either an assumed form for diffusion particle
displacement profile such as a Gaussian or mixture of Gaussians (e.g. [13][14]
[15]) or a solution or approximate solution of the diffusion equation in restricted
geometries [16][17][18] to generate diffusion-weighted measurements. More com-
plex models use a combination of these to construct a more complex tissue model
[12][19].

Numerical approaches allow more complex tissue models. Lipinski [20] uses
a two-dimensional Monte-Carlo diffusion simulation with a tissue model derived
from light microscopy images. Hackney and coworkers [21][22] construct three-
dimensional tissue models by extruding a segmentation of a 2D light-microscope
image and obtain synthetic data in a different way by solving the diffusion equa-
tion within the model using a finite-difference approach.

In the current work we construct and compare two models of data synthe-
sis: an analytical model, which incorporates a scheme for generating synthetic
measurements that takes finite gradient pulse widths into account, and a Monte-
Carlo model of spins executing Brownian motion in the presence of reflecting
barriers.

3 Models of white matter tissue

This section describes the numerical tissue model and the analytical model used
for comparison.

3.1 Swelling white matter tissue with deformation and abutment

We model diffusion in an environment where fibre radius increases due to tissue
swelling. The initial, unswollen, substrate contains 100 cylinders with radii drawn
from a gamma distribution

P (x; k, θ) =
xk−1e−x/θ

Γ (k)θk
(2)
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with scale parameter k = 6.91 × 10−6m and shape parameter θ = 2.331. These
values are obtained by fitting a gamma distribution to the histograms of axon
radii in Aboitz et al [23] (fig-4, mid-body). The cylinders are positioned within a
cubic region of space 3.65× 10−5m on each side. Initially, (i.e. prior to swelling)
cylinders are guaranteed not to touch. In order achieve the desired positioning,
the algorithm for placing cylinders proceeds as follows:

1. Draw 100 radii from the gamma distribution
2. Sort them into descending order
3. Starting with the largest, for each cylinder

(a) Choose a random position for the cylinder on the substrate
(b) If the cylinder position overlaps the edges of the voxel, create copies that

overlap the opposing edge(s) to ensure periodicity of substrate (see fig-1)
(c) If the new cylinder or any of the copies touches or overlaps any other

cylinder that has been already placed, discard and return to 3(a)
4. Add new cylinder plus copies to the substrate

Care must be taken when cylinders overlap the edges of the substrate. In this case
(step 3(b)), duplicates of the placed cylinder are added on the opposite side(s) of
the substrate. These duplicates are also checked for overlaps with other cylinders
and are included in checks for subsequently placed cylinders. This ensures that
the substrate is periodic. Fig-1 shows the periodic unit cell (square) and the
positions of the cylinders and copies ensuring periodicity at the boundaries.

Using this procedure it is possible to achieve biologically relevant intracellular
volume fraction VI ' 0.7 [24].

Tissue swelling is simulated by iteratively enlarging the cylinders on the
substrate. Cylinder radii are enlarged by an amount proportional to their volume
(in line with Boyle’s Law). Since their positions are not altered, larger radii
will inevitably lead to overlaps between cylinders. Overlapping cylinders are
deformed along the chord of intersection in the plane of cross section so that
they abut. The substrate is updated in each swelling iteration as follows:

1. Generate a radius increment ∆rj for each cylinder proportional to initial
volume

2. For each cylinder position j:
(a) Using the cylinder positions obtained in the initial placement phase,

replace the cylinders at each position with an new one of radius rj =
r0,j + i∆rj where i is the swelling iteration number, i = 0, ..., 9 or the
current radius if cylinder has stopped expanding.

(b) Check if the new cylinder intersects any that are already placed. If yes,
find the chord of intersection and use it as the deformed surface of the
two cylinders (See fig-2).

(c) If the angle of intersection (i.e. the angle subtended by the chord of
intersection, see fig-2) between two cylinders is greater than 90◦ in either
one, stop both from expanding in subsequent iterations.
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Fig. 1. Cross-section of non-overlapping parallel cylinders with gamma distributed
radii. Additional cylinders are added to ensure periodic boundaries to the voxel. The
square illustrates the boundaries of the voxel. Within the square, the pattern of cylin-
ders tiles exactly in the plane.

Fig-3 shows the cross section of a substrate with cylinders positioned using
this method, and the changes that occur as the cylinders swell. Rapidly, the
extracellular space becomes divided by a continuous barrier of deformed circles.
This is known in the statistical mechanics literature as the percolation threshold
[25].

As swelling continues, the extracellular space becomes increasingly segmented
into smaller and smaller regions in which diffusion is restricted rather than hin-

Fig. 2. Cylinder deformation scheme. Cylinders that would otherwise intersect are
deformed along the chord of intersection (left). Chords that intersect each other are
shortened accordingly. Cylinder swelling is limited by the angle of intersection (right).
If either angle is greater than 90◦ both cylinders stop expanding.
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Fig. 3. Cross-section of cylinders, degree of swelling increases across rows. As cylinders
swell, number of cylinders deformed due to overlaps increases (these abutting cylinders
are shown in red). At the third iteration the intersections form a complete barrier,
segmenting the external space. As swelling continues to increase, the extracellular space
becomes highly restricted (green). Eventually green regions become very widespread.

dered. This additional restriction leads to a more rapid decrease in ADC (i.e.
increase in diffusion-weighted signal) than would be the case for a simple increase
in VI .

The segmenting effect of overlapping cylinders is not captured in the ana-
lytical model and so any differences in predictions of the two models will be an
indication of the importance of this mechanism.

3.2 Analytical model

Similar to the CHARMED model [12], this model treats the diffusion environ-
ment as a two-compartment system: an intracellular compartment for which the
signal is synthesised using the solution of diffusion in a cylinder from [26] and
an extra cellular compartment with a tortuosity factor that models hinderence
from the presence of cylinders.

Cylinder radii are gamma-distributed using the same parameters as in the
main tissue model. Cylinders walls are of zero thickness and permeability is set
to zero. We assume free diffusivity parallel to cylinders. Diffusion in the extra-
cellular compartment perpendicular to cylinders is modeled using a tortuosity
approximation. The tortuosity approximation uses a model from Szafer et al
[27] for diffusion around randomly placed cylinders. It sets an effective diffusion
constant

DE =
d

λ2
(3)
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where d is the free diffusivity and λ2 is the tortuosity given by

1
λ2

=
{

(1− VI) perpendicular to fibre direction
1 parallel to fibre direction (4)

The total analytic synthetic signal is

S = VESE + VISI (5)

where
SE = exp (−bDE) (6)

is the signal from the external compartment, SI is the signal from inside the
cylinders and VE = 1− VI is the extracellular volume fraction.

There is no explicit notion of cylinder overlap in the intracellular compart-
ment. Cylinder radius and volume fraction may increase, but the tortuosity ap-
proximation assumes that the extracellular space remains completely connected
(i.e. every location in the extracellular space is reachable from every other, albeit
via a tortuous path).

4 Experiments and Results

Diffusion-weighted measurements are synthesised using the Monte-Carlo simu-
lation method outlined in [28]. A simulation of 100000 spins and 1000 updates
at each iteration of the tissue model. We repeat this 30 times with different
substrate realisations and random number generator seeds. Spin positions are
initially drawn from a uniform distribution across the unit cell defined by the
tissue model.

We compare the Monte-Carlo synthesised data with that from the analytic
model from section 3.2. Fig-4 shows the normalised diffusion-weighted signal
predicted by each model accompanied by the number of abutting cylinders in
each iteration of the tissue model. We see that in the first iteration in which
cylinders are well-separated there is good agreement between the models. As
the number of intersections increases and the extracellular space is increasingly
segmented the signal predicted by the Monte-Carlo model increases more quickly
than that from the analytical model.

5 Conclusions

The tissue model presented here captures the effect of a segmented extracellular
space due to cylinder swelling. This is difficult to capture analytically, and is an
example of how a detailed numerical model can be useful.

We observe that the differences in the predictions of the two models is of
a magnitude that should be detectable in vivo. Since the segmenting of the
extracellular space leads to regions aligned with the cylinder axis, it should
also introduce additional anisotropy into the diffusion signal, and the reduction
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Fig. 4. Normalised diffusion-wighted signals perpendicular to cylinder axes as a func-
tion of intracellular volume fraction and number of abutting cylinders. We observe
good agreement between more in the absence of abutments, with the signal from the
Monte-Carlo model increasing faster than that from the analytical model, which does
not include abutting cylinders
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in diffusivity (i.e. increase in normalised diffusion-weighted signal) should be
accompanied by an increase in fractional anisotropy. It would be interesting to
see if this is observed in patients.

One shortcoming of the current framework is that there is no notion of time
between successive swelling iterations (although time is well-defined within each
simulation and the substrate is assumed to be static during the diffusion simu-
lation), hence it is not possible to make predictions regarding the timescales of
swelling. However it is possible to predict that FA should be maximum when
normalised diffusion-weighted signal is maximum, and indeed a sharp peak in FA
occurring at the same time as the minimum in diffusivity is observed by Sotak
[5] in white matter tissue.

In future work, we hope to increase the complexity of the tissue model by
incorporating tissue models based on confocal laser microscopy image stacks
of excised white matter tissue and emulating tissue swelling in the images. By
performing an ex vivo DWI acquisition prior to microscopy, this also provides
a powerful way to validate the results of the simulation on the derived tissue
model.
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Diffusion MRI and on Time Correlations
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1 Introduction

Diffusion MRI makes measurements on a relatively large voxel scale (∼5–20 mm3)
compared to the underlying mechanism which takes place at a microscopic level
(∼ µm). However, the measurements are sensitive to features of tissue mi-
crostructure that is consistent over the macroscopic voxel. For example, the
microscopic observations show a clear orientation dependence in tissue with
anisotropic microstructure, such as white matter in the brain. Although the ex-
act transition from microscopic to macroscopic is not perfectly understood [1],
it is clear that the local cellular structure plays an important role [2]. Models of
the microstructure can help the interpretation of diffusion MRI measurements
and allow inferences of important microstructural features such as cell size and
density [3,4,5].

Here, we investigate the influence of pore shape on particle scattering through
diffusion. In particular, we derive a general framework to compute the displace-
ment probability density function and related quantities such as time correlations
of functions, which lead to models for the diffusion MRI signal from particles
restricted in these environments. We reduce most quantities to arrays of shape
invariants. Most of these shape invariants can be related to classical computa-
tions, often going back to the 19th century, on eigenmodes of shapes [6,7,8].
Our approach has strong links with Codd and Callaghan’s work on matrix de-
scriptions for spin echo experiments with general gradient waveforms [9]. We
generalise these matrix terms and show that most correlations can be expressed
as elegant functions of generalised centroids.

According to Einstein’s relation, the observed diffusion tensor components,
in free space, are proportional to time correlations of spatial coordinates. In
a restricted space, the time dependence will change, and will depend on the
restriction properties. If we are able to sample this function at different diffusion
times, and we know the theoretical time and shape dependence, we may be able
to fit the observations, and thus deduce shape parameters. These ideas have
lead to the recent trend in diffusion MRI towards estimating direct features
of microstructure, such as cell size and density, see for example [3,10,5]. The
framework we develop here provides a general method to obtain models for
future techniques of this type.
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2 Theory

Notations and Background We consider idealised cells, or pores, denoted Ω.
These are domains in D-dimensional space. In general D = 3, but for cylindrical
domains D = 2 is also of interest. A point in Ω is denoted r, and we consider
diffusion processes of water molecules in Ω, P (r0, r, t0) is the probability of
starting at r0 and reaching r at time t.

Without restrictions, the water molecules bounce against each other, with
a kinetic energy dependent on temperature. Under no external influence, the
average position as function of time should not change. Einstein’s relation gives
a formula for the mean squared distance, and the main result is that 〈r2〉(t)
is proportional to t. The proportionality constant is the diffusion constant D.
In an anisotropic substrate, we would have 〈xixj〉(t) =: Dijt, which defines the
diffusion tensor in free space.

By microscopic, we mean effects (spatial and temporal) which take place
inside Ω without being affected by the boundary. At a mesoscopic scale, some
molecules having started at r0 will reach the boundary. Depending on the type
of boundary, some will be reflected, some absorbed. Consider for example a
perfectly reflecting boundary. In this case, the molecules will be more likely
to be near the centre, and the mean position drifts towards the centre. At a
macroscopic scale the effect of the starting position will have been forgotten,
and in the long time limit the mean position will be the centre of the domain.
In our computations below we show how to establish an exact time and shape-
dependent formula for this function. This also takes into account the boundary
permeability.

We define the apparent diffusion functions Dij(t, Ω) := 〈xixj〉Ω(t0, t0 + t)/t.
Thus, when Ω is the entire space, Dij is independent of t. In a Diffusion MRI
context, we want to extract information on Ω by sampling this function at dif-
ferent times, see also [5,10] for more details on the MRI foundations of this idea.
Here, we make the shape dependence of general correlation functions explicit,
by writing them in terms of shape invariants. In particular we show how most
terms can be written in terms of ’generalised centroids’ for reflecting boundary
conditions. This gives us a flexible and intuitive way to incorporate shape infor-
mations. The shape invariants are related to eigenmodes of the Laplace operator
for that shape (as in [9]), and these define natural time-scales. Our method gen-
eralises and explains the formulas provided by Neuman [11]. We provide some
explicit formulas for basic important shapes where this is possible to illustrate
further the power of the method.

2.1 Time Correlations

Solution of Diffusion Equation Let

∂tP (r, r0, t) = D∆P (r, r0, t) on Ω (1)
P (r, r0, 0) = δr0(r) Start at r0 (2)
BP |∂Ω = 0 (3)
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B is the boundary condition operator. Standard boundary conditions are BP |∂Ω =
P |∂Ω for Dirichlet boundary condition (absorbing boundary), or BP |∂Ω = ∂nP |∂Ω
for Neumann boundary condition (reflecting boundary). Robin boundary con-
ditions P + p∂nP = 0 are a mixture of both, which may model semi-permeable
boundaries.

A classical result (see e. g. [7] and references therein) is

P (r, r0, t) =
∑
k

wk(r0)wk(r)eDλkt.

where wk is the k − th eigenfunction of the Laplace operator on Ω, and λk the
k-th eigenvalue [7,8,12]. The eigenfunctions form an orthonormal basis of L2(Ω).

Expectations We pick functions φi(r) i = 0 . . . N on Ω. These functions are as-
sumed to be measurements performed on the tissue. They could be coordinates,
or q−space harmonics. We are interested in the time correlations 〈φ0 · · ·φN 〉Ω(t0, . . . , tN ),
which model the temporal behaviour of these measures, where as model experi-
ment we could have for example a DT-MRI experiment interpreted as sampling
second order spatial correlations as function of diffusion time ∆. We have

:=
∫
Ω

dr0φ0(r0)
∫
Ω

P (r1, r0, t1)φ1(r1) dr1 · · ·
∫
Ω

P (rN , rN−1, tN )φN (rN ) drN

=
∑

k0,...,kN

e−
PN

j=0 λkj
tj

∫
Ω

φ0(r0)wk0(r0)dr0

∫
Ω

wk0(r1)wk1(r1)φ1(r1) dr1 · · ·∫
Ω

wkN
(rN )wkN

(rN−1)φN−1(rN−1) drN−1

∫
Ω

wkN
(rN )φN (rN ) drN

=
∑

k0,...,kN

e−
PN

j=0 λkj
tjSk0(φ0)Ak0k1(φ1) · · ·AkN−1kN

(φN−1)SkN
(φN )

where we have introduced the arrays Akl(φ) =
∫
Ω
wk(r)wl(r)φ(r) dr and Sk(φ) =∫

Ω
wk(r)φ(r) = (φ,wk)Ω . These shape invariants are the fundamental tools of

our computations. The array S is the array of L2 coefficients of the measurements
in the L2-orthonormal basis of eigenmodes. We chose this notation so as to be
consistent with Codd and Callaghan, where they treat the special case where
measurements are spatial modes φ(r) = e−2πiqtr. The time correlation can thus
be written in terms of these arrays using standard linear algebraic operations
(traces, matrix products etc).

It is possible to make some generic statements from spectral geometry :

1. Only for reflecting boundary condition, 0 is an eigenvalue for the constant
function 1/|Ω| where |Ω| is the area or volume of Ω. It follows that

∫
wk = 0

for k > 0. Otherwise all terms decay exponentially with time.
2. For k → ∞, we have Weyl’s asymptotic formula [7]: λk ∼ 2πk/|Ω|. Here
λk means the k-th eigenvalue when they are sorted by magnitude. Thus for
large k the eigenvalues give information on the area.
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3. Eigenfunctions have symmetries associated to that of the domain. Special
symmetric shapes are extremal among classes of domains, and eigenvalues
usually multiplicity larger than 1, and alternate numbering systems may be
used.

Special Cases. We are now in position to answer more exactly the questions
raised in the introduction. We first go back to the first order averages:

1. The average position 〈r〉Ω(t) for a starting distribution φ0(r0) satisfies

〈r〉Ω(t) =
∑
k

e−λktSk(φ0)Sk(r)

For a uniform starting distribution, and reflecting walls, wk = δk0/
√
|Ω|,

and we confirm the intuition that 〈r〉Ω(t) = r̄, the centroid, independently
of time. If the starting position is known to be p0, the starting distribution
is δp0(r0), and 〈r〉Ω =

∑
k e
−λktr̄kwk(p0). Here r̄k := Sk(r) =

∫
Ω

rwk(r) is
the weighted centroid using the k-th eigenmode, let us call it the k-mode
centroid. We see how the different eigenmodes contribute to the time de-
pendent shift from the centroid. Note that the wk are not pure probability
distributions.

2. The average second order correlation 〈r·r〉Ω(t1, t2) is
∑
kl SkAkle

−(λkt1+λlt2)S̄l.
For reflecting boundary conditions and uniform starting estimates, we can
simplify further to

D(t, Ω) =
∑
l

e−λltr̄lr̄l. (4)

3. The k-mode centroids are related to derivatives at zero of q-space measure-
ments: ∂q|q=0

∫
w(r)e−2πiqtr ∝

∫
w(r)r.

These computations confirm the intuitions for zero or very large time, but are
particularly of interest for the mid-range in highlighting how via the eigenmodes
the shape and boundary conditions influence the time behaviour. The formulas
are valid for any domain shape. Thus, for each shape, we just need to compute
the shape invariants Sk, Akl, r̄k.

2.2 Eigendecomposition of ∆ on some domains

Here, we want to investigate how the shape explicitly influences the shape in-
variants cited above. It is possible to give explicit or semi-explicit formulas for
eigenmodes in some cases. We essentially use results from spectral geometry for
our own purposes [8,7].

The general idea is again of separation, as the general diffusion equation
was solved by separation in eigenmodes. By separation of variables, the PDE is
transformed in multiple ODEs which have standard solutions. The variables can
usually be found by a transformation in orthogonal curvilinear coordinates (see
Appendix). We consider two and three-dimensional examples, the two dimen-
sional ones also represent cylinders. Usually this results in a different indexing
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than the standard one by eigenvalue magnitudes, and the multiplicity of eigen-
values is related to the symmetry.

1. Rectangles, parallelepipeds: we use Cartesian coordinates such that the rect-
angle with side length a, b has boundaries at x = 0, a and y = 0, b. Writing
w(x, y) =: u(x)v(y) the eigenmode equation can be transformed into vu′′ +
uv′′ + λuv = 0 and for reflecting boundary condition u′(0) = u′(a) = 0 =
v′(0) = v′(b). The eigenmodes are then wmn(x, y) := 2√

ab
cos(πn/a) cos(πm/b)

with eigenvalues π2(n2/a2+m2/b2). The standard magnitude based indexing
is replaced by a more appropriate. From this we easily get that generalised
centroids are

x̄mn = − 4
π2

δn,0δm|2,1

m2

a2

√
ab

ȳmn −
4
π2

δm,0δn|2,1

n2

b2√
ab

(5)

From this by using the general formulas above, we get an explicit expression
for the mean position as function of time, as well as for the second order
correlations. From this we recover formulas for P such as the ones in [11].

2. Disks, spheres: the Laplace operator in spherical coordinates is

∂2
r +

D − 1
r

∂r +
1
r2
∆S

where ∆S is the angular Laplace-Beltrami operator. We separate into radial
and angular variables: w(r, e) = u(r)v(e) where e is a point on the sphere
or circle. Then the eigenvalue equation becomes(

∂2
r +

D − 1
r

∂r +
1
r2
∆S

)
uv = λuv (6)

(7)

the right hand side depends only on r, meaning that ∆Sv
v must be indepen-

dent of e, thus ∆Sv = µv, in other words v is an eigenfunction on the sphere
or circle. These are the spherical harmonics in 3D, or cosqθ, sin qθ in 2D, the
periodicity imposes µ = q an integer. In 3D, the constants are µ = l(l + 1).
The equation in u

u′′ +
1
r
u′ + (

1
r2

(q2 − r2λ)u = 0 (D = 2) (8)

u′′ +
2
r
u′ + (

1
r2

(l(l + 1))− r2λ)u = 0 (D = 3) (9)

is Bessel ’s differential equation D=2, Eq. 8spherical differential equation
D=3, Eq. 9. The solutions are spherical Bessel functions jn(r), which are
standard Bessel functions weighted by 1/

√
r (hence the terms in [11]). For the

generalised centroids, we need integrals such as
∫ R
0
r2Jp(zpqr) dr

∫
Pn(cos θ) cos θ sin θ dθ =∫ 1

−1
Pn(y)y dy etc, which can be found in standard integral tables, for which

we refer to the appendix for some (see also [13], p. 516–518). We give here
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explicit formulas for the 2D example, as three dimensional formulas would
take too much space, and the cylindrical cases are of special interest. Again,
eigenmodes are re-indexed in terms of pairs of indices, the angular index q,
and the radial index p, zqp is the p-th zero of the qth Bessel function Jq (see
Fig. 1).

λqp =
z2
qp

R2
; cqp(r, θ) =

2
π1/2RJq+1(zqp)

cos(qθ) · Jn(zqp
r

R
); (10)

λqp =
z2
qp

R2
; sqp(r, θ) =

2
π1/2RJq+1(zqp)

sin(qθ) · Jq(zqp
r

R
) (11)

The generalised centroids are thus

x̄qp =
2π√
π

J1(z1p)
J2(z1p)

R2

z2
1p

δq1 ȳqp =
2π√
π

J1(z1p)
J2(z1p)

R2

z2
1p

δq1 (12)

Fig. 1. Zeros of J ′1(z), as computed from [14] http://iris-lee3.ece.uiuc.
edu/~jjin/routines/routines.html converted to Matlab (The MathWorks)
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?
objectId=6218 routine mjdzo.m. Blue line shows J1(z) and the red stars are
J1(z1p)

3. Ellipses and Ellipsoids. In two dimensions, we can introduce elliptical coor-
dinates, and the equation again separates in a ’radial’ and and ’angular’ part
(see Appendix). Both equations are Mathieu equations. As for the disk, the
periodicity conditions on the radial part imposes that solutions exist only
for integer-indexed characteristic values. These are not anymore separated
from the radial constant. A noticeable feature of these eigenmodes is the
existence of different types, called ’whispering gallery’ modes which concen-
trate around the boundary Details are described for example in [6,15]. In
three dimensions, we can use ellipsoidal coordinates. This leads to Lamé
equations, and ellipsoidal harmonics see for example [16]. These have found
applications in MRI shimming [17], but again formulas for them would run
beyond the allocated space.
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3 Numerical Results

In this section we show explicit eigenmodes, and the derived quantities.

Simulation on a disk. Here we perform a simple simulation of a random walk in-
side a disk with reflecting boundaries (1 mio time steps, starting position [5/6, 0],
fixed spatial steps R/100), and record the average position of the centroid of the
points as function of time. We also plot the second order correlations. Results
are shown for different time-scale. With this experiment we aim to demonstrate
the shape dependent behaviour of the time curves. The disk was chosen for its
simplicity. Reflecting boundaries are easy to compute, and the shape depends
on a unique parameter. Note that we have one experiment, from a fixed starting
position p0 (Fig. 2).

Fig. 2. Random walk starting at p0 := (5/6, 0) inside a disk of radius 1 (above),
with their centroids (below). From left to right, after 10N steps, for N = 3, 4, 5, 6

Comparisons of spectra. Here we compare the spectra of some symmetric and
less symmetric shapes, and show how they characterise the geometry (see Fig. 3).
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Fig. 3. Spectra of rectangular shapes for different side-lengths a, b: blue-(1,1),
red– (1,2), green-. (1:3).
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Apparent Diffusion Functions Here we illustrate second order correlations. Fig. 4
shows the values computed purely numerically from the simulations above.

Fig. 4. Second order correlations from the simulations Fig. 2. First row Dxx(t)t =
〈xx〉, second row Dyy(t)t = 〈yy〉 third row Dxy(t)t = 〈xy〉, at the same time scales
as Fig. 2.

4 Discussion

Our analysis describes a method to investigate microscopic shapes via the time
behaviour of some correlation functions. Of course, for a practical application,
this will require making some assumptions. For example, if we assume that the
pores are disks of a fixed radius R0 with reflecting boundaries, a few values of an
apparent diffusion function at different diffusion times (such as ∆ in a spin-echo
pulsed gradient diffusion experiment). would enable us to compute R0. Another
example would be that only perfectly reflecting boundaries give eigenvalue 0,
and the porosity is likely to control how small the main eigenvalue is. The main
eigenmode is for relatively large time the only remaining one, thus we could
attempt to investigate wall porosity by considering the temporal decay rate as
function of ∆.
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If we want to make statements about the microscopic shapes, we need to
agree on a vocabulary for these shapes, for example assuming that they can be
parametrised in some ways. Furthermore, the exact mechanism for the transition
to macroscopic measures is more complex, as here we have described the effect
of measuring one single cell. Nevertheless, the shape dependence of the spectrum
reduces most of the problems to the eigenmodes for suitable boundary conditions,
and a good understanding of them is thus a stepping stone in the understanding
of apparent diffusion coefficients.

Future work. We plan more extensive work in particular in three dimensions, and
more general boundary conditions including permeability. In order to best in-
corporate multiple compartments, we would also generalise the PDEs to coupled
PDEs.

Appendix: Properties of Bessel functions

1. xq+1Jq(x) = (xqJq(x))′. Thus
∫ R
0
xq+1Jq(ax) dx = Rq

a2 Jq(aR).

2.
∫ R
0
xJq(zqn xR )Jq(zqm x

R ) dx = R2

2 J
2
q+1(zqn)δnm. This reflects the orthogonal-

ity of eigenfunctions of self-adjoint operators.
3. Zeros for Jq and Jq+1 alternate, there is an infinity of them. We note
J ′q(zqp) = 0 for the zeros of derivatives, these numbers are tabulated.

4. The MacMahon expansion gives asymptotics for zqp: βqp := (p+ q
2 −

3
4 )π

zqp ∼ βqp +
4q2 + 3
βqp

+
112q4 + 328q2 − 9

β3
qp

+ · · · .

See also Fig. 1 which confirms that the zeros are well approximated by integer
multiples.

Appendix: Centroids for Legendre functions For this we need the following for-
mula ∫ 1

−1

yPL(y)PN (y) =

{
2(L+1)

(2L+1)(2L+3) N = L+ 1
2L

(2L+1)(2L+1) N = L− 1

[18] (which cites Arfken 1985, p. 700, Ch. 12 in Math. Methods for Physicists
3rd ed). It follows that

∫ 1

−1
yP1(y) dy = 2/3.

Appendix: Elliptic coordinates Let x(µ, θ) = R
2 a(µ) cos θ and y(µ, θ) = R

2 b(µ) sin θ.
Fix a 2 dimensional anisotropy (eccentricity) f = a/b for an ellipse. Let µ0 =
atanh(f). Then µ = µ0 in these coordinates defines an ellipse with this shape.
Ellipsoidal coordinates are defined similarly (see [6,19,15,20,21]).

Appendix: Orthogonal Coordinate Systems This is a coordinate system
x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ) for which ds =

√
dx2 + dy2 + dz2 = (h1dξ)2 +
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(h2dη)2+(h3dζ)2. This means that the lines ξ =const are orthogonal to η=constant
and ζ=constant. The Laplace-Beltrami operator is

1
h1h2h3

(
h2h3

h1
fξξ +

h1h3

h2
fηη +

h2h3

h1
fζζ

)
Cartesian, polar and spherical, and elliptical and ellipsoidal coordinates are ex-
amples of orthogonal coordinate systems (see [16]).
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2. C. Nicholson and E. Syková. Extracellular space structure revealed by diffusion
analysis. Trends in Neurosciences, 21(5):207–215, 1998.

3. G. J. Stanisz, A. Szafer, G. A. Wright, and M. Henkelman. An analytical model
of restricted diffusion in bovine optic nerve. Magnetic Resonance in Medicine,
37:103–111, 1997.

4. Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, and P. J. Basser. AxCaliber: A method
for measuring axon diameter distribution from diffusion MRI. 59:1347–1354, 2008.

5. D. C. Alexander. A general framework for experiment design in diffusion mri
and its application to measuring direct tissue-microstructure features. Magnetic
Resonance in Medicine, In Press, 2008.
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shims. IEEE Trans. on Appl. Superconductivity, 12(4):1880–1885, 2002.

29



18. E. W. Weinstein. ”Legendre Polynomial.”. [Online] MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/LegendrePolynomial.html.

19. J. C.-E. Sten. Ellipsoidal harmonics and their application in electrostatics. J. of
Electrostatics, 64:647–654, 2006.

20. H. B. Wilson and R. W. Scharstein. Computing elliptic membrane high frequencies
by mathieu and galerkin methods. J Eng Math, 57:41–55, 2007.
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Abstract. We used tensor-derived measures to map the extent of genetic effects 
on brain fiber microstructure, in 23 monozygotic and 23 dizygotic twin pairs. 
All 92 DTI volumes were fluidly registered to a geometrically-centered 
template via a high-dimensional mapping of co-registered structural-MRI. After 
tensor re-orientation, we computed three scalar DTI measures: the fractional 
anisotropy (FA), geodesic anisotropy (GA), and the hyperbolic tangent of GA 
(tGA); GA measures the geodesic distance between tensors on the symmetric 
positive-definite tensor manifold. Spatial maps of intraclass correlations 
between MZ and DZ twins were compared to compute maps of Falconer’s 
heritability statistics. We also performed a maximum likelihood estimation of 
genetic influences using path analysis. The manifold-based measure, tGA, was 
marginally more powerful than FA for detecting genetic influences, and 
improved the fit of quantitative genetic models relative to FA and GA. The 
pattern of genetic influences was remarkably consistent with the 
neurodevelopmental sequence, with strong occipital genetic effects and strong 
frontal environmental effects.   

Keywords: DTI, Fractional Anisotropy, Geodesic Anisotropy, Twins, 
quantitative genetics, path analysis. 

 
1   Introduction 

Diffusion tensor (DT) MRI is sensitive to the magnitude and directional properties 
of local water diffusion in biological tissues. DT imaging of the brain provides vital 
information on fiber connectivity and composition; water diffuses preferentially along 
fiber tracts, but diffusion is restricted in directions orthogonal to the dominant fiber 
orientation. In clinical research, the fractional anisotropy (FA), computed from the 
eigenvalues of the local diffusion tensor, is sensitive to the effects of aging and 
neurodegenerative disease, and is commonly used to assess white matter fiber 
integrity. A related scalar quantity, the Geodesic Anisotropy (GA) [1] is an alternative to 
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FA. GA measures the intrinsic distance between positive-definite symmetric matrices on 
the manifold. GA may be transformed to hyperbolic tangent form of GA (tGA), making 
its range comparable to that of FA, [0, 1), and easing comparisons of the two values.  

Intersubject variation of DTI signals is not yet well understood.  There is great interest 
in finding which factors (e.g., genetic versus environmental) influence fiber 
characteristics, and ultimately which genes influence fiber structure. Two key steps in 
addressing this question are: (1) finding DTI-derived anisotropy measures that are most 
sensitive for detecting genetic effects; and (2) determining the relative proportion of 
genetic versus environmental control over DTI signals in different brain regions. Here we 
examine these two questions using a DTI dataset of 92 healthy young adult twins. 

Several twin studies have examined how genes influence brain structure. A structural 
MRI study of twins [2] found that genetic factors strongly influence several aspects of 
brain morphometry, including cortical thickness and regional gray and white matter 
volumes. A neurodevelopmental study [3] found that brain tissue maturation rates 
differ by region, with those involved in primary sensory function (e.g., occipital 
lobes) maturing prior to those involved in sensory integration and behavioral control 
(e.g., frontal and parietal lobes).  We hypothesized that fiber integrity in brain regions 
that develop earlier would be more heavily influenced by genetics while those 
developing over a more protracted period would be more heavily influenced by 
environmental factors. In [2], genetic influences on DTI were studied using FA, in a 
small sample of subjects, revealing that the proportion of genetic versus 
environmental control varied regionally in the corpus callosum.  

Here we extend the work in [2] by creating 3D maps of heritability (the proportion 
of intersubject variance attributable to individual genetic differences) for FA, GA and 
tGA. We use DTI-derived maps of FA and GA to compute the intraclass correlation 
(r), or resemblance, for MZ and DZ twins at each voxel. This enables us to assess 
genetic effects on white matter microstructure and to visualize the 3D profile of 
genetic influences. Extending our work in [4], we computed the relative proportion of 
variance attributable to genetic versus environmental factors using the A/C/E 
quantitative genetic model. Lobar measures of FA and tGA were computed and 
structural equation models were fitted to the lobar mean data, using chi-squared 
statistics to rank models [5].  
   We also compared the power of 3 DTI-derived scalar measures for detecting genetic 
effects on fiber microstructure. The suitability of different DT signals for fitting genetic 
models depends on (1) empirical factors, e.g., the noise in each channel of the matrix-
valued signals, and (2) mathematical factors such as the correct combination of the 
tensor components using statistics on associated Lie groups such as the symmetric 
tensor manifold [6]. Most clinical DTI studies use FA as a measure of fiber integrity, 
but GA exploits more of the multivariate information in the diffusion tensor.  We 
determined how strongly genetic factors determine the normal population variability for 
each of these DTI parameters.  
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2   Methods 

2.1. Subjects and image acquisition. 

3D structural brain MRI scans and DT-MRI scans were acquired from 92 subjects: 
23 pairs of monozygotic twins (MZ; 22 males/24 females; 25.1±1.4SD years old) and 
23 pairs of dizygotic twins (DZ; all same-sex pairs; 20 males/26 females; 23.5±2.1 
years) on a 4T Bruker Medspec MRI scanner with an optimized diffusion tensor 
sequence [7]. Imaging parameters were: 21 axial slices (5 mm thick), FOV = 23 cm, 
TR/TE 6090/91.7 ms, 0.5 mm gap, with a 128×100 acquisition matrix. 30 directional 
gradients were applied: three scans with no diffusion sensitization (i.e., T2-weighted 
images) and 27 diffusion-weighted images for which gradient directions were evenly 
distributed on the hemisphere [7, 8]. The reconstruction matrix was 128×128, yielding 
a 1.8x1.8 mm2 in-plane resolution. Total scan time was 3.05 minutes. 

3D T1-weighted images of corresponding subjects were also acquired with an 
inversion recovery rapid gradient echo sequence using 4T Bruker Medspec MRI 
scanner.  Acquisition parameters were as follows: TI/TR/TE= 1500/2500/3.83 msec; 
flip angle=15 degrees; slice thickness = 0.9 mm, with an acquisition matrix of 
256x256x256. The study was approved by the Institutional Review Boards at the 
University of Queensland and at UCLA. 

 
2.2. Image Preprocessing and Registration. 

Non-brain tissues were removed from the 3D structural MRIs using the Brain 
Surface Extraction software (BSE) [9] followed by manual editing. Edited scans were 
linearly registered to a high resolution single-subject brain template image, the 
Colin27 template, using the FLIRT software [10]. A Minimal Deformation Target 
(MDT) was generated from the 92 subjects, and each 3D structural image was warped 
using a 3D fluid registration algorithm that allows large deformations while 
guaranteeing diffeomorphisms [11, 12]. Jacobian matrices were calculated from the 
deformation fields for each subject.  

From the DT-MR images, voxel-wise diffusion tensors (3x3 positive symmetric 
matrices; DT) were generated with the MedINRIA software 
(http://www.sop.inria.fr/asclepios/software/MedINRIA). Log-Euclidean tensor de-
noising was used to eliminate singular, negative definite, or rank-deficient tensors. A 
diagonal component image (Dxx) was used as a template to eliminate extracerebral 
tissues. Masked images were linearly registered to the corresponding 3D structural 
images in the standard template space using FLIRT software [10]. 

 
2.3. Handling orientation information. 

One issue with DT registration is that tensor orientations do not remain consistent 
with the anatomy after nonrigid image transformation. We used transformation 
parameters from the linear and nonlinear registrations to rotationally reorient the 
tensors at each voxel to ensure consistent tensor orientations after image registration 
[12, 8]. To compute the tensor rotations, we used the Finite Strain (FS) method on the 
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affine transformation matrix M.  We then applied a preservation of principal direction 
(PPD) algorithm on the higher-order transformation, as in [13] and [14].  

The rotational component Rr, of the affine transformation, was found from [13] and 
[14]:  

! 

Rr = argminQ' ||Q'"M ||= M
MMT

 (1) 

 
We then computed reorientation components for the nonlinear transformation (Rn) 

using the Jacobian matrix (J) from the 3D fluid registration step for the structural MR 
images. The dominant orientation eigenvector (e1) and the secondary eigenvector (e2) 
were computed from DT images, as in [13]: 

! 

Rn = Rn1 " Rn 2, Rn1e1 =
Je1

|| Je1 ||
, Rn 2e2 =

Je2 # (Je2 " Je1)Je1

|| Je2 # (Je2 " Je1)Je1 ||
. (2) 

 

2.4. Scalar statistics in the Log-Euclidean space.  

Positive-definite, symmetric DT matrices do not form a vector space under 
standard Euclidean algebraic operations, so we used the ‘Log-Euclidean framework’ 
[15] to simplify computations of tensor statistics, as illustrated in Fig. 1. The tensor 
manifold was projected by log-transformation to its tangent plane at the origin, 
allowing standard vector space operations such as addition or multiplication to be 
performed [8, 15]. Fig. 1 illustrates the difference between the geodesic (intrinsic) 
distance (green solid line on the manifold) and the Euclidean (extrinsic) distance 
between tensors (olive colored dotted line).  

We used the conventional definition of FA :  

! 

FA =
3
2

("1# < " >)2
+ ("2# < " >)2

+ ("3# < " >)2

"1
2

+ "2
2

+ "3
2

, 
(3) 

with 

! 

< " >=
"1 + "2 + "3

3
.  FA is a simple comparison of eigenvalues, and is an 

extrinsic measure on the manifold of symmetric positive definite tensors. The intrinsic 
measure, GA, was derived from the tensor manifold metric [11]. Here, we computed  
GA using the Log-Euclidean metric [15] as an alternative scalar measure to compare 
with FA. We used the following definition of GA:  

! 

GA(S) = Trace(logS" < logS > I)2 , (4) 

with 

! 

< logS >=
Trace(logS)

3
, the distance between the tensor and the “nearest” 

isotropic tensor in the associated Log-Euclidean metric. GA is a geodesic distance on 
the tensor manifold. We also transformed GA into tGA as in [1], to map the GA 
values to a convenient range [0, 1); FA values already fall in the range [0, 1].   
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Fig. 2. Structural equation model for the 
classical A/C/E design. Each of three 
circles represents A (additive genetic), C 
(common environment), and E (unique 
environment) and the squares represent 
each phenotype. Causal paths are shown as 
single-headed arrows, correlational paths as 
double-headed arrows and the double-
headed arrow to the same variable (circle) 
indicates a variance. 

! 

"  denotes the genetic 
correlation between twin pairs (1 for MZ 
and 0.5 for DZ). 

Fig. 1. (a) is an ellipsoidal representation of the DT at one voxel; 
the relative rates of diffusion (distance of boundary points to the 
origin) are represented by colors. The axes denote the 3 
eigenvectors, and the eigenvalues are incorporated into the 
magnitude of each axis. (b) shows positive definite symmetric 
DTs in a non-linear manifold in R6. The geodesic distance 
between tensors in the manifold is indicated by the green curve.  
Euclidean distances between tensors are shown by the olive 
dotted line.  The dotted line does not lie on the manifold and thus 
is not an ideal distance measure between tensors.  The tensors are 
projected to the tangent plane at the origin as in the Log-
Euclidean framework, as displayed in the bottom panel (b).  

 
 
 
 
  

 
2.5. Statistics for heritability analyses in twins.  
   
  Voxel-wise FA, GA and tGA values were computed for each subject, and voxel-
wise intraclass correlations (r) were computed separately for the MZ group (rMZ) and 
for the DZ group (rDZ) to assess the similarity within pairs. To provide a basic 
estimate of the proportion of variance in the FA (and GA) values attributable to 
genetic differences, we used Falconer’s heritability estimate [16]: 

! 

h2
= 2(rMZ " rDZ ) . (5) 

This heritability estimate, ranging from 0 (no genetic effect) to 1 (total genetic 
control), is expected to vary across brain regions and across different DTI measures.  
This allows inferences about how much of the population variance is attributable to 
genes, environmental factors, measurement errors, or inter-subject registration errors. 

 
We then used maximum likelihood 

estimation (MLE) to estimate a standard 
quantitative genetic model (the A/C/E 
model, Mx software (version 1.7.03)) [5], 
which estimates the proportion of the 
intersubject variance in the four major lobes 
of the brain (frontal, parietal, temporal, 
occipital) as well as within white matter and 
gray matter, attributable to each of 3 factors – 
additive genetic effects (a2), common 
environmental effects (c2), and individual-
specific environmental effects (e2).  All 
variance components combine to create the 
observed inter-individual variance, such that 
a2+c2+e2=1. The weights θ = (a, c, e) were 
estimated by comparing the covariance 
matrix implied by the model, Σ(θ), and the 
sample covariance matrix of the observed 
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variables, S, using maximum-likelihood fitting: 
 

! 

FML ," = log#(") + trace(#$1(")S) $ logS $ p,  (6) 
 

where p = 2 is the number of observed variables. By convention, p<0.05 indicates that 
the model is a poor fit to the data and the model is rejected.  The Akaike Information 
Criterion (AIC) is the difference between the

! 

" 2 goodness of fit and twice the number 
of degrees of freedom, and measures of the goodness of fit of the variance component 
model, adjusted for the model complexity. Fig. 2 shows the path diagram for the ACE 
twin model. 
 
3  Results & Discussion 

Fig. 3a, b, c, and g, h, i show intraclass correlation (r) maps between MZ pairs and 
DZ pairs for FA, GA and tGA measures. In MZ twins, who share the same genes, all 
deep white matter regions show high intra-pair correlations, reaching signficance in a 
broadly distributed deep white matter region, including the corpus callosum. This 
pattern of correlations is very similar for all three anisotropy measures (FA, GA  and  
tGA) among the MZs pairs; as would be expected for a genetically influenced trait, 
the correlation is weaker in the DZ maps. Maps of Falconer’s heritability (h2) are also 
shown in Fig. 3m, n and o. Heritability values are high for all the anisotropy 
measures in the corpus callosum and almost all subcortical white matter regions. This 
is not unreasonable, as these are heavily myelinated white matter tracts with high FA 
(and GA). The correlation maps for tGA (Fig. 3a, e) show marginally higher effect 
sizes than those for FA (Fig. 3b, f).  Fig. 3c, d, g and h show significance value maps 
for these correlations, based on the computed r values; significance was assigned 
using a permutation test at each voxel for both FA and tGA, to establish a non-
parametric null distribution for the statistics at each voxel.   The correlation is 
strongest in the corpus callosum and medial frontal regions (not shown).  
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Percentage measures for a2, c2 and e2 derived from the A/C/E model using both FA 
and tGA are displayed in Fig. 4. These estimate the effects of genetic, common and 
unique environmental factors on brain fiber parameters, suggesting that the relative 
magnitude of these effects may vary by region.  Table1 shows model parameters 
including goodness-of-fit (

! 

" 2), degrees of freedom (df), p-values and AIC values for 
selected regions. p-values greater than 0.05 and low 

! 

" 2 values indicate that the model 
is a good fit to the data (note that this convention for structural equation models is the 
opposite of the typical range of significance values when rejecting a null hypothesis). 
Both FA and tGA measures show strong effects of A (genetic factors) and C 
(common environment) in the frontal lobes and effects of A (genetic factors) and E 
(individual environment) in the occipital lobes. Common environmental effects are 
only detected in the frontal lobes. The detection of a genetic effect is consistent with 
many other studies (e.g., [17]) that have detected strong genetic influences on brain 
morphology, but the mapping of genetic effects on fiber architecture here is novel. 
Occipital regions are among the first to mature, and their fiber characteristics may be 

Fig. 3. (a, b, c, 
g, h, i) show 
intraclass 
correlation 
(ICC) maps for 
FA, GA and 
tGA in MZ and 
DZ twins.  (m, 
n, o) show 
heritability 
maps for FA, 
for GA, and for  
tGA. (c, d, g, h) 
show non-
parametric 
permutation 
based P-values 
at each voxel, 
based on r 
values for tGA 
and FA for MZ 
and DZ groups.  
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already heavily genetically determined at an early age. Frontal regions develop over a 
much more protracted period, perhaps making them more susceptible to 
environmental influences. Our findings somewhat support our a priori hypothesis that 
genetic influences may vary depending on time-course sequence of white matter 
development, although this requires further testing.  

 
Model fit Variance attributable to each factor (%) 

! 

" 2
 p AIC df A C E 

Lobar 
Region 
  

  FA tGA FA tGA FA tGA  FA TGA FA tGA FA tGA 
Frontal
-Left 6.20 6.46 0.10 0.09 0.20 0.46 3 46.25 42.83 34.54 38.09 19.21 19.08 
Frontal
-Right 3.00 3.04 0.39 0.39 -3.00 -2.96 3 40.06 38.16 37.79 39.56 22.15 22.28 
Occip.-
Left 1.36 1.43 0.72 0.70 -4.64 -4.57 3 37.55 39.74 0.00 3.93 62.45 56.33 
Occip.-
Right 2.22 2.30 0.53 0.51 -3.78 -3.70 3 72.10 71.57 0.00 0.00 27.90 28.43 

Table 1. Left: Fit of the genetic twin models for different DTI measures, averaged for the frontal and 
occipital lobes. Right: Variance attributable to each of a2, c2, and e2 factors as a percentage of the overall 
variance in the sample of subjects.  tGA denotes hyperbolic tangent of GA.  
 
Table 2 compares values for GA and tGA, in frontal and occipital regions. p-values 
were below 0.05 for GA for both left and right frontal lobes, implying rejection of the 
model. Thus the use of tGA, rather than GA values, leads to a better fit of the model.  
 

Table 2. Comparison of goodness-of-fit 
for GA and tGA in the ACE genetic 
model. The table displays 

! 

" 2, p-
values, and AIC. Model fit is generally 
poorer when GA is used, but improves 
when tGA is used.   

 
 
 

 
 

p-values for tGA were greater than those for GA (Table 1 and Fig. 4) in all brain 
regions, indicating that tGA marginally outperforms GA in detecting genetic 
influences on fiber architecture.  

 
Table 3. Overall P-values, corrected for multiple 
comparisons, using the entire brain as a region of 
interest, based on permutation testing. Both FA 
and tGA measures show significant patterns of 
correlation in both types of twins (MZ and DZ). 

 
 
 

 
 
We also obtained global P-values, corrected for multiple comparisons, for the 

maps, to assess the likelihood that such a pattern of correlations might be observed by 

Model fit 

! 

" 2
 p AIC 

Lobar region 
 GA tGA GA tGA GA TGA 

Frontal-Left 30.40 6.46 0.00 0.09 24.40 0.46 

Frontal-Right 34.26 3.04 0.00 0.39 28.26 -2.96 

Occpital-Left 32.03 1.43 0.00 0.70 26.03 -4.57 

Occpital-Right 3.27 2.30 0.35 0.51 -2.73 -3.70 

Corrected P-value based on Permutation 
Anisotropy 

Measure DZ MZ 

FA 0.046 0.014 

GA 0.144 0.054 

tGA 0.042 0.0056 
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chance. We computed these corrected P-values based on permutation testing (on the 
suprathreshold count of voxels with correlations exceeding the p=0.05 threshold at the 
voxel level). In such a test, the number of voxels in the brain with significant 
correlations is computed for a large number of randomly permuted datasets, and the 
corrected P-value is the quantile at which the true maps fall in the overall empirical 
null distribution for the suprathreshold volume. Permutation tests verifying the 
significance of the maps were significant for FA and tGA in both MZ and DZ twins, 
but for GA they were borderline in MZ twins (p=0.054) and not significant for DZ 
twins (Table 3). This suggests that the hyperbolic tangent transformation is beneficial 
in normalizing the statistical distribution of GA. While both MZ and DZ pairs show 
high correlation, the lower effect sizes for the correlations in DZ pairs in comparison 
to MZ pairs - who share identical genes - is expected, and points to a genetic effect.  
At least in our sample of 92 twins, tGA slightly outperformed FA for detecting twin 
correlations, although effect sizes for both measures were strong. This sample will 
expand ten-fold to 1150 subjects over 5 years, with the aim of increasing statistical 
power sufficiently to detect stronger effect sizes for twin correlations and quantitative 
genetic models.  

 

 

Fig. 4. Variance components, expressed as a percentage of the overall variance, attributable to 
each of the A/C/E factors, which respectively denote genetic, common and unique 
environmental effects. Results for FA and tGA are compared for each lobar region, and are 
highly consistent. An influence of common environment on brain fiber integrity is detected in 
the frontal lobes only, consistent with the notion that white matter maturation in this region has 
the most protracted developmental time-course. The

! 

" 2 and p-values of each model are 
overlaid on the bar graphs. Note that, contrary to conventional statistics for testing group 
difference, p-values higher than 0.05 in these structural equation models denote that the model 
terms provide a good fit to the observed data.  
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Abstract. A method is proposed for modeling and classification of White
Matter fiber tracts in the brain. The presented scheme uses Classification
Trees in conjunction with spatial representation of the individual fibers,
in order to capture the characteristic behavior of fibers belonging to a
specific anatomical structure. The method is characterized by high clas-
sification speed, under 3 seconds for all the fibers in a typical DTI brain.
The model has the ability to represent complex geometric structures and
has an intuitive interpretation. The method is validated on 15 real DTI
brains. Encouraging results are presented and analyzed.

Key words: MRI, DTI, brain, classification, supervised, classification
trees

1 Introduction

In the last ten years Diffusion Tensor Imaging (DTI) has changed the way we
perceive White Matter (WM) in MRI imaging of the brain [1]. A set of Diffusion
Weighted Images (DWI) is acquired using non-colinear field gradients and is used
to compute a distinct diffusion tensor for each voxel. The principal directions of
the tensor were shown to generally coincide with the local orientation of sub-
voxel WM axon bundles [2]. Deterministic and stochastic algorithms have been
developed to propagate the principal direction of diffusion from seed voxels to
the whole brain WM [2], leading to impressive in-vivo reconstructions of major
WM tracts [3]. Software tools can be found on the web for tensor computation
and tractographic reconstruction on DWI data [4] [5]. With these tools, a specific
group of WM fibers or bundles can be identified using a set of two-dimensional
regions of interest (ROI) defined on different slices of the brain. The fibers that
obey a set of logical conditions involving these ROI’s are extracted from the
whole brain tractography. The process of extracting a specific group of WM fibers
is schematically illustrated in Figure 1(a), where the fibers that pass through the
regions ROI1, ROI2 and ROI3 but do not pass through the region ROI4 are
displayed. In Figure 1(b) and Figure 1(c), we illustrate, the steps required for
the extraction of the left-Uncinate tract, using a sequence of ROI’s to define
the tract path. In this case the selected fibers are required to pass through the
regions R1 to R3 that are marked on different slices of the brain (Figure 1,
column (c), rows (1)-(3)) while avoiding the last ROI, R4 (Figure 1, column
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(c), row (4)). The specificity of the selected fibers increases as more regions-of-
interest are applied. This manual process per tract is clearly time-consuming.
It becomes rapidly impractical when many distinct tracts have to be segmented
from many brains, as in population studies.

Previously published works on fiber tracts segmentation can be divided into
two main approaches, namely voxel and fiber based. Both require registration to
an atlas. In the first approach, a set of probabilistic atlases has recently become
available from the web site of Johns Hopkins Medical MRI Laboratory [6]. Each
tract atlas is the voxel average of many co-registered instances of the same tract
across several brains. Atlas based tract segmentation using these voxel-based
Atlases requires non-linear alignment of the considered brain’s tractography with
the atlas space. For this purpose an atlas template, e. g. a Fractional Anisotropy
volume, is aligned with the considered brain and the same transformation is
applied to its fiber tracts.

In the second approach, clustering based methods (both parametric and non-
parametric), have been proposed for the modeling of fiber tracts. In [7], the tracts
are modeled by a Mixture of Gaussians Atlas learned by Expectation Maximiza-
tion. In a non-parametric approach [8], normalized cuts are used to generate a
high-dimensional atlas that is manually labeled following the clustering. New
data is segmented by projecting the Atlas on the considered brain tractography.
Registration with the atlas template is also required but a linear affine model is
now sufficient. Both methods ([7], [8]) rely on an initial unsupervised clustering
step that partitions the fibers into groups. A cluster that is not separated during
this step can not receive a distinct classification label. In order to avoid this
limitation, we adopt a supervised approach for fibers classification.

The method proposed in the current study is inspired by the manual pro-
cedure for tract extraction described above (Figure 1) in which a given tract is
defined by a sequence of spatial ROIs that impose its course through the brain.
The idea is to learn the sequence automatically from a set of sample fibers for
the considered tract. At the same time, we need to discriminate between several
tracts in order to enable multiple anatomical tracts segmentation. In this work,
we show that Classification Trees [9] provide an adequate framework for the rep-
resentation and segmentation of anatomical fiber tracts. The method is fast and
powerful while easy to implement. The rest of this paper is organized as follows:
In Section 2 we describe the proposed method that is validated experimentally
in Section 3. Conclusions and future research directions follow in Section 4.

2 Methods

The proposed approach belongs to the supervised classification methods, charac-
terized by a training and classification phase. In a training phase the classification
tree is created. The training set contains manually labeled examples, in our case
these are fibers belonging to the different fiber tracts.

This tree is later used in the classification step in order to label each fiber
according to the fiber tract to which it belongs. Before the training and the
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(a) (b) (c)

Fig. 1. Defining a fiber tact via a series of 2D ROIs: general description of the marking
process (a); The steps of marking the left-Uncinate using a sequence of regions-of-
interest marked on different slices of the brain ((b), (c)). The selected fibers are required
to pass through regions R1 to R3 (rows (1)-(3)), while avoiding the last ROI, R4 (row
(4), column (c)). The fibers satisfying the markings in column (c) are shown in column
(b).

classification can begin, all the data sets involved are to be pre-processed in
order to make them comparable. In our case, this entails spatial normalization
or registration of the sets of fibers originating from different brains (Section 2.2).

2.1 Fiber Representation

The input data for the proposed scheme consists of brain WM fibers generated
by DTIStudio [4]. Each fiber is a discrete three dimensional curve (Figure 2).
For the purpose of the analysis a fiber is represented by a fixed length feature
vector, containing the coordinates of the sampled points along the curve. Each
feature vector f has 3N values f = {x1, y1, z1, , xN , yN , zN}, where (xi, yi, zi)
are the sequence of spatial coordinates at N equidistant points along the fiber
(Figure 2).
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Fig. 2. Representation of a single fiber by equidistant points sampled along the fiber.

2.2 Spatial Normalization

The fibers used for training and for classification must be brought to a common
brain space. In order to preserve anatomical variability between the same tracts
in different brains, we choose to perform an affine normalization. The idea is
to build a training set where inter-subject anatomical variability is well repre-
sented for each tract so that it can be properly learned and generalized. All the
tractographies in the training and testing sets are affinely aligned to one of the
brains in a pre-processing step. This can be achieved with standard registration
tools [10]. In that case the transformation is first computed by aligning the cor-
responding Fractional Anisotropy volumes. This transformation is subsequently
applied to the fibers.

In this work, we use a recently proposed scheme, termed the Iterative Clos-
est Fiber (ICF) algorithm [11]. The ICF performs direct registration between
tractographies without requiring classical voxel registration. It is based on an ef-
ficient extension of the iterative closest point algorithm [12] to the closest feature
point in a high dimensional feature space. Here, each feature point corresponds
to a DTI fiber according to the representation defined in section 2.1 and the
nearest feature point is efficiently approximated by the locality sensitive hashing
framework [13].

2.3 Training a Decision Tree

Classification trees perform pattern classification through an ordered sequence
of questions. The choice of the next question in the sequence depends on the
answer to the current question. Each question is represented as a node in a
directed graph. In this work, binary classification trees are used for modeling
the different groups of fibers. The trees are trained using the generic CART [9]
(Classification and Regression trees) approach, the relevant part of which is
reviewed here.
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The tree model is built simultaneously for all the classes, using a representa-
tive training set in which each fiber has a manual label affiliating it with one of
the considered tracts. Each fiber is treated as a data point in a M -dimensional
feature space, where M is the number of features by which a fiber is described.
We consider binary and monothetic trees, meaning that each non leaf node has
two splits, and each split criterion is based on one feature only.

A tree is grown by a recursive process: given the data represented in a node,
either declare that node to be a leaf (and assign a category), or split the data
further. The splitting query T is chosen so that the data reaching the immediate
descendent nodes is as pure as possible. The term pure refers here to a set of
points that mostly have the same class labels. Often the notion of impurity is
used in order to mathematically define the criterion for choosing the node query.
The measure of impurity i(N) at a node N may be defined in several ways. The
definition used here is the classical Gini’s impurity (Equation 1):

i(N) =
∑

i 6=j

P (wi)P (wj) = 1−
∑

j

P 2(wj) (1)

where P (wj) is the fraction of data points at node N that belongs to category
wj . It can be seen that if all the points at node N belong to the same category,
then i(N) for this node equals zero, which is an ideal outcome (a perfectly pure
node). In case that there is an equal representation of two categories in a node
population, the impurity is maximal and equals 0.5.

When a node N is split so that the fraction PL of its points goes to the
left descendent node NL and the rest of the points goes to the right descendant
NR, the impurity is reduced by the amount ∆i(N), which is defined as follows
(Equation 2):

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) (2)

The query T for the node N is chosen such that the decrease in the impurity
is maximized.

Different criteria exist for deciding when to stop the tree development. The
simplest of all continues splitting each node as long as the impurity measure
keeps decreasing. Such a method produces an unbalanced tree (with leaves at
different depth levels). The deeper branches describe the more complex classes.
This is an advantage in our case since the different White Matter fiber tracts
have varying geometric complexity, as can be seen in Figure 3.

2.4 Using the Tree

Once the tree is formed, a single label is assigned to each terminal node. The
chosen label corresponds to the category that has the largest representation
in the node. Classification of unlabeled data using a finalized tree is straight-
forward. Each new data point is propagated from the root node towards one of
the leaves, according to the queries in each node. The data point is then assigned
the label of the leaf that is reached.
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Fig. 3. Two views of the fiber tracts from one of the brain data sets used in this
work. Blue-Corpus Callosum, Green-Left Uncinate, Red-Right Uncinate, Cyan-Left
IOF, Magenta-Right IOF, Orange-CST-Right, Brown-CST-left, Black-Cingulum

3 Experiments and Results Analysis

The suggested training and classification scheme was tested on a data set ob-
tained from the Johns Hopkins Medical MRI Laboratory website [6]. It contains
fifteen normal brains, each represented by 50 − 55 axial slices with a voxel size
of 1x1x2.6 mm in the x, y, z directions respectively. For each brain, the WM
fibers were generated by DTIStudio [4]. The brains in the set contain a normal
anatomical variability in the shape of the different tracts, that should be well
described by the tree model. For example, the differences in the appearance of
one of the tracts (Right Uncinate) in two of the the brains are illustrated in
Figure 4.

The following tracts were modeled: Corpus Callosum (CC), right and left Un-
cinate (Unc.r and Unc.l), right and left Inferior Occipitofrontal Fascicle (IOF.r,
IOF.l), right and left Cortico-Spinal Tract (CST.r, CST.l) and Cingulum. The
different tracts belonging to one of the brains are presented in Figure 3. In each of
the brains the eight fiber tracts were manually marked by successive Regions of
Interest, as described in Section 1. As a result of the manual marking procedure,
each fiber in a set received a class label ml ∈ {lc} where

lc = {CC, Unc.r, Unc.l, IOF.r, IOF.l, CST.r, CST.l, Cing, others} (3)

where others, is the class of the WM fibers that do not belong to one of the
modeled tracts. Subsets of the manually marked fibers were used for the exper-
iment.

First, the fibers from the different brains were spatially aligned relatively to
one of the brains (Section 2.2). A leave-one-out methodology was used in order to
assess the tree classifier performance on various data sub-sets. Fifteen training-
testing trials were conducted. In each trial, i, one brain (braini) was used as
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Fig. 4. Fibers belonging to the Right Uncinate tracts in two different brains from the
experimental set. The different colors represent fibers belonging to the different brains.

the testing set, and the other fourteen were used as a training set. A classifi-
cation tree, Ti was created using {brain1, . . . , braini−1, braini+1, . . . , brain15}.
The training procedure (Section 2.3) produced unbalanced binary trees, with 78
up to 89 levels. The fibers from the remaining braini were then classified using
Ti (Section 2.4). Each fiber was propagated from the root of the tree, downward,
and assigned the label of the final leaf.

Two examples of automatic classifications of fibers into the eight tracts of
interest are presented in figure 5. The colors correspond to the different tracts,
as classified by our trees.

For the evaluation of the classifier performance, two standard quality mea-
sures were selected: recall (also termed accuracy) and precision (also termed
purity) of classification, defined as follows: for a given brain, brainj , each fiber
fi is manually labeled by the class label mli. The classification procedure gener-
ates for this fiber the automatic classification label ali, that receives one of the
values of the class labels (where l1 = CC, l2 = Unc.l, etc.). In our case there
are nine possible class labels, eight corresponding to defined anatomical tracts
and one for all the remaining WM fibers. The amount of true positive classifi-
cations (TPj) is then defined as the number of fibers for which the automatic
label equals the manual label, or as written in Equation 4:

TPj =
∣∣{ i| mli = lc AND ali = lc

}∣∣ (4)

In a similar manner, the true negatives (TNj), false positives (FPj) and the
false negatives (FNj) for brainj are defined as follows:

TNj =
∣∣{ i| mli 6= lc AND ali 6= lc

}∣∣ (5)
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Fig. 5. Automatically classified fibers in two different brains: (a), (b) brain4; (c), (d)
brain2. The colors correspond to the automatic classifications: Blue-Corpus Callo-
sum, Green-Left Uncinate, Red-Right Uncinate, Cyan-Left IOF, Magenta-Right IOF,
Orange-CST-Right, Brown-CST-left, Black-Cingulum

FPj =
∣∣{ i| mli 6= lc AND ali = lc

}∣∣ (6)

FNj =
∣∣{ i| mli = lc AND ali 6= lc

}∣∣ (7)

Finally, the recall and the precision classification measures are defined as
follows:

recall =
TP

TP + FN
; precision =

TP

TP + FP
(8)

The recall describes the capture rate of the classifier. It will take on a maxi-
mal value, 1, when the amount of False Negative classifications is zero, meaning
that all of the fibers belonging to the class C are indeed classified with the label
lc. Recall will be zero if none of the fibers belonging to class C are captured
by the automatic classifier and labeled as lc. Precision shows how many of the
fibers that were assigned the class label lc, truly belong to this class.
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Table 1. Summary of performance measures for each tract, based on fifteen leave-one-
out trials.

Tract name CC Unc.r Unc.l IOF.r IOF.l CST.r CST.l Cing

recall, mean % 91.8 83.7 87.4 97 96.2 72.5 77.9 86.4

recall, std % 4.5 26.7 18.7 7.6 4.5 36.8 35.9 17.7

precision, mean % 93.1 96.8 96.2 98.7 99 94.8 95.2 97.2

precision, std % 3.7 4.3 6.1 1.6 1.1 1.3 11.6 4.5
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Fig. 6. The effect of spatial normalization on two different tracts from one of the brains.
Fibers from the model brain (green). Fibers from the current brain, brain14, (red). (a)
CC tract before the registration; (b) CC tract after the registration; (c) CST.r tract
before the registration; (d) CST.r after the registration.
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Fig. 7. Mean confusion matrix: rows correspond to the manual classifications. Columns
correspond to the automatic classifications. The location (i, j) contains the number of
fibers that were manually classified as class number i and automatically classified as
class number j. The counts of true positive classifications reside on the diagonal of the
confusion matrix.

The recall and precision measures for each tract in the 15 leave-one-out ex-
periments are summarized Table 1. Mean and standard deviation values are
presented. The mean precision values are high for all tracts, ranging from 93.1%
to 99%. The standard deviations are reasonably low, for all of the tracts except
for the left CST. The mean recall values vary between 72.5% (for right CST) to
96.2%. The largest standard deviations here are received for the left and right
CST tracts. The variation in the mean values reveals that the performance for
some of the tracts is more stable then for others. For example, the IOF right and
left receive extremely high mean precision and recall measures together with a
very small variation in values throughout the trials.

Further investigation of the performance on the CST tract reveals that most
of the trials achieve good results, however there are few trials for which the
recall is significantly reduced. One of the reasons is that this tract has in some
cases very few fibers, so that each fiber that is missed reduces considerably the
overall recall. Some of the cases of low recall were caused by a misalignment of a
particular tract relatively to the training set, even after the spatial normalization,
as can be seen in Figure 6. In this figure we examine closely the test set from
one of the trials. In this trial there was a very good performance on the CC
tract, but a poor recall on the right CST. In Figure 6(c) the CST from brain
14 is shown (red) overlayed on the CST from the model brain (green). Note
that the model brain is the one to which all other brains were aligned in the
pre-processing stage. Figure(d) shows the same fibers, after registration. It can
be seen that the large shift that was present in (c) is not sufficiently corrected
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in (d), which caused the relatively large number of false negative classifications
thus reducing the overall recall of this trial for the CST tract. Figure 6 (a) and
(b) show the fibers of CC, before (a) and after (b) normalization, relative to the
model fibers in green. It is seen that a very precise alignment was achieved in
this case, and indeed both the recall and the precision measures are high. This
leads to the conclusion that the problem with the CST classification originates
in the pre-processing stage, and not in the classification scheme itself.

One of the accepted methods of examining a classifier performance is by con-
structing a class confusion matrix. In the confusion matrix the location (i, j),
contains the number of fibers that were manually classified as class number i and
automatically classified as class number j. The counts of true positive classifi-
cations reside on the diagonal of the confusion matrix. Such a confusion matrix
was computed for each of the 15 trials. A mean confusion matrix (Figure 7)
reveals that the amount of confusion between the marked tracts is very small.
For instance, on average 114 right CST fibers were classified correctly out of 152,
but in fact the missed fibers were not confused with the other tracts, but were
affiliated with the others class, that is the mixture of all the unmarked fibers.

In addition to providing satisfactory performance, the classification process
is very quick, with a complexity that is linear with respect to the tree depth. In
this work the data was processed with Matlab7.1 (the Mathworks, Inc.,USA),
running on a standard PC (Intel Core 2 Duo, 2.67GHz). The average time
for a single fiber classification is 8µsec. A typical full set of WM fibers from a
single brain containing 300, 000 fibers can therefore be classified in less then 2.5
seconds.

4 Discussion and Future Work

This work presents a proof of concept and a feasibility test for a very simple
and fast approach to classification of individual WM fibers in the brain, using
Classification Trees. A method is proposed for training a supervised tree model
that describes the different fiber tracts present in a training set. The model
provides an intuitive and easy way to interpret the description of the different
fiber tracts. In essence, for each fiber a series of questions is asked, each question
addresses one of the coordinates of the points along this fiber. A sequence of
characteristic answers to these questions identifies a spatial behavior associated
with a specific tract. This method of classification is very fast, even when applied
to large multidimensional data sets such as the fiber sets addressed here. The
performance of the classifier was evaluated on a set of 15 brains, and 8 anatomical
tracts in a leave-one-out experiment. The precision and recall aspects of the
performance were assessed relatively to manual classifications. The tracts that
were modeled vary in their geometrical complexity from reasonably simple (IOF)
to very complex (CC). The presented results are very encouraging. We conclude
that classification trees of the type described here can cope with the variety of
challenges presented by the WM fiber tracts in the brain.

52



Future work entails testing the scheme on additional fiber tracts and a larger
brain database, with and without abnormalities. In addition, various alternative
representations of the fibers will be tested, with the purpose of reducing the
dependence on the initial alignment and inherent tractography noise.
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Abstract. We propose a Bayesian approach to the reconstruction of white-matter
pathways from diffusion MR data that utilizes prior information on the pathways
of interest from a set of training subjects. This method is fully automated and
preliminary results indicate that it increases robustness to end-point ROI size,
enhances test-retest reliability, and yields solutions that agree with expert-drawn
manual labels of the pathways of interest.

1 Introduction

Diffusion tractography uses MR imaging data representing the diffusion of water molecules
through the brain to infer the location and shape of white-matter fiber bundles. This is
a challenging problem for several reasons. First, the imaging process introduces uncer-
tainty in the data in the form of noise and distortions. Second, there is inherent uncer-
tainty in the white-matter pathways that tractography seeks to identify due to multiple
fiber bundles intersecting in many locations in the brain. Finally, the high dimensional-
ity of the solution space results in additional computational difficulty.

Conventional approaches to tractography use a deterministic and local model of the
diffusion process to step along a white-matter pathway a few voxels at a time [1]. Such
methods are often confounded by the aforementioned sources of uncertainty in diffusion
MR data. Consequently probabilistic approaches that attempt to address these issues
have been proposed in recent years [2–5]. However, most methods often require manual
intervention to produce reliable results, especially for weaker connections, making them
less practical for large studies.

In this work we build upon a Bayesian approach to tractography proposed recently
that uses a global model of white-matter pathways [6]. To eliminate reliance on manual
intervention and reduce sensitivity to initialization and end point selection, we incor-
porate prior models of the unknown pathways based on a set of training subjects. The
resulting method is fully automated and produces tract solutions that correspond well
with expert manual labelings of the same pathways.

2 Background

Streamline approaches to diffusion tractography utilize the local properties of the dif-
fusion data to determine the orientation of the unknown white-matter pathway at every
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step. As a result, in areas of high local uncertainty in the data, these methods may be
unable to step in the right direction and suffer from error propagation issues. Global
models of the underlying pathways integrate the information in the diffusion data along
the entire path and are thus less sensitive to areas of local uncertainty.

2.1 Global Bayesian tractography

In this work we adopt the Bayesian global pathway model proposed in [6]. In this
framework, we seek to estimate the posterior probability of the unknown pathF given
the measured diffusion-weighted (DW) imagesY ,

p(F , Ω|Y ) ∝ p(Y |F , Ω) p(F , Ω), (1)

whereΩ are the other unknown parameters in the model.
The data likelihood is assumed to be Gaussian,

p(Y |F , Ω) = p(Y |Θ, Φ, s0, d, f , Σ) ∼ N (µ; Σ), (2)

and utilizes a multiple-compartment model of the water diffusion process at each voxel,
described in [7]. This model represents the expected intensity value of thejth voxel in
the DW image acquired with theith diffusion-encoding gradient direction as

µij = s0j
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where the first summand inside the braces represents an isotropic diffusion compart-
ment and the remainingnF summands represent perfectly anisotropic fiber compo-
nents with orientations defined by the angles(θl

j , φ
l
j). The diffusion-encoding weight

and direction,bi andri respectively, are known acquisition parameters. The non-DW
image intensitys0j , the diffusivitydj , the anisotropic compartment volume fractionsf l

j,
l = 1, . . . , nF , and the anisotropic compartment orientations(θl

j , φ
l
j), l = 1, . . . , nF ,

are unknown parameters to be estimated. Finally,A is the outer product of a unit vector
along the left-right axis andR(θl

j , φ
l
j) is the rotation matrix that applies a rotation by

θl
j around the anterior-posterior axis and byφl

j around the inferior-superior axis.
The prior term in (1) is given by

p(F , Ω) = p(s0)p(d)p(Σ)p(f |F )p(Θ, Φ|F)p(F). (4)

As detailed in [6], the observed DW image intensitiesY are assumed independent
and the unknown variances on the diagonal ofΣ are nuisance parameters whose prior
distribution is integrated out of the posterior. The diffusivitiesd and non-DW image
intensitiess0 are assigned non-informative priors (uniform over all positive values).
The diffusion compartment volume fractionsf are assigned an automatic relevance
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determination (ARD) prior, which allows the number of compartments at every voxel
to be determined from the data. The fiber orientation anglesΘ andΦ are specified
completely by the pathF at any voxel that is traversed by the paths. At all remaining
voxels, the orientation angles are assumed to be uniformly distributed.

2.2 Spatial path priors

The pathF is modeled as a piece-wise cubic Catmull-Rom spline with a small number
of control points to make the problem tractable. Even with this constraint, however,
the space of all possible pathsF between two brain regions is very large, making the
estimation of the posterior difficult unless prior information on the path is incorporated
in the posterior viap(F).

In [6] the only prior information on the path is assumed to be whether the two
brain regions of interest (ROIs) are connected to each other or not. When the two ROIs
(referred to as the seed and target ROI, although they are interchangeable) are knowna
priori to be connected, all paths that connect them are assumed to be equally probable.
In this work we depart from the model of [6] in that we estimate the prior distribution
of F from a set of training subjects. To this end, we use path labels defined manually
by an expert for each of these subjects.

Formally, letF1, . . . ,Fn be splines generated by the manually labeled control
points from then training subjects. By computing a histogram of the number of times
that a given voxelj belongs to a path from the training set, we estimate the probability
that voxelj belongs to the pathF given the paths of the training subjects. Assuming
spatial independence, the path priorp(F) is simply the product of the probabilities
corresponding to each voxelj along the path.

p(F) =
∏

j

p(j ∈ F |F1, . . . ,Fn). (5)

For the study presented here an expert drew control points along each of the tracts of
interest in a set of training subjects. To perform this labeling the expert viewed fractional
anisotropy and primary eigenvector maps, which were obtained via a simple tensor
reconstruction on the spatially normalized DW images of the training subjects. Note
that these maps were used only as visual aids in the manual labeling stage; they were not
used in any way by the tractography algorithm, which utilizes the multi-compartment
diffusion model described above instead of a tensor model.

We used the manually drawn control points to fit a spline, representing the true
pathFk, for each of the training subjects,k = 1, . . . , n. We computed a histogram of
these splines to estimate the priorp(F) in (5). An alternative approach would be to run
the tractography algorithm on the training subjects, with the manually drawn points as
initialization, and use the resulting posteriors to estimatep(F). We will compare this
to our current approach in future work.

2.3 Control point initialization

As in [6], the path posterior (i.e., the posterior on the control points of the spline) is
estimated via a Markov chain Monte Carlo (MCMC) algorithm. The initialization of
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the control points is a very important issue, as a good initial guess is essential for the
algorithm to converge to a reasonable solution. The existence of the training set provides
us with an effective means to find such an initialization. Specifically, in addition to using
the manually labeled control points to estimate path priors, we also use their centroids
over all training subjects to initialize the MCMC algorithm for the test subject.

2.4 Automatic generation of seed/target ROIs

Finally, we also use centroids of the manually labeled end points of the path from the
training subjects to generate the target and seed ROI for the test subject. Since an impor-
tant issue with the original method is poorer performance as the seed and target ROIs
get larger, we use gradually dilated versions of these end points to assess the reliability
of the prior-based approach.

3 Preliminary results

We performed tractography on a data set provided by the Mental Illness and Neuro-
science Discovery (MIND) Institute [8]. The data set, which was acquired to facili-
tate test-retest reliability studies on MRI-derived measures, included 10 healthy vol-
unteers scanned twice. The scans were performed in a 3T Siemens Trio at the Mas-
sachusetts General Hospital. They were repeated on two visits that were separated by
less than a month for each subject. The scans included diffusion-weighted images ac-
quired at 2x2x2 mm resolution with 60 gradient directions. Using each subject’s frac-
tional anisotropy and primary eigenvector maps, an expert labeled the corticospinal
tract (CST) and the three branches of the superior longitudinal fasciculus (SLF1, SLF2,
SLF3).

For each subject, we used the other nine subjects as a training set. In particular, we
used centroids of the manually labeled control points from the nine training subjects to
initialize the control points of the test subject for the MCMC algorithm. We also used
splines fitted to the manually labeled points from the nine training subjects to generate
a path prior for the test subject. We applied the Bayesian global tractography method
described above in three ways:

– No control point initialization and no path prior from the training subjects. (In this
case the initializing control points for the MCMC algorithm were found by a search
on a set of rotating planes, as described in [6].)

– Control point initialization from the training subjects but no path prior.
– Control point initialization and path prior from the training subjects.

No information from the manual labeling of the test subject was used in any of the three
approaches. In all cases we modeled the paths as Catmull-Rom splines with 5 control
points. In the future we plan to use the training set to perform model selection on the
number of control points needed for each tract.
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3.1 Reliability with respect to ROI size

We obtained the seed and target ROIs for all studies by finding the centroids of the
corresponding manually labeled end points of the nine training subjects. To assess the
robustness of the three methods described above to ROI size, we dilated the seed and
target ROIs simultaneously and repeated the posterior estimation with ROIs of diameter
equal to 1, 3, 5, 9, 17, and 33 voxels.

Figure 1 shows the results of this comparison. We assessed reliability by computing
the modified Hausdorff distance of the path posteriors produced by each of the three
methods to the “ground truth,” represented by a spline that we generated from the man-
ually labeled points of the test subject itself. We define the modified Hausdorff distance
between two sets of points as the mean of the minimum distance from a given point
in the first set to any point in the second set. We obtained one such distance measure
for each subject and ROI size combination. We used only the data from the first of the
subjects’ two visits for this study.
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Fig. 1.Modified Hausdorff distance between the path posteriors produced by tractography and the
spline defined by the manually labeled points. The scatter plots show individual subject/ROI size
combinations and the black horizontal lines correspond to their mean. Larger markers correspond
to larger ROIs. For each of the four tracts, the three methods compared are global Bayesian
tractography with (i) No prior info from training subjects, (ii) Initialization of control points from
training subjects, and (iii) Initialization of control points and path prior from training subjects.

3.2 Test-retest reliability

To assess test-retest reliability of the three estimation methods, we also computed the
modified Hausdorff distance, as defined above, between the path posterior estimated
from the data of each subject’s first visit and that estimated from the data of the same
subject’s second visit. Figure 2 shows the results. Once again, we obtained one distance
measure for each subject and ROI size combination.
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Fig. 2. Modified Hausdorff distance between the path posteriors produced by tractography from
diffusion scans of the same subject acquired on two different visits. The scatter plots show in-
dividual subject/ROI size combinations and the black horizontal lines correspond to their mean.
Larger markers correspond to larger ROIs. For each of the four tracts, the three methods compared
are global Bayesian tractography with (i) No prior info from training subjects, (ii) Initialization
of control points from training subjects, and (iii) Initialization of control points and path prior
from training subjects.

Figure 3 shows the CST path posteriors estimated from one subject’s data by each
of the three methods we compared. Figure 4 shows the same for the three branches of
the SLF. The paths shown are 2-D projections of the maximum value of each posterior
along the left-right direction. They are superimposed on a maximum intensity projection
of a white-matter mask obtained from a T1-weighted scan of the same subject.

4 Discussion and future work

Our preliminary studies show the utility of including prior information from training
subjects in probabilistic diffusion tractography. As seen in figures 1 and 2, the nine
training subjects used here were enough to yield significant improvements in terms of
robustness to seed/target ROI selection and test-retest reliability. In future work we plan
to investigate the appropriate size for the training set further.

The results indicate that using the manual labels from the training subjects only to
initialize a prior-free estimation results in some but less significant improvement. The
algorithm explores a large enough solution space to sometimes find solutions that are far
from the ground truth and even anatomically implausible. The prior improves results by
constraining the solution space. The benefits of using the information from the training
subjects for both initialization and path priors vs. simple initialization were greater for
the SLF, which is a weaker connection and more difficult to trace than the CST.

As seen in figures 3 and 4, the path posteriors estimated using path priors from
the nine training subjects match the labels drawn manually on the test subject quite
well. However, some mismatch remains, particularly near the cortex. For the studies
shown here, the ten subjects’ diffusion-weighted images were aligned in Talairach space
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(a) CST, visit 1
(no init, no prior)

(b) CST, visit 1
(with init, no prior)

(c) CST, visit 1
(with init, with prior)

(d) CST, visit 2
(no init, no prior)

(e) CST, visit 2
(with init, no prior)

(f) CST, visit 2
(with init, with prior)

Fig. 3. CST path posteriors generated from test-retest data of a single subject acquired at sepa-
rate visits. Paths generated with seed/target ROI diameters of 1, 3, 5, 9, 17, and 33 voxels are
superimposed. The green squares show the locations of the manually labeled points for the same
subject.

by linear registration. We are currently investigating the use of an elastic registration
method that achieves better alignment of the subjects’ cortical surfaces. We expect that
this approach will drive the Hausdorff distances for the prior-based method even lower
than the values shown in figure 1.

In the proposed method manual labeling is needed only to estimate the path prior,
which is done only once on a set of training subjects. This atlas of manually labeled
tracts can then be used to perform tractography for new studies in a completely auto-
mated manner, without any manual intervention on the new subjects’ data. The rationale
behind the use of a path prior is that the paths have a similar shape in different subjects.
This is not an unreasonable assumption, especially among healthy individuals, where
white-matter pathways are typically well-predicted by the surrounding anatomy.

An important concern in this regard is the applicability of the prior-based approach
to patient populations. We are in the process of evaluating the methods described here
on data from patients with neurodegenerativedisorders. If the priors derived from healthy
subjects prove unreliable for use on patient data, we will investigate the inclusion of pa-
tients in our training sets.

Finally, we are extending our priors to take advantage of anatomical context ob-
tained from segmentations of T1-weighted images of the training and test subjects. We
expect this to be beneficial in tracing paths that are well-constrained by the surrounding
anatomy,e.g., constraining the CST lateral to thalamus and medial to pallidum.
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(a) SLF, visit 1
(no init, no prior)

(b) SLF, visit 1
(with init, no prior)

(c) SLF, visit 1
(with init, with prior)

(d) SLF, visit 2
(no init, no prior)

(e) SLF, visit 2
(with init, no prior)

(f) SLF, visit 2
(with init, with prior)

Fig. 4. SLF path posteriors generated from test-retest data of a single subject acquired at sepa-
rate visits. The SLF1, SLF2, and SLF3 paths are shown in blue, pink, and copper color maps
respectively. Paths generated with seed/target ROI diameters of 1, 3, 5, 9, 17, and 33 voxels are
superimposed for each case. The blue, red, and yellow squares show the locations of the manually
labeled points for the SLF1, SLF2, and SLF3 of the same subject respectively.
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Abstract. A new musculoskeltal simulation primitive, the strand, can
provide an efficient way of simulating complicated muscle fiber architec-
tures [1]. In this paper we present a new fiber tracking algorithm based
on an energy minimizing active curve that is well suited for building
these strand type models from diffusion tensor imaging data. We present
fiber tracking results for the Brachioradialis muscle in the left forearm
of a male subject. The algorithm produces a space filling arrangement of
fibers that are uniformly distributed throughout the muscle and aligned
with the underlying muscle fiber direction.

Key words: musculoskeletal simulation, fiber tracking, diffusion tensor
imaging

1 Introduction

Subject specific dynamic models of muscle can provide invaluable tools for the
diagnosis of movement disorders [2] as well as for the study of the neurological
control of movement [3]. Previous muscle simulations have focused on approaches
such as line-of-force models and Finite Element Methods (FEM). However, line-
of-force models overly simplify muscle fiber arrangement by treating muscles as
straight lines and FEM models are complex to construct and time intensive to
simulate. Recently a new simulation primitive, the muscle strand, has been de-
veloped for simulating musculotendon systems [1]. Strands are based on cubic
spline curves with inertia. They allow contractile forces to be propagated along
complex trajectories. By using strands to represent the arrangement of mus-
cle fibers within a muscle we plan to construct accurate, efficient simulations
which take into account subject specific fiber architectures. One major hurdle in
building these strand-based models is the extraction of muscle fiber fields from
subjects and the fitting of a number of strands to this data. In this paper we
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present preliminary results of a semi-automatic technique for solving this prob-
lem using Diffusion Tensor Imaging (DTI) data from human muscle. Instead
of relying on random seeding of the muscle volume to produce fiber paths we
present an algorithm which seeks to fit a collection of energy minimizing, curves
to the fiber field. Each of these contours could then be used as a strand in a
musculoskeletal simulation.

2 Related Work

Musculoskeletal DTI has been previously used on human leg muscles. Sinha et

al. [4] developed a tetrahedral gradient encoding scheme to perform fast DTI of
human calf muscles. Lansdown et al. [5] used musculoskeletal DTI in order to
measure pennation angle of muscle fibers in the human leg and compared the
results to ultrasound (US) measurements. Lansdown found that the measure-
ments acquired from the DTI data were statistically comparable to those from
the US data.

Most fiber tracking approaches focus on seeding the DTI volume and using
a numerical integration scheme to follow the primary eigenvector of the DTI
tensor field to create a fiber path [6]. Probabilistic approaches have been used to
deal with more complex fiber arrangements. Mori and Zijl have provided a sum-
mary of recent developments in fiber tracking [6]. Blemker and Delp presented a
method for use with FEM muscle models that maps templated fiber geometries
to anatomical meshes in order to include fiber data in the simulation. However
these fiber templates are defined mathematically using tunable parameters, not
from subject specific data [7].

3 Methods

Our pipeline for generating muscle geometry and patient specific strands begins
with imaging the appropriate area of the body using MRI. Both anatomical and
diffusion weighted scans are acquired. Muscle and bone surfaces are extracted
from the anatomical scans while a muscle fiber field is computed from a DTI vol-
ume constructed from the diffusion weighted data. Below we present the details
of each of these steps.

3.1 MRI Data Acquisition

Imaging for this study was performed on a 3T Philips Achieva MRI Scanner with
dual nova gradients (80mT/m maximum gradient strength, 200T/m/s maximum
slewrate) and scanner software release 2.1.3.

During image acquisition the subject lay prone in the scanner with the left
arm raised straight overhead to be placed as optimally as possible in the magnet’s
centre. The subject’s forearm was secured in an 8-element phased array knee coil
with 15cm inner diameter.
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The imaging protocol consisted of a fast gradient echo T1W localizer for
positioning and planning followed by low and high resolution T2W fast spin
echo (FSE) scans for reconstruction of bone and muscle/fat surface boundaries.
The session was concluded with a high resolution Diffusion Tensor Imaging (DTI)
scan for muscle fiber orientation and segmentation.

Quick low resolution anatomical FSE-scans were acquired with an in-plane
resolution of 1.5x1.5 mm2 and a slice thickness of 4mm covering the entire lower
arm (Fig.1).

The high resolution FSE was designed to match the Diffusion Tensor Imaging
(DTI) scan in location, orientation and anatomy coverage with the following
parameters: FSE-factor 12 with asymmetric profile order to give an effective
echo time of TE=50ms; field of view (FOV):120x120x150 mm3 with an in-plane
resolution of 0.65x0.65 mm2 and a slice thickness of 2mm.

The lower resolution T2W-scan was used for segmenting bones and muscles
that passed out of the field of view of the high resolution scan. Important pa-
rameters such as origin/insertion locations and bone coordinate systems could
thus be obtained. Note that these two scans were run sequentially with the DTI
scan and that the subject was immobilized. Therefore all volumes were closely
aligned.

Diffusion Tensor Imaging (DTI) was performed with a single shot diffusion
sensitized spin-echo Echo Planar Imaging (EPI) sequence involving 16 different
gradient encoding directions at a maximum diffusion b-value of 500s/mm2. We
used a reduced FOV of 120x120x150mm3, SENSE-factor of 2.0 and enhanced
gradient performance to shorten the echo train length of the EPI-readout as
much as possible for better compensation of susceptibility induced artifacts.
Fat suppression was performed with a spectral spatial inversion prepared fat
suppression technique. Further imaging parameters were as follow: TE=48ms,
TR=6000ms, acquisition matrix 80x80 leading to an effective acquisition voxel
size of 1.5x1.5x2.0 mm3 and a scan time of 5 minutes.

3.2 Segmentation of Bone and Muscle Surfaces

Given the high complexity of the forearm structure and the fuzzy muscle bound-
aries on MRI (e.g. because of thin intermuscle fat), surfaces are not reconstructed
based on a slice-by-slice segmentation. Instead, the subject-specific model is ob-
tained from the registration of a template surface onto the individual MRI. This
prior model was constructed from the Ultimate Human Dataset (Snoswell De-
sign, Adelaide).

Musculoskeletal registration is particularly challenging because it involves
a large number of interrelated components undergoing large non-linear defor-
mations with large anatomical variations in the population. Hence allowable
deformations need to be carefully parameterized to avoid falling into one of the
numerous local solutions, and to present sufficient degrees of freedom [8, 9].

Our surface-to-image registration method is based on discrete deformable
models evolving under internal forces (e.g., elastic forces) and external forces
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(e.g., image forces, user constraints). Our internal forces enforce a spatially co-
herent evolution and consistent shapes by minimizing non-rigid local transfor-
mations between the model and the template. Our method is derived from a
fast deformation technique called shape matching developed in the computer
graphics community [10, 11], to efficiently approximate large soft-tissue elastic
deformations. In [12], we show that quasi automatic inter-patient registration
can be achieved when the template is built from a reference image dataset (ex-
ternal forces locally match icons around the surface). In this present work, we
do not have any prior appearance model, so external forces are based on user
constraints (for each bone/ muscle, the user places internal/ external/ frontier
points on MRI slices) and local gradient maximization. The model (∼ 20k parti-
cles) can be deformed in real time, so the adaptation is done interactively while
putting constraint points.

3.3 DTI Data Processing and Fiber Tracking

In order to reduce distortion in the diffusion weighted images, eddy correction
was performed using FMRIB’s Diffusion Toolbox (FDT) [13]. Image volumes
were converted from DICOM to Analyze format in order to perform the correc-
tion. MedINRIA’s DTI Track [14] was used to compute a tensor image from the
diffusion weighted data. MATLAB was used to compute the primary eigenvector
of each tensor in order to facilitate fiber tracking.

The fiber tracking performed in this study differs from typical tractography
algorithms because of the end use of the data. We are seeking to build a strand-
based dynamic model from the diffusion tensor data (DTI). The algorithm seeks
to evenly distribute a user-specified number of strands within the segmented
muscle surface. In order to accomplish this we utilize a deformable contour for
fiber tracking and segmentation. In general this method shares similarities with
active contours used for image segmentation [15]. However instead of segmenting
the boundary of the muscle we seek a space filling arrangement of curves which
lie both on and inside the muscle surface. The algorithm is semi-automatic in
that it requires the user to specify the insertion and origin of the muscle to which
tracking will be applied. A template strand is initialized between the insertion
and origin points and the user can move control points on the template to ensure
that the template strand is entirely enclosed by the muscle surface. Once this
initialization step is complete, the required number of strands are initialized
to be identical to the template strand. Each strand is discretized using linear
elements.

The energy for this ith element is

Ei = α‖xi
1
− xi

0
‖2 − β

(

|ei · t
(

xi
m

)

|
)

+ γEi
r, (1)

where xi
j are the end points of element i, ei is the normalized element tangent

vector, t
(

xi
m

)

is value of the underlying primary eigenvector evaluated at the
midpoint of the element and Ei

r is a repulsion energy.
The initial term in the energy equation is a stiffness term and prevents un-

necessary elongation of the strand during tracking. The second term causes each
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element of the strand to align with the underlying DTI fiber field. The final term
is a repulsion term that is computed between a strand and all other neighboring
strands. This term forces the strands away from each other thus seeking a space
filling configuration within the muscle surface.We seek the minimum energy con-
figuration of all strands subject to the constraints that each node of a strand
must lie inside or on the muscle surface. The constraints that arise in such a
problem are quite complicated. Formulating the minimization at the velocity
level is easier because the constraints can be locally linearized. The following
equation is arrived at by linearizing equation (1) and adding a kinetic energy
term.

Q (ẋ) = hẋ · ▽Es + ẋ · ẋ, (2)

where h is the algorithm time step, ▽Es is the negative force acting on strand
s and can be computed from the sum of the gradients of Ei and ẋ is a vector of
the strands nodal velocities.

We minimize Q subject to the constraints in order to obtain a feasible veloc-
ity, and step the solution forward in time. An initial perturbation is applied to
each strand to prevent the repulsion term from being infinite. In this implemen-
tation the force term is evaluated using an explicit trapezoidal type sum. Nodal
velocities are computed from these forces using QL, a robust program for solving
quadratic programming problems subject to equality and inequality constraints
[16]. The computed nodal velocities are then applied to the nodal positions and
the process is repeated until the strands reach a steady state.

Equality constraints are used to fix the insertion and origin points of each
strand in space, and inequality constraints are used to keep strand nodes inside
the muscle surface. Ray-triangle intersection is used to detect if a node has
violated the muscle surface constraint. If so the node is moved back to the
surface and an inequality constraint is added to prevent the node from moving
in a direction normal to the triangle that it passed through.

4 Results and Discussion

In this section we present the preliminary results of muscle segmentation and
fiber fitting for the Brachioradialis muscle of the left arm of the subject.

Despite a careful placement of constraint points, the anatomical segmentation
is not perfect, because of fuzzy edges and partial volume effects. We also expect
small misalignments between the different volumes due to slight movements of
the subject. Although more validation and cross-comparison between different
manual segmentations will be required, we presume for the moment that our
segmentation lies within a 3mm error bound in terms of distance to the surfaces.
Fig. 1 also shows how the segmentation of the Brachioradialis is constrained by
the boundaries of other forearm muscles.

An initial example (Fig. 2) demonstrates how the deformable curves take
muscle fiber vector field information into account during the fiber tracking pro-
cess. Without vector field information the curves fill the entire muscle shape.
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6 Levin et al.

Fig. 1. Left: High/ low resolution MRI volumes and reconstructed models (bones and
Brachioradialis muscle) of the arm. Bottom: High resolution sample slice with and
without superimposed models. Note that the Brachioradialis is shown in red while
other muscles in the forearm are shown as contours of different colours.
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Fiber Tracking for Dynamic Models 7

Fig. 2. A simple example showing how the curves respond to vector data. The upper
images show an ellipsoidal shape filled with curves using no muscle vector field infor-
mation. The lower images show the same curves under the influence of a cosine vector
field.

Fig. 3. DTI Fiber Tracking of the Brachioradialis muscle.
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Incorporating vector field information still leads to a uniform distribution of
strands within the muscle but their configuration is altered noticeably.

Next we show the results of tractography performed using the Stanford DTI
Query tool (Fig. 3). The pathway shown was segmented using two volumes-
of-interest positioned in the region of the Brachioradialis muscle. The primary
eigenvectors of the DTI data used to compute this pathway were used to build
the muscle vector field for the strand fiber tracking algorithm.

Parameters for the strand tracking algorithm were adjusted manually until
we could achieve a space filling configuration of strands for which the average
dot product between a strand element and the muscle fiber direction vector was
0.9 or greater. This led to parameter values of 0.5 for α, 20 for β and 300 for
γ. We used a time step (h) of 0.01. Fig. 4 shows the output of the strand fiber
tracking algorithm. The top left image shows the segmented muscle mesh of
the Brachioradialis muscle and the template strand. The insertion and origin of
the muscle are shown as green and blue spheres respectively. Notice that as the
algorithm progresses that the strand arrangement (shown by the white lines)
progresses from being tightly packed along the medial axis of the muscle to
being evenly distributed throughout the whole muscle geometry. Also note that
despite the extreme narrowing of the muscle the strands remain constrained
inside the muscle shape. Fig. 5 shows the fiber field matching behavior of one
strand from the fiber tracking result. Each colored line shows the direction of the
muscle fiber field at the midpoint of each strand midpoints. Notice that once the
strand reaches its final configuration all the vectors are virtually parallel with
the elements (average dot product with the fiber field equal to 0.95) showing
that the contour does align itself with the underlying fiber field.

Fig. 4. The progression of the fiber tracking algorithm from the initial template strand
(top left) to the completed strand configuration (bottom).

In terms of future work, parameter optimization for the energy term needs to
be performed in order to find values that fit a wide range of fiber configurations
accurately. Also necessary is the modification of the algorithm so that it can be
used on non-fusiform muscles. Furthermore, though our preliminary results are
encouraging, rigorous validation of the algorithm needs to be conducted using
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Fig. 5. The fiber field matching behavior of one of the strands from the muscle fiber
tracking. Colored lines show the direction of the fiber field at each element midpoint.

more subjects. Ultimately we hope to build numerous dynamic muscle models
and explore the effect that differing fiber architecture has on behavior of muscles.

5 Conclusion

We have developed a fiber tracking algorithm which fits a finite number of muscle
strands to a muscle fiber field using an energy minimizing approach. Unlike
previous tractography approaches, this algorithm allows more careful control of
the number of muscle strands produced by the algorithm and is thus well suited
for building patient specific, strand-based dynamic muscle models.
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Abstract. We address the problem of robust estimation of tissue mi-
crostructure from Diffusion Magnetic Resonance Imaging (dMRI). On
one hand, recent hardware improvements enable the acquisition of more
detailed images, on the other hand, this comes along with a low Sig-
nal to Noise (SNR) ratio. In such a context, the approximation of the
Rician acquisition noise as Gaussian is not accurate. We propose to es-
timate the volume of PDF-based characteristics from data samples by
minimizing a nonlinear energy functional which considers Rician MR ac-
quisition noise as well as additional spatial regularity constraints. This
approach relies on the approximation of the MR signal by a series ex-
pansion based on Spherical Harmonics and Laguerre-Gaussian functions.
Results are presented to depict the performance of this PDE-based ap-
proach on synthetic data and human brain data sets respectively.

1 Introduction

Water molecules exhibit Brownian motion which might be constraint by internal
micro-structure of the brain white matter. Diffusion-Weighted Imaging (DWI)
measures this local displacement using the pulse gradient spin echo sequence [1]
in each voxel and thus provides images of the architecture of the brain. These
images provide valuable information to diagnose early stages of stroke, brain
diseases or neurological disorders [2]. However, this molecular displacement is
not directly measured. Indeed, when the diffusion gradient pulse duration δ is
negligible compared to diffusion time ∆, the MR signal E defined in Q-Space is
related to the average displacement probability P by the Fourier transform [3]

P (p) =
∫
q∈R3

E(q) exp(−2πiqpT )dq, with E(q) =
S(q)
S0

, (1)

where p is the displacement vector and q stands for the diffusion wave-vector of
the Q-Space. The symbols S(q) and S0 respectively denote the diffusion signal
at gradient q and the baseline image at q = 0.

Eq.(1) naturally suggests to use the Fourier transform to numerically esti-
mate the PDF (Probability Density Function). This technique known as Diffu-
sion Spectrum Imaging (DSI) [4] is not clinically feasible due to the huge acqui-
sition time required to retrieve the whole Q-Space coefficients. As a result of DSI
? We are thankful to Cyceron for providing data and the fruitful technical discussions.
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constraints, High Angular Resolution Diffusion Imaging (HARDI) [5] comes as
an interesting alternative and suggests to sample the signal on a single sphere
of the Q-Space.

Prior methods of the literature based on HARD images [6–10] use a single
shell acquisition and have thus to assume strong priors on the radial behav-
ior of the signal, i.e. mono-exponential decay. Nonetheless, sampling schemes
on several spheres in the Q-Space have been proposed recently [10–14]. Since
the number of samples still remains too low to allow a precise Fourier transform,
some methods rather consider computed tomography methods [14] or an approx-
imation of the MR signal radial attenuation by a multi-exponential function [10,
12]. Note that these methods use a larger set of data but are still based on a
priori models of the radial behavior of the input signal.

Nonetheless, a recent method [15] tackles this problem with a continuous
representation of data from multiple shells and a fast method for computation
of functions of the PDF. It involves a damped least square estimation of the
best-fitting coefficients in the Spherical Polar Fourier basis. However magnitude
MR data are corrupted by a Rician noise not a Gaussian one, and consequently
introduces a bias in intensity at low Signal-to-Noise Ratio (SNR) which reduces
the tissue contrast. This arises from complex Gaussian noise in the original fre-
quency domain measurements named K-Space [16–19]. In this study we propose
to extend the previous approach to robustness to Rician noise within a varia-
tional framework.

In section 2, we overview the mathematical background of the method intro-
duced in [15]. Then, we present an variational framework extension of previous
method for a robust estimation in section 3. Section 4 shows validation results
on both numerical and real human data-sets. Finally, we draw conclusions of the
proposed approach in section 5.

2 Mathematical background

To be as self-contained as possible, we briefly overview the method introduced
in [15] using the Spherical Polar Fourier (SPF) expansion. In order to be able
to reconstruct the PDF from Eq.(1) even with few samples, we seek a basis in
which the acquired signal is sparse. For convenience, a list of common notations
used in this paper is reminded in Table 1.

2.1 Spherical Polar Fourier Expansion

Let E be the MR signal attenuation, we propose to express it as a serie in a
spherical orthonormal basis named Spherical Polar Fourier (SPF) [20]

E(q) =
S(q)
S(0)

=
∞∑
n=0

∞∑
l=0

l∑
m=−l

anlmRn(||q||)yml
(

q
||q||

)
, (2)

where anlm are the expansion coefficients, yml are real Spherical Harmonics (SH),
and Rn is an orthonormal radial basis function.
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Table 1. A list of major notations used in this paper

Symbol Description Symbol Description

PDF Probability Density Function p,k Displacement vectors in R3

ODF Orientation Density Function P (p) Average displacement probabilities
FRT Funk-Radon Transform q Diffusion space vector in R3

SH Spherical Harmonics S(q) MR signal at diffusion gradient q
SPF Spherical Polar Fourier E(q) MR signal attenuation S(q)/S(0)
anlm SPF expansion coefficient G(k) PDF characteristic at point k

at order n, l and m hk(p) projection function of G(k)

The angular part of the signal E is reconstructed by the complex SH Y ml
which form an orthonormal basis for functions defined on the single sphere. For
this reason, they have been widely used in diffusion MRI [21, 22]. Indeed, as the
diffusion signal exhibits real and symmetry properties, the use of a subset of
the complex basis made of real and symmetric SH yml strenghten the robust-
ness of the reconstruction to signal noise and reduces the number of required
coefficients [21, 22].

The radial part of the signal E is reconstructed by the elementary radial
functions Rn. A sparse representation of the radial signal should approximate it
in a few radial order N . Based on these observations, we propose to estimate E
using the normalized generalized Gaussian-Laguerre polynomials basis Rn [20,
23]:

Rn (||q||) =
[

2
γ3/2

n!
Γ (n+ 3/2)

]1/2
exp

(
−||q||

2

2γ

)
L1/2
n

(
||q||2

γ

)
, (3)

where γ denotes the scale factor and L
(α)
n are the generalized Laguerre polyno-

mials. The Gaussian decay arises from the normalization of the Laguerre poly-
nomials in spherical coordinates.

The SPF forms an orthonormal basis on Spherical Harmonics (SH) and
Gaussian-Laguerre polynomials. Consequently a low order truncation assumes
a radial Gaussian behavior as in [10, 12] and a high order truncation provides
a model-free estimation. Besides, the square error between a function and its
expansion in SPF to order n <= N and l <= L converges to zero as N and L
go to infinity.

2.2 Fast Computation of Characteristics on the PDF

As we have a continuous representation of E from the SPF coefficients, let
G(k) =

∫
P (p)hk(p)dp be a characteristic G of the PDF at point k, where

hk denotes a projection function at point k. Table 2 represents several popular
characteristics G which can be evaluated using this computational scheme. A
natural way to retrieve G would be to reconstruct E from the SPF coefficients,
compute a Fast Fourier Transform (FFT) and finally calculate G on the PDF
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Table 2. A non-exhaustive list of some PDF characteristics G and their projection
function hk at point k. FRT stands for the Funk-Radon Transform used in QBI, where
J0 is the Bessel function of the first kind and ||q′|| is the radius of the q-ball shell.
ISO stands for isoprobability profiles. SD and FD respectively stands for slow and fast
diffusion, where ||p′|| is the radius limit between intra and extra cellular diffusion.

G ODF FRT ISO SD FD

hk(p) δ(1− |p·k|
||p||||k|| ) J0(2π||q′||||p||) δ(k)

ODF if ||p|| < ||p′||
0 if ||p|| > ||p′||

0 if ||p|| < ||p′||
ODF if ||p|| > ||p′||

volume; however such a scheme would induce cumbersome computations and
raise numerical accuracy issues. So, any characteristic G defined from Eq.(4) can
alternatively be computed directly from the SPF coefficients. Indeed, since the
SPF are an orthonormal basis the following relation holds:

G(k) =
∫
p∈R3

P (p)hk(p)dp =
∫
q∈R3

E(q)Hk(q)dq =
∞∑
nlm

anlmb
k
nlm (4)

where Hk is the inverse Fourier transform of hk and anlm, b
k
nlm respectively

denote the SPF expansion of E and Hk. Therefore, the numerical computation
of G(k) which is an integration over an entire volume simply turns into a very
fast dot product between two vectors of SPF coefficients.

We seek the SPF coefficients that represent the best the MR data samples
E. However, E is strongly corrupted by noise and may lead to distortion of
computed characteristics on the PDF.

3 Robustness to noise

Since the acquisition noise on the MR signal is not Gaussian, a least square fit
is definitely not the best choice for such an estimation process. This issue arises
especially when dealing with low SNR data as this is the case for very high-q
values. Furthermore, independent voxel estimation does not reflect the spatial
regularity of the diffusion function. We propose to tackle these issues with a
variational framework which is adaptable to noise distribution and is able to use
valuable information given by the neighbour voxels.

3.1 Variational Framework

The key idea is to estimate and regularize the whole volume of voxels at the
same time. Indeed, it enables to take into account correlation between all parts
of the processing pipeline instead of doing the different parts separately. Let
E be the acquired dMRI volume corrupted by Rician noise, we seek the SPF
coefficients A of the filtered dMRI volume Ê = MA, where the symbol M =
(Rn(||qj ||)yml ( qj

||qj || ))nlm×j∈N3×N denotes the SPF basis matrix. We propose to
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robustly estimate and regularize the SPF coefficients field from the dataset vol-
ume simultaneously by minimizing the following nonlinear functional energy:

min
A

{∫
ΩE

[
ns∑
k

ψ(Êk)

]
+ αrϕ(||∇A||)dΩE

}
(5)

where ΩE ⊂ R3 is the domain of datasets voxels. The likelihood term ψ(Ek)
measures the dissimilitudes at voxel x ∈ ΩE between E and its reconstruction
Ê at gradient direction k, ψ : R → R+ and ϕ : R → R+ are real and positive
functions, αr ∈ R is the regularization weight and ||∇A|| the gradient norm
defined as

||∇A|| =
∑
nlm

||∇Anlm|| (6)

Note that if ψ(s) = s2 and αr = 0 in Eq.(5), we minimize the least square
criterion. As the minimization cannot be computed straightforwardly, the gra-
dient descent coming from the Euler-Lagrange derivation of Eq.5 leads to a set
of multi-valued Partial Differential Equation (PDE) as described in Eq.(7). In
practice, we first set A(t=0) to U0, an initial estimate of SPF coefficients. In
order to estimate a solution, SPF coefficients velocity ∂A

∂t giving the direction
from the current A to a solution is computed. The latter is done several times
until convergence (typically when ε ∈ R+, ε→ 0, ∂A∂t < ε),

At=0 = U0

∂Aj

∂t =
∑ns

k Mk,jψ
′(Êk) + αr div(ϕ(||∇A||))

(7)

The initial estimate U0 is computed either by considering a random field or a
more structured one. A good choice is to start from an initial set which is not
so far from the global minimum; so the linear least square estimation seems
to be an adequate alternative. Indeed, least square minimization is the global
minimum when ψ(s) = s2 and αr = 0. One can expect the minimum to be close
enough to the least square minimum through variations of ψ and ϕ; and should
consequently bring down the number of iterations required to converge.

3.2 Likelihood function ψ

The diffusion MR magnitude images are corrupted by noise and the best ψ
function is the one specific to the MR scanners, that is to say the Rice distribution
whose probability density function is:

p(E|Ê, σ) =
E

σ2
exp

(
−(E2 + Ê2)

2σ2

)
I0

(
E · Ê
σ2

)
(8)

where σ is the standard deviation of the noise and I0 is the modified zeroth-
order Bessel function of the first kind. We adapt the Rician bias correction
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Fig. 1. Energy associated to respectively Gaussian and Rician likelihood ψ functions.
Note the bias introduced by the Rician function on low SNR data. E = 1 and σ = 0.5.

filter introduced in [24] from 2nd-order DTI to the SPF basis. It is based on
a maximum a posteriori approach so we construct the filtered volume Ê that
maximizes the log-posterior probability:

log p(Ê|E) = log p(E|Ê) + log p(Ê)− log p(E) (9)

where p(E|Ê) is the likelihood term, p(Ê) is the prior or the regularization term
and p(E) is the normalizing constant. We are interested in the likelihood term,
thus combining Eq.(8) and Eq.(9) the pointwise log-likelihood becomes

log p(E|Ê, σ) = log
E

σ2
− (E2 + Ê2)

2σ2
+ log I0

(
E · Ê
σ2

)
= ψ(Ê) (10)

Fig.3.2 illustrates variation of the opposite function with scalar values of Ê
when E = 1 and σ = 0.5. The energy is low when E ≈ Ê and increases with
their dissimilitudes. Note that σ has to be known a priori and can be either
retrieved as a parameter specific to the MR scanner, or can be either computed
from a uniform area as described in [19]. Combining Eq.(7) and the derivative
of Eq.(10) with respect to Aj gives the PDE adapted to Rician noise,

∂Aj
∂t

=
∑ns

k Mk,j

σ2

−Êk + Ek

I1
(
Ek·Êk

σ2

)
I0

(
Ek·Êk

σ2

)
+ αr div(ϕ(||∇A||)) (11)

3.3 Regularization function ϕ

Regarding the spatial regularization, various functions ϕ of the image processing
literature can be proposed as long as it preserves important features of the image.
Indeed, regularization should be strong on homogeneous area (low ||∇A||), and
preserve contours not only between isotropic and anisotropic regions but also
among voxels with different number of fibers (large ||∇A||). We drop the angular
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and radial regularization step of Eq.4 in [15] since the spatial regularization puts
sufficient constraints on the diffusion signal to be estimated. Our experiments
have confirmed that combining these regularization to the spatial one is useless.

4 Experiments

In this section, we present results of our method on both synthetic simulations
and real human brain data-sets. We first focus on a comparison between the
damped least square estimation introduced in previous work and the robust
variational framework introduced in this paper. Then we illustrate the flexibility
of the proposed approach with a comparison of ODF computed with QBI method
as proposed in [25] and with our method [15] on an in-vivo dataset.

4.1 Numerical Simulations

We have applied the above scheme to the simulations of a single fiber and cross-
ing fiber configurations. The following synthetic multi-exponential model was
used to generate data, E(q) =

∑Nb

k=1 fk exp
(
−qTDkq

)
where

∑Nb

k=1 fk = 1. The
symbol Nb stands for the number of fibers and Dk is a 3× 3 symmetric definite
positive matrix defining the diffusion anisotropy. Diffusion images were synthe-
sized following 3 sampling protocols: low resolution (1 shell b = 3000 s/mm2),
medium resolution (2 shells b = {1000 , 3000} s/mm2) and high resolution (5
shells b = {500 , 1000 , 1700 , 2400 , 3000} s/mm2) along with a single baseline im-
age acquired at b = 0 s/mm2. Each shells is composed of 42 directions along the
edges of a subdivided icosahedron. Estimation parameters were chosen empiri-
cally for each sampling protocol: low resolution {N = 0, L = 4, γ = 100, λN = 0,
λL = 6× 10−5}, medium resolution {N = 1, L = 4, γ = 70, λN = λL = 0}, high
resolution {N = 4, L = 4, γ = 50, λN = λL = 0}.

In order to assess the robustness to noise of our proposed variational frame-
work, we produced a synthetic phantom of crossing fibers (horizontal and vertical
networks) surrounded by water regions (upper left area) (c.f . Fig.3a). To sim-
ulate dMRI acquisitions, we added Rician noise of variance σ to the signal E
which was then sampled using medium resolution protocol as described above.

Fig.2 shows the results of a comparison between the reconstruction of E with
Gaussian and the Rician likelihood functions on a noisy dataset (Fig.2b). A post-
processing contrast enhancement with the same parameters was applied to all
images (a-f) to highlight artifacts. Although the Gaussian function is classically
used in the least square minimization [15], it is not robust to noise and creates
undesirable radial oscillations at high q values (Fig.2c). On the contrary, the
Rician likelihood function strongly attenuate this drawback and gives a correct
estimation of E (Fig.2d).

The Generalized Fractional Anisotropy (GFA) measure [5] in Fig.3 is a gen-
eralization of the fractional anisotropy (FA) measure of DTI. Each image was
normalized independently to enhance visualization contrast. This qualitative
comparison highlights the need for spatial regularization within the estimation
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a) Truth b) Noisy c) Gaussian d) Rician e) Diff.Gauss. f) Diff.Rice

Fig. 2. Qualitative comparison between Gaussian and Rician likelihood functions influ-
ence on reconstruction of an noisy dataset. PSNR(noisy,original)=18.5. Graphics (e,f)
are the absolute difference between respectively (c,d) and (a).

a) Phantom b) Original data
PSNR: ∞

c) Without regul.
PSNR: 12.8

d) With regul.
PSNR: 16.6

Fig. 3. Effects of spatial regularization on the GFA [5]. Isotropic area are black,
anisotropic area are white. PSNR(noisy,original)=18.5. (a) The ODF of the synthetic
phantom which is composed of two groups of fiber, horizontal and vertical, and sur-
rounded by water. (b) GFA of the perfect dataset. (c) GFA of the LS estimation on
a noisy dataset (without regularization). (d) GFA of the PDE estimation on the same
noisy dataset (with regularization).

process. Indeed, GFA is an adequate measure to have insight on the global co-
herence of the dataset volume estimation since every voxel is summarized by a
scalar value. When it comes to noisy input data, regularization greatly improves
the spatial coherence of the volume estimation as illustrated in Fig.3(c,d). It is
worth noting that the gradient norm ||∇A|| is an adequate measure to set apart
isotropic area from anisotropic area and subsequently, divergence div(ϕ||∇A||)
performs well in regularizing homogeneous area without degrading the contours.

We computed statistics on the performance of the PDE estimation with var-
ious likelihood and regularization functions ψ and ϕ. The PSNR (Peak Signal
to Noise Ratio) between the reconstruction and the original data stands for the
PSNR between the ground truth dataset volume E and its estimation Ê. Values
of Ê were restricted to [0, 1] in order to reflect the signal attenuation properties.
Fig.4a, illustrates the PSNR(E,Ê) of the reconstruction versus the quality of
input datasets. Out of the results, the Rician likelihood function outperforms
the Gaussian function and greatly improves the PSNR of the estimation. This
gap can be explained by a more robust radial fit thanks to the Rician likelihood
function as shown in Fig.2(c,d). Indeed, the number of radial sample in this
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a) Comparison of likelihood functions. b) Comparison of regularization functions.

Fig. 4. Synthetic phantom of networks of crossing fibers (c.f . Fig.3a). a) Performances
of likelihood functions on increasing levels of noise. b) Performances of regularization
functions on increasing regularization strength αr.

experiment is very limited (2 shells) whereas the number of angular samples is
sufficient (42 directions).

Fig.4b shows influence of regularization function ϕ on the PSNR of the re-
construction Ê. Although this brings modest improvements, the spatial regular-
ization ensures numerical stability of the estimation by adding constraints when
there are only very few samples available. Besides, this also brings stability to
the fiber-tracking algorithms and helps to better estimate the white matter nerve
fibers tracks [26].

4.2 In vivo experiments

Diffusion-weighted images were acquired in two shells along 32 directions at
b = 1000 s/mm2 and b = 3000 s/mm2, and a single image at b = 0 s/mm2. Thus,
there were a total of 65 images acquired in a sequence of 15 minutes on a 3 T
Philips scanner. The SENSE parallel imaging protocol was used with a factor of
acceleration set to 2; and only 80% of the k-space was acquired. Matrix size was
112× 112× 60 and the image resolution was 2× 2× 2 mm3. Repetition time was
TR=11490 ms, echo time was TE=85 ms. Time between two pulses and time of
diffusion gradients were respectively ∆ = 42.2 ms and δ = 26.3 ms. Terms up to
N = 1 and L = 4 were used in the calculations. Computations were done in less
than an hour on a 3 Ghz processor, and includes calculations of SPF coefficients
and projections along the 642 directions for the whole data-set 112 × 112 × 60
volume.

Representative images of GFA on the data are presented in Fig.5 and reveals
microstructures around the genu of the corpus callosum. The first line of Fig.5
are the results from previous work [15] and shows how it compares to standard
dMRI methods. DTI performs well in corpus callosum but fails in voxel with
orientational heterogeneity as shown in Fig.5b. QBI can successfully retrieve
multiple fibers orientations using the analytical stable ODF reconstruction de-
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a) S0 b) DTI [27] c) QBI [25] d) G=ODF [15]

e) Rice f) Soft Reg. g) Med. Reg. h) Strong Reg.

Fig. 5. Comparison of GFA [5] on region of corpus callosum and lateral ventricles. (a)
Baseline image, q = 0. (b) DTI anisotropy map. (c) Q-Ball Imaging. (d) Previous work
using damped least-square estimation. (e) Variational approach using Rician likelihood
function. (f-g) Variational approach using Rician likelihood function + Hyper Surface
regularization function.

scribed in [25] but is sensitive to noise, especially in region of cerebrospinal fluid
(c.f . Fig.5c). On the contrary, the ODF obtained by the SPF estimation ap-
proach does not fall into this pitfall (Fig.5d), it successfully retrieves anisotropic
shapes in brain white matter fibers regions and isotropic shape in cerebrospinal
fluid area (c.f . Fig.5d). The second line of Fig.5 shows the performances of the
proposed variational framework. Out of the results, Rician likelihood function
does not modify much the GFA map computed on ODF (c.f . Fig.5(d,e)). It
was expected as artifacts on Ê are mostly radial distortion and GFA focuses
on angular variations. However, spatial regularization strongly influence results,
depending on the regularization strength αr as illustrated in Fig.5(f-h).

5 Discussion and conclusion

In this paper, we proposed a variational approach which robustly estimates at
a stretch the whole volume of PDF functions as a set of Spherical Polar Fourier
(SPF) coefficients. This is done by minimizing an energy that simultaneously
considers the Rician model of the MRI noise and the regularization on spatial
constraints. Results demonstrate that the ability to reconstruct a voxel tak-
ing the whole neighborhood information into account strongly improve the spa-
tial coherence of the reconstruction. Besides, fiber-tracking is unstable on noisy
datasets and this last property may greatly improve the ability to recover reliable
and accurate intra-voxel fibers distributions within the human brain.
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26. Assemlal, H.E., Tschumperlé, D., Brun, L.: Fiber tracking on hardi data using
robust odf fields, ICIP (2007) 133–136

27. Basser, P.J., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion
tensor from the nmr spin echo. J. Magn Reson 103 (1994) 247–254

84



Two Canonical Representations for Regularized
High Angular Resolution Diffusion Imaging

Luc Florack and Evgeniya Balmashnova

Eindhoven University of Technology, Mathematics and Computer Science,
Den Dolech 2, 5600 MB Eindhoven, The Netherlands

{L.M.J.Florack,E.G.Balmashnova}@tue.nl

Abstract. Two canonical representations for regularization of unit sphere
functions encountered in the context of high angular resolution diffusion
imaging (HARDI) are discussed. One of these is based on spherical har-
monic decomposition, and its one-parameter extension via Tikhonov reg-
ularization. This case is well-established, and is mainly reviewed for the
sake of completeness. The second one is new, and is based on a higher
order diffusion tensor decomposition. A homogeneous representation of
this type has been proposed in the literature, but we show that this
is inconvenient for the purpose of regularization. We instead construct a
heterogeneous representation that can be regarded as “canonical”, to the
extent that its behaviour under regularization mimics that of spherical
harmonics.

Key words: Tikhonov regularization, higher order diffusion tensors,
spherical harmonics, high angular resolution diffusion imaging (HARDI),
diffusion tensor imaging (DTI), scale space.

1 Introduction

High angular resolution diffusion imaging (HARDI)—and, as a special case, dif-
fusion tensor imaging (DTI)—has the potential to provide unprecedented insight
into the microstructure of fibrous tissue such as muscle and brain white matter.
It is to date the only in vivo technique for studying the microstructure of such
tissues. Since tissue degeneration may occur as a precursor of certain diseases,
it holds the promise to become an essential diagnostic tool. In addition it may
further our insight in anatomy and brain connectivity, cf. Alexander et al. in the
context of neurotherapeutic applications of brain DTI [1].

In order to model the a priori unconstrained number of point measurements in
HARDI, one is naturally led to an infinite-dimensional Hilbert space framework.
Apart from the obvious risk of overfitting, lack of control on the overwhelming
number of degrees of freedom greatly complicates analysis and visualization.
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Regularization provides a way to control data complexity and to ensure manifest
robustness. We will review some finite-order Tikhonov regularization schemes
from the literature, as well as a recently introduced infinite-order scheme [2–8].
It has appeared natural in all cases to employ a basis of spherical harmonics
[9, 10], and this is indeed the typical procedure followed in practice. (The main
reason for this review is to make the paper self-contained; the reader is referred
to cited literature for details.)

However, an alternative but equally interesting decomposition has been put for-
ward by Özarslan and Mareci [11]. Instead of spherical harmonics the authors
propose to use homogeneous polynomials confined to the unit sphere, as a gen-
eralization of DTI. The “higher order diffusion tensors” constructed accordingly
are in principle capable of modeling raw HARDI data to any prescribed accu-
racy. Although there is some implicit regularization in the act of truncating the
polynomial expansion at some finite order, akin to the regularizing effect of fit-
ting acquisition data to a second order DTI tensor, the intention is primarily to
capture raw data to any desired level of detail. Indeed, the higher order diffusion
tensor model of Özarslan and Mareci is best appreciated as a DTI generalization.

However, unlike with DTI, which by construction has only six independent de-
grees of freedom per point [12–14], there is no explicit regularization of a general
HARDI signal. The question thus presents itself whether the tensor model of
Özarslan and Mareci admits regularization in a “natural” way, similar to the
case of the spherical harmonic description. The answer is no, in the sense that
the employed basis functions are not eigenfunctions of standard regularization
operators. This implies that there exists no “simple” way of adapting the raw
data coefficients in their polynomial expansion so as to obtain a corresponding
regularized expansion. We therefore modify their scheme by instead considering
a heterogeneous polynomial on the sphere, and exploiting intrinsic redundancy
so as to make each homogeneous term an eigenfunction under regularization.
As a result, our alternative higher order diffusion tensor model reconciles the
tensor rationale championed by Özarslan and Mareci with the regularization
rationale, without sacrificing the niceties exhibited by the spherical harmonic
description in this context. The “trick” is basically to extract from a homoge-
neous polynomial representation of order N , say, all those degrees of freedom
that can be expressed in terms of spherical harmonics of lower orders, which can
then be reformatted into lower order polynomial terms, ultimately producing an
equivalent, heterogeneous polynomial. This will be operationalized in the next
section.

For simplicity we will collectively refer to various related representations that
employ functions on the unit sphere simply as “HARDI”. These include Tuch’s
orientation distribution function (ODF) [15], the higher order diffusion tensor
model and the diffusion orientation transform (DOT) by Özarslan et al. [11, 16],
Q-Ball imaging [2], and the diffusion tensor distribution model by Jian et al.
[17]. Considerations in this paper pertain to all such representations.
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2 Theory

2.1 Notation

Let S : Ω → IR denote a raw HARDI (or HARDI-related, v.s.) signal confined
to the unit sphere Ω : ‖x‖ = 1, x ∈ IR3. Ω may be parameterized using two
coordinates, ξµ, µ = 1, 2, say. The components of the Riemannian metric for the
unit sphere Ω embedded in Euclidean 3-space IR3 are then given by1

gµν =
∂xi

∂ξµ
ηij

∂xj

∂ξν
, (1)

in which ηij are the components of the Euclidean metric of the embedding space
(in Cartesian coordinates ηij = 1 iff i = j, otherwise zero). With Dµ we denote
the covariant derivative with respect to xµ induced by the metric gµν . Recall
that by construction we have Dρgµν = 0, whence also Dµg = 0, in which we
have used the shorthand notation g = det gµν . This “covariant constancy” of the
metric tensor in fact defines the covariant derivative [18], and plays a key role
in partial integration in covariant variational formulations of regularization.

The spherical geometry of the problem naturally suggests the use of spherical
coordinates (ξ1 = θ, ξ2 = φ):

Ω : (x1, x2, x3) = (sin θ cos φ, sin θ sinφ, cos θ) . (2)

2.2 Regularization via Spherical Harmonic Decomposition

We now consider regularization of a raw HARDI signal S. To this end, consider
the following functional, in which ST : Ω → IR is a Tikhonov regularization of
S : Ω → IR, viz. such that

E(ST ) =
∫

Ω

(S(ξ)− ST (ξ))2 +
∑
k≥1

tkDµ1 . . . Dµk
ST (ξ)Dµ1 . . . DµkST (ξ) Dξ

(3)
is minimal. The subscript T refers to a sequence of nonnegative regularization
parameters, T = {tk}k∈N, on which the solution depends. Dµ is shorthand for
gµν(ξ)Dν , and Dξ =

√
g(ξ) dξ1dξ2, denotes the invariant measure on Ω (in

spherical coordinates Dξ = sin θ dθ dφ). The parameters tk ∈ T need to be
chosen so as to ensure convergence of the integral. An obvious choice is to set
all but one of them equal to zero. Examples of this are first and second order
Tikhonov regularization as proposed by Hess et al. [4] (t1 = t ∈ R+, remaining
ones zero), and Descoteaux et al. [2, 3] (t2 = t ∈ R+, remaining ones zero).
The resulting Euler-Lagrange equations are finite-order PDEs, and are easily
1 Index summation applies to pairs of identical upper and lower indices.
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solved relative to the basis of spherical harmonics, using conventional spherical
coordinates, Eq. (2), by virtue of the property

∆ΩY m
` (θ, φ) = −`(` + 1)Y m

` (θ, φ) , (4)

in which ∆Ω = Dµ Dµ is the Laplace-Beltrami operator on the unit sphere Ω,
and Y m

` denote the spherical harmonics2

Y m
` (θ, φ) =

√
(2` + 1)(`−m)!

4π(` + m)!
eimφ Pm

` (cos θ) , (5)

with Pm
` the associated Legendre polynomials:

Pm
` (z) =

(−1)m

2``!
(
1− z2

)m
2 d`+m

dz`+m

(
z2 − 1

)`
(with −1 ≤ z ≤ 1) . (6)

With the help of polar coordinates and spherical harmonics, setting

S(θ, φ) =
∗∑

`,m

c`m(0)Y m
` (θ, φ) , (7)

in which the asterisk indicates summation over the effective indices ` ∈ ZZ+
0 ,

m ∈ {−`,−` + 1, . . . , `− 1, `}, and

c`m(0) =
∫ 2π

0

∫ π

0

S(θ, φ) Y −m
` (θ, φ) sin θdθdφ , (8)

minimizers of Eq. (3) can generically be written as

ST (θ, φ) =
∗∑

`,m

c`m(T )Y m
` (θ, φ) . (9)

In the first order Tikhonov regularization scheme by Hess et al. [4] we have,
using a self-explanatory change of function prototype for the coefficients,

c`m(t) =
c`m(0)

1 + t `(` + 1)
. (10)

In the second order scheme by Descoteaux et al. [2, 3] we have

c`m(t) =
c`m(0)

1 + t `2(` + 1)2
, (11)

and so forth. Another scheme that leads to convergence of Eq. (3) is obtained
by taking

tk =
tk

k!
, (12)

2 Cf. functions.wolfram.com for further properties of Y m
` and P m

` .
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yielding the spherical scale space representation

c`m(t) = e−t`(`+1) c`m(0) , (13)

which is the analogue of the e−t‖ω‖2-attenuation of frequencies of scalar images
in the Euclidean plane under Gaussian blurring3 [19]. This scheme is particularly
interesting for its connection to an abelian semigroup, since one may write

St(θ, φ) = et∆Ω S(θ, φ) . (14)

It reproduces the first order scheme by a Laplace transform over t ∈ R+
0 , cf.

Florack et al. [8].

We end this brief review with the remark that all one-parameter regularization
schemes of the types discussed above are qualitatively similar, and identical in
their asymptotics. Let us now turn to the tensor formalism.

2.3 Regularization via Higher Order Diffusion Tensor Decomposition

Instead of Eq. (7) we now consider a decomposition of raw HARDI data into
“higher order diffusion tensors”, recall Eq. (2),

SN (x) =
N∑

k=0

D i1...ik xi1 . . . xik
with N ∈ N ∪ {0,∞} and S∞(x) ≡ S(x). (15)

It should be realized that the collection of polynomials on the sphere,

B =
⋃

k∈N∪{0}

Bk with Bk = {xi1 . . . xik
| k ∈ N ∪ {0} fixed} , (16)

is complete, but redundant. In fact, any order monomial of fixed parity can be
obtained from a given higher order one of the same parity via contractions. There
is no way to remove such redundancies from the full expansion, i.e. when N = ∞
in Eq. (15). However, if, following Özarslan and Mareci [11], one considers only
the approximation corresponding to finite N , then mutual dependencies can be
removed by setting all coefficients equal to zero except D i1...iN . The resulting
homogeneous polynomial can then be fitted to the raw HARDI data as described
by Özarslan and Mareci [11]. One then ends up with a representation of the form

SÖ.M.
N (x) = Di1...iN xi1 . . . xiN

with N ∈ N ∪ {0}, (17)

as a generalization of the rank-2 DTI tensor. (By symmetry of the HARDI profile
only even N are relevant.) By construction, this polynomial representation is
equivalent to the spherical harmonic decomposition, Eqs. (7–8), if the latter is
constrained to include terms of orders ` ≤ N only.
3 Koenderink’s argument generalizes to Riemannian spaces without major difficulties.
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Following the same rationale as in the context of a spherical harmonic decom-
position, we would like to regularize the data representations of Eq. (15). That
is, we seek corresponding regularized representations of the form4

SN (x, t) =
N∑

k=0

D i1...ik(t) xi1 . . . xik
with N ∈N ∪ {0,∞} and S∞(x, t)≡S(x, t).

(18)
Of course, Eq. (17) in principle admits regularization in formally the same way:

SÖ.M.
N (x, t) = Di1...iN (t) xi1 . . . xiN

with N ∈ N ∪ {0}, (19)

which is just the tensorial counterpart of Eq. (9) (for the one-parameter case,
and inclusion of terms ` ≤ N only). However, whereas the spherical harmonics
of fixed ` are eigenfunctions of the Laplace-Beltrami operator ∆Ω , recall Eq. (4),
this is not the case for any of the monomials in Bk, Eq. (16). Consequently it
is a nontrivial task to establish the coefficients Di1...iN (t) as a function of t in
Eq. (19). Another drawback of the tensor representation in the form of Eq. (17)
is that the coefficients depend on the truncation order N . Thus as soon as one
alters N , all data information (as far as captured by the available degrees of
freedom) will have to migrate to new tensor coefficients of corresponding rank.

In the formulation of our Ansatz, Eq. (15), we anticipate that only residual
information is encoded in the higher order part of the heterogeneous polynomial,
i.e. additional structure that cannot be revealed by a lower order polynomial. In
fact we will construct the coefficients D i1...ik such that (i) they do not depend
on N , and (ii) they transform upon regularization in a way quite similar to
the coefficients c`m(t) in Eqs. (10), (11), or (13), depending on one’s preferred
choice of regularization paradigm. We are now in a position to formulate our
main results. Detailed derivations and proofs can be found elsewhere [7].

We construct the coefficients according to the following algorithm.

Algorithm 1 Suppose we are in possession of D i1...ik for all k = 0, . . . , N − 1,
then minimization of the function

EN (Dj1...jN ) =
∫

Ω

(
S(x)−

N∑
k=0

D i1...ikxi1 . . . xik

)2

dΩ ,

yields the following linear systems:

Γi1...iN j1...jN
Dj1...jN =

∫
Ω

S(x)xi1 . . . xiN
dΩ −

N−1∑
k=0

Γi1...iN j1...jk
Dj1...jk ,

with symmetric covariant tensor coefficients Γi1...ik
=
∫

Ω

xi1 . . . xik
dΩ.

4 We henceforth restrict our attention to the scheme of Eqs. (12–13), but the other
one-parameter schemes discussed can be handled in a similar fashion.
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The appearance of the second inhomogeneous term on the r.h.s. of the linear
systems, absent in the scheme proposed by Özarslan and Mareci, reflects the
fact that in our scheme higher order coefficients encode residual information
only. The last integral is the tensorial counterpart of a well-known closed-form
multi-index representation, cf. Folland [20] and Johnston [21], viz.:∫

Ω

xα1
1 . . . xαn

n dΩ =
2

Γ ( 1
2 |α|+

n
2 )

n∏
i=1

Γ (
1
2
αi +

1
2
) , (20)

if all αj are even (otherwise the integral vanishes). Here |α| = α1 + . . . + αn

denotes the norm of the multi-index, and

Γ (t) =
∫ ∞

0

st−1 e−s ds = 2
∫ ∞

0

r2t−1 e−r2
dr (21)

is the gamma function. Recall Γ (`) = (`−1)! and Γ (`+ 1
2 ) = (`− 1

2 ) . . . 1
2

√
π =

(2`)!
√

π/(4` `!) for ` ∈ N ∪ {0}. A translation from multi-index to tensor-index
notation provides us with the closed-form of Γi1...ik

:

Result 1 Cf. Algorithm 1 and Eqs. (20–21). In n dimensions Γi1...i2k+1 =0, and

Γi1...i2k
=

2 Γ (k + 1
2 )Γ ( 1

2 )n−1

Γ (k + n
2 )

η(i1i2 . . . ηi2k−1i2k) .

Parentheses denote complete symmetrization of indices. For n = 3 we obtain

Γi1...i2k
=

2π

k + 1
2

η(i1i2 . . . ηi2k−1i2k) .

Some examples (n = 3):

Γ = 4π , Γij =
4π

3
ηij , Γijk` =

4π

15
(ηij ηk` + ηik ηj` + ηi` ηjk) . (22)

It is straightforward to sequentially solve the linear systems in Algorithm 1. It
follows that the scalar D is just the average value over the unit sphere:

D =

∫
Ω

S(x) dΩ∫
Ω

dΩ
. (23)

The constant vector D i vanishes identically, as it should. For the rank-2 tensor
coefficients we find the traceless matrix

Dij =
15
∫

Ω
S(x)xi xj dΩ − 5

∫
Ω

S(x) dΩ ηij

2
∫

Ω
dΩ

, (24)

and so forth. If, instead, we fit a homogeneous second order polynomial to the
data (by formally omitting the second term on the r.h.s. of the linear systems
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in Algorithm 1), as proposed by Özarslan and Mareci, we obtain the following
rank-2 tensor coefficients:

DÖ.M.
ij =

15
∫

Ω
S(x)xi xj dΩ − 3

∫
Ω

S(x) dx ηij

2
∫

Ω
dΩ

, (25)

which is clearly different. However, Özarslan and Mareci’s homogeneous ex-
pansion should be compared to our heterogeneous expansion. Indeed, if we
compare the respective second order expansions in this way we observe that
SÖ.M.

2 (x) = S2(x). The difference in coefficients, in this example, is explained by
the contribution already contained in the lowest order term of our polynomial,
which in Özarslan and Mareci’s scheme has migrated to the second order tensor.
In fact equality holds for any order N :

Theorem 1 Recall Eqs. (15) and (17). We have SÖ.M.
N (x) = SN (x).

The following theorem shows in which precise sense our new expansion can be
called “canonical”.

Theorem 2 If ∆Ω denotes the Laplace-Beltrami operator on the unit sphere,
then for any N ∈ N ∪ {0,∞},

SN (x, t) ≡ et∆Ω SN (x) =
N∑

k=0

D i1...ik(t)xi1 . . . xik
,

with D i1...ik(t) = e−k(k+1)t D i1...ik .

The proof of Theorems 1–2 is presented elsewhere [7].

It seems somewhat miraculous that the t-scaling behaviour of the coefficients in
Theorem 2 is identical to that in the spherical harmonic decomposition, Eq. (13).
This is quite nontrivial, since the monomials xi1 . . . xik

are themselves not eigen-
functions of the Laplace-Beltrami operator. In fact, what happened is that, by
considering the specific linear combinations D i1...ik(t) xi1 . . . xik

according to the
recipe of Algorithm 1, we have effectively disposed of the degrees of freedom in
the monomials xi1 . . . xik

that live in eigenspaces spanned by the spherical har-
monics Y m

` of orders ` < k. The span of the resulting homogeneous polynomials
coincides with the degenerate eigenspace of the k-th order spherical harmonics,
span {Y m

k |m ∈ {−k,−k + 1, . . . , k − 1, k} , k ∈ N ∪ {0} fixed}.

Heuristically, the significance of Theorem 2 is that it segregates degrees of free-
dom in the polynomial expansion in such a way that we may interpret each
homogeneous higher order term as an incremental refinement of detail relative
to that of the lower order expansion. The linear combinations D i1...ik xi1 . . . xik

,
unlike the monomials xi1 . . . xik

themselves, apparently constitute self-similar
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polynomials on the sphere under the act of blurring by the regularization op-
erator exp(t∆Ω), recall Eq. (14), or any of the other bounded one-parameter
regularization operators previously reviewed, which are all of the form f(t∆Ω)
for suitably defined analytical function f . The parameter t determines the an-
gular resolution of the regularized data.

As a final observation we note that the classical rank-2 DTI representation,
defined via the Stejskal-Tanner formula [11, 22]:

Σ(x) = Σ0 exp (−bS(x)) , (26)

arises not merely as an approximation under the assumption that the diffusion
attenuation can be written as

S(x) ≈ SDTI(x) = Dij
DTI xi xj , (27)

but, according to Theorem 2, expresses the exact asymptotic behaviour of S(x, t)
as t →∞:

S(x, t) =
(
D ηij + e−6t D ij

)
xi xj︸ ︷︷ ︸

SDTI(x, t) = Dij
DTI(t) xi xj

+O(e−20t) (t →∞) . (28)

This example shows that the higher order tensors constructed by Özarslan and
Mareci in general, and the classical DTI tensor in particular, are not self-similar,
but have a multimodal (respectively bimodal) resolution dependence, i.e. they
contain multiple self-similar terms with different scaling behaviour under regular-
ization. The actual limit of vanishing resolution is of course given by a complete
averaging over the sphere, recall Eq. (23), noting that ηij xi xj = 1 on Ω:

lim
t→∞

S(x, t) = lim
t→∞

SDTI(x, t) = D . (29)

See Figs. 1–2 for an illustration of Theorem 2 for N = 8 on a synthetic image.

Fig. 1. Left: Synthetic noise-free profile induced by two crossing fibers at right angle.
Right: Same, but with Rician noise.
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Fig. 2. Regularized profiles produced from the right image in Fig. 1 using Theorem 2
for N = 8. The regularization parameter t increases exponentially from top left to
bottom right over the range 0.007–1.0. For low t-values spurious peaks prevent correct
detection of underlying fiber orientations. Peaks are gradually removed as t increases.
In the range t ∈ [0.05, 0.15] we find two nearly correct peak locations intersecting at
a stable angle of 82.5◦ ± 0.8◦. For larger t overregularization sets in as we enter the
classical DTI regime, which is incapable of unconfounding crossing fibers.

3 Summary and Conclusion

We have considered two alternative representations for scalar functions on the
sphere in the context of high angular resolution diffusion imaging (HARDI). One
employs spherical harmonics, the second “higher order diffusion tensors”.

The spherical harmonic representation is ideally suited for the application of
various Tikhonov regularization schemes, associated with operators of the form
f(t∆Ω), in which ∆Ω is the Laplace-Beltrami operator on the sphere Ω, and
f a suitably defined analytical function. This is a result of the fact that the
spherical harmonics have a natural arrangement into orthogonal subsets of de-
generate eigenfunctions of this operator, such that the closure of the direct sum
of these subsets makes up L2(Ω). This representation thus provides a natural
(“canonical”) framework for regularization.

If one wishes to employ a tensorial representation (or polynomials on the unit
sphere), regularization becomes in general a highly nontrivial matter if one de-
clines from an explicit projection onto the spherical harmonic basis. We have
argued that the homogeneous tensorial representation proposed in their semi-
nal paper by Özarslan and Mareci [11] is inconvenient in this respect. We have
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operationally constructed an alternative, heterogeneous tensorial representation,
which does mimic the “canonical” behaviour of the spherical harmonics.

Although all representations—spherical harmonics, higher order diffusion ten-
sors by Özarslan and Mareci, and our newly constructed ones—are equivalent,
there may be good reasons for preferring or excluding a particular one, as we
have demonstrated in the context of regularization. A case where tensors may
be preferred over spherical harmonics is in generalizing the differential geometric
rationale for tractography and connectivity analysis via geodesics and geodesic
congruences (Hamilton-Jacobi framework). For instance, it is most straightfor-
ward to construct a Finsler metric using a higher order diffusion tensor descrip-
tion, as a generalization of the DTI induced Riemannian metric, cf. Melonakos
et al. [23].

In any case, regularization is an important procedure in HARDI, and so it is quite
convenient to be able to carry it out irrespective of one’s preferred paradigm. It
remains an open question how to combine codomain regularization, as proposed
here, with regularization in the spatial domain, cf. [24] in the context of DTI.

Acknowledgments. We thank Vesna Prckovska for conducting the experi-
ments that have led to Figs. 1–2. The Netherlands Organisation for Scientific
Research (NWO) is gratefully acknowledged for financial support.
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Abstract. Diffusion weighted magnetic resonance (MR) imaging is a
powerful tool to investigate white matter microstructure, by mapping
local 3D displacement profiles of water molecules in brain tissue. High-
angular resolution diffusion imaging (HARDI) schemes have been em-
ployed to resolve fiber crossing and more complex diffusion geometries.
Most recently, the tensor distribution function (TDF) has been pro-
posed as a novel technique for multi-tensor reconstruction by represent-
ing the diffusion profile as a probabilistic mixture of tensors. Here, we
propose a TDF-based framework for studying the amount of informa-
tion in HARDI. To illustrate the proposed method, we compared a 94-
direction HARDI scheme to its optimally sub-sampled schemes with 20,
40, 60 and 80 directions. We quantified the information gain when more
gradient directions are used, as measured by the Shannon entropy of the
recovered TDF. Our results showed an absence of significant gain beyond
60 directions, while anisotropy estimates of the recovered fibers stabilized
with around 40 directions, suggesting asymptotic but clear advantages
of HARDI over conventional DTI.

1 Introduction

In the past decade, diffusion magnetic resonance imaging (MRI) has become
a powerful tool for studying the structure of fibrous materials. By applying
diffusion-sensitized magnetic field gradients, diffusion MRI characterizes the wa-
ter diffusivity profile in various tissues. When the duration of the applied diffu-
sion sensitization δ is much smaller than the time between the two pulses, the
MR signal attenuation is related to the displacement probability function using
a Fourier integral relationship with respect to a wave vector q [1].

In brain imaging, diffusion MRI is particularly advantageous over conven-
tional non diffusion-weighted MRI as it can reveal the configuration and orien-
tation of fiber tracts in white matter. Diffusion Tensor MRI (DT-MRI), proposed
in [2], models the water displacement probability function using a zero-mean 3D
Gaussian distribution whose covariance matrix, a second-order positive-definite
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symmetric tensor, represents the principal directions of diffusion and orienta-
tion of local fiber tracts. Although extremely powerful and easy to compute,
DT-MRI has some disadvantages. For example, any Gaussian probability distri-
bution function has at most one orientational mode (principal direction), and
thus cannot resolve fiber crossing, or more complex diffusion geometries.

More recently, several different approaches have been developed to address
this issue, involving sets of diffusion gradients with high angular resolution, and
by sampling the q-space on one or more shells with fixed radii. Methods such as
the Persistent Angular Structure (PAS) technique [3], spherical deconvolution
techniques [4], and the q-ball imaging technique [5] have been proposed to recover
partial information on the displacement probability function, while still allowing
underlying fiber orientations to be inferred.

If more angular detail is available, fiber orientation distribution functions
(ODFs) can be reconstructed from the raw HARDI signal using deconvolution
methods, yielding mathematically rich models of fiber geometries using fields
of von Mises-Fisher mixtures [6], or higher-order tensors (e.g., 3x3x3 tensors)
[7]). Recent fluid registration and stochastic tractography methods have also ex-
ploited HARDIs increased angular detail, aligning ODFs using specialized met-
rics on densities (e.g., Fisher-Rao) from information theory [8].

The tensor distribution function (TDF), which we first proposed in [9], of-
fers a new way to resolve intra-voxel fiber crossing by solving for a probability
distribution, defined on the tensor manifold, that optimally reconstructs the ob-
served diffusion-weighted images (also see [10] where a continuous mixture using
Wishart distributions was first introduced to model HARDI data). Moreover,
the TDF approach also provides a novel way to compute the eigenvalues of each
individual crossing fiber (for more details, please refer to the Theory section).

In this paper, we use the TDF concept and compare the information content
of HARDI acquisition schemes with 20, 40, 60, 80, and 94 directions. The 94-
direction scheme is currently used as a standard protocol in our lab, while the
rest of the acquisition schemes are generated by optimally sub-sampling this
94-direction scheme as described in [11].

2 Theory

2.1 The tensor distribution function

In standard diffusion-weighted MRI, images are acquired using the Stejskal-
Tanner pulsed gradient spin-echo method. With some simplifications (rectangu-
lar pulse profiles), measured image intensities S are linked to p, the displacement
probability function of water molecules, via a Fourier transform relationship:
S(q) = S(0)

∫

p(x) exp(iq · x)dx (here, the wavenumber q = rδG; r, δ, and G

are the gyromagnetic ratio, the duration of the diffusion sensitization, and the
applied magnetic gradient vector). Without loss of generality, we assume the
constant S(0) is 1.
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Assuming a simple one-tensor Gaussian diffusion model, the displacement
probability function evaluated at position x (given diffusion tensor D, and dif-
fusion time t) is

p(x) = ((4πt)3 det(D))−
1

2 exp
(

−
xtD−1x

4t

)

(1)

Thus, the measured diffusion MR image intensities in this one-tensor case
are simply S(q) = exp(−tqtDq). In the TDF approach, a probability density
function P defined on D, the space of symmetric positive definite 3-by-3 matrices,
is computed to explain the observed data:

S(q) =

∫

D∈D

P (D) exp
(

− tqtDq
)

dD (2)

To solve for an optimal TDF P ∗, the least-squares principle is used

P ∗ = argminP

∑

i

(

Sobs(qi) − Scalculated(qi)
)2

(3)

Here, different gradient directions are indexed by i. The numerical solution as
proposed in [9] is obtained from the following gradient descent equation:

dR

dτ
(D) =

∑

i

E(qi) exp(R(D))F (D, qi) + L exp(R(D)) (4)

where the Lagrange multiplier L is

L = −

∫

D∈D
exp(R(D))

∑

i E(qi) exp(R(D))F (D, qi)dD
∫

D∈D
exp(R(D))2dD

Here, P (D) = exp(R(D)), E(qi) = Sobs(qi) − Scalculated(qi), τ is an artificial
time, and F (D, qi) = exp

(

− tqt
iDqi

)

. To reduce the dimensionality of the TDF
model, every tensor D is assumed to be cylindrical, and thus may be expressed
using D(λ, θ), where the eigenvalues λ = (λ1, λ2) (with λ2 the repeated eigen-
value), and θ = (θ1, θ2) the azimuthal and polar angles associated with λ1. The
dominant fiber directions can then be determined by examining the local max-
ima (that exceed a certain threshold, set to 0.2 in this paper) of the Tensor
Orientation Distribution Function (TOD). In the case of one dominant fiber
direction, we have:

θ∗ = argmaxθTOD(θ) = argmaxθ

∫

λ

P (D(λ, θ))dλ (5)

Once the dominant direction is determined, one can estimate the eigenvalues of
dominant fibers (λ∗) by computing the expected values of λ along this direction.

λ∗ =

∫

P (D(λ, θ∗))λdλ
∫

P (D(λ, θ∗))dλ
(6)
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Notice that Eq. (6) offers advantages over deconvolution methods, in which eigen-
values for a single fiber tract are usually pre-determined and fixed. Lastly, we
can also compute the orientation distribution function (ODF) from the TDF by
analytically evaluating the following radial integral:

ODF (x̃) = C

∫

∞

r=0

p(rx̃)dr

= C

∫

D∈D

P (D)
(

det(D)x̃tD−1x̃
)−

1

2

dD (7)

Here C is a normalizing constant.

2.2 Shannon entropy as a measure of information and the

exponential isotropy

Given any TDF P , we observe that its Shannon entropy (H) measures the ran-
domness of this probabilistic ensemble, and thus inversely measures how certainly
we can estimate dominant fibers.

H(P (D)) = −

∫

D∈D

P (D)logP (D)dD (8)

Thus, we propose that the amount of information can be measured by the neg-
ative of H . Moreover, by taking the exponential of H , we may define the expo-
nential isotropy (EI), which quantifies the overall isotropy of any given voxel.

EI(P (D)) = e−
R

D∈D
P (D)logP (D)dD (9)

To motivate the concept of EI, we observe that in an ideal one-fiber system (i.e.,
P(D)=0 everywhere except for one point in the tensor space D), the Shannon
entropy is 0 and the EI is 1. For an ideal two-fiber system with equal weights
(P(D)=0 everywhere except for two points in the tensor space D, each of which
takes a value of 0.5), the Shannon entropy is ln2 and the EI is 2. Thus, in
general, we expect EI to take a value that is proportional to the number of dom-
inant fibers. As indicated by its name (and opposite to the fractional anisotropy
(FA) or the generalized FA (GFA)), the EI is a measure of isotropy instead of
anisotropy, and thus takes greater values in gray matter tissue than white mat-
ter. As will be shown in the results section, EI is the equivalent of FA or GFA
in the TDF framework.

3 Results

In this section, we present experimental results to illustrate the proposed frame-
work for measuring information gain in HARDI. An individual subject was
scanned using a diffusion-sensitized gradient protocol on a Bruker Medspec 4
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Tesla MRI scanner, with a transverse electromagnetic (TEM) headcoil. The tim-
ing of the diffusion sequence was optimized for SNR according to the scheme
proposed in [12].

The protocol used 94 diffusion-sensitized gradient directions, and 11 baseline
scans with no diffusion sensitization (b-value: 1159 s/mm2; TE/TR: 92.3/8250
msec; FOV=230x230; in-plane resolution: 1.8mmx1.8mm; 55 x 2mm contiguous
slices; acquisition time 14.5 minutes). The area shown in the left panel of Fig.
1, which mainly consists of white matter, was chosen for comparison (the GFA
and EI plots of this windowed region are shown in the middle and right panels
of Fig. 1). Visually, we notice that the EI plot nicely separates gray matter from
white matter, and thus may be useful for tissue segmentation or tractography
purposes. The full 94 gradient directions were optimally sub-sampled, as in [11],
to determine subsets of 20, 40, 60, and 80 gradient directions. The TDF was
computed voxel-wise by using the full 94-direction HARDI and the four sub-
sampled schemes. For each voxel, we then computed the TOD, ODF, GFA,
and EI of its TDF. To correctly identify dominant fibers and estimate their
eigenvalues using Eq. 6, both voxel-wise GFA and TOD peaks are thresholded
at a value of 0.2.

Fig. 2 shows, for each scheme, the voxel-wise TOD, ODF, GFA, and EI plots.
Here, GFA plots are scaled relative to their contrast. Visually, 60, 80, and 94
directions yield very similar results. Statistics of the estimated eigenvalues and
the Shannon entropy are summarized in Table 1. We found that there is an
overall increase in λ1, and a decrease of entropy (i.e., information gain) as the
number of gradient directions increases. This is consistent with prior reports
[13] that diffusion anisotropy may be underestimated when angular sampling
is low, and eigenvalue estimates may be biased. The trend for λ2 is less clear,
although both estimated λ1 and λ2 values are consistent with those reported in
the literature.

To formally test if these trends are statistically significant, paired t-tests,
with respect to the full 94-direction HARDI, were conducted on the estimated
eigenvalues λ1, λ2, and the Shannon entropy of the recovered TDF (Table 2).
Notice that estimations of both eigenvalues do not change significantly beyond 40
directions, while entropy continues to decrease until around 80 directions. Even
so, the effect size for entropy decrease or information gain from 60 directions to
94 directions, using Cohen’s d, is 0.17, indicating that this statistically significant
information gain is of less practical value (the usual cut-off point for a significant
effect size using Cohen’s d is 0.2).

4 Conclusion

In this paper, we introduced a tensor distribution function-based framework and
its mathematical formulations for assessing the amount of information in high
angular resolution diffusion imaging. We also proposed the exponential isotropy
as a natural measure of isotropy (i.e, inverse measure of anisotropy). In the TDF
framework, the exponential isotropy replaces GFA or FA. Borrowing ideas from
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Table 1. Means and standard deviations for estimated eigenvalues of dominant
fibers (λ1, λ2) and for the mean Shannon entropy of the TDF, for the white mat-
ter voxels highlighted in Fig. 1, from the four subsampled and full 94-direction
HARDI. The FA values computed using these mean eigenvalues are also given.

20 40 60 80 94
λ1 1.061 (0.324) 1.049 (0.431) 1.142 (0.435) 1.154 (0.438) 1.169 (0.449)
λ2 0.308 (0.145) 0.269 (0.155) 0.243 (0.118) 0.255 (0.156) 0.246 (0.122)
FA 0.6565 0.6990 0.7538 0.7436 0.7568
Entropy 6.884 (0.624) 6.070 (1.005) 5.794 (1.056) 5.734 (1.036) 5.743 (1.011)

Table 2. Paired t-tests, with respect to the full 94-direction HARDI, for esti-
mated eigenvalues of dominant fibers (λ1, λ2), and the Shannon entropy of the
TDF (with n degrees of freedom). The numbers shown in the table are Student’s
T statistics. Those with a significant p value less than 0.05 are in bold. Notice
that eigenvalues do not change significantly beyond 40 directions, while entropy
continues to decrease until around 80 directions (however, the effect size for en-
tropy improvement or information gain from 60 directions to 94 directions, using
Cohen’s d, is 0.17, indicating that this statistically significant information gain
may have less practical value.

20 40 60 80 n
λ1 -3.32 -3.95 -0.92 -0.62 255
λ2 5.31 2.18 -0.30 1.04 255
Entropy 26.13 14.76 2.61 -0.52 244

probability and information theory, we argued that the ability to accurately es-
timate dominant fiber eigenvalues and their orientations, as well as to resolve
fiber crossing, can be measured by computing and comparing the randomness
or Shannon entropy in the corresponding tensor distribution function. In other
words, one would expect that, ideally, randomness in the TDF should decrease
as the number of gradient directions increases in HARDI acquisition schemes.
However, due to the presence of noise and other problems in acquiring HARDI
(e.g., motion artifacts), it is likely that the amount of additional information
would become negligible once a certain number of gradient directions is reached.
This hypothesis is supported by our results, where we demonstrated that the
information contained in HARDI is not linearly correlated with the number of
gradient directions, and plateaus around 60 to 80 gradient directions in our simu-
lation studies using the 94-direction protocol currently employed in our lab. This
finding is also supported by comparing the expected values of eigenvalues along
dominant fiber directions. Even so, the issue of whether greater numbers of gra-
dients may still be beneficial for tractography applications (which rely heavily on
the orientational information in the ODFs) remains unsolved. In future studies,
we plan to apply this framework to systemically investigate the effect of scanner
field strength, spatial resolution, and other acquisition parameters in HARDI,
as well as how these may affect tractography and its related applications.
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Fig. 1. This figure shows the T2 weighted MRI of a normal human subject
derived from the non-difsion sensitized HARDI gradient images. The region over
which the patient data was extracted is marked in yellow, with its GFA and EI
plots shown in the middle and right panels respectively. Visually, we notice that
the EI plot nicely separates gray matter from white matter. Unlike GFA, gray
matter has greater EI values than white matter.
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Fig. 2. Top: ODF plots for HARDI sequences with 20, 40, 60, 80, and 94 di-
rections. Second row: respective TOD plots. Third Row: respective GFA maps.
Bottom: respective EI plots. Visually, 60, 80 and 94 directions yield very similar
results for all four plots.
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Abstract. Diffusion weighted images (DWIs) are commonly acquired with 
Echo-planar imaging (EPI). B0 inhomogeneities affect EPI by producing 
spatially nonlinear image distortions. Several strategies have been proposed to 
correct EPI distortions including B0 field mapping (B0M) and image 
registration.  In this study, an experimental framework is proposed to evaluation 
the performance of different EPI distortion correction methods in improving 
DT-derived quantities. A deformable registration based method with mutual 
information metric and cubic B-spline modeled constrained deformation field 
(BSP) is proposed as an alternative when B0 mapping data are not available.  
BSP method is qualitatively and quantitatively compared to B0M method using 
the framework. Both methods can successful reduce EPI distortions and 
significantly improve the quality of DT-derived quantities. Overall, B0M was 
clearly superior in infratentorial regions including brainstem and cerebellum, as 
well as in the ventral areas of the temporal lobes while BSP was better in all 
rostral brain regions.  

Keywords: DTI, EPI distortion, B0 field mapping, B-spline image registration 

1   Introduction 

Clinical diffusion MR studies use almost exclusively single-shot echo-planar imaging 
(EPI) acquisitions. EPI is very sensitive to static magnetic field (B0) inhomogeneities 
that produce nonlinear geometric distortion primarily along the phase-encoding 
direction. Artifacts are most pronounced at air-tissue interfaces and are clearly evident 
in the ventral portions of the frontal and temporal lobes, particularly in areas near the 
sphenoid sinus and the temporal petrous bone. These artifacts become more severe at 
higher magnetic field strengths. 
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Different techniques have been reported to correct geometric distortions 
originating from B0 inhomogeneities in EPI images [1-4]. The field map based 
method is a popular method, in which the B0 field inhomogeneity is computed from 
phase images acquired at different echo times [1, 4]. Another field map based method 
proposed by Chen and Wyrwicz utilizes the field maps derived from multi-echo 
gradient-echo images, which avoids complicated phase unwrapping procedures, but is 
computationally more demanding [2, 3]. Another method proposed by Kybic, et al [5] 
uses image registration techniques for EPI spatial distortion correction. The distorted 
EPI image is registered to a corresponding anatomically correct MR image with an 
intensity-based least-squares similarity metric and the B-spline modeled deformation 
field. Or log-intensity metric is used in the registration to improve the sensitivity in 
areas of low EPI signal [6].  

The above EPI distortion correction methods remain virtually unused in the context 
of DTI, partly because there are no objective tests for establishing whether the 
improvement in the quality of the computed DTI data justifies the additional scan 
time and/or computational complexity. The main goals of this study are 1) to propose 
an experimental framework that would enable evaluating the performance of different 
EPI distortion correction methods in terms of improving the quality of DTI results; 2) 
to propose an image registration-based correction method as an alternative when B0 
mapping data are not available; 3) to compare the image registration-based correction 
method and the standard B0 mapping correction method in their ability to improve the 
DT-MRI results.  

2   Methods 

2.1  Methodological framework for evaluating the performance of EPI distortion 
correction strategies  

Given that EPI distortions occur in the phase encode direction, one can obtain DT-
derived quantities that are differently corrupted by EPI distortions, with datasets of 
diffusion-weighted images (DWIs) acquired with different phase encoding directions. 
A simple approach to evaluate the effect of EPI distortion on DT-MRI data is to 
measure, on a voxel by voxel basis, the variability of DT-derived quantities from 
these co-registered DWI datasets. Significantly higher variability will appear in 
regions that are most significantly affected by EPI distortions. An effective EPI 
distortion method should reduce the misalignment between these DTI datasets due to 
different EPI distortions and lead to a reduction in the variability of the DTI quantity.  

In this study, four replicate DWI datasets were acquired for each subject as shown 
in Fig. 1, with acquisition protocols differing only in the phase-encoding direction: 
along the right-left (RL) and anterior-posterior (AP) direction with either negative (-) 
or positive (+) sign of the phase encoding blips respectively. The positive or negative 
blips will result in either compression or expansion distortion of the image along the 
phase-encoding direction.  
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The local variability of DT-MRI derived quantities (for example, fractional 
anisotropy (FA)) was assessed by the standard deviation map (SD) of the FA maps 
computed from the four DWI datasets, as in equation (1) 

! 

SDFA = std(FARL +,FARL",FAAP +,FAAP")  (1) 

2.2 Subjects and imaging methods 

Five young subjects (2 males; mean age = 35.95, range 24-48 years old) participated 
in this study. Written informed consent was obtained. Data were acquired on a 1.5 
Tesla scanner (GE Medical Systems, Milwaukee, WI) equipped with an 8-channel RF 
coil. Diffusion weighted images were acquired with a single-shot spin-echo EPI 
sequence (FOV = 24x24cm, slice thickness = 2.5mm, no gap, matrix = 96x96, 60 
axial slices). Each DTI dataset consisted of 2 images with b=0s/mm2 and 12 images 
with b=1100s/mm2 with different orientations of diffusion sensitization. An 
undistorted T2 weighted scan (T2WFSE) was acquired with a fast spin echo 
sequence.  For B0 field mapping, two gradient-echo images with different echo times 
(TE= 7 and 11.5 ms, FOV= 22cm, TR= 1300ms, slice thickness= 2.0mm) were 
collected. 

2.3 EPI distortion correction methods 

Image Registration based correction method: The distorted EPI image (the first b=0 
image in the DWI dataset) was registered to the anatomically undistorted T2WFSE 
image using a deformable registration algorithm with mutual information (MI) metric 
and cubic B-spline modeled deformation field. In the remainder of the paper we refer 
to this approach as the BSP method. The deformation was constrained to be only in 
the phase-encoding direction. The mutual-information based metric enables the 
registration of images with different modalities such as T1-weighted or T2-weighted 
images and the anatomically undistorted T2WFSE image is used as the target image 
for EPI correction in this study. The registration algorithm was implemented in C++ 
using the registration library in the Insight Segmentation and Registration Toolkit 
(ITK, www.itk.org)[7]. 

Field map based method: This method uses several tools provided by the Oxford 
Center for Functional Magnetic Resonance Imaging of the Brain (FMRIB. FSL, 
http://www.fmrib.ox.ac.uk/fsl/). The B0 fieldmap was first calculated as the difference 
in phase between the two gradient echo images divided by the echo time difference 
(4.5 ms). The resulting complex fieldmap was phase-unwrapped using the Phase 
Region Expanding Labeller for Unwrapping Discrete Estimates (PRELUDE)[8] and 
then registered to the EPI data (first b=0 image) via a rigid body registration. The 
fieldmap-based distortion correction was then applied to the EPI images in the phase-
encoding direction using FMRIB’s Utility for Geometrically Unwarping EPIs 
(FUGUE). In the rest of the article, we will refer to this approach as the B0M method. 
 

Prior to tensor computation, DWIs were processed with a pipeline consisting of the 
following steps: 1) the T2WFSE image was aligned to the anterior commissure-
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posterior commissure (AC-PC) plane [9] and used as the target image (structural 
template) for all 4 DWI data; 2) both the structural template and the distorted EPI 
image (the first b=0 image in the DWI dataset) were noise padded to eliminate 
spurious boundaries; 3) All DWIs were corrected for motion and eddy current 
distortion [10]; 4) the structural template image was registered to the first b=0 image 
in the DWI dataset with an MI based rigid body registration to create a structural 
target for EPI distortion correction; 5) The deformation field for EPI correction was 
calculated in the native DWI space using BSP and B0M respectively; 6) For each 
method, the computed deformation field was applied to all DWIs in their native 
space; 7) DWIs were then reoriented to the structural template space, with proper 
rotation of the b-matrix [10].  Following these correction steps the diffusion tensor 
was computed using non-linear fitting [11] and its derived quantities including FA 
and Trace (TR) were calculated.  

2.4 Evaluation of results and statistical analysis  

The effects of EPI distortion on the SD maps were first evaluated by visual 
inspection.  For a quantitative assessment, the Wilcoxon signed-rank test was used on 
each subject for the comparison of the SD maps from different methods. The median 
of the SD map is computed as a global measurement of the performance of the 
corresponding EPI distortion correction method for each subject. The EPI correction 
method with the lowest median SD has the best overall performance. Population 
statistics were performed by paired t-test analysis of the median SD values across 5 
subjects. 

In order to inspect the spatial distribution of the effects in the population of five 
subjects, a hierarchical coarse-to-fine image registration pipeline [12] was used to 
transform each subject’s structural image to Montreal Neurological Institute (MNI) 
template colin27 [13].  The computed transformation was then used to spatially 
normalize the corresponding SD maps from DWI datasets with BSP, B0M correction, 
and without EPI correction (NoC) into the template colin27 space. An average SD 
map for FA and TR across 5 subjects was generated for each method (represented as 

! 

SDAvg,FA ,BSP , 

! 

SDAvg,FA ,B0M  and

! 

SDAvg,FA ,NoC  respectively).  

3 Results 

Fig. 1 shows the distorted EPI images (b=0) from 4 DWI datasets with different 
phase-encoding directions as well as the undistorted target image. The distortions are 
more pronounced in regions close to tissue-air interfaces such as the frontal poles and 
the temporal lobes near the petrous bone. 
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Fig. 1.  The EPI distorted image slices with different phase encoding directions and the 
anatomically correct T2-FSE image slices of the same subject are shown here.  

 
Fig. 2 shows a magnified view of an axial slice in a region of the brain relatively 

remote from sources of susceptibility variation. Arrows are marked at the same 
locations in all images to facilitate appreciating the degree of local distortion. Even at 
this location the uncorrected EPI image shows an appreciable amount of distortion, 
and both correction methods (BSP and B0M) have successfully reduced the distortion.  

 

 

 

 

Fig. 2. An example of the distortion correction: (a) the original distorted RL- b=0 EPI image, 
(b) undistorted T2WFSE image, (c) the corrected image with BSP and (d) the corrected image 
with B0M. 

Mean and SD images from a representative subject were computed and displayed 
for FA (Fig. 3) and TR (Fig. 4). As expected for both FA and TR, higher SD values 
are visible in regions most affected by magnetic susceptibility variations such as 
tempral and frontal regions including the corpus callosum. SD decreases after EPI 
distortion correction with both methods. TR SD images demonstrate high variability 
at the top of the brain, and in periventricular regions. 
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Fig. 3. Results from a representative subject. (a) mean FA image with BSP correction (display 
range [0 0.95]), (b, c, and d) SD maps (display range [0 0.3]) of FA images from DTI datasets 
with no EPI correction (NoC), B0M correction, and BSP correction respectively.  

 
 
 

 

 

 

 

Fig. 4. Results on a representative subject: (a) mean TR image with BSP correction with 
display range [0 5000 µm2/s], (b, c, and d) SD maps (display range [0 1000 µm2/s]) of TR 
images from DTI datasets with no EPI correction (NoC), B0M correction, and BSP correction 
respectively.  
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In Fig. 5, the average performance of BSP across the population is compared to 
that of B0M by computing the variability difference map 

! 

STDAvg,B0M " STDAvg,BSP . 
The dark regions in Fig. 5(b)&(c) indicate that, for EPI distortion correction, the B0M 
method performs better than the BSP method, and the bright regions are where BSP 
performs better than B0M. BSP consistently provides better correction in rostral 
regions (e.g. corpus callosum, top of the brain), while B0M performs better at the base 
of the brain, including temporal lobes, brainstem, and cerebellum.  

 
 

Fig. 5. Performance comparison of BSP and B0M across population. (a) MNI colin27; 
difference in the variability of (b) FA (

! 

SDAvg,FA ,B0M " SDAvg,FA ,BSP ) with the display range 
of [-0.03 0.03], and (c) TR (

! 

SDAvg,TR ,B0M " SDAvg,TR ,BSP ) with range  [-200 200 µm2/s]. 

 
The median SD value of FA and TR from all brain voxels in each of the 5 subjects 

with or without EPI correction (BSP, B0M, and NoC) is shown in Table 1. The 
percent change in median SD with different EPI distortion correction strategies is also 
calculated (e.g. B0M vs. NoC = 100*(B0M-NoC)/NoC). Compared to the SD values 
with no EPI correction, on average, B0M reduced the median SD for FA by 12.8% 
and the median SD for TR by 16.2%. BSP lowered the average median SDs of FA by 
16.3% and TR by 23.2%. For all 5 subjects, BSP consistently provided lower median 
SD than B0M for both FA (range [2.0% 6.9%]) and TR (range [5.3% 14.2%]). These 
results were confirmed by the voxel-wise Wilcoxon signed-rank tests, which showed 
that for all 5 subjects, B0M and BSP resulted in significantly lower SD values (FA or 
TR) than NoC and SD values from BSP were significantly lower than that of B0M.   

 
Paired two-tailed t-tests show that, across the population, median SD from BSP or 

B0M are significantly lower than NoC at p < 0.0005 (FA) and p < 0.006 (TR), and the 
median SD from BSP is significantly lower than B0M at p < 0.012 (FA and TR).  
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Table 1. Comparison of median values of SD maps (FA/TR) with or without EPI 
distortion correction. 

           Median SD                Percent Change %  
 
Subject 
 NoC B0M BSP 

B0M vs. 
NoC 

BSP vs. 
NoC 

BSP vs. 
B0M  

1 0.0402 0.0347 0.0334 -13.7 -17.1 -4.0 
2 0.0413 0.0373 0.0365 -9.5 -11.7 -2.5 
3 0.0431 0.0373 0.0365 -13.6 -15.4 -2.1 
4 0.0435 0.0366 0.0347 -15.9 -20.3 -5.5 

FA 

5 0.0445 0.0397 0.0368 -11.4 -17.2 -7.0 
1 186.9 153.4 141.3 -17.9 -24.4 -8.5 
2 136.2 122.0 115.8 -10.4 -15.0 -5.4 
3 139.4 117.1 110.8 -16.0 -20.5 -5.7 
4 206.5 163.9 143.5 -20.6 -30.5 -14.2 

 
TR 

5 172.5 144.7 128.2 -16.2 -25.7 -12.8 

4 Discussion 

One goal of this work was to propose a framework that would enable evaluating the 
performance of different EPI distortion correction methods in the context of DTI. We 
found that our relatively simple approach of calculating SD maps of the DTI 
quantities of interest for datasets with different phase-encoding directions can be 
effectively used for this purpose. The best EPI distortion correction strategy would 
produce an SD map with the lowest overall magnitude. Moreover, by analyzing SD 
maps, one can assess potential regional effects of the different correction algorithms. 
The SD maps of both FA and TR were computed and evaluated, since different DTI 
quantities may show different local sensitivity to the same EPI distortion. In fact, the 
spatial pattern of increased variability is not identical for FA and TR. For example, 
TR shows a clear pattern of increased variability in periventricular regions that is not 
present in FA. 

For uncorrected data, the effects of misalignment were very noticeable in the genu 
of the corpus callosum for both FA and TR, ventral portions of the frontal lobe in 
proximity of the frontal sinuses mostly for TR, and ventral portions of the temporal 
lobe near the petrous bone for FA. These results are consistent with the fact that the 
largest distortions are to be expected in regions where B0 inhomogeneities are most 
pronounced.  

We found high SD values in regions at the top of the brain, a region that is not 
normally associated with EPI distortions because it is distant from sinuses and other 
air-filled cavities. The effects of misalignment on the SD of both FA and TR could be 
magnified in apical brain regions because of the presence of sharp boundaries 
between CSF, gray matter, and white matter.  

Both EPI distortion correction methods, BSP and B0M, were effective in reducing 
the EPI geometric distortions and significantly improved the reproducibility of DT-
derived quantities. Interestingly, BSP showed an overall better performance than 
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B0M, although the two methods showed different performance in different regions. 
B0M was clearly superior in infratentorial regions including brainstem and 
cerebellum, as well as in the ventral areas of the temporal lobes. BSP was better than 
B0M in all rostral brain regions. While it is easy to understand why B0M performs 
better than BSP at the base of the brain where the susceptibility gradients are steep, it 
is more difficult to explain why B0M does not do as well as BSP in the rostral areas of 
the brain. One could hypothesize that the distortions at the top of the brain are not 
completely caused by B0 inhomogeneities but we have been unable to identify a 
definitive cause.  

The most important practical conclusion of our work is that in the absence of B0 
field data, successful EPI distortion correction of DTI data can be performed with a 
B-spline image registration approach using an undistorted T2-weighted image as the 
registration target.  

In future work, one may combine these two methods to reach a more accurate 
deformation field for the whole brain in EPI distortion correction, such as using the 
deformation field from B0M as an initialization to correct regions at the base of brain 
with severe signal loss, and the BSP method as a finer step to improve the distortion 
correction in supratentorial brain regions.  
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Abstract. We propose a scheme for tensor field interpolation which is
inspired by subdivision surfaces in computer graphics. The method ap-
plies to Cartesian tensors of all ranks and imposes smoothness on the
interpolated field by constraining the divergence and curl of the tensor
field. Applying the method involves only a sparse matrix-vector multi-
plication at each iteration. Results are presented for rank 1, 2 and 4
tensors. These examples demonstrate that the subdivision scheme can
better preserve FA and interpolate rotations than some other interpola-
tion methods.

1 Introduction

Many alternatives to componentwise linear interpolation of tensors have been
proposed. Geodesic [1–3], log-Euclidean [4], tensor spline [5], and geodesic-loxodrome
[6] approaches formulate interpolation in terms of intrinsic distances on some
manifold. Some methods have the desirable property of monotonically inter-
polating some scalar measure, such as determinant [1–4] or other orthogonal
invariants [6]. In this work we propose a subdivision scheme based on minimiz-
ing the divergence and curl of the continuous tensor field which interpolates a
given set of tensors. Divergence constraints are commonly used in simulations
[7, 8] of incompressible fluid flows.

The term ”subdivision” refers to a computer graphics technique for recur-
sively refining meshes. A subdivision scheme defines a mechanism for adding
new vertices to a mesh and updating the mesh connectivity. The limit surface
obtained after an infinite number of iterations can be shown to be a smooth sur-
face in some cases - a bicubic B-spline for the scheme of Catmull-Clark [9] and
a biquadratic B-spline in the case of Doo-Sabin [10]. The subdivision process is
often analyzed as a linear equation pn+1 = Spn where p is the set of vertices
in the mesh and the superscripts denote iteration number. The subdivision ma-
trix S characterizes the subdivision process of generating new vertices as linear
combinations of the old vertices.

Weimer and Warren [11] extended the concept of subdivision to fluid flows.
Starting with a coarse vector field representing fluid velocity, their technique
generated a dense vector field corresponding to the solution of the Navier-Stokes
equation. Similarly, our method can be seen as the solution of a system of partial
differential equations.
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2 Vector Field Subdivision

We will first formulate the subdivision scheme for vector field interpolation which
will help explain the tensor field subdivision scheme in the next section of this
paper. Our formulation is much simpler than that of Warren and Weimer [11].
Given velocity vectors at the corners of a cube (or square in 2D) we construct a
velocity field which is simultaneously as incompressible and irrotational as pos-
sible. This can be seen as a physical constraint on the flow, or alternatively since
we may wish to interpolate vector fields other than fluid velocity fields, this can
also be seen merely as a smoothness constraint since spurious sources/sinks and
vortices can introduce regions of rapidly changing vector direction and length.

The strength of sources or sinks in a fluid flow can be quantified by the
divergence of the velocity field, and the strength of vortices can be quantified by
the curl

div v =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
, curl v =




∂vz

∂y − ∂vy

∂z
∂vx

∂z − ∂vz

∂x
∂vy

∂x − ∂vx

∂y


 (1)

where v = [vx, vy, vz]T is the vector field. These are usually denoted by the
shorthand ∇ · v and ∇ × v respectively. We will approximate these operators
discretely by using finite differences

∆x =
1
2
(v(x + 1, y, z)− v(x− 1, y, z)), (2)

∆+
x = v(x + 1, y, z)− v(x, y, z), (3)

∆−
x = v(x, y, z)− v(x− 1, y, z)

which are the central, forward and backward differences respectively. The subdi-

Fig. 1. Illustration of the subdivision process in 2D. The first subdivision iteration
replaces the 2 × 2 grid of vectors (v0) with a 3 × 3 grid of vectors (v1). The vectors
in the corners of the domain (white background) are interpolated. The remaining 5
vectors are computed by minimizing the divergence and curl of the field. The next
subdivision step would interpolate all 9 vectors. The process can be repeated to obtain
vn, a grid of size 2n + 1× 2n + 1.

vision operation takes as input a coarse grid of vectors (2× 2 in 2D, or 2× 2× 2
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in 3D) we will call v0 and produces a refined grid (3 × 3 in 2D, or 3 × 3 × 3 in
3D) we will call v1 as shown in Figure (1). The process will proceed iteratively
and each step will interpolate the results of the previous step. The system of
equations which determine vn+1 given vn specify 3 types of requirements:

1. Interpolation. The vectors at iteration n should be interpolated in step n+1.
In the first step we have

vn(1, 1) = vn+1(1, 1) (4)
vn(1, 3) = vn+1(1, 3)
vn(3, 1) = vn+1(3, 1)
vn(3, 3) = vn+1(3, 3).

where the array vn has been padded to be the same size as vn+1 so that
indices at corresponding corners are equal.

2. Divergence minimization. The divergence at each point in vn+1 is set to zero,
and written in terms of vn when a corner point is involved. If the central
difference equation involves a point outside the domain, forward or backward
differences are used instead. There will be one equation for each vector in
vn+1. Each equation will be of the form

0 = ∆xvx + ∆yvy + ∆zvz. (5)

The superscript on v is n + 1 for the new voxels being computed, and n for
the voxels being interpolated.

3. Curl minimization. The curl is handled analogously to the divergence. For
the 2D example there is only one nonzero component of the curl for each
vector. In the 3D case there will be 3 components per voxel of the form

0 = ∆yvz −∆zvy (6)
0 = ∆zvx −∆xvz (7)
0 = ∆xvy −∆yvx (8)

for a total of 81 equations in the first step.

By reshaping v into column vector the equations can be rearranged in the form

0 = Avn + Bvn+1 (9)

Both matrices A and B are sparse and contain only elements with values (−1,− 1
2 , 0, 1

2 , 1)
Overall, in the 2D case we have to solve for 18 vector components in vn+1 given
22 equations. In 3D we solve for 81 vector components given 112 equations. The
equations are solved in the least squares sense by

vn+1 = −B+Avn (10)

where the pseudoinverse B+ = (BT B)−1BT . This is a subdivision scheme in
which the subdivision matrix is S = −B+A. The result is a vector field where
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the magnitudes of the divergence and curl are minimized while interpolating
the coarse vector field. The influence of the divergence and curl minimization
can be separately controlled by using a weighted least squares approach. We
implement this by scaling the divergence equations in Eq. (9) by σdiv = 0.9
and the curl equations by σcurl = 0.1. Results of vector field interpolation are

Fig. 2. Vector Field Subdivision. Four examples (top to bottom) of the vector field
subdivision process. The field to be interpolated (left) is subdivided 3 times (results
shown left to right). The background image is vector magnitude.

shown in Figure 2. Note that even though curl and divergence are minimized in
the least squares sense they are not guaranteed to equal zero. The subdivision
process can generate rotational and nonsolenoidal flows.
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3 Tensor Field Subdivision

We will now extend the vector field interpolation results of the previous section
to tensor fields. We use the same constraints (interpolation, divergence mini-
mization and curl minimization) by simply substituting the definitions of the
divergence and curl of tensors of arbitrary rank.

3.1 Tensor Field Divergence

The divergence of a rank 2 tensor field is a vector field of the same dimension.
For a symmetric tensor we have

div

[
Dxx Dxy

Dxy Dyy

]
=

[
∂Dxx

∂x + ∂Dxy

∂y
∂Dxy

∂x + ∂Dyy

∂y

]
(11)

div




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


 =




∂Dxx

∂x + ∂Dxy

∂y + ∂Dxz

∂z
∂Dxy

∂x + ∂Dyy

∂y + ∂Dyz

∂z
∂Dxy

∂x + ∂Dyy

∂y + ∂Dzz

∂z


 . (12)

To perform interpolation we form an equation for each of the vector compo-
nents in Equation (11) or (12). For each such equation the corresponding row of
matrices A,B has the appropriate elements assigned.

A good intuition can be gained about the nature of vector divergence by
observing that near sources the vector field has positive divergence and locally
the vectors appear to point away from the source. Conversely, near a sink the
vector appear to converge toward the sink. The meaning of tensor field divergence
can be appreciated by considering the diffusion equation when the concentration
gradient is constant, but not necessarily zero

∂C

∂t
= div(D∇C) = div(D) · ∇C. (13)

Then at steady state ∂C
∂t = 0 is achieved for div(D) = 0. Under the given

conditions, this is equivalent to saying that the inhomogeneous tensor field D
does not transform any constant vector field into a vector field with nonzero
divergence.

In general, the divergence of a rank n tensor field is a rank (n−1) tensor field
given in Einstein notation as ∂iDi. This notation indicates that for all possible
values of index i, the tensor components are differentiated with respect to that
index and summed over. Note that when the field consists of totally symmetric
tensors the divergence tensor is also totally symmetric.

3.2 Tensor Field Curl

The curl of a rank 2 tensor field is a vector in 2D and a rank 2 tensor in 3D,

curl

[
Dxx Dxy

Dxy Dyy

]
=

[
∂Dxy

∂x − ∂Dxx

∂y
∂Dyy

∂x − ∂Dxy

∂y

]
(14)
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curl




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


 =




∂Dxz

∂y − ∂Dxy

∂z
∂Dyz

∂y − ∂Dyy

∂z
∂Dzz

∂y − ∂Dyz

∂z
∂Dxx

∂z − ∂Dxz

∂x
∂Dxy

∂z − ∂Dyz

∂x
∂Dxz

∂z − ∂Dzz

∂x
∂Dxy

∂x − ∂Dxx

∂y
∂Dyy

∂x − ∂Dxy

∂y
∂Dyz

∂x − ∂Dxz

∂y


 . (15)

The curl of a rank n tensor field is a rank (n+d−3) tensor field in d dimensions
defined as εijk(∂jDk) where εijk is the Levi-Civita symbol (permutation tensor)

εijk =





+1 (i, j, k) is an even permutation of indices
−1 (i, j, k) is an odd permutation of indices
0 otherwise.

(16)

4 Results

The results of rank 2 tensor field subdivision are shown in Figure 3, along with
linear and log-Euclidean interpolation for comparison. Note that in the bot-

Fig. 3. Rank 2 tensor field interpolation. Linear interpolation (left), Log-Euclidean
interpolation (center), 2 subdivision steps (right). The background image is FA.

tom row of voxels in both examples (top and bottom of Figure 3) FA is better
preserved for the subdivision scheme than in the linear and log-Euclidean in-
terpolation cases. The subdivision scheme results in a smooth rotation of the
diffusion tensor.
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High angular resolution diffusion imaging can overcome some limitations or
rank 2 diffusion tensor imaging. Models for the diffusivity function have been
formulated in terms of tensors of various ranks [12], rank 4 tensors in particular
[13] and sequences of tensors of increasing rank [14]. To demonstrate the gener-
ality of the subdivision scheme, we present the results of subdivision applied to
rank 4 tensor fields in Figure 4, along with linear interpolation results. In these

Fig. 4. Rank 4 tensor field interpolation. Linear (top), subdivision (bottom).

examples it is apparent that the subdivision scheme encourages rotation in the
peaks of the diffusivity profiles during interpolation. Note that these do not nec-
essarily correspond to fiber directions. In the case of linear interpolation, the
peaks in diffusivity merely grow and shrink while maintaining their orientation.

5 Conclusions

We have presented a scheme for tensor field interpolation which can be extended
to tensors of arbitrary rank. The method is computationally efficient - It requires
only a sparse matrix-vector multiplication at each step, and the matrix can be
precomputed since it is independent of the data. Results show that the tech-
nique better preserves FA during interpolation in some cases than linear and
log-Euclidean interpolation.

Future work will investigate the tensor basis functions underlying this subdi-
vision scheme. Stam [15] analyzed the subdivision surface in terms of the eigen-
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system of the subdivision matrix. This is apt since the limit surface (if it exists)
is given by p∞ = S∞p0 where p∞ can be shown to be an eigenvector of S with
corresponding eigenvalue = 1. This analysis permits exact evaluation of the limit
surface without recursion.
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Abstract. We present a novel unified framework for explicitly param-
eterizing white fiber tracts. The coordinates of tracts are parameterized
using a Fourier series expansion. For an arbitrary tract, a 19 degree co-
sine expansion is found to be sufficient to reconstruct the tract with
an error of about 0.26 mm. By adding specific periodic constraints to
open tracts, we can avoid using the sine basis. Then each tract is fully
parameterized with 60 parameters, which results in a substantial data
reduction. Unlike available spline models, the proposed method does not
have internal knots and explicitly represents the tract as a linear com-
bination of basis functions. This simplicity in the representation enables
us to design statistical models, register tracts and segment tracts in a
unified Hilbert space formulation.

1 Introduction

Diffusion tensor imaging (DTI) may be used to characterize the microstructure
of biological tissues using measures of the magnitude, anisotropy and aniotropic
orientation [2]. In general, it is assumed that the direction of greatest diffusiv-
ity (the major eigenvector of the diffusion tensor) is most likely aligned to the
local orientation of the white matter fibers. White matter tractography offers
the unique opportunity to map out, segment and characterize the trajectories
of white matter fiber bundles noninvasively in the brain. Most deterministic
tractography algorithms use the local diffusion tensor orientation (primarily the
major eigenvector) to estimate the local direction of propagation along the re-
constructed pathway or fiber tract [3] [10] [17] [19]. Tractography has been used
to visualize and map out major white matter pathways in individuals and brain
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atlases [7] [20] [29] [30], segment specific white matter areas for region of in-
terest analyses [15], quantify white matter morphometry and connections [23]
[27], and visualize the relationships between brain pathology (e.g., brain tumors,
vascular malformations, other lesions) and white matter anatomy for clinical ap-
plications like neurosurgical planning [1] [21] [22]. However, tractography data
can be challenging to interpret and quantify. Whole brain tractography studies
often generate many thousand tracts and require tedious manual selection of
tract groups for subsequent analyses. Recent efforts have attempted to cluster
[24] and automatically segment white matter tracts [25] as well as characterize
tract shape parameters [4]. Many of these techniques can be quite computa-
tionally demanding given the sizes of the data sets. Clearly efficient methods
for characterizing tract shape, regional tract segmentation and clustering, tract
registration, averaging and quantitation would be of tremendous value to the
clinical and diffusion imaging research communities. In this study, we present a
novel approach for parameterizing tract features both shape and spatial location
- using Fourier descriptors.

Fourier descriptors has been previously used to classify tracts [4]. The Fourier
coefficients are computed by the Fourier transform that involves the both sine
and cosine series expansion. Then the sum of the squared coefficients are obtained
up to degree 30 for each tract and the k-means clustering is used to classify the
fibers globally. The authors conclude that a downside of using Fourier descriptors
is that they are not local and it is not possible to make statement about a specific
portion of the curve. Although the Fourier coefficients are global and mainly
used for globally classifying shapes [28], it is still possible to obtain local shape
information and make a statement about local shape characteristics [8]. In this
study, we propose to use the Fourier descriptor as a parameterization for local
shape representation.

3D curve matching using splines has previously been described mainly in
the computer vision literature [9] [11] [16]. Unfortunately, splines are not easy
to model and to manipulate explicitly as compared to Fourier descriptors due
to the introduction of knots. In Clayden et al. [9], the cubic-B spline is used
to parameterize the median of a set of tracts for tract dispersion modeling.
Matching two splines with different numbers of knots is not computationally
trivial and has been solved using a sequence of ad-hoc approaches. In Gruen
et al. [11], the optimal displacement of two cubic spline curves are obtained
by minimizing the sum of squared Euclidean distances. The minimization is
nonlinear so an iterative updating scheme is used. On the other hand, there is
no need for any numerical optimization in obtaining the displacement vectors in
our method due to the very nature of the Hilbert space framework. The optimal
solution is embedded in the representation itself.

Instead of using the squared distance of coordinates, others have used the
curvature and torsion to find the similarity between two curves [13] [16] [18]. In
[18], curvature and torsion were estimated using a finite difference scheme and the
sum of the squared distance of curvature and torsion differences were minimized
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in an iterative fashion. Due to the space limitation, we will not consider this
alternate approach.

This paper describes how to obtain local shape information employing cosine
series, a special case of Fourier expansion. To our knowledge, this is the first
paper that describes white fiber bundles using an explicit functional representa-
tion. Then using this representation, we demonstrate how to register two tracts
and average multiple tracts. The ability to register tracts of varying shape and
length enables us to develop a shape similarity based tract segmentation. We
will further demonstrate the feasibility of this idea.

2 Methods

2.1 Image Acquisition and Processing

DTI data were acquired on a Siemens Trio 3.0 Tesla Scanner with an 8-channel,
receive-only head coil. DTI was performed using a single-shot, spin-echo, EPI
pulse sequence and SENSE parallel imaging (undersampling factor of 2). Diffusion-
weighted images were acquired in 12 non-collinear diffusion encoding directions
with diffusion weighting factor (b=0) 1000 s/mm2 in addition to a single ref-
erence image. Data acquisition parameters included the following: contiguous
(no-gap) fifty 2.5mm thick axial slices with an acquisition matrix of 128x128
over a FOV of 256mm, 4 averages, repetition time (TR) = 7000 ms, and echo
time (TE) = 84 ms. Two-dimensional gradient echo images with two different
echo times of 7 ms and 10 ms were obtained prior to the DTI acquisition for
correcting distortions related to magnetic field inhomogenieties.

Eddy current related distortion and head motion of each data set were cor-
rected using AIR and distortions from field inhomogeneities were corrected using
custom software algorithms based on [14]. Distortion-corrected DW images were
interpolated to 2 × 2 × 2mm voxels and the six tensor elements were calculated
using a multivariate log-linear regression method [2].

The images were isotropically resampled at 1mm3 resolution before apply-
ing the white matter tractography algorithm. The second order Runge-Kutta
streamline algorithm with tensor deflection [17] was used. The trajectories were
initiated at the center of the seed voxels and were terminated if they either
reached regions with the factional anisotropy (FA) value smaller then 0.15 or
if the angle between two consecutive steps along the trajectory was larger than
π/4. At this sampling rate, the algorithm usually produces more than 300000
tracts per brain. As an illustration, subsampled 500 tracts are shown in Figure
3. Each tract consists of 105 ± 54 control points. The distance between control
points is approximately 1mm. Whole brain tracts are stored as a file of size
approximately 600MB. This is a somewhat inefficient way of storing the tract
data. We present an efficient scalable data representation technique that can
reduce the amount of data by a factor of 500% with a minimum loss of infor-
mation. Our scalable representation can be retrieved later to give more detailed
representation iteratively.
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Fig. 1. Cosine series representation of a tract at various degrees. Red dots are control
points. The degree 1 representation is a straight line that fits all the control points in
a least squares fashion. The degree 19 representation (60 parameters) is used through
out the study.

2.2 Parameterizing tracts

Consider a tract M consisting of n control points p1, · · · , pn along the tract. The
second order Runge-Kutta streamline algorithm constructs tracts such that the
Euclidian distance between the control points, i.e. ‖pi − pi−1‖ is 1mm. Then we
are interested in estimating a function that best represents the tract consisting of
the noisy control points. This problem can be solved using piecewise continuous
polynomials such as splines [26]. However, we will avoid using splines because
they reintroduce control points that connect each piece of polynomials. Fur-
ther, it is not straightforward to build an explicit statistical model using splines.
Therefore, we have developed a novel representation technique that avoids all
the drawbacks of splines.
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Fig. 2. The plot of x-,y- and z-coordinates over parameter space [0, 1]. The yellow line
is the tractography result and the black line is the reconstruction at degree 9 (left) and
19 (middle). The figure in the right is the average reconstruction error over the degree
of representation. The error decreases exponentially as the degree increases.

Consider a mapping ζ that maps the control point pj onto the unit interval
[0, 1] as

ζ : pj →

∑j

i=1
‖pi − pi−1‖

∑n

i=1
‖pi − pi−1‖

= tj. (1)

This is the ratio of the arc-length from the point p1 to pj , to p1 to pn. We
let this ratio to be tj . We assume ζ(p1) = 0. Then we estimate a smooth map
ζ−1 : [0, 1] → M that passes through ζ−1(tj) = pj in a least squares fashion.

Consider the space of square integrable functions in [0, 1] denoted by L2[0, 1].
Let us solve the eigenequation

∆f + λf = 0. (2)

in [0, 1]. The eigenfunctions will naturally form an orthonormal basis in L2[0, 1].
Instead of solving (2) in the interval [0, 1] directly, let us solve it in R with the

129



periodic constrain
f(t+ 2) = f(t).

Putting the periodic constrain guarantees the eigenfunctions to be the usual
Fourier sine and cosine functions making numerical implementation straightfor-
ward. The reason we did not give the period 1 constraint is that it forces the
function defined in [0, 1] to be periodic. Then from the period 2 constraint, the
tract coordinates are defined only in the intervals · · · , [−2,−1], [0, 1], [2, 3] · · · ,
there is a gap in the intervals · · · , (−1, 0), (1, 2), (3, 4) · · · . We can fill the gap by
padding with zeros or some constant values but this will result in the Gibbs phe-
nomenon (ringing artifacts) [8] at the point of discontinuity · · ·−2,−1, 0, 1, 2, · · · .
One way of filling the gap while making the function continuous across the whole
intervals is by putting the constraint of evenness, i.e. f(t) = f(−t) in the interval
[−1, 0]. The only eigenfunctions satisfying these two constraints are the cosine
functions of the form

ψ0(t) = 1, ψl(t) =
√

2 cos(lπt)

with the corresponding eigenvalues λl = l2π2 for integers l > 0. The constant√
2 is introduced to make the eigenfunctions orthonormal in [0, 1] so that

∫

1

0

ψl(t)ψm(t) dt = δlm. (3)

Let Hk be the subspace spanned by up to the k-th degree eigenfunctions:

Hk = {

k
∑

l=0

clψl(t) : cl ∈ R}.

Then we estimate a smooth function ζ−1 ∈ L2[0, 1] in the subspace Hk.
If we denote the coordinates of ζ−1(t) as (ζ−1

1
, ζ−1

2
, ζ−1

3
), the k-th degree

cosine series representation of ζ−1 is given by

(ζ−1

1
, ζ−1

2
, ζ−1

3
)(t) =

k
∑

l=0

(cl1, cl2, cl3)ψl(t). (4)

The Fourier coefficient vectors cl = (cl1, cl2, cl3) are estimated by solving the
system of equations










ζ−1

1
(t1) ζ

−1

2
(t1) ζ

−1

3
(t1)

ζ−1

1
(t2) ζ

−1

2
(t2) ζ

−1

3
(t2)

...
...

...
ζ−1

1
(tn) ζ−1

2
(tn) ζ−1

3
(tn)











︸ ︷︷ ︸

Y

=











ψ0(t1) ψ1(t1) · · · ψk(t1)
ψ0(t2) ψ1(t2) · · · ψk(t2)

...
...

. . .
...

ψ0(tn) ψ1(tn) · · · ψk(tn)











︸ ︷︷ ︸

Ψ











c01 c02 c03
c11 c12 c13
...

...
...

ck1 ck2 ck3











︸ ︷︷ ︸

C

.

The least squares estimation is given by

C = (Ψ ′Ψ)−1Ψ ′Y.
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Fig. 3. Left: control points (red) obtained from the second order Runge-Kutta stream-
line algorithm. For visualization purpose, only 500 tracts with length larger than 50mm
are shown. Yellow lines are line segments connecting consequent control points. Right:
19 degree cosine series representation of control points.

The proposed least squares estimation technique avoids using the Fourier trans-
form [4] [6] [12]. The drawback of the FFT is the need for a predefined regular
grid system so some sort of interpolation is needed. After various experiments,
we decided to use k = 19 through out the paper (Figure 1). This gives the av-
erage error of 0.26mm along the tract. The plot of the average reconstruction
error for other degrees is given in Figure 2 (lower right plot).

The advantage of the cosine series representation is that, instead of recording
the coordinates of all control points, we only need to record 3 · (k + 1) number
of parameters for all possible tract shape. This is a substantial data reduction
considering that the average number of control points is 105 (315 parameters).

2.3 Averaging White Matter Fiber Bundles

The ability to register one tract to another tract is crucial for any sort of popu-
lation study, possibly via the use of the tract-based template construction. Since
tracts are now represented as functions, the registration will be formulated as
a minimization problem in a function space Hk, thus avoiding numerical opti-
mization [11] [13] [16] [18].

Suppose the Fourier representation of η−1 is given by

(η−1

1
, η−1

2
, η−1

3
)(t) =

k
∑

l=0

(dl1, dl2, dl3)ψl(t). (5)

Let us examine how to register tract (4) to tract (5). Consider the displacement
vector field u = (u1, u2, u3) between ζ−1 and η−1. We will search an appro-
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Fig. 4. Left: the trajectory of registration from ζ−1 to η−1 is represented as other
intermediate tracts. The intermediate tracts are artificially generated using the optimal
displacement u∗: ζ−1 + αu∗, where α ∈ [0, 1]. Right: average of a bundle consisting of
5 tracts.

priate displacement u in the subspace Hk such that the discrepancy between
ζ−1(t) + u(t) and η−1(t) is minimized. The discrepancy ρ between two surfaces
is measured as the integral of the sum of squared distance:

ρ(ζ−1 + u, η−1) =

∫

1

0

‖ζ−1(t) + u(t) − η−1(t)‖2 dt. (6)

Let u∗ be the optimal displacement satisfying

u∗(t) = arg min
u∈Hk

ρ(ζ−1 + u, η−1). (7)

Then we claim that the optimal displacement is given by

u∗(t) =

k
∑

l=0

(dl1 − cl1, dl2 − cl2, dl3 − cl3)ψl(t). (8)

The proof requires substituting ζ−1 and η−1 with the cosine series expansion
and letting

u(t) =

k
∑

l=0

(βl1, βl2, βl3)ψl(t)

in the expression (6). Then the expression becomes the unconstrained positive
definite quadratic program with respect to βlj . So the global minimum always
exists and obtained by differentiating with respect to βlj . Note that ρ(ζ−1 +
u∗, η−1) = 0. Figure 4 shows how the tract ζ−1 is registered to the other tract
η−1.
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Fig. 5. Left: Right: histogram of discrepancy measure from a reference tract. Thresh-
olding at 10mm gives the blue colored tracts.

Based on the idea of registering tracts by matching Fourier coefficients, we
have constructed the average of a white fiber bundle consisting of m tracts as

ζ−1(t) =

k
∑

l=0

(cl1, cl2, cl3)ψl(t), (9)

where cli is the sample mean of the coefficients corresponding to the i-th coordi-
nate for m tracts. As an illustration, we show how to average five tract in Figure
4.

2.4 White Matter Fiber Segmentation

Based on the discrepancy measure ρ, we have investigated the feasibility of shape-
based fiber bundle segmentation. Given two cosine series representation of tracts
ζ−1 and η−1, the discrepancy measure is simplified as

ρ(ζ−1, η−1) =

∫

1

0

∥

∥ζ−1(t) − η−1(t)
∥

∥

2

dt

=

∫

1

0

3
∑

j=1

[

k
∑

l=0

(clj − dlj)ψl(t)

]2

dt

=

3
∑

j=1

k
∑

l=0

(clj − dlj)
2.

We have used the orthonormality condition (3) in removing the integral in the
expression. The advantage of our discrepancy measure is that it is automatically
obtained once the cosine series representations are computed. Among 2172 tracts
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visualized in Figure 5, one tract in the middle of the blue fiber bundle was
selected as a reference tract ζ−1 then we computed the total discrepancy between
the reference tract and the rest of tracts. By normalizing the discrepancy by the
total arc-length of ζ−1, we obtain the mean discrepancy measure along the tract.
The histogram of the mean discrepancy is given in Figure 5. The histogram shows
significant clustering in about 5 clusters. Since the histogram is visibly so well
clustered, we did not use any automatic clustering algorithm. 357 tracts within
the 10mm discrepancy error are selected and colored blue.

We have proposed a reference tract based segmentation using the discrep-
ancy measure ρ. We can extend the proposed framework to segmenting multiple
bundles. Given a collection of tracts ζ(1), · · · , ζ(n), we measure cross discrepancy

ρij = ρ(ζ(i), ζ(j)).

We may need to normalize ρij with the total arc-lengths. Then we can construct
the discrepancy matrix (ρij) and apply various classification techniques used in
clustering correlation matrices [5] [31] for automatic clustering of tracts.

3 Conclusion

We have presented a unified parametric representation of white matter fiber
tracts. The method explicitly models tracts using the orthonormal cosine ba-
sis. The model parameter estimation is done in the least squares fashion in
a computationally efficient manner. The 19 degree representation is found to
be sufficient within the 0.26mm reconstruction error. The representation will
parameterize tracts of varying length and shape with 60 parameters achieving
significant data reduction. The representation is used to register, average and
segment tracts in a unified Hilbert space framework. Future work will attempt
to use these parametric tract shape measures to perform automatic tract extrac-
tion, characterization of tract morphologic shape in different population groups,
and multiple subject spatial normalization and tract segmentation.
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Abstract. Diffusion tensor analysis of even high angular resolution dif-
fusion weighted imaging can yield inaccurate results at points of crossing
fibers. Persistent angular structure (PAS) is able to resolve crossing fibers
at signal to noise ratios and diffusion weightings that are low but typ-
ical of clinical scans, but current implementations require prohibitively
long computation times. By reimplementing the PAS calculation, we find
that computation times can be dramatically reduced without significant
changes in accuracy. Whole-brain mapping of white-matter fiber path-
ways, which to date is largely hindered by the fiber-crossing problem,
may therefore become a more accessible reality.

Key words: Diffusion tensor, Tractography, Partial volume, Crossing
fibers

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI), together with the
diffusion tensor model, can be used to infer the microstructure of tissue noninva-
sively and in vivo [1]. In highly aligned white matter in the brain, the principal
eigenvector of the diffusion tensor indicates, on a voxel-by-voxel basis, the local
orientation of nerve fibers. Fiber tractography interpolates the local orientation
information to map fiber pathways throughout the brain [2],[3]. However, the dif-
fusion tensor model assumes local homogeneity of fiber direction and, in regions
of crossing fibers, will provide misleading information [4]. This so called crossing
fiber problem limits reliable tensor-based tractography to large pathways with
highly aligned fibers.

Numerous solutions to the crossing fiber problem have been proposed. Most
use a High Angular Resolution Diffusion Imaging (HARDI) [5] acquisition as
the basis of a higher-order analysis scheme that can indicate the orientation of
multiple fibers. A conceptually straightforward extension of the diffusion tensor
model is to fit HARDI data to two or more discrete tensors [5],[6],[7] or multiple
diffusion components [8]. Spherical deconvolution [9],[10] describes the HARDI
signal as a continuous distribution of single-fiber signals. Higher order tensors
[11],[12],[13], other extensions of the tensor [14],[15], and model-free approaches
such as q-space [16], q-ball [17], and the diffusion orientation transform [18] can
also characterize complex diffusion geometries. Given the large number of analy-
sis methods, it can be difficult to choose an optimal one for a given experiment.
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In one of the few quantitative comparisons of analysis methods, Persistent
Angular Structure (PAS) was found to be more accurate than Q-ball in clini-
cally accessible ranges of signal-to-noise ratio, diffusion-weighting, and number
of diffusion gradient directions [19]. PAS has been shown to be a form of spheri-
cal deconvolution, but gains its high degree of noise immunity from a maximum
entropy prior implemented by nonlinear optimization [20]. A publicly available
implementation of the PAS calculation is incorporated in a powerful, portable,
and open-source package, Camino [21]. Unfortunately, the computation time is
prohibitively long, requiring weeks to analyze a whole-brain dataset on a sin-
gle processor [22]. However, is the long computation time inherent to the PAS
calculation or an artifact of the implementation? In this paper, we examine the
impact on accuracy and timing of the following aspects of the PAS calculation:

• The nonlinear optimization uses a numerical integral to calculate an objec-
tive function. Camino iterates the numerical integral at ever-finer resolutions
as long as the objective function exceeds a threshold. The trade off between
accuracy and computation time of the iteration process is examined.

• Camino uses a Levenberg-Marquardt algorithm from Numerical Recipes [23]
to perform the optimization, which has known inefficiencies [24]. A robust
algorithm from the freely available PORT 3 library [25], [26] is implemented
to determine the role of the optimization algorithm.

• Camino uses Java, which is not considered optimal for numerical compu-
tations. The PAS calculation was coded in C++ to determine the role of
programming language.

2 Theory

DW-MRI measures the relative ease of movement of water with respect to a
diffusion sensitizing magnetic field gradient [27]. The gradient is characterized
by a wavenumber, q, which reflects the strength, duration, and orientation of
the diffusion sensitizing gradients [28]. We follow the derivation in Jansons and
Alexander [29].

The signal in a given voxel is then given by:

A(q) = A∗(0)

∫

IR3

p(x) exp(iq · x)dx (1)

where A∗(0) is the signal in the absence of the diffusion sensitizing gradient and
p(x) is the probability of water displacement along x.

The PAS is a projection of features of p(x) on the sphere. Peaks of the PAS
reflect underlying fiber orientations. When first introduced, noise immunity was
built into the PAS through the principle of maximum entropy [29], yielding the
following functional form:

pas(x̂) = exp





N
∑

j=0

λj cos(q̂ · rx̂)



 (2)
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where λ are lagrange multipliers introducing constraints from the data. Unit
vectors q̂ and x̂ specify the orientation of the diffusion-sensitizing magnetic
field gradients and the orientational coordinates of the PAS, respectively. The
constant scalar r is the radius on which features of p(x) are projected and
effectively controls the sharpness of features of the PAS. Antipodal symmetry
of diffusion in assumed. The PAS has been shown to be equivalent to the fiber
orientation distribution introduced by Tournier in his development of spherical
deconvolution [20].

3 Code Implementation

Calculation of the PAS involves minimization, with respect to the lagrange mul-
tipliers, of the root-mean-square difference between the calculated (equation
1) and measured signal. The Camino implementation of the calculation uses
a Levenberg-Marquardt algorithm based on that given in Numerical Recipes
[23]. Each step of the minimization requires a numerical integration of equation
1 over the unit sphere. The numerical integral is performed by summing over a
set of points on the sphere [30], P, containing 1082 points. The error is calculated
by comparison with a large set of points, Q, containing 122500 points. While the
error is larger than a preset threshold, the calculation is repeated with succes-
sively larger sets, P, containing 1922, 4322, 8672, 15872, and 32672 points. The
computational cost largely resides in the numerical integration step and rises
rapidly as the size of the set of points increases. This iterative error-checking
methodology is therefore a likely source of computational inefficiency.

A practical approach was taken to weigh different contributions to accuracy
and computation time. The same simulated and in-vivo diffusion-weighted data
were evaluated by four different sets of code:

1. Camino: The original Camino implementation of the PAS calculation was
used as a baseline for accuracy and computation time.

2. FastCamino: Camino was re-compiled so that only the smallest set of points
was used in the calculation. This configuration is used to evaluate the role
of the iterative error-checking methodology.

3. NR-C: The PAS calculation was performed in C using the Levenberg-
Marquardt algorithm, mrqmin.c, from Numerical Recipes and the smallest
set of points for the numerical integration. When compared with the Fast-
Camino, this configuration compares the performance of Java and C.

4. PORT: The Levenberg-Marquardt algorithm was replaced by a trust-region
algorithm, N2G, from the PORT 3 library using the smallest set of points
for the numerical integration. This algorithm is reputed to perform better
than standard Levenberg-Marquardt algorithms, particularly when residuals
are large [31]. When compared with NR-C, this configuration provides an
assessment of the role of fit algorithm in the PAS calculation.

Camino version 2, revision 490 and Java version 1.5.0 07 were used. The Numer-
ical Recipes library [23] was compiled with the gnu C compiler, gcc version 4.1.2.
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The PORT library was compiled by the gnu fortran compiler, g77 version 3.4.6.
The libraries were linked to a homebuilt C++ program using g++, version 4.1.2.
Calculations were performed on Linux cluster with five 2.33 GHz quad-core Intel
Xeon processors.

4 Test Data

Simulated signal mimicking isotropic diffusion, a single fiber, and two cross-
ing fibers with crossing angles of 30◦, 60◦, and 90◦ were generated. Diffusiv-
ity of 0.7 × 10−3mm2/sec was used for the isotropic signal. Single fiber sig-
nals were generated using the diffusion tensor model [1] with eigenvalues of
(1.4, 0.35, 0.35)× 10−3mm2/sec. Individual fibers in the crossing fiber configu-
rations had equal partial volume fractions. The acquisition profile had 8 signals
without diffusion weighting and 71 diffusion-weighted signals with orientations
chosen by an electrostatic repulsion algorithm [32] and b-value of 1000sec/mm2.
1000 Rician noise realizations were generated for each configuration with signal
to noise ratio (SNR) of 20, selected to match the observed SNR in vivo.

In vivo data were acquired in a single subject with a protocol that received
local internal review board approval. Images were acquired on a 3 tesla Siemens
Trio (Siemens Medical Systems, Erlangen Germany) with a 12 channel head coil.
Acquisition parameters were: 128 x 128 matrix, 256 x 256 mm FOV, 48 slices
2mm thick, partial fourier fraction 5/8, TE/TR=102/7700 msec, 4 repeats, b-
value = 1000sec/mm2, 71 diffusion-weighted image volumes with orientations
chosen by an electrostatic repulsion algorithm [32], and 8 b=0 image volumes ac-
quired at equal intervals among the diffusion-weighted volumes. Diffusion weight-
ing was achieved with a twice-refocused spin echo to minimize eddy current ar-
tifacts [33]. Motion correction was implemented using FSL [34] by coregistering
b=0 image volumes to one another and then coregistering individual diffusion-
weighted images to the mean b=0 volume using an affine transformation. SNR
in white matter is approximately 20.

5 Evaluation

For simulated data, mean and standard deviation surfaces, among noise realiza-
tions, of the PAS for each fiber configuration [9] were generated for qualitative
evaluation.

Quantitative comparisons were performed by calculating the correlation func-
tion, as proposed by Anderson [35], between equivalent PAS generated by each
new code implementation and the PAS generated by the original Camino im-
plementation. The correlation function ranges from 0 to 1, with 0 indicating no
correlation and 1 indicating perfect correlation. An advantage of the correlation
function is that it compares functions as a whole.

Accuracy of peak positions, for simulated data, was also assessed. Peak po-
sitions were calculated using the sfpeaks function from Camino [21]. Peaks were
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grouped into sets that were nearest one of the true peaks, and the mean direc-
tion and sample spherical variance [36] were calculated for each set. The sample
spherical variance ranges from ∼0, corresponding to highly aligned peaks, to ∼1,
corresponding to highly dispersed peaks. Computation time was also recorded
and is reported as that required by a single cpu.

6 Results and Discussion

A qualitative assessment of accuracy is given by visualizing glyphs representing
the PAS amplitude in space. Figure 1 depicts the mean and (mean + standard
deviation) surfaces [9] of the PAS for each fiber configuration and code imple-
mentation. Differences among the code implementations are slight, indicating
that all methods have consistent performance in terms of accuracy. Note that,
for the low-angle crossing of 30◦, separate peaks are not resolved, consistent with
the performance of other fiber resolution methods [37],[38].

A quantitative assessment of consistency is determined by calculation of cor-
relation functions. For each noise realization of simulated data and for each voxel
of in vivo data, the correlation function was calculated between each of the new
code implementations and standard Camino implementation. The results are
summarized in table 1. The mean and standard deviation among all noise real-
izations for all fiber configurations and for in vivo data are reported. Note that
FastCamino, in which iterative error-checking is disabled, results in PAS that
are nearly identical to those generated with the standard implementation.

Table 1. Correlation function(mean±sd) [10] between standard Camino and other
code implementations

Code Simulated In Vivo

Implementation Data Data

Fast Camino 0.998±0.018 0.999±0.012
NR-C 0.958±0.037 0.91±0.019
PORT 0.925±0.086 0.81±0.017

Peak position accuracy is reported for simulated data in table 2. Reported
values are for one of the peaks from the 60◦ crossing fiber configuration. Zenith
and azimuth angles and spherical variance are comparable among all code im-
plementations. For comparison, the true zenith and azimuth angles are 60◦ and
0◦, respectively, and the ideal value of spherical variance is zero.

Computation times are reported in table 3, and are reported as equivalent
single-cpu times. The mean computation time among all fiber configurations is
reported for each code implementation, equivalent to computation time for 1000
voxels of data. The in vivo dataset contains 130995 voxels in tissue, typical for
a whole-brain acquisition. By comparing the computation time of FastCamino
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Fig. 1. PAS calculated using (left to right) Camino, FastCamino, NR-C, and PORT
from simulated data (SNR=20) for (top to bottom) isotropic diffusion, a single fiber,
and fibers crossing at 30◦, 60◦, and 90◦.
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Table 2. Zenith and azimuth angles (degrees) of mean direction and sample spherical
variance for one peak from simulated data, 60◦ crossing fiber configuration

Code Zenith Azimuth Sample Spherical
Implementation Angle Angle Variance

Camino 67.03 1.39 0.142
Fast Camino 66.95 1.45 0.146
NR-C 67.74 1.78 0.145
PORT 67.00 1.80 0.150

with standard Camino, it can be seen that a huge portion of the computation
time is consumed by the iterative error-checking. Combined with the results from
the correlation function analysis above, these results suggest that vast improve-
ments in efficiency can be achieved through modification of the error-checking
scheme without incurring significant changes in accuracy. Comparison of Fast-
Camino and NR-C yields the surprising result that Java actually performs the
calculation faster than C. Finally, implementation of a trust-region fit algorithm
from the PORT library suggests that computation time can be reduced substan-
tially to a level that is competitive with Markov Chain Monte Carlo Methods
[6],[39],[34]. Although the correlation of PORT with Camino is the lowest among
the comparisons, visualization of the PAS from simulations (figure 1) and in vivo
(figure 2) suggest consistency in orientation information.

Table 3. Single-cpu computation times for simulated (1000 voxels) and in vivo (130995
voxels) data

Code Simulated Data In Vivo Data
Implementation (minutes) (hours)

Camino 1574 806
Fast Camino 41 52
NR-C 118 136
PORT 10 24

7 Conclusion

This study indicates that dramatic improvements in the performance of the PAS
calculation can be achieved by changes to certain aspects of the implementation.
Of particular interest is the high accuracy of the PORT algorithm even with a
small set of points for numerical integration. The PAS calculation is still rather
long for clinical use or for studies of large numbers of subjects. However, the
substantial improvement in computation time without large penalty in accuracy
suggests that PAS may become a more widely useful method. PAS has been
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Fig. 2. PAS calculated from in vivo data by Camino (left) and PORT (right) in a
region depicted by a white box on a fractional anisotropy map (inset).

shown to accurately resolve crossing fibers even at relatively low SNR and low
b-values [19] that are typical of clinical scans. As whole-brain fiber tractography
is largely hindered by the crossing fiber problem, a practical implementation of
PAS may facilitate more routine mapping of white matter fiber pathways over
larger regions of the brain.
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Abstract. In segmentation techniques for Diffusion Tensor Imaging (DTI)
data, the similarity of diffusion tensors must be assessed for partition-
ing data into regions which are homogeneous in terms of tensor char-
acteristics. Various distance measures have been proposed in literature
for analysing the similarity of diffusion tensors (DTs), but selecting a
measure suitable for the task at hand is difficult and often done by trial-
and-error.

We propose a novel approach to semiautomatically define the similar-
ity measure or combination of measures that better suit the data. We
use a linear combination of known distance measures, jointly capturing
multiple aspects of tensor characteristics, for comparing DTs with the
purpose of image segmentation. The parameters of our adaptive distance
measure are tuned for each individual segmentation task on the basis of
user-selected ROIs using the concept of Kernel Target Alignment. Ex-
perimental results support the validity of the proposed method.

1 Introduction

Diffusion Weighted MRI [1] constitutes a valuable tool that allows a non-invasive
look at fibrous structures. Among the most important applications of Diffusion
Tensor Imaging (DTI) is the study of brain connectivity or of the fibrous struc-
ture of muscle tissue such as the heart [2,3]. DTI has also been used to identify
subtle abnormalities in several diseases such as stroke schizophrenia and multiple
sclerosis [4].

In DTI more than six gradient directions are scanned, enough to compute
the diffusion tensor (DT) per voxel, representing the local pattern of directional
tissue diffusivity. The diffusion tensor is represented by a 3× 3 positive definite
symmetric matrix D. The diffusion coefficients in each direction r are given by
rT Dr.

A common way to visualise the tensor data (Vilanova et al. [2]) is by fiber
tracking. Given the DT field, fiber tracking techniques try to reconstruct the
fibrous structures (i.e., fiber tracts).
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In several applications, such as comparison between subjects, it is interesting
to segment structures at a higher semantic level, e.g. coherent white matter bun-
dles such as the corpus callosum, [5–7]. It is also necessary to derive statistical
properties of diffusion tensors (DTs) to identify differences in tissue morphol-
ogy, e.g., between healthy and pathological areas [4]. For these reasons, clustering
techniques have been used to group individual fiber tracts into coherent struc-
tures [8]. However these methods deal with derived structures from the tensor
field (i.e., do not use directly the original full tensor information). Therefore they
are very sensitive to the used fiber tracking method and the parameter setting of
those. An alternative to clustering fibers is the direct segmentation of the tensor
field in volumetric regions. These methods assume that tensors will belong to the
same bundle if they are similar to each other. Several segmentation techniques
have been presented in the last years [5–7, 9–11]. These techniques require the
notion of (dis)similarity of two DTs, i.e., a measure which indicates when a ten-
sor is considered to be similar enough to belong to the same region. Clearly,
the segmentation results are highly dependent on the choice of measure. So here
again the problem of how to define distance (or other dissimilarity measures)
in the DTI codomain imposes itself. Different similarity measures for DTs have
been introduced in the past. Alexander et al. [12] and Peeters and Rodrigues
et al [13] extensively analysed the different (dis)similarity measures, which are
of different nature and sometimes lack physiological significance. Therefore, it is
difficult to predict which measure will give better, or similar results. The choice
of measure depends on the application at hand. Usually an ad-hoc definition of
parameter values and choice of similarity measures is used.

The contribution presented in this paper lies in the assessment of tensor field
homogeneity characteristics by automatically determining a suitable parame-
terised similarity measure simultaneously capturing multiple aspects of tensor
characteristics. The results of the presented method can then be used in any
segmentation algorithm as, for example, region growing.

This problem of metric learning and parameter estimation has been ad-
dressed before in the machine learning and pattern recognition literature [14,15].
We extended these methods for the particular problem of diffusion tensor seg-
mentation. With the proposed pre-processing distance learning algorithm, the
parameters for a segmentation algorithm, Region Growing, are inferred from the
data. A seeding region is selected (by the user) and the algorithm will segment
the spatially connected 3D section with the diffusion tensors that are similar to
the initial chosen region and dissimilar to the rest. The initially flexible learning
scheme adapts itself to the task at hand. This technique can be used for different
segmentation algorithms and for illustration we present the results using region
growing.

2 Methods

The main goal of this work is to assess what distance or combination of distances
better express the homogeneity characteristics of a structure defined in a tensor

149



field, e.g., the brain. The results of the distance/parameter learning are then
used to drive a Region Growing segmentation algorithm (see Figure 1). The dis-
tance learning algorithm infers the distance(s) that best discriminates a selected
Region of Interest (ROI) from the entire image volume represented by a random
sample of DTs. The optimal combination of distances will then be used in the
segmentation algorithm and a spatially connected volume of tensors is obtained.
Then the user will be able to further improve the process by adding additional
negative ROIs, i.e., examples of tensors that are different from the target region
and provide complementary information.

Tensor Field

Segmentation : 
Region Growing

Segmented Tensor 
VolumeROI, negative ROI...

Distance(s)

Positive ROI

List of Distances

Random Sample Distance 
Learning

N

P

Fig. 1. Global gist of the distance/parameter learning and segmentation

Figure 2 shows the details of the distance learning algorithm. From the tensor
field volume data we define a labeled set S = (Di, li) of n DTs D with a label l.
The set S is defined as the union of two subsets of DTs: P, a set of representative
DTs from a user defined ROI (positive ROI), where l = +1; and N, a set of
representative DTs for the whole volume (negative ROI), where l = −1.

Distance matrices are constructed by calculating the distance between all
pairs of tensors in the set S. Each row is considered as a feature vector with
the distance from a tensor to all others in the training set. From these feature
vectors, symmetric matrices, referred to as kernel matrices (i.e., Gram Matrices),
are calculated by computing all possible inner products between each vector. For
a uniform behavior of the algorithm, without minding the scale, a normalisation
of the individual kernel matrices is performed. Then, with a linear combination
of the different kernel matrices, one per considered distance, we define a new
kernel matrix K with a set of unknown parameters (the weights).

Using a grid search based method, the weights are estimated in order to
maximize the Kernel Target Alignment measure described in Section 2.3. This
maximum gives the best alignment between the kernel matrix K and an equally
sized label matrix, i.e., which combination of distances provides the best dis-
crimination for the considered data.

In the following, we describe the optimization of the kernel target alignment
for the distance learning. In Section 2 several elements of the algorithm are
introduced and in Section 3 experiments of the distance learning algorithm are
presented.
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Alignment
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T K

N

P

Empirical kernel matrix

Fig. 2. Detailed scheme of the distance learning algorithm

2.1 Distances

A distance measure d has to be such that d(A,B) is small if tensors A and B
are similar [13]. The distance learning algorithm does not require the distance
to be a metric, the triangle inequality is not a requisite.

Distance measures convey different aspects of a diffusion tensor. While some
capture changes in individual degrees of freedom (e.g., difference in anisotropy),
others use the full tensor information. Thus their use is sometimes redundant,
i.e., different measures describe common tensor attributes. There are measures
that use the full tensor, like Riemannian based measures, that have a mathemat-
ical nature which does not have a direct intuition of the physiological meaning.
Thus, the results are not that predictable. Other measures like the ones presented
by Kindlmann et al [10] decompose tensor variations into changes in shape and
orientation, covered by three invariant gradients and three rotation tangents.
In this work, a tunable difference measure between two DTs is introduced. This
measure uses a weighted sum of the individual measures. However, the definition
of the weights depends on the task. Furthermore, this is only good for very small
differences, since the invariant gradient and rotation tangent coordinate frame
is not accurately defined for a large difference between tensors. Therefore, we do
not use these measures.

In order to show the flexibility of our framework, we evaluate the follow-
ing set of different distances [13]: difference of FA (dsFA), difference of MD
dsMD, angular difference dang1, Frobenius distance dL2, geometric distance dg,
Log-Euclidean distance dLE and the symmetrized Kullback-Leibler dKL. These
measures are chosen because they are distances, d(D1,D1) = 0, symmetric and
positive. Other similarity measures could be used, however they must be con-
verted into a distance measure, see Haasdonk et al [16].

2.2 Empirical Kernel Matrices

The main idea of kernel methods is to map the input data (i.e. here distance
between tensors) to a feature space provided with a dot product. The mapped
data is then dichotomized. A kernel matrix for a measure m, can be regarded as
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a pairwise similarity (i.e., an element is similar to itself, m(A,A) = 1) between
all elements of a set, represented in a feature space.

A kernel matrix K for a set of L feature vectors can be regarded as a matrix
of pairwise similarity, measured by their pairwise innerproduct. Each feature
vector represents a single object, in our case a DTI voxel. For a set S = P ∪N
of L objects oj , the feature vector fi = [d(oi, o1), ..., d(oi, oL)] representing oi is
computed by evaluating a distance measure between oi and all other objects in
S.

As presented in Pekalska et al [17], a kernel K can be defined as a mapping
of the feature vectors fi. The kernel matrix is then the inner-product between
the feature vectors

Kij ≡ < f i,f j > =
∑

k

d(Di,Dk)d(Dj,Dk) (1)

where Kij is the element in row i and column j of the kernel K.
Each element in the kernel matrix effectively depends on all tensors in the

training data. The kernel has high values for similar classes, but close to 0 for
inter-class tensors. For geometric interpretation, consider that the inner product
depicts the angle between two vectors. Now we have a kernel matrix, i.e., the set
of all possible inner products, and it is symmetric and positive definite.

For a uniform behavior of the algorithm, without minding the scale of the
used measures, a normalisation must be performed. We can normalise kernel
matrices in such a way that the features lie on the surface of a unit hypersphere.
This normalisation [18] can be done directly in the kernel as follows:

K̃(fi, fj) =
K(fi, fj)√

K(fi, fi)K(fj , fj)
(2)

A normalised kernel K from a distance measure m will be referred as Km.

2.3 Alignment

Christiani et al [19] proposed a method to assess the quality of a binary clus-
tering. This measure, referred to as Kernel Target Alignment (KTA), depicts
how good a kernel is with respect to a given set of labeled objects (the target)
with the notion of good clustering, i.e., high similarity within clusters and low
similarity between clusters. This notion is captured using the Frobenius inner
product between these matrices. The Frobenius product between two matrices
V, P is defined as < V,P >F =

∑
ij

vijpij .

The alignment between two arbitrary kernels K1 and K2 is

A(K1,K2) =
< K1,K2 >F√

< K1,K1 >F < K2,K2 >F
(3)

A target matrix is constructed from the set of n tensors S. We define a vector
of labels y ∈ {−1, +1}n where 1 is the label for the positive set P, and −1 for the
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negative set N. The target is then calculated using the matrix product T = yT y
and the alignment can now be expressed as

A(K,T) =
< K,T >F

n
√

< K,K >F
, since < T,T >F = n2 (4)

Linear combination of kernels: In machine learning, the problem of learn-
ing an adequate distance metric for the input space of data from a set of sim-
ilar/dissimilar objects has been addressed in many studies in the recent years
like Igel et al [14].

So far, we have a set of normalized kernels Km, one for each m measure.
However, some kernels, i.e. some measures, may be more discriminative than
others. Therefore, we introduce new parameters wm,m = 1, .., l, with l as the
number of distances to evaluate, and a new kernel will be constructed from the
linear combination of the individual kernels:

K(w) =
l∑

m=1

wmKm, and
l∑

m=1

wm = 1, w = (w1, ..., wl), ∀mwm ≥ 0 (5)

Now, using the KTA measure, equation 4, with this kernel, and analysing
the result of the alignment for different weights will result in assessing which
linear combination of measures gives best discrimination for the analysed data.
KTA is then a function of the weights wm and its maximum will give the most
appropriate measure, i.e., combination of measures. If the measures are not or-
thogonal to each other and do not represent specific characteristics of the tensor,
a clear interpretation of the resulting weights cannot be given. Furthermore, an
unique solution is not, necessarily, achieved. However, we still expect that the
method will give a good balance of the measures and they will give good results
although we cannot associate to the measures a clear interpretation.

2.4 Parameter Tuning using a Grid-Search based Method

The selection of weights is achieved by maximizing the alignment between the
linear combination of kernels K and the target matrix T

argmaxw(A(K(w),T)) = argmaxw

(
< K,T >F

n
√

< K,K >F

)
(6)

To determine the KTA’s maximum, a grid-search in the parameter space
spanned by the weights wm is performed. The KTA is calculated at each point
on the grid of parameter values, i.e., for each combination of wm, with the above
mentioned constraint, equation 5.

2.5 Region Growing

We apply our method for region growing segmentation as a proof of concept
of the presented distance learning method. The weights, w, that result from
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the previous distance learning method are used to drive the Region Growing
segmentation algorithm. The algorithm starts growing from the initially selected
ROI. During the growing process the assignment of voxels is controlled by a
voxel-to-neighborhood homogeneity predicate. A voxel is added to the region if
its average weighted distance to the neighborhood, i.e., voxels already segmented
and directly adjacent, is smaller than the average and standard deviation of the
weighted distance between all pair of tensors in the seeding ROI.

3 Results

Fig. 3. Superquadric glyphs [20] showing the five distinct regions in a 30 × 30 tensor
synthetic image. DTs have λ as eigenvalues.

The synthetic image shown in Figure 3 was designed so that the regions,
despite having distinct DTs, share some properties with other region but are
different to others., e.g., R1 has the same anisotropy as R2 and R3. With this
synthetic data we intend to illustrate the behavior of the presented algorithm.

Considering this, to segment R1 an adequate distance must be chosen, for
example dFA would segment R1, R2 and R3. In these tests, the grid search
method is done with step = 0.1. Choosing a ROI in R1, and randomly sampling
45 DTs, our algorithm estimates wdL2 = 1.0 as the best discriminating distance.
With these parameters, the region growing algorithm successfully segments only
R1. Choosing a ROI between R1 and R2, the algorithm estimates a combination
of two distances, wdF A

= 0.3 and wdang1 = 0.7. As we can reason, what discrim-
inates these two regions from the rest is their coherent orientation (45 degrees),
distinct to R3, and FA, distinct to R4 and R5. The results were computed in a
AMD Athlon 64 X2 Dual Core Processor 4800+ 2.41 GHz, with 3GB of RAM.
The distance learning algorithm took about 8 seconds, per example.
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Fig. 4. Right: Fusion of the segmented corpus callosum, in a 128 × 128 × 30 DT
volume, and the commissural fibers, colored using the typical RGB mapping of the
main eigenvector. The estimated combination of distances is dFA = 0.5 and dang1 = 0.5.
Left: P1 and P2 were used as positive ROIs.

Figure 4 shows the algorithm applied in a DTI brain dataset. Two positive
ROIs were selected within the corpus callosum. Because the random sampling
of the brain selected several DTs in the gray matter, the algorithm infers dFA

as the most suitable measure. This results in the segmentation of the white
matter. In order to improve this, a white matter masking is done by sampling
of DTs with a FA threshold, i.e., 50 DTs are used as negative examples if FA >
0.70. Then, the algorithm estimates wdF A

= 0.5 and dang1 = 0.5 as the best
discriminating combination of measures. The obtained result does not capture
entirely the corpus callosum, as can be seen by the commissural fibers manually
clustered by physicians. The result is not surprising since the defined region of
interest does not represent the span of DTs orientations. The distance learning
algorithm took 10 seconds to compute.

In Figure 5 a positive ROI was selected within the right cingulum. With 30
random DTs taken with anisotropy FA > 0.65, the algorithm took 9 seconds to
estimate wdang1 = 1.0 as the best measure, since the cingulum is a cylinder-like
bundle with DTs coherently aligned.

4 Conclusions and Future Work

We proposed a distance learning method, based on kernel target alignment,
for the optimization of Diffusion Tensor Imaging segmentation algorithms. As
demonstrated, the method infers the most suitable distance(s) and parame-
ters for the selected segmentation problem from the homogeneity/inhomogeneity
characteristics of the data.

The used measures are of different nature and capture different aspects of
the tensor data. Some measures isolate changes in individual degrees of freedom
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Fig. 5. Right: Right cingulum segmented with estimated wdang1 = 1.0, in a 231 × 172
× 131 DT volume, with p (yellow) as positive ROI, as seen in the Left. The sagittal
plane, on the right, shows the FA map while the plane on the left shows the RGB
color coding of the main eigenvector (red: sagittal plane; green: transverse plane; blue:
coronal plane).

in the tensor data (e.g., difference in anisotropy). However, other measures, e.g.,
Log-Euclidean distance, dLE , have no physiological significance and yield no clear
intuition of distance between tensors. We present an initially flexible learning
scheme that infers the combination of measures that give good results. Although,
the resulting similarity measure will not be necessarily intuitive.

Furthermore the developed methods can be applied in other segmentation
problems. For instance, Schultz [11] extended the use of structure tensors to
diffusion tensor fields by combining Kindlmann’s invariant gradients and rotation
tangents [10,21]. The invariant’s weights used to define the distance measure are
set in an ad-hoc way. Our framework could help in the definition of the weights
needed to tune the segmentation, based on the specific problem at hand.

In this paper, we presented a proof of concept with synthetic data and real
data. This shows the potential of the presented method. However, doing a good
evaluation is a challenging problem, starting in the definition of a good ground
truth.

The grid search method used to find the optimal weights can be improved. As
future work, we will investigate other, more computationally efficient, methods
to solve the KTA optimization.

The present algorithm can be extended to HARDI (High Angular Resolution
Diffusion Imaging) approaches to diffusion. It is still unknown what are the
useful distances between two spherical functions such as DOT and Q-ball for
applications like segmentation [22,23].
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1 j�k"lnmMo 2 p:q�msr�tJuMvxw4y{zs|~}�mM�\���G�T���G����|��Y����uGv������tJ���xt�mM�MvS�#}s��tTm
�G���G�#�T�G���s�B�����{�#�T�G���s���G T���B����� m

2 o¡�£¢¥¤��Gm¦�suM}s�J�x|~wT}¦�T§`}stJuMvxw�|~¨��#©�|~}s©�|~}M���x|~�xuG�xt�msªB�#vx|~��m«�GvS�T}M��t ?

¬�£®�¯�°�±¦²�¯T³ ¢<tJ��t�}4�\���xus´M|~t���µ¦����th��µsw�¶�}��xµ¦�#�£´G|�·'us��|~w�}G��¶�t�|~©�µ4�xt�´��Yus}M�J�x|~w�}¦�#§
qe�T©T}stJ�x|~�<¢�t���wT}¦�T}M��t�o¡¨��T©T|~}s©@¸¹´{¶:���ºq^¢<o�»B��wTus§¼´@´MtJ�xtJ�J�½MvS�T|~}��#�J�x|~�G|���¾�t��#v��
§~|~tJv��xµ¦�#}¿��w�}{��tJ}4�x|¼wT}¦�#§�p�§~w4w{´ÁÀ<Â{¾M©Tt�}¿Ã�tJ��t�§���ÄÅt�z«t�}s´Mt�}4�*¸¹p:ÀÅÃ`ÄO»��¹q^¢�oÇÆÈ µstÉ©�w��#§w#���xµs|~��zs�Tz«tJv�|¼�Å�xw^Ê4u¦�T}4�x|��S�#�x|~��t�§�¾Ë�T}s´Ìvxw�½Mus���x§�¾Ë�Jw�¨@z¦��vxt��xµstJ��t
�¡¶�w^|~¨��#©�|~}s©��xt��Sµs}M|¼Ê{uMt��Å|~}Ë�xtÇvx¨@�Åw#�:�T½M|~§¼|���¾Ì�xw^´MtJ�xtJ�J��½MvS�#|~}��T�J�x|~�{|��¡¾Ë�T}s´
Ê4us|~�SÍG}Mt����BwT�`�#�J�x|~�T�#�x|~w�}M��´GtJ�xt��J�x|~w�}`Æ�l<}�|¼¨��#©�t:��t�Ê4ustJ}s��t:�T}¦�#§�¾M��|~��T§~©�w#vx|~�xµM¨
�T§~§~w�¶�|¼}M©<�xµst´MtJ�xtJ�J�x|~w�}nwT�M��|~©�}s|�Îs���T}4�h�#�J�x|~�T�#�x|~w�}nµ¦�T�\½«t�t�}n´Gt���t�§~wTz't�´`Æ�o��£�T§~��w
t��T�T§~us�#�xt��£Ï<t�¨@w{´G¾G}s�T¨�|~�h¢<tJ��z'wT}s��t��Mus}M�J�x|~w�}M��¸ºÏ�¢<�h»«�Rw#vhp:ÀÅÃ�ÄÐ��t�Ê4uMt�}s��tJ�
�T}s´%ÄÅ|~·'uM��|~w�}Ë¢�t���z«wT}s��tÉ�Mus}M�J�x|~w�}s�É¸ºÄ�¢��h»��RwTvO´{¶:����t�Ê4ust�}M��t��<¶�|��xµ�����tJv�¾
�RtÇ¶Ñµ4¾Gz«wT�xµstJ��|¼��wT}Á�xµst�|�v���µ¦�Tz«tTÆ È µM|~�^�#§~©�wTvx|��xµM¨Ò|~����w�ÂGt�§���½s�T��t�´Á�T}s´1�#�J�
��wTus}4�x�\�RwTvh��t���tJvS�T§{��t�����|~w�}M�h��|¼¨�us§��S�#}st�wTus��§�¾4Æ�o��Bµs�T�£½«t�t�}��TzszM§~|¼t�´O�xw�´M|�·'tJvxt�}4�
|~¨��T©�|~}M©���t�Ê{uMt�}M��t��"�T��Ê4uM|~vxt�´Éw�}�Î¦��t���uM½GÓ¡t��J�x�"uM��|¼}M©��xµst��x�T¨@t:tÇÂMz«tJvx|~¨@t�}4�S�#§
´MtJ��|¼©T};�#�Å�¡¶�we´M|�·'tJvxtJ}{����zs�#�x|¼�T§hvxt���wT§~uM�x|~w�}M��Æ£�MwTvOt��#��t@wT���Jw�¨@z¦��vx|¼��wT}�m�´G¶:�
�T}s´1p:ÀÅÃ�Ä/��t�Ê{uMt�}M��t���¶�tJvxtË�T��Ê4uM|~vxt�´1�#�*t��#�ÇµÁvxt���wT§¼uG�x|~w�}�Æ�j�w�¨@zs�#vxt�´!��w
´G¶:����t�Ê4uMt�}s��tJ��mM�xµMtOp�ÀÅÃ�ÄÔ��t�Ê4ust�}M��t���µ¦����tO�É¨�us�Sµ*µM|¼©TµstÇvÅy{|¼©T}¦�#§`�xw�r�w�|~��t
¢<�#�x|~w;¸�y{r�¢�»��T}s´��*§[��vx©�tJv�tÇÂG�xtJ}{��wT���#�J�x|~�T�#�x|~w�}`ÆByG|~©�}M|�Î¦���#}{�n�T�Ç�x|¼�{|��¡¾Ì¶:�#�
µsw�¶�t���tÇv�´MtJ�xtJ�J�xt�´*t��#vx§~|~tJv�us��|~}s©@´{¶:����t�Ê{uMt�}s�Jt���|~}e��tJv��S�T|~}e��us½GÓ¡t��J�x��½MuM��}swT�
�xµstÅw#�xµstJvx��Æs¢�t���uM§~�x�:|¼}*�xµM|¼��´M|�vxt��J�x|~w�}%��vxt���µsw�¶�}%�T}s´^´M|~����uM����t�´`Æ

Õ Ös×�Ø«Ù'Ú�Û�ÜnÝ\Ø'ÞSÚ�×

ß'F'K�_�LÇP b K�E{X�K'ITF'H b PYàeEGáGPYK'á W EMQ�I#K`EGâ'X[I�f1à%E�ã b H�EMf«ä4EGK`_�I�Q@P[KåL W IËF'K`f'I#H�QxL�E{K`f«PYK'á b{æL W I�â'H�E{PYKhç d Z'Z'H b EM_ W QÇF`_ W EMQ*iOèÉDg æ�é N�ê�EGX[X b4ë Q�L b!b â`QÇI#HJäGIÌL W I�L W HJI#I�f«PYàeI#K«ìQSP b K`EGX"â'HJEGP[K¿EM_�LÇPYä¦P¼LxíMç�înI#F'H b K`EGX"EM_�LJP[ä¦P[L�í�PRQ W`b�ë ITäGI#HnP[K�f«P[HJIT_�LÇXYí�P[à%EGáGITf;â\IT_TE{F`QÇI b{æf«I#XRE�íGI�f*K'I#F'H b ä4EGQJ_�F'XRE{H�I#ï\I�_�LJQTç d X¼LJI#HJK`E4LJP[äGI æ F`K`_�LJP b K`E{X'PYà%E{áGPYK'á�à^I#L W'b f'Q W E�äGI�L W I#Kâ\I#I#K!I�ð«Z'X b HJITfåñYò�ó�ç\ê�K!Z`E{HÇLÇPR_�F`XYEGH U HJIT_#I#KML@QxLJF`f«PYITQ^ñ ô USõ ó W E�äGI*Q W'b4ë K¿L W E{L�f ë ì æ�é N�ê
ë P¼L W QxLJH b K'áef«P[ï\F�QSP b K ë ITP[á W LÇPYK'á%_ b F'XRf�_ b K`QSLÇP[LÇF«LJI�E^à b HJI�f«PYHJIT_�LOàeITEGQÇF'HJI bGæ â'H�E{PYKEG_�LJP[ä¦P[Lxí^L W E{K�iOèÉDg æ�é NOê�ç aÅW PYQÅ_ b F'XRfÌâ'HJPYK'á*K'I ë PYK`QÇP[á W LJQ�PYKËL W I@_ W H b K b àeI�LJHÇí b{æK'I#F'H b K�E{XBZ'H b _�ITQJQÇITQ�F'K`f«ITHÇXYí¦PYK'áeâ'H�E{PYK;EG_�LJPYä4E4LJP b K�EGK`f�à%E{cGI@ITEGQÇPYI#HÅL W I�_ b àeZ`EGHÇPRQ b K
ë P¼L W I#XYIT_�LÇHJPY_TE{X'PYà%E{áGITHÇí�à b f'EGX[P[LÇPYITQ�QSF`_ W EGQ:ö�ö<÷�ø é ö�÷^ç æ�é N�ê:QÇITùsF'I#K�_�ITQ�EG_#ùsF'PYHJITfF`QSPYK'áef ë ì�QSPYáGK`EGX\EGHÇI W'b4ë ITäGI#H�Z b¦b HJXYí^F`K`f«I#H�QxL b¦b fÌF'KMLJP[XBK b�ë ç d QÅQ W'b�ë K�P[K!ñ ú{ó U K'I#F'ìH b K`E{XEM_�LJP[ä4E{LÇP b K b â`QSITHÇäGI�f�F�QSPYK'á�f ë ì æ�é N�ên_ b F`XYfûâ\I*f'P[HJIT_�LÇXYí�XYP[K'cMITf;L b EÌä4EGQJ_�F`XYEGH
?
È µstO�#uM�xw#vx���xµs�T}sÍ��xµstÅ¢<üJ©�|~w�}*ý[§~tn´Gt��MvS�#}s��tÅ�YwTv��Yus}¦´G|~}s©MÆ
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_ b KsLÇHJP[â`F«LÇP b K;E{K`fËL W I#K;â�I�QSPYàeP[XRE{HÅL beë�W E{L�PYQ�EGX[HJITEMf«í b â`QÇI#HJäGITf b K�L W I�iOèÉD"g QÇP[áGì
K`E{X¡ç��OI#K`_#I U PYK L W PRQ ë<b HÇc ë I�HJITQ b HSL�L b EÐHJI#XYPRE{â'XYI�E{Z'Z'H b EM_ Wåæ¹b H%_ b àeZ`EGHÇPYK'áÐâ b L WEG_#ùsF'PRQÇP¼LJP b KËLÇIT_ W K'PRùsF'ITQ�P[K�LÇI#HJà%Q b{æ f«I�LJIT_�LJP b K�Z b�ë I#H�EGK`f�ùMF`PY_�c¦K'ITQJQ b{æ EG_�LÇPYä4E{LÇP b K`QTç
a"b L W PYQ�I#K�f UBë I^ITQSLÇPYà%E4LJI*L W I��nNnß E{K�fÐgÉNOß LÇPYàeIe_ b F'H�QÇITQ�P[K1EËK b K«ì�Z`E{H�E{àeI�LJHÇPR_àeEGK'K'ITHTç

� ���Ø��(Û
	��¦Ý£Ù`Þ�nØ'ÞxÚ�×

aÅW PYQÅQSLÇF`f'í æ¹b _�F�QSI�Q b KÌL W I�E{K�E{XYí¦QÇPRQ b{æ L ë<b f'E4L�EGQÇI�LJQ�L W E4L�f«P[ï£I#HÅPYKÌLJI#HJà%Q b{æ QSZ`E{LÇPRE{XHÇI�Q b X[F«LJP b Khç aÅW I#í ë I#HJIÅâ b L Web â«L�E{PYK'ITf^E{L õ�a ITQÇXYEÉP[K^L W IOQÇEGà^IÅK'ITF'H b P[à%EGáGPYK'áÉ_�ITKMLJHÇIMçß b H@E{XYX:QÇITùsF'ITK`_�I�Q U EGK!I�ð«Z\ITHÇPYàeI#KML�E{X�â`X b _�cÐf«ITQÇP[áMKÁ_ b K`QSPRQSLÇPYK'á b{æ EGKÁE{X[LÇITHÇK�E4LÇP b K b{æ
æ¹b F'H^HJITQSL^EGK`f QxLJP[à�F`XYE{LÇP b K Z\I#HJP b f'Q ë EMQ�PYàeZ'XYI#àeI#KMLJITfBç a I#K¥QÇIT_ b K`f'Q^QxLJP[à�F`X[P ë ITHÇIf«I#XYP[äGITHÇI�f¿L b L W IÌQSF`â¦ãxI�_�L�I#äGI#HJí;L W P[HÇL�í!QSI�_ b K`f'QTç��nPRQSF`EGX�QxLJP[à�F'XRE4LJP b K ë EGQÉâ`EMQSI�f b K_ b KsLÇH�EGQSLSì�HÇITä{ITHJQSPYK'áË_ W IT_�cGI#HJâ b E{H�fBç aÅW I^F`QÇI bGæ EËâ'X b _�cûf«I�QSPYáGKÐà%E{ð¦PYàeP��#ITQ�L W Ie_ b K«ìLÇH�EGQSL�L b K b PRQÇIÌH�E4LJP b â\I#L ë ITI#K HÇI�QxL^E{K�f QxLJP[à�F'XRE4LJP b K Z\I#HJP b f'Q�EGK`f1L W ITK à%EGcGITQ�L W If«I�LJIT_�LJP b K b{æ EG_�LÇPYä4E4LJP b K!I�EGQÇP[ITHTç�� b�ë ITäGI#H@P[L�PRQ@K b L b Z«LJP[à%E{X æ¹b H�_ W EGHJEM_�LÇITHÇP��#PYK'á�L W Ig�NOß b H��nNOß¿LÇPYàeI�_ b F'H�QÇI�QÇPYK`_�IÅP[L�QÇí«QSLÇI#à%E{LÇPR_#E{XYXYí�QÇEGàeZ'X[I�QL W IOQÇEGà^I�LÇPYàeI�Z b PYKMLJQ b{æL W I�QSI�_#F'HÇäGI�Q#ç��¦I#IÌñ���ó æ¹b H�f«I�L�E{PYXRQ#ç aÅW I��`H�QSLnf`E4LJEMQSI#L ë EMQ b â'LJE{PYK'I�f b K;L ë�b QÇF'â«ãxIT_�LJQE4L@E�HÇITXYE{LÇPYäGI#XYí;X b�ë HÇI�Q b X[F«LJP b K¿PYK b HJf«ITH�L b Z\I#HJàeP¼L�E{K!I��Ì_�PYI#KML�f«I#LÇIT_�LJEGâ'P[XYP[L�íMç��¦XYPY_#IL W PR_Jc¦K'I�QÇQ�PRQ õ ç �Ëàeà ë P¼L W ���! ásE{ZÁE{K`f!P[K«ì�Z'XRE{K'IeHÇI�Q b X[F«LJP b KÐPRQ õ ç�"#� × õ ç$"��%à^à 2

ç
ß b H�I�EG_ W QÇITQJQSP b K U ò#ú%�Oä b X[F`à^I�Q ë I#HJI�QJ_#EGK'K'ITf*E4L�EnH�E4LJI bGæ�b K'I�ä b X[F'àeI�I#äGITHÇí�QÇIT_ b K`fBçß b H:ITEM_ W QSF'â«ãxIT_�L U LJI#K%QÇITQJQÇP b K`Q W E�äGI�â\I#I#K%EM_#ùsF'PYHÇI�f�F`QÇPYK'á@QÇZ'PYKeIT_ W'b QSI�ùMF`I#K`_�I�Q ë P[L Wâ�&*ò'�(�#��Q�ø�àeà

2 )¹W PYá W f'P¼ï£F`QÇP b K QSI#K�QSP[LÇP��TE{LÇP b K+* UBæ¹b F'H�F`QÇP[K'á¿â�&,�ûQ�ø�àeà 2 )¹ë P[L W'b F«Lf«P¼ï£F`QÇP b K QÇI#K`QÇP[LÇP��TE{LÇP b K+*@E{K�fÁL ë<b F`QSPYK'á¿áMHJEMf«P[ITKMLÇì¡I�_ W'b QSI�ùsF'I#K`_#ITQ ) iOèÉD"g QÇP[áMK`E{X-*�ç
ß b H b F'Hn_ b àeZ`EGHÇPRQ b K�Z'F`HÇZ b QSI U i�èÉDg�EGK`f�â�&*ò'�#�(�^Q�ø�àeà

2
QÇITùsF'ITK`_�I�QOE{HJI bGæ à%E{PYKP[KsLÇI#HJITQSLTç�ê�K;L W PRQOZ�E{Z\I#H U f`E4LJEMQSI#L�ò�HÇI æ I#H�QÅL b L W ITQÇI�QSI�ùMF`I#K`_#ITQTç aÅW I�QÇIT_ b K`f;f'E{LJEMQSI#L UHÇI æ I#HJI#K`_�I�f¿f'E4L�EGQÇI�L@ô%PYK¿L W I æ¹b X[X b4ë P[K'á U�ë EMQ b â«LJEGP[K`ITf b KûL W HJI#I^QSF`â¦ãxI�_�LJQ�E4L W P[á W I#HQSZ`E{LÇPRE{X<HJITQ b XYF«LJP b K ) ô × ô × õ àeà 3

*@L b Z\I#HJàeP¼L^à b HJIËX b _#E{XYP��#ITf E{K`EGX[í«QÇITQ�E{L�L W I�I�ð¦ìZ\I#K`QÇI b{æ L W I.�«înN@ç�ê�LJQeà%E{PYK¥P[KsLÇITHÇI�QxLePRQ*L W E4L%P[L%Z\I#HJà^P[LJQ^L b QSLÇF�f«íåL W I;PYK�/`F'ITK`_�I
b{æ L W I�f«P[ï\F`QÇP b K¿QSI#K�QSP[LÇP��TE{LÇP b K b

ç�ß b HOITEM_ W QÇF'â«ãxIT_�L U LJI#KûHJF'K`Q ë ITHÇI@PYK`f«ITITfûEG_#ùsF'PYHJITf
ë P¼L W â�&*ò�ô#�#��Q�ø4àeà 2 U¦ë P¼L W â�&*ò'�(�#��Q�ø4àeà 2

E{K�f ë P¼L W â�&�ô4ú%�#��Q�ø�àeà 2
ç0�¦P¼ð�i�èÉDg

QSI�ùMF`I#K`_#ITQ ë I#HJI�E{XRQ b EG_TùMF`P[HJITf æ¹b H:ITEM_ W QÇF'â«ãxIT_�L�ç d XYX`E{K�E{XYí%�TITf�PYà%E{áMITQ W E�äGI b K'XYí�F'K«ìf«I#HJá b K'IeQSXYPR_�I^LJP[àePYK'á¿_ b HÇHJIT_�LÇP b K!EGK`f!HJITEGX[PYáGK'àeITKML b K W PYá W HÇI�Q b X[F'LÇP b KÁE{K�E4L b àePY_TE{XQÇ_TE{K`QTç aÅW I#í W E�äGI W`b�ë ITäGI#H�K'I#P[L W ITH�â\ITI#KûQSZ`E{LÇPRE{XYX[íÌK b HÅLÇI#àeZ b HJEGX[XYí1��X¼LJI#HJITfBç

2 34	BØ05OÚ�Û

6�798 :<;>=@?A=@B�CAD�C'EGF�B
è�F'H�QSLÇF�f«í1E{PYàeQ�E{L�X b _#E{XYP��#PYK'áûQÇPYáGK'PH��_#EGKML*EG_�LÇPYä4E{LÇP b K`Q�E{K�fÁITä4EGX[F`E{LÇPYK'á;L W I�_TE{K b K«ìPY_TE{XI�nNOß b H�gÉNOß L b L W IËQJE{àeIÌQSLJP[à�F'XYF`QTç d Q æ E{H*EGQ�Z b QJQSPYâ'XYI U X[P[LSLJX[I�EGQJQÇF'àeZ«LÇP b K`QE{â b F'LÉL W IeHJITQÇZ b K`QÇI æ F'K`_�LJP b K1Q W EGZ\ITQ W E�äGI*L b â\IeP[KsLÇH b f«F`_#ITfBç aÅW I#HJI æ¹b HÇI U\ë I W E�äGIP[àeZ'XYI#àeI#KsLÇI�f E{K I�ð¦LJI#K`QÇP b K bGæ L W IÐä b ð«I#X[ì¡â`EMQSI�f E{XYá b HÇP[L W à?f«ITQJ_�HJP[â\I�f PYK ñ J4ó�L b Eà�F'X¼LJPRQSITQJQÇP b Kû_ b KsLÇI#ðsL ë P[L WûW I#LÇI#H b QJ_�I�f'EGQSLÇPR_ÉK b PRQÇI ) f«P[ï\ITHÇITKML�K b PRQÇI@ä4E{HJPRE{K`_�I�QÅEM_�H b QJQQSI�QÇQÇP b K`QK*£EGK`f@ä4E{HJPYEGâ'XYI�f«HJP æ L�Z`E{H�E{àeI#LÇI#H�QTç aÅW PRQ"I�ð¦LÇITK`QSP b K W'b�ë I#äGI#HEMQÇQÇF'àeITQ"_ b K`QSLJEGKML
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�nNOß EGK`f�gÉNOß EM_�H b QJQ�LÇHJPYEGXYQTç d QÅZ'HÇI�QSITKMLJITfËPYKÁñ J4ó U ��NOß EGK`f�gÉNOß _ b I��Ì_�PYI#KsLJQ�E{HJIITQSLÇPYàeE{LÇI�fÌPYKËL W IÉà%E4ð«PYà�F'à-E�Z b QxLJI#HJP b HÇP\QÇI#K`QÇIGç0�¦PYK`_�I U L W I#PYHÅZ b QSLÇI#HJP b H�f«PRQxLJHÇPYâ'F«LJP b KPYQ�÷�E{F�QÇQÇPYEGK U L W ITP[HÅI�QxLJP[à%E4LJITQÅ_ b PYK`_#PYf«I ë P¼L W L W I�Z b QSLÇI#HJP b H<à^I�E{Khç aÅW I�QSLJE{K�f'E{H�fÌf«I#ìäsPRE{LÇP b K`Q�f«ITHÇPYäGI æ H b à L W I�àeEGP[Kef«PRE{á b K`EGX b{æ L W I�_ b HJHÇI�QSZ b K`f«PYK'áÉ_ b ä4EGHÇPRE{K`_�I<à%E4LJHÇPR_�I�Q#ç

6�7�� ����� D0B��
	���� =@?'C'E� D�CAEGF�B D���+F+; E C����
ß b HnQSI�QÇQÇP b K i = 1 : I U à b f'I#X (Mi)

f«ITQJ_�HJPYâ�I�f�PYK1ñ J4óHJITEGf`Q��
yi = Xih + Pili + bië�W I#HJI yi ∈ R

Ni

PYQ�L W IÅLÇPYàeIOQSITHÇPYITQ�EM_#ùsF'PYHÇI�f�P[KeQÇITQJQÇP b K i
P[K%E�áMP[äGITK*ä b ð«I#X U h ∈ R

K+1L W I�P[àeZ'F'XRQÇIÅHJITQÇZ b K`QÇI U Xi ∈ R
Ni ×R

K+1
L W IÅâ`P[K`EGHÇí b K`QÇI�L:à%E4LJHÇP[ð U Pi ∈ R

Ni ×R
QiL W I X b�ë æ HJITùsF'I#K`_#í b HSL W'b á b K`E{X�â`EGQÇPYQ U li ∈ R

Qi

L W I KsF`PYQJE{K`_#I Z`E{H�E{àeI�LJI#H�QûEGK`f
bi ∈ R

Ni

L W IË÷�E{F�QÇQÇPYEGK ë�W P[LJIeK b PRQÇIGçBê�à^Z`F'XYQÇIeHJITQÇZ b K`QÇI h
PRQÉL W I �nNOß æ¹b H@iOèÉDgQSI�ùMF`I#K`_#ITQ�E{K`fËL W I�gÉNOß æ¹b HOf ë ì�QSI�ùsF'I#K`_#ITQTç

i�PYK`E{HJí b K`QÇI�L<à%E4LJHÇPR_�I�Q W E�äGIOâ\I#ITKÌâ'F'PYX[L�EM_#_ b F'KsLÇPYK'á æ¹b H�QSF�QxL�E{PYK'ITfÌQxLJP[à�F`XYE{LÇP b K`Q U
ë�W PY_ W XREGQSLOE{â b F'L�LJI#KûQSI�_ b K`f`Q#ç0�nNOß¥E{K`f�gÉNOß EGHÇI�L W I#KûEGQJQSF`à^I�f�_ b K`QSLJE{KsL�EM_�H b QJQQxLJP[à�F'XYF`Q b _#_#F'HÇITK`_�IMç«ê�L�PYQ ë<b HSL W K b LJPY_#P[K'á%L W E{LOL W PRQnEMQÇQÇF'àeZ«LÇP b Kû_ b F'XRf�K b Lnâ\I�LJI#K«ìE{â'XYI�PYK;E{XYXBâ`HJEGP[K�HÇITáGP b K`QTç

ê�K ñ J{ó U L W IeàeITEGK b{æ bi
PRQ�EMQÇQÇF'àeITf¿L b ä4E{HJíûEG_#H b QÇQÉQSI�QÇQÇP b K`Q�â'F«L�P¼L�Q�ä4E{HJPRE{K`_�I*PRQEGQJQSF'àeI�f;_ b K`QSLJEGKMLTç+�nI#HJI U�ë I�_ b K`QÇPYf«ITHnQÇITQJQSP b K'ì�f«ITZ\I#K`f«ITKMLnâ`EGQÇI#XYPYK'ITQnE{K`f;ä{E{HJPYEGK`_�I�Q

ri
ç{î b PYQÇI�àeITEGK`Q�EGHÇI�à b f«I#XYX[I�f�L W H b F'á W li

QÇPYK`_�I
Pi
_ b KML�E{PYK`Q�EÉ_ b K`QSLJEGKML:_ b XYF'à^K"ç{DhI�L

y = [yt
1, . . . , y

t
I ]

t U l = [lt1| . . . |l
t
I ]

t EGK`f θ = [r1, . . . , rI ]
ç d QÇQÇF'àePYK'á�L W E4L�L W I�QSI�QÇQÇP b K`QE{HJIÉPYK`f«I#Z\ITK`f«I#KsL bGæ ITEM_ W�b L W I#H U L W I@à�F`X¼LJP¼ì�QSI�QÇQÇP b K�XYPYcGI#XYP W`b¦b fËHJITEGf`Q��

p(y|h,M; θ, l) =

I
∏

i=1

p(yi|h,M; ri, li)

=
I

∏

i=1

(2πri)
−Ni

2 exp
(

−||yi − Xih − Pili||
2/2ri

)

.

) òA*

g�F'IÌL b L W IËXYEGHÇáMI%KsF'à�â\ITH b{æ F'K`csK b�ë K Z`E{H�E{àeI�LJI#H�Q U à%E4ð«PYà�F'à XYP[cMI#XYP W'b¦b fÁI�QxìLÇPYà%E4LÇP b KÁàeE�íûZ'H b ä¦PYf«I^F'K`QSLJE{â`X[I^HJITQÇF'X[LJQTç �OITK`QÇIeE{c¦PYK¿L b ñ J4ó U Z'HJP b HÉPYK æ¹b HJà%E4LÇP b K b KL W I�Q b F'á W LÅgÉNOß b HÅgÉNOßåPRQ<PYKMLJH b f«F`_�I�fBç¦ß b XYX b�ë PYK'áËñ J4ó U L W ITP[H�E{àeZ'XYP[LÇF`f«IÉPRQÅ_�X b QÇIOL b�#I#H b E4LÉL W I#PYH,�`H�QxL@EGK`f¿ITK`f¿LJP[àeIeZ b PYKML�Q�E{K`f¿L W I#PYH�ä4EGHÇPRE4LJP b K`Q�E{HJI^QSF'Z`Z b QÇITfûL b â\IQSà b¦b L W ç aÅW I �`H�QxL@_ b K`f«P[LÇP b K!PYQÉPYKMLJH b f'F`_�ITfÐâsíÐQSI#LSLJP[K'á�L W I �`H�QSL�EGK`f¿XREGQSLÉZ�E{H�E{àeI�ìLÇI#H�Q bGæ h L b �TI#H b@ë�W PYX[IOL W I�QSI�_ b K�f b K'IOPRQ�EM_ W PYI#äGI�f^â¦íeQSI#LSLJP[K'á*E{KÌE@Z`HÇP b HJP�÷�EGF`QÇQÇPRE{KZ'H b â`E{â`P[XYP¼Lxí æ F`K`_�LJP b K N (0, � H) b K h
ç aÅW I�Z`HÇP b H�_ b ä4EGHÇPRE{K`_�I�à%E4LJHÇP[ð σ2

h �
PRQ�â'F'PYX¼L:F'Z

æ H b à � = ( � t
2 � 2)

−1 U£ë�W I#HJI � 2

EGZ'Z'H b ð«PYàeE{LÇI�QOL W I%QSI�_ b K`f b H�f«I#H�f«ITHÇPYä4E{LÇPYäGI*EGK`f
σ2

h

QSL�E{K`f'Q æ¹b HÅL W I@Z'HJP b HÅä4EGHÇPRE{K�_�IGç aÅW I é E{ð«P[à�F'à EeZ b QxLJI#HJP b HJP )�é¿dOV *ÅITQSLÇPYà%E4LJI�PRQL W ITK^f«I#HJP[äMITf æ H b à L W IÅ_ b à�â'PYK`E4LJP b K b{æ L W I�XYP[cGITX[P W'b¦b f ) I�ù\ç¦òA* ë P[L W L W I�Z'HJP b H�f'I#K`QÇP¼LxíF`QSPYK'á%iÅE�íGITQ��¦HJF'X[I��
p(h|y,M; θ, l) ∼ N (ĥMAP, V ) ) ô#*

ë P[L W � V −1 =
∑I

i=1
1

ri

Xt
i Xi + σ−2

h � −1 EGK`f ĥMAP = V
∑I

i=1
1

ri

Xt
i (yi − Pi l̂i)

ç
d K¿ö:ð«Z\IT_�L�E4LJP b K«ìx] b K`f«P[LÇP b K`EGX¼ì é E{ð¦PYàePH��E4LÇP b K ) ö�] é *OEGX[á b HJP¼L W à8PRQOF`QÇITf æ¹b H�L W I*QSP[ìà�F'X¼L�E{K'I b F`Q;ITQSLÇPYà%E4LJITQ b{æ h U L W I1F'K`f'I#HÇXYí¦PYK'á W í¦Z\I#HJZ`EGHJEGà^I#LÇITHJQ (ri, σ

2
h)

EGK`f L W I
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KsF'PRQÇEGK`_�I�ä4EGHÇPRE{â'XYITQ
li
ç aÅW PYQ^P[LÇITHJE{LÇPYäGI�QSLÇH�E4LÇITáGí1PYQeQÇXYP[á W LJX[í f«P[ï\ITHÇITKML æ H b àAL W I b K'If«ITQJ_�HJP[â\I�f%PYK!ñ J4ó�ç d�æ LJI#H�P[K'P[LÇPRE{XYP��TE4LJP b K U I�EG_ W P¼LJI#H�E4LÇP b K æ¹b XYX b�ë Q�L W ITQÇIÉQSLÇITZ`Q�� ) òA*Å] b à^ì

Z'F«LJE{LÇP b K b{æ V
ç ) ô#*�ö�QxLJP[à%E{LÇP b K b{æ ĥMAP

ç )�õ * ∀i
�

l̂i = P t
i (yi − Xiĥ

MAP)
ç ) ú%*

∀i
�
εi(l̂i) = ||yi − Pi l̂i − Xiĥ

MAP||2 + tr(XiV Xt
i )
ç ) �(* ∀i

�
r̂i = εi(l̂i)/Ni

ç ) J(*
σ2

h =
LJH
{(ĥMAP(ĥMAP)+Vm,m) � −1}/(K − 1)

ç�D b _TE{X�_ b K¦äGI#HJáGITK`_�IÁPRQÐEG_ W P[ITäGITf
ë�W I#K'ITäGI#HÅL W I@HÇITXYE{LÇPYäGIÉI#HJH b H�â\I�_ b àeI�QÅX b4ë I#HÅL W EGKÁòA� −3

ç

6�7 6 	 =%C'=��#C'EGF�B F�� ?'E�+B E����#D B�C1D���CAE��0D�C'E9F+B
aÅW I%E{XYá b HÇP[L W à f«I�QÇ_�HJPYâ\ITf!E{â b äGIeE{XYX b4ë Q�ä b ð«I#X[ì¡â�EGQÇITfÐE{K`f!à�F'X¼LJPYQÇITQJQÇP b K!ITQSLÇPYàeE{LÇP b K
b{æ L W I ��NOß1EGK`fÌg�Nnß1_ b I��Ì_�PYI#KsLJQ�PYKËE�iÅE�íGI�QSPRE{K æ HJEGà^I ë<b HJc£ç d _�LÇPYä4E4LJP b KÌf'I�LÇI�_�LJP b KL W ITKeHÇITX[PYITQ b K*L W IO_ b àeZ`E{HJPYQ b K b{æ L W I�Z b PYKML ë PYQÇIÅI�QxLJP[à%E4LJP b K b{æ ĥ ë P[L W E,�#ITH b ì¡ä{E{X[F'I�fäGIT_�L b H h0

ç�ß b Hef b PYK'áÁQ b�Uë I�PYKsLÇH b f«F`_�IËL W I�K¦F'XYX W í¦Z b L W ITQÇPYQ H0

�
h = h0

ç�	 W I#KL W PRQ W í¦Z b L W ITQÇPRQ^PRQ^HJIxãxIT_�LÇI�f U L W I;ä b ð«I#XÅF'K`f«ITH%QSLÇF�f«í PRQe_ b K`QÇPYf'I#HÇI�f EGQeEM_�LJP[ä{E4LÇPYK'á�ç] b K`QÇPYf'I#HJP[K'á p(h| . . . ) ∼ N (ĥ, V ) U¦b K'IÉ_#EGK ë HÇP[LJIOL W E4L h−h0 ∼ N (ĥ−h0, V )
ç«DhI�L

X
â\I�L W I�HJEGK`f b à ä4E{HJPYEGâ'XYI�QSF`_ W L W E4L X = [h−h0] ∼ V −1/2(ĥ−h0)

U L W I#K X æ¹b XYX b�ë QE
χ2

f«PRQxLJHÇPYâ'F«LJP b K ë P[L W K − 1
f«ITáGHJI#ITQ bGææ HÇITITf b à U'ë�W I#HJI K − 1

PRQ�L W I@KsF'à�â\ITH bGæITQSLÇPYàeE{LÇI�f ��NOß b H@gÉNOß _ b I��Ì_�PYI#KsLJQTç H0

PRQÉL W F�Q�HJIxãxIT_�LÇI�f ë�W ITK'I#äGITHÉL W I P
ì¡ä{E{XYF'I

b{æ L W I χ2
QxL�E4LJPYQSLÇPR_#EGX£LÇITQSLnQÇE{LÇPRQ �`ITQ��

P (X ≥ X0) ≤ 0.05 U'ë P¼L W X0 = V −1/2ĥ
ç


 � 	��¦Ü��Ø0�

��798 ����CAE��0D�C'E9F+B
� =%C'=���CAD�� E �GEGC��
d QÇF'â«ãxIT_�L�EGK`fÁQSI�ùsF'I#K`_#I*Lxí¦Z\I%f«ITZ\I#K`f'I#KML�EGK`E{XYí«QSPRQ W EGQ�â\I#ITK1E{Z`Z'X[PYITfÐL b L W I%f'E{LJEZ'HÇI�QSITKMLJITf P[K �¦IT_�LÇP b KÔô«ç�	!I;F`QÇITf L W I;f'I��`K'P[LÇP b K Z'HJITQÇI#KMLJITf PYK QSF`â`QSI�_�LJP b K õ ç õ L bQxLJF`f«í�EG_�LJP[ä{E4LJP b K�f«I�LJIT_�LJE{â`P[XYP[L�í�E{K`f�X b _#E{XYP��TE4LJP b K b{æ â'HJEGP[K�EM_�LÇPYä4E{LÇP b K`QTç P ì�ä4EGX[F`ITQ æ¹b HL W IOL W HJI#IOP[à%E{áMP[K`á@QÇITùsF'I#K�_�IÅLxí¦Z\ITQ�E{HJI�Z'HÇI�QSITKMLJITf^PYKÌßPYá`ç`ò æ¹b H:L W IOà b QSL�P[KsLÇI#HJITQSLÇPYK'áQSXYPR_�I bGæ �«F'â¦ãxI�_�LÅòMçA� b ð«I#XRQ_ b K`_ b àeP[LÇI#KsLÇXYí@EG_�LÇPYä4E4LJP[K`á æ¹b H"L W I�L W HÇITI<P[à%E{áMP[K`ánQÇITùsF'ITK`_�IL�í¦Z\ITQOE{HJI�EGXRQ b f«PRQÇZ'XYE�íGI�fBç d _�LÇPYä¦P[L�í�PYQOf«I�LJIT_�LÇITf�PYK�L W I@Z'HJPYàeEGHÇíÌä¦PYQÇF`EGXh_ b HÇLÇI#ðÌF�QSPYK'ái�è�D"g(QSI�ùMF`I#K`_#ITQ bGæ f'E{LJEMQSI#L�ò�EGK`fÐô«ç��nQÇP[K`áËf ë ì�QÇITùsF'I#K`_#ITQ U EG_�LÇPYä4E{LÇPYK'áÌä b ð«I#XRQnE{HJIE{XRQ b f«I�LJIT_�LJITfåPYKåL W PYQ^_ b HÇLÇPR_#EGX�EGHÇI�EûE4L*X b4ë QSZ�E4LÇPRE{X<HÇI�Q b X[F«LJP b K ) gÉE4L�EGQÇI�L�òA*�ç aÅW I#PYHKsF'à�â\ITH�PYQ�QÇà%E{XYX[ITHL W EGK*F`QSPYK'á�i�èÉDgÔQSI�ùMF`I#K`_�I�Q�E{K�f�QÇI#ITàeQL b f«I�_�HJITEGQÇI æ¹b H�PYK`_�HJITEMQxìP[K'á

b
ä{E{XYF'ITQTçMß`EGXYQÇIOZ b QÇP[LÇPYäGITQ�E{HJInE{XRQ b�b â`QÇI#HJäGITf^PYK b L W I#H�â`HJEGP[K%HJI#áMP b K`Q#ç aÅW PYQ b _T_�F'H�Qâ\IT_#EGF`QÇI ë I%f b K b L�EG_#_ b F'KsL æ¹b H�L W I%à�F'X[LÇPYZ'X[IÌ_ b àeZ`E{HJPRQ b K¿Z'H b â`X[ITà U P[I ë Ief b K b L_ b KsLÇH b X`L W I�Z'HJITQÇI#K�_�I b{æ E{L<XYITEGQSL b K`I æ E{XRQSInZ b QSP[LÇPYäGInP[KÌL W IÉQSI�E{H�_ W ä b X[F'àeI ) ß�	 ö<N
*�çî b LJIÉL W E4L æ EGXYQÇI�Z b QÇP¼LJP[äGI�Q�E{HJIÉà b HJIÉK¦F'àeI#H b F`QÅPYK;iOèÉD"g â\IT_#EGF`QÇI bGæ�W PYá W I#H
�'înN@ç

d L W P[á W QSZ`E{LÇPRE{XÅHÇI�Q b X[F«LJP b K U f«F'I�L b X b4ë I#H��«î�N U K b EM_�LÇPYä4E{LÇP b K¥_�XYF`QSLÇI#Heä b ð«I#XRQ
ë EGQ æ¹b F'K`f æ¹b H�E{K¦í b

ì�ä4E{XYF'IMçsê�K b HJf'I#H�L b àeI�EGQÇF'HÇInL W IÉP[K0/`F'I#K`_#I b{æ b U L W I@QSPYáGK`EGX ë EGQE�äGITHJEGáGITf b äGITHÅN�I#áMP b K`Q�è æ ê�KMLÇITHÇI�QxL�Q ) N�è�êxQK*�X b _#E{LÇITfÌPYKËL W IÉZ'HJPYà%E{HJí^ä¦PRQÇF`E{XB_ b HÇLÇI#ðBçß b H�ITEG_ W!b{æ L W I^L W HJI#I%QSF'â«ãxIT_�LJQ U L W ITQÇIeNOè�êxQ UBb{æ EGâ b F«L%ò'�#�(�Ìä b ð«I#XRQ ) ô«ç J × ô«ç J × ô'ç J_�à
3
* U:ë I#HJI�à%E{KsF`EGXYX[í f«ITQÇP[áMK'ITf â¦í EGK I�ð«Z\I#HÇLTç�è�F'HeEGX[á b HJP¼L W à ë EGQ�L W I#KÔE{Z'Z'XYPYITfL b L W I�à^I�E{K¿QÇP[áMK`E{X"P[KûL W I�QSI*N�è�êxQOF`QÇPYK'áËQSPYK'áGXYI�ì�QÇITQJQSP b K;E{K`EGX[í«QÇITQTç+�¦P[áMK'PH��_#EGKML�EM_�LÇP[ìä4E4LJP b K`Q ë ITHÇI æ¹b F'K`f!P[K1E{XYXÅò'��iOèÉD"g QÇITQJQSP b K�Q U PYK ) ô{ú U ô«ò U ú%*OQÇITQJQÇP b K`Q b F«L bGæ<õ � æ¹b H

b = (1200, 1800, 2400)
Q�ø�àeà

2 U HÇI�QSZ\IT_�LÇPYäGI#XYíGç �¦F`_ W /�F`_�LJF`E4LJP b K`Q�E{HJI%Z'H b â`EGâ'XYí!f«F'I
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) E(* ) â+* ) _'* ) f *

� E � 7#8+7�� D�� ��� d ð¦PRE{X�ä¦P[I ë b{æ L W I P
ì¡ä4EGXYF'ITQ b â«LJEGP[K`ITf æ H b à �«X[PR_�IÁô b{æ �¦F'â«ãxIT_�LÁò

ë�W I#K¿EGK`E{XYí«QSPYK'áeL W I�L W HJI#I�PYà%E{áGPYK'áÌQÇITùsF'ITK`_�I@L�í¦Z\ITQTç�NnEGf«P b X b áMPY_TE{Xh_ b KsäGI#KsLÇP b K`QnE{HJIF`QSI�f ) X[I æ L�PRQ�HÇPYá W LK*�ç ��D�� P
ì¡ä{E{XYF'ITQ æ¹b H b = 0

Q�ø�àeà
2
ç � ���

P
ì�ä4E{XYF'I�Q æ¹b H b = 1800Q�ø4à^à

2
ç � ���

P
ì�ä4EGX[F'I�Q æ¹b H�L W I�iOèÉDg f`E4LJEMQSI#LTç � ��� � b ð«I#XRQ�_ b K`QÇPYf«ITHÇI�feEMQ�EG_�LÇPYä4E{LÇPYK'á

æ¹b HÅL W I�L W HJI#I�PYà%E{áMP[K'á%QSI�ùsF'I#K`_#I�Lxí¦Z\ITQ�PYK�L W I�QÇEGà^I@QÇX[PR_�I ) PYK ë�W P¼LJIA*�ç

� E � 7 � 7�� �G=�� C�� ß�P[L bGæ L W I;EMf�ãxF`QSLÇITf QSPYáGK`EGX ) b = 1800
Q�ø4àeà

2
* æ¹b HeQÇITQJQSP b K ò�EGK`fQSF'â«ãxIT_�LËòËE4L�L W IÌä b ð¦ITX ṽ bGæÅW PYá W ITQSL�EM_�LÇPYä¦P¼LxíMç"i�XYF'IËQ b X[PRfÁXYP[K`IÌHÇITZ'HJITQÇI#KML�QÉL W IËf ë ìæ�é N�êeLÇPYàeI!QSI#HJPYIGç�÷ÉHJI#I#K f'EMQ W I�f XYPYK'IÐf'I#Z'PR_�L�Q%L W I.�'L

ŷ1

ç � �#=@B C'=%;	� g�EMQ W I�fÔXYP[K'I
HÇITZ'HÇI�QSITKML�QnL b LJEGX  QSPYáGK`EGX:_ W EGK'áGI�QÉE{L ṽ

ç�� b X[PRfÐXYP[K`IePYQÉL W IÌ_ b HJHJITQÇZ b K�f«P[K`á�gÉNOß ĥ
ç

� ; E � ��C
� gÉNOß
ĥ
E{L

ṽ
ç

L b E;f«I�_�HJITEMQSPYK'á �'înN æ¹b H@PYK`_#HÇI�EGQÇP[K'á b
ä4EGX[F'I�Q#ç é I�E{K!L b LJEGX:Z\I#H�_�I#KsL�QÇP[áMK`E{X�_ W E{K'áMIP[KåQÇPYáGK'PH��_#EGKMLJX[í!EG_�LJP[ä{E4LJP[K'áûQÇITQJQSP b K�Q ë EMQ@E{â b F«L�ô'çYò'�! æ¹b H�iOèÉD"g-QSI�ùsF'I#K`_#ITQ@EGK`f

E{H b F'K`f!�`ç �#�  æ¹b HÉf ë ì�QSI�ùMF`I#K`_#ITQTç aÅW PRQnPRQnà%E�í¦â\I*f«F'I*EËQÇàeEGX[XYI#HÉQSZ`E{LÇPRE{XI�ð¦LÇITKML b{æL W I;HÇITáGP b K«ì�â`EGQÇITf EG_�LJP[ä¦P[L�í1L W E4LÌ_#EGK â\I;f«I#LÇIT_�LÇI�f¥E4L W PYá W f«P[ï£F`QSP b K QÇI#K`QÇP[LÇP��TE{LÇP b Khç
d _�LÇPYä4E4LJP b K`Q�f«I#LÇIT_�LJEGâ'P[XYP[L�íûP[K!EÌXRE{HJáGI�E�äGITHJEGáGITf;NOè�ê�PYQnL W ITKÐH b â'F`QSL æºb H�HJITEGQ b K�E{â'XYí
W P[á W f«P[ï\F�QSP b KûQSITK`QSP[LJPH��E4LÇP b K�â'F«Ln_#X[I�E{HJX[íËf«IT_#HÇI�EGQÇI ë�W I#K;â > òA�#�#�MQ�ø�àeà 2

ç

��7�� ����� D0B��
	���� �(F ��� D�; E9?'F�B
	!I�E{PYà W I#HÇI@E{LOQxL�E4LÇPRQSLÇPR_#E{XYXYí1��K`f«PYK'á ë�W I#L W ITHÅL W I�ä b ð«I#XRQ�I#XYPY_#P¼LJP[K`á%QSPYáGK`P ��_TE{KsL�EM_�LÇP[ìä4E4LJP b K`Q"PYK�L W IÅQÇI#K`QÇI�E{XYHÇI�EGf«í�f«I �`K'ITf�Z'HJITQÇI#KsL æ EGQSLÇITH�EG_�LJP[ä{E4LJP b K@F�QSPYK'áÉf ë ì æ�é N�êhL W EGKF`QSPYK'á¿_�XREGQJQSPR_#EGX:iOèÉD"g æ�é N�ê�ç 	ÁIÌEGXYQ b;ë E{KsL�L b _ W EGHJEM_�LJI#HJPH�TI�L W I%PYK�/`F'ITK`_�I b{æ L W If«P¼ï£F`QÇP b K¿QSITK`QSP[LÇP��TE{LÇP b K;XYI#äGI#X¡ç`ê�Kûß�PYá`ç\ô U`ë I�Q W`b�ë æ¹b H,�¦F'â«ãxIT_�L*ò�L W I�gÉNOß¥I�QxLJP[à%E4LJI
ĥ
EGK`f%L W I �'L b{æ L W I�EGf�ãxF�QxLJITfËâ�&*ò'�(�#��Q�ø4àeà 2

QSPYáGK�E{X
ŷ1

áMPYäGI#KËâsí
ŷ1 = X1ĥ + P1 l̂1b äGITH�L W I ��HJQSL�QÇITQJQÇP b K ) i = 1

*�E4L:L W I�ä b ð«I#X ṽ ë�W I#HJI�L W IOQxLJH b K'áGI�QxL�EG_�LÇPYä4E4LJP b K b _T_�F'H�QTç�sLJEGK`f'E{H�f¿f«I#ä¦PRE4LÇP b K�Qnf«ITHÇPYäGITf æ H b à L W I^f«PRE{á b K`E{XRQ b{æ Z b QSLÇITHÇP b H�_ b ä4EGHÇPRE{K`_�I@à%E{LÇHJP¼ð UE{HJIÉHÇITZ b HÇLÇI�f�E4L�I�EG_ W LÇPYà^I@Z b P[KsL bGæ ĥ
ç

ê�KÁf`E4LJEMQSI#L^ò U P[K b H�f«I#H�L b;b K'XYí¿_ b à^Z�E{HJI*QÇPYáGK'PH��_#EGKML@EG_�LÇPYä4E4LJP b K`Q U\ë I^I�ð¦LJHJEM_�LÇI�fL W I ��NOß¥EGK`f;gÉNOß¥EMQÇQ b _#PYE4LJITfËL b L W I�ä b ð«ITXYQ ë�W PY_ W EGHÇI�_ b K�_ b àeP[LJEGKMLÇXYí�EG_�LÇPYä4E{LÇPYK'á
æ¹b H�L W I@L W HÇITI@PYà%E{áMP[K'áÌQÇITùsF'I#K`_#ITQTç aÅW ITHÇI�EGHÇI�ô�%E{K�fÁòA�^ä b ð«I#XRQ æ¹b H �¦F'â«ãxIT_�LJQ�ò�EGK`f
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� E � 7A6�7 î b HJàeEGXYPH�TITf ��NOß E{K`f�g�NOß E4L¿L W HJI#I ä b ð«I#XRQTç a PYàeI�ì¡L b ì¡Z\ITEGc EGK`f LJP[àeI
L b(W E{X æ ì¡Z\I�E{c E{HJI áMP[äGITK-P[K QSI�_ b K`f'Q P[K-L W I æ¹b XYX b4ë PYK'á b HJf«ITH���ñ b = 0

Q�ø�àeà
2 U

b = 1800
Q�ø�àeà

2 U iOèÉD"gnó�ç � �G=�� C�� a�aÅV &*ñ ú�ç � U 6�7�� U ú`ç �4ó�ç a�a � V &*ñYòGç õ'U 8�7G8 U òMç ô4ó¡ç
� �#=@B C'=%;	� a�aÅV &*ñ�� 7�� U J`ç  U "«ç �{ó¡ç a�a � V &*ñ�ô«çYò U ��7G8 U ú�ç ô4ó¡ç ��;>E� � C�� a�aÅV &*ñ$"¦ç J U ��7�� U"¦ç�ô�ó�ç a�a � V &*ñ ú`ç õ'U 8�7�� U«õ ç {ó¡ç

ô U HJITQÇZ\IT_�LÇPYäGI#XYíGç�î b LÇPR_�IËL W E{L^äGI#HJí æ I ë EGf'f«P[LJP b K`E{X<ä b ð«I#XRQ ë<b F'XRf W E�äGIËâ\I#I#K LJEGcGI#KP[KsL b EG_T_ b F'KML ë P[L W Z`E{PYH ë PYQÇI�QÇITùsF'ITK`_�I�Q�_ b à^Z�E{HJPYQ b K�P[K�_�XYF`f«PYK'á b = 1800
Q�ø�àeà

2
QÇI�ì

ùMF`I#K`_#ITQTç d L W PYá W I#H�QÇZ`E{LÇPRE{XHÇI�Q b X[F«LJP b K U PYKÐf'E{LJEGQÇI�L�ô U K b ä b ð«I#X ë EGQ�_ b K�_ b àeP[LJEGKMLÇXYíEG_�LJP[ä{E4LJP[K'á æ¹b H:EGX[X'QÇITùsF'I#K`_#I<Lxí¦Z\ITQTç 	ÁI�L W ITKeQSLÇF`f'P[I�f�L W I�E�äMI#H�E{áGITf�QÇP[áMK`E{X¦PYK*L W ION�è�êZ'HÇI�QSITKMLJITfËP[K;QSF'â`QÇIT_�LÇP b K�ú`çYòGç��nNOß E{K`f�gÉNOßåI#ðsLJHJEM_�LJITf æ H b à-QÇITQJQÇP b K`Q<_ b HJHÇI�QSZ b K�f¦ìP[K'áËL b QÇP[áMK'PH��_#EGKMLÉEM_�LJP[ä4E{LÇP b K�Q ë ITHÇI�L�E{cGITK¿PYKML b _ b K`QÇPRf«I#H�E4LJP b Khç d X[X:g�NOß E{K`f �nNOß
ITQSLÇPYàeE{LÇI�Q ë ITHÇIeK b HÇà%EGX[P��#I�f¿L b à%E{cGI^L W I#PYH�_ b àeZ`EGHÇPRQ b KÐI�EGQÇP[ITHTç��OITK`_�I U L W ITP[H�Z\ITEGcP[KsLÇI#K�QSP[LxíePRQ<QÇI�L<L b òGç¦ß�P[á�ç õ f'I#Z'PR_�L�Q�L W IÉ_ b HJHÇI�QSZ b K`f'P[K'á�K b HJà%E{XYPH�TITf���NOßåE{K`fËg�NOßITQSLÇPYàeE{LÇI�Q<E4L�L W HÇITInä b ð¦ITXYQ�P[K�QSF'â«ãxIT_�LÉòGçMê�K�f'E4L�EGQÇI�L�ò UGæ¹b H<EGâ b F«L�L W InL W PYHJf b{æ L W InúMúä b ð«ITXYQ U â'HJEGP[KeEM_�LÇPYä¦P[L�í�PRQ�f«I�LJIT_�LJITf æ EMQxLJI#H:F�QSPYK'á�f ë ì�QÇITùsF'ITK`_�I�QL W E{KeF`QÇPYK'á@iOèÉD"g QÇI�ìùMF`I#K`_#ITQ ) QÇI#IÅß�PYá`ç õ ) HJP[á W LK* *�ç4ß b H:E{â b F'L�EGK b L W I#HL W PYHJf bGæ L W ITQÇI�ä b ð¦ITXYQ U L W IÅgÉNOß¿EGK`f�nNOß X b¦b cûQSPYàeP[XRE{HÉI#ð«_#I#Z«L�PYKÐL W I#PYHÉF`K`f«I#H�Q W'b¦b LÉZ`EGHSL@EGQ�PYXYX[F`QSLÇH�E4LJITf¿PYKÁß�PYá`ç õ ) X[I æ LK*�ç
aÅW PYQ@PRQ�Z'H b â`EGâ'XYí¿f«F'IeL b L W I%X b _#EGX W PYá W ä{EGQJ_�F'XRE{H�P[K0/`F'I#K`_#IÌE4L�L W ITQÇI^LJP[àeI%Z b PYKML�Q#çß b H@L W IËXYEMQxL�L W PYH�f b{æ ä b ð«I#XRQ�L W I�g�Nnß ) b = 1800

Q�ø�àeà
2
*@E{HJI%äGI#HJí!QÇà b«b L W ) QSITIßPYá`ç õ ) _#I#KMLJI#H * *�ç aÅW E{L�à^PYá W L W E�äGIÉâ\ITI#K�L W I�QÇP[áMK`E4LJF'HÇI b{æ E^QSLÇH b K`á*PYK�/`F'ITK`_�I b{æ L W IE�Z'HJP b HJP b K!L W IÌgÉNOß Q W EGZ\IGç aÅW ITQÇI%_#F'HJäGITQ W E�äGI^L W I#Kåâ\I#I#K1HJI#I�QxLJP[à%E4LJITf ë P[L W`b F«LZ'HÇP b HÅ_ b K`QxLJHJEGP[KsLTçsê�L�LÇF`HÇK`Q b F«L<L W E4L�L W IÉK b K«ì�QÇà b¦b L W ITfÌgÉNOß W E�äGIÉE*QÇP[àePYXYEGH�Q W EGZ\IGç

aÅW I#HJI æ¹b HÇI U L W InZ'HJP b H�_ b K�QxLJHJEGP[KsL�HÇI�EGQ b K`E{â`X[í�HÇITáGF'XRE{HJPH�TITQ�L W IngÉNOßÁITQSLÇPYàeE{LÇI�Q#çGê�K%L W IQSI�_ b K�fef'E4L�EGQÇI�L U L W InQ W E{Z\I�Q b{æ L W IngÉNOßÁEGK`f1��NOßÁ_#F'HÇäGI�Q�EGQJQSI�QÇQÇITf ë P[L W P[K%L W I�N�è�êE{HJI�QSPYàeP[XRE{H*L b L W IûQ W E{Z\ITQ^Z'HÇI�QSITKMLJITf¥ßPYá`ç õ ç aÅW I#í E{HJI�EGXYQ b!W P[á W XYíåHÇITZ'H b f«F`_�PYâ'XYIE{X b K'áeQÇITQJQSP b K�Q æ¹b H�ITEM_ W PYà%E{áGPYK'áeQÇITùsF'ITK`_�IÉLxí¦Z\I@EGK`f�ITEM_ W QÇF'â«ãxIT_�L�ç
a PYà^I#ì�L b ì�Z\ITEGc )�a�aÅV *�E{K`fÐLÇPYà^I^L b�W E{X æ ì�Z\ITE{c )�a�a � V * b{æ L W I%g�Nnß EGK`f �nNOß

LÇPYàeIå_ b F'H�QÇITQ ë I#HJIÁI#ð¦LÇH�EG_�LJITf EGK`f Z'F«LÐEGX¼L b áGI#L W ITH æ¹b HûITEM_ W QSI�ùsF'I#K`_#IÁL�í¦Z\IåEGK`f
QSF'â«ãxIT_�LTç a EGâ'X[I�Q;ò ) E{ì¡â�**QÇF'àeà%E{HJPH�TI�L W ITP[HÌàeITE{K�Q%E{K`f QSLJE{K�f'E{H�f¥f«I#ä¦PRE4LJP b K`Q#ç�î b K«ìZ`E{H�E{àeI�LJHÇPR_���HJF`QÇc4E{X[ì 	1E{XYXYPYQ�LÇI�QxL ë EGQÅE{Z'Z'XYPYITfÌL b ITEM_ W QSF`â¦ãxI�_�L�P[K b HJf'I#H<L b f«PRQÇ_#HÇPYàeP¼ìK`E4LJI<L W I�QÇITùsF'ITK`_�I<LxísZ\I�Q�PYK�LJI#HJàeQ b{æ\a�aÅV E{K`f a�a � V ç{g�P¼ï£I#HJI#K`_#ITQ ë I#HJI�_ b K`QÇPYf'I#HJITfEGQ�QÇP[áMK'P �\_#E{KsL æ¹b H P

ì¡ä{E{XYF'IÉX b4ë I#HÅL W EGK!�� 
	`QSITI a E{â'XYITQ�ò ) _�ì�f * æ¹b HOf«I�L�E{PYX¡ç

î b QÇP[áMK'P �\_#E{KsL"f«P¼ï£I#HJI#K�_�I�â�I#L ë I#I#K b = 0
Q�ø4àeà

2
E{K�f

b = 1800
Q�ø4à^à

2
QÇITùsF'I#K�_�ITQ

ë EGQ b â`QSITHÇäGI�feP[K�f'E{LJEGQÇI�L�òMçsN�ITáME{H�f«PYK'á@L W IÉ_ b àeZ`E{HJPRQ b Keâ\I�L ë I#ITK b = 0
Q�ø�àeà

2
EGK`f

i�è�D"g�QSI�ùsF'I#K`_#ITQ U«ë I��`K`f æ EMQxLJI#H a�aÅV EGK`f a�a � V F`QÇP[K'á b = 0
Q�ø�àeà

2
QÇITùsF'I#K�_�ITQ

â'F«L b K`X[í æ¹b H �«F'â¦ãxI�_�LÐòGç �¦PYàeP[XRE{HJX[í U L W I a�a � V PRQ%QÇP[áMK'P �\_#E{KsLÇXYí æ EGQSLÇI#H%F`QÇP[K`á b =
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� D�� �9= 8+7 � D � ì � � � é ITE{K a�aÅV E{K`f a�a � V P[KÁQÇIT_ b K`f'Q æ¹b H�f'E{LJEGQÇI�Leò^E{K`f!f'E4L�EGQÇI�Lò U HÇI�QSZ\I�_�LÇPYäGITX[íMç�ö�HJH b HJQnEGHÇI ë P[L W PYKÐZ�E{HJI#KML W ITQÇPRQ#ç � � � ì � � � P
ì¡ä{E{XYF'ITQ b{æ L W I ��HJF`QSc{E{X[ì

	ÁEGX[XYPRQ:LJITQSLJQ<E{Z'Z'XYPYITf^L b L W I a�aÅV Q<EGK`f a�a � V Q b{æ f`E4LJEMQSI#LnònE{K`fÌf'E4L�EGQÇI�L�ô U HÇITQÇZ\IT_�ìLÇPYäGI#XYíGç
a PYà^I#ì�L b ì�Z\ITEGc a PYàeIÉL beW EGX æ ì�Z\ITEGcâ�&,� â�&*òA�#�(� iOèÉD"g â�&,� â�&*ò'�(�#� iOèÉDg

�¦F'â«ãxIT_�L�ò � 7�� � ) òGç õ �%* J'ç �#� ) òGç J{ú%* J'ç$"{ô ) òMç õ "�* ô'ç ôMô ) �'ç #J%* 8+7���8 ) �`ç �{ú%* õ ç��Gô ) òGç��#�(*�¦F'â«ãxIT_�LÉô ��7�� � ) òGç�ô4ú@* �«ç�ô�� ) òGç õ �#* �«ç �%" ) òMç ô{ú%* òMç � õ ) �'ç J	%* 8+7���� ) �`ç ú õ * ô«ç � õ ) �'ç �'ò>*

��D �

a PYàeI�ì¡L b ì¡Z\I�E{c a PYàeIÉL beW EGX æ ì�Z\ITE{câ�&*ò�ô#�#� â�&*ò'�(�#� â�&�ô4ú(�(� iOèÉDg â�&*ò�ô#�#� â�&*ò'�#�(� â�&�ô4ú(�(� iOèÉDg
�¦F'â«ãxIT_�L õ �«ç ú`ò �«ç õ � ��7���� J'ç � õ òGç �(� 8+7���� 8+7���� ô«çYò'�

) �'ç JMô(* ) �'ç��("�* ����7G8�� � ) �'ç Mô(* ) �'ç ú`ò>* ����7�6�8 � ����7G8�� � ) �'ç (�#*�¦F'â«ãxIT_�Lnú ú`ç �(� � 7 � 8 � î�N J'ç�ô�� òGç �(� 8+7 ��8 î�N ô«ç ú`ò
) òGç úsô(* ����7�� 8 � ) î�N
* ) òGç�ô�%* ) �'ç�ô�%* ����7G8 � � ) înN * ) �'ç %"�*�¦F'â«ãxIT_�L,� ú`ç J õ ú`ç ú(� �«ç���� ��7�� 6 òGç ú¦ô 8+7 ��8 òGç J#� òGç�� õ
) �'ç��4ú@* ) �'ç$"{ô#* ) �'ç$" �(* ����7�� � � ) �'çYò %* ����7 � � � ) �'ç�ô��(* ) �'ç õ "�*

� � �

a P[àeI�ì¡L b ì¡Z\I�E{c a P[àeI�L beW EGX æ ì�Z\ITEGcâ�&*ò'�(�#� â�&*ò'�(�#� â�&,�^ä«Q#ç â�&*òA�#�#� â�&*òA�#�#� â�&,�*ä«QTç
ä«Q#ç'â�&,� ä«QTç'iOèÉD"g iOèÉD"g ä«QTç«â�&,� ä¦QTç'iOèÉD"g iOèÉD"g

�¦F'â«ãxIT_�L�ò �`ç J%� �`ç[òA� ��7	� ��8 �`ç �#� 8
�
−4 8
�

−3�¦F'â«ãxIT_�LÉô �`ç õ " �`ç�"(" �`ç �%" �`ç�"�J �`ç ô	 �'ç��Gô

� ���

a P[àeI#ì�L b ì�Z�I�E{c a PYàeIÉL beW EGX æ ì�Z\ITEGcâ�&*ò�ô��#� â�&*ò�ô��(� â�&*ò'�#�(� â�&*ò�ô#�#� â�&*ò�ô��#� â�&*òA�#�(�
ä¦QTç«â�&*òA�#�(� ä«Q#ç`i�èÉDg ä«Q#ç`i�èÉDg ä«QTç«â�&*òA�#�#� ä¦QTç'iOèÉD"g ä¦QTç'iOèÉDg

�¦F'â«ãxIT_�L õ �`ç J õ �'çYò  �'çYòA� �`ç J õ �`ç úsô �'ç��«ò
�¦F'â«ãxIT_�Lnú �`ç �@" �'çYò õ ��7	� � � 8
�

−3
�`ç õGõ ��7���8 �

�¦F'â«ãxIT_�L,� �`ç�"�� �'ç$" J �'ç 'ò �`ç (J �`ç J%" �'ç �Mô

� ���

1800
Q�ø4àeà

2
L W E{K F�QSPYK'á¥iOèÉD"g QSITùsF'ITK`_�I�QËâ'F«L�L W PYQ b K'XYí W'b XYf'Q æ¹b H �¦F'â«ãxIT_�LÁòMçß b H �¦F'â«ãxIT_�L*ô U L W IeàeITEGK a�a � V PRQ æ EGQSLÇI#H@F`QSPYK'á b = 1800

Q�ø�àeà
2
â'F«L�E4L�E�K b K«ìQSPYáGK'PH��_TE{KML^X[ITäGI#X¡ç aÅW PRQ*àeP[á W Leâ\I�f«F'IËL b E{K P[àeZ b HÇLJEGKML^ä4EMQÇ_�F`XYEGH*_ b KsLÇHJPYâ'F«LÇP b K b KL W IËf'P¼ï£F`QÇP b KåQÇPYáGK`EGX æ¹b H �¦F'â«ãxIT_�Leô U"ë�W I#HJIeL W IÌL ë<b L W P[H�f'Q b{æ L W IËgÉNOß E{K�f �nNOß

ITQSLÇPYàeE{LÇI�QeZ'HÇI�QSITKML%KsF'àeITH b F`QeQÇP[àePYXRE{HJP¼LJP[I�Q#ç��«P[àePYXYEGHÇXYíåL b1ë�W E{L W EGQeâ\I#ITK b â`QÇI#HJäGITfP[KûL W I*N�è�ê ë I �`K`f¿QÇP[áMK'PH��_#EGKMLÇXYí æ EMQxLJI#H a�aÅV E{K`f a�a � V F`QÇP[K'á�f ë ì�QSITùsF'ITK`_�I�Q æ¹b H
b K'XYí b K'IOQÇF'â«ãxIT_�L b F«L b{æ L W HJI#IMç{ê�KsLÇI#HJITQSLÇPYK'áMX[í�L W I a�a � V PYQ�EGXYQ b QÇP[áMK'PH��_#E{KsLÇXYí�I�E{HJX[PYI#HF`QSPYK'á

b = 1200
Q�ø4àeà

2
L W E{K!F`QÇPYK'á b = 1800

Q�ø�àeà
2 æ¹b HÉL W PYQ@QSF'â«ãxIT_�LTçhî b LÇI*L W E4LK b _ b àeZ`E{HJPYQ b KËâ\I�L ë I#ITK�â�&�ô4ú(�(��Q�ø4àeà 2

E{K`f�i�è�D"g QÇITùsF'ITK`_�ITQ W EGQ�â\ITI#K�Z b QÇQÇPYâ'XYIâ\IT_#EGF`QÇI bGæ L W I<Z b¦b H �'înN E{L b = 2400
Q�ø�àeà

2
ç aÅW I�QSI�QÇZ`E{LÇPRE{XYX[íÉE�äGI#H�E{áGI�fnLJP[àeI<QÇI#HJP[I�Q

W E�äGI@EGXYQ b â\ITI#K;QSLJF`f«P[I�f�F`QÇP[K'áÌQSF'â«ãxIT_�LnE{K�f�QSI�ùsF'I#K`_#IÉL�í¦Z\I�f«I#Z\ITK`f«I#KsLOà�F'X[LJPYQÇITQJQSP b KX[I�EGf«PYK'á^L b QÇPYà^PYXRE{HO_ b K`_�XYF`QSP b K�Q#ç
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Abstract. We developed an analysis pipeline enabling population studies of HARDI data, and 
applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-
driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution 
functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. 
Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic 
influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and 
on the generalized fiber anisotropy (GFA; [1]) a measure of fiber integrity. With random-effects 
regression, we mapped regions where diffusion profiles were highly correlated with subjects’ 
intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in 
more highly anisotropic regions; the proportion of genetic versus environmental control varied 
spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain. 
 
1 Introduction 
 
Diffusion profiles of brain white-matter fibers are intermediate phenotypes that can be 
causally related to more basic biological measures, such as genetic variations across 
subjects, and to more high-order cognitive processes, such as intellectual performance. 
They serve as a valuable link in the quest to find genes that influence cognition and 
disease, as fiber integrity may be associated with genetic variation using quantitative 
genetic modeling, and with cognitive scores (such as intelligence quotient or IQ).  
    In this paper we analyzed the high angular resolution diffusion imaging (HARDI) data 
of 90 twin subjects. Studies of identical and fraternal twins – who share all or half of their 
genes respectively - are informative for understanding the genetic control of brain 
structure and function. We measured the regional complexity of diffusion orientation 
distribution functions (ODF) by applying statistics to high-dimensional HARDI data in 
appropriate Riemannian manifolds. We visualized associations between diffusion profiles 
and genetic and environmental factors, and with IQ, by fitting structural equation (SEM) 
and random-effects regression (RRM) models at each voxel. To our knowledge, these are 
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the first 3D maps of genetic influences on HARDI, and reveal that HARDI signals that are 
genetically controlled, to some extent, are also correlated with intelligence. 
 
2 Methods 
 
2.1 Subject Description and Image Acquisition 
 
HARDI data were acquired from 22 pairs of monozygotic (MZ; 20 males/24 females; age 
= 25.1±1.5 years) and 23 pairs of dizygotic twins (DZ; all same-sex pairs; 20 males/26 
females; age = 23.5±2.2 years) on a 4T Bruker Medspec MRI scanner using an optimized 
diffusion tensor sequence [2]. Imaging parameters were: 21 axial slices (5 mm thick), 
FOV = 23 cm, TR/TE 6090/91.7 ms, 0.5 mm gap, with a 128×100 acquisition matrix. 30 
images were acquired: 3 with no diffusion sensitization (i.e., T2-weighted images) and 27 
diffusion-weighted images in which the gradient directions were evenly distributed on the 
hemisphere [2]. The reconstruction matrix was 128×128, yielding a 1.8×1.8 mm2 in-plane 
resolution. Total scan time was 3.05 minutes. 
 
2.2 DTI Registration 
 
For each subject, diffusion tensor (DT) images (denoted by Dij, 1≤ i, j ≤3) were computed 
from the HARDI signals using MedINRIA software (http://www-
sop.inria.fr/asclepios/software/MedINRIA). One diagonal component image (D11) was 
manually stripped of nonbrain tissues, yielding a binary brain extraction mask (cerebellum 
included). The masked image was then registered to the ICBM53 average brain template 
with a 12-parameter linear transformation using the software FLIRT [3], and resampled to 
isotropic voxel resolution (dimension: 128×128×93 voxels, resolution: 1.7×1.7×1.7 mm3). 
The resulting transformation parameters were used to rotationally reorient the tensor at 
each voxel [4], and then affine align the tensor-valued images based on trilinear 
interpolation of the log-transformed tensors [5]. All affine-registered DT images were 
then registered to a randomly selected subject's image (a MZ subject), using an inverse-
consistent fluid registration algorithm that minimizes the symmetrized Kullback-Leibler 
divergence (sKL-divergence) of the two tensor-valued images [6]. 
 
2.3 HARDI Processing and Registration 
 
Orientation distribution functions (ODF) for water diffusion were computed voxelwise 
from the HARDI signals using the Funk-Radon Transform (FRT) [1]. We used 
Descoteaux’s method [7], which expands the HARDI signals as a spherical harmonic 
(SH) series, simplifying the FRT to a linear matrix operation on the coefficients. To 
estimate the SH coefficients, we set the order of the SH series to 4, and added a Laplacian 
smoothing regularizer to reduce the noise level, and also a Laplacian sharpening 
regularizer to help detect the peaks of the ODF, as in [7]. The estimated ODF was 
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normalized to unit mass, creating a diffusion probability density function (PDF) 
parameterized by spherical angle.  
    Images of the diffusion ODFs were registered to the target subject by applying the 
corresponding DTI mapping (both affine and fluid mappings) in the previous section. To 
keep the direction of the diffusion ODFs oriented with the direction of the underlying 
fibers, ODFs were reoriented using the Preservation of Principal Direction (PPD) method 
[4], where the principal direction of the ODF was determined by principal component 
analysis [8]. A generalized fractional anisotropy (GFA) map was constructed from the 
registered ODF ψ [1]: 
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Here ui, 1 ≤ i ≤ n, are n gradient directions, and 〈ψ〉 is the mean of the ODF with respect to 
spherical angle. 
    Spatial interpolation of HARDI ODFs is a new issue, and is required when the 
registration mapping falls on non-lattice points. We addressed this by taking the square 
root of the ODF: the Riemannian manifold for the square root of a PDF is isomorphic to a 
unit sphere and there are closed form expressions defining the geodesic distance, 
exponential and inverse exponential mappings [9]. The interpolated square-rooted ODF 
(sqrt-ODF) φ at point (x, y, z) was then constructed by finding the weighted Karcher mean 
of its 8 diagonal neighbors φi in 3D at lattice points (xi, yi, zi), which minimizes the square 
sum of the geodesic distance d: 
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Here wi is the trilinear interpolation weight defined as 

! 

wi = 1" x " xi( ) 1" y " yi( ) 1" z " zi( ) . The weighted Karcher mean φ was computed 
using a gradient descent approach as in [9]. 
 
2.4 Measuring Regional Complexity of Diffusion 
 
We defined the regional complexity of diffusion using the generalized Jensen-Shannon 
divergence (JSD) [10]. JSD measures the dissimilarity of n probability distributions, given 
by: 

! 

JSDw (p1,...,pn ) = H wipii=1
n

"( ) # wiH(pi)i=1
n

" . (3) 
 
Here

! 

pi = pij ,1 " j " k pij = 1j=1
k#{ } , and 

! 

w = wi ,1 " i " n wi = 1i=1
n#{ }. H(•) is the Shannon 

entropy, defined as 

! 

H(p) = " pj logj=1
k# pj

. JSDw(p1,…,pn) = 0 if and only if all p1,…, pn are 
equal. The complexity of diffusion at voxel x was defined as the JSD for the ODF at x and 
its contiguous 26 ODFs. We adopted an equal weight of 1/n for simplicity. 
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2.5 Statistical Analysis of Structural Models for Twins 
 
To analyze genetic and environmental correlations in twins, structural equation models 
(SEM; [11, 12]) can evaluate contributions of additive genetic (A), shared environmental 
(C) and random environmental (E) components to the covariances of the observed 
variables (y) for MZ and DZ twins, according to the following model: 
 

! 

y j = aA j + cC j + eE j , (4) 
 
where j = 1 or 2 for the first or second twin in the same pair. Since A, C, and E are 
unobservable variables, their weights θ = (a, c, e) were estimated by comparing the 
covariance matrix implied by the model, Σ(θ), and the sample covariance matrix of the 
observed variables, S, using maximum-likelihood fitting: 
 

! 

FML," = log#(") + trace(#$1(")S) $ logS $ p,  (5) 
 
where p = 2 is the number of observed variables. Under the null hypothesis that the 
population covariance matrix of the observed variables equals Σ(θ), and the n-sample data 
y are multivariate normal, TML,θ  = (n−1)FML,θ follows a χ2 distribution with p(p+1)−t 
degrees of freedom, where t is the number of free model parameters. Acceptance of the 
null hypothesis (p > 0.05) indicates a good fit for the model. 
    Parameter fitting based on the above χ2 distribution may be biased if the sample data 
are non-normal.  To free SEM from distributional assumptions, we used permutation 
methods to determine goodness of fit [13]. At each voxel, the GFA or JSD of the diffusion 
ODFs served as the observed variable, with the subject’s age regressed out. We computed 
TML,θ using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [14] to minimize FML 
in (5) in the original sample, as well as in 2000 permuted samples in which the twin pairs’ 
MZ or DZ labels were randomly shuffled. In each permutation relabeling, four null 
hypotheses with different θ were evaluated, for fitting the E:θ = (e), CE: θ = (c, e), AE: θ 
= (a, e), and ACE: θ = (a, c, e) models, and the p-values, pE, pCE, pAE, and pACE, were 
determined separately by comparing TML,θ in the true labeling to the permutation 
distribution. Since the permutation distribution of the χ2 statistic TML,θ may differ from its 
original distribution, we rescaled the sample data using the Bollen-Stine transformation 
for each null hypothesis [13]: 
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Z = YS"1/ 2
#

1/ 2($). (6) 
 
Here Y is an n×2 matrix of the observed variables for the n twin pairs. Matrix square roots 
were computed by Cholesky factorization. The rows of Z instead of Y were permuted. 
    The four permutation p-values, pE, pCE, pAE, and pACE, were compared at each voxel and 
the voxel was assigned to one of E, CE, AE, and ACE models if the p-value for that 
model was greater than the other three and also greater than 0.05. Color-coded maps 
visualized the optimal model fitted at each voxel, with E coded as blue, CE as green, AE 
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as red, and ACE as yellow. For better visualization, we defined “model clusters”, i.e. sets 
of connected (26-neighborhood) voxels where the same model fitted, for each of the four 
models, and displayed only clusters of more than 10,000 voxels. 
 
2.6 Linkage of Diffusion Anisotropy or Complexity with Cognitive Function 
 
We used random-effects regression models (RRM) [15] to measure correlations between 
the full-scale intelligence quotient (FSIQ) and GFA or JSD. Ordinary regression methods 
are inappropriate because observations are clustered within twin pairs, violating the 
assumption that observations must be statistically independent. In RRM, the lack of 
independence is addressed by adding a random variable αi, to incorporate the clustering of 
the observed variables within the ith pair, into the ordinary regression equations: 
 

! 

y i = Xi" + 1i# i + $i . (7) 
 
Here yi = the 2×1 vector of observed variables (GFA or JSD) within the ith pair, β = a 
(q+1) ×1 vector of unknown regression coefficients, Xi = a known 2× (q+1) covariate 
matrix, 1i = a 2×1 vector of ones, and εi represents the 2×1 error vector. q was set to 1 for 
subjects’ FSIQ score as the covariate. We assumed that αi and εi, and thus yi, were 
normally distributed, with αi ∼ N(0, σα

2), εi ∼ N(0, σ2I2), and yi ∼ N(Xiβ, σα
21i1i

T
+σ2I2), 

where Im represents an m×m identity matrix. Estimation of these unknown parameters (β, 
σα

2, σ2) was based on maximum marginal likelihood (MML) methods detailed in [15]. 
    We applied RRM to each voxel and tested the significance of the correlations by 
comparing the full (β = [β0, βIQ]T; β0 is a constant) and the reduced (β = β0) models, which 
gave a significance P-value based on Wilks' lambda distribution [16]: Λ = 

! 

" full "reduced  

∼ Λ(p, νH, νE), where Σ is the estimated covariance matrix of yi. p = 2 is the number of 
subjects in each pair, νH = 1 is the difference in the number of parameters between full 
and reduced models, and νE = n−q−1, where n is the number of twin pairs. Overall 
significance was assessed using the positive false discovery rate (pFDR) method [17]. A 
pFDR value < 0.05 was considered to be significant. 
 
3 Results  
 
Fig. 1 displays the spatial distribution of the average JSD (averaged across all 90 
subjects). The average JSD increases with GFA, suggesting that JSD is sensitive to the 
complexity of ODFs in major white matter fibers with high diffusion anisotropy, 
especially in regions where anisotropy values vary over a small spatial neighborhood.  
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Fig. 1. (a) The color-coded map shows that the JSD, a measure of fiber complexity, is greater in 
regions of high diffusion anisotropy (e.g., the corpus callosum), especially at interfaces between 
high and low anisotropy. This trend is clear when plotting JSD against the GFA (b). This property 
of JSD is useful because in DTI/HARDI studies, diffusion properties are more informative in highly 
anisotropic regions, where fiber structures are highly resolved. 
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Fig. 2. The color-coded map shows which model fits best for the covariance matrices of (a) GFA, a 
measure of fiber integrity, and (b) JSD for fiber complexity, at each voxel. Voxels where the E 
model fits best are coded as blue, CE as green, and AE as red. For GFA and JSD, major fiber 
structures, such as the corpus callosum, cingulum, and internal capsules, are optimally fitted using 
the AE and the CE models. Model fitting is visibly asymmetrical in the cingulum fibers: the AE 
model fits in the right cingulum (yellow circles in (a) and (b)), while the CE model fits better in the 
left cingulum. 
 

 
 
Fig. 3.  Correlations of GFA with the FSIQ score based on random-effects regression, visualized as 
maps of (a) regression coefficients (βIQ) and (b) P-values. Higher diffusion anisotropy is associated 
with higher IQ in the left anterior region of the corona radiata, cingulum, and internal capsule.  
    
    Fig. 2 shows the covariance structure fitting for GFA and JSD maps in the 90 twins. 
When the AE model fits best, variation in GFA or JSD values is more attributable to 
genetic influences, i.e., the covariance structures are best accounted for by additive 
genetic (added effect of genes) and random environmental effects (random experimental 
error is also lumped into the E term). When the CE model fits best, the variation in the 
observed measures is more due to environmental influences shared by twins reared in the 
same family [11]. The full ACE model, where all terms fit at once, could not be fitted for 
either GFA or JSD. For both GFA and JSD measures, more voxels had AE as the best-
fitting model than CE or any other model, indicating that diffusion properties are more 
genetically influenced than environmentally influenced, in most brain regions.  
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    Fig. 3 shows that GFA is positively correlated with FSIQ scores in the corona radiata, 
corpus callosum and internal capsule (pFDR = 0.04). The correlations of JSD with FSIQ 
scores were not significant (pFDR = 0.21; figures not shown). Fiber measures were highly 
genetically controlled, especially in regions of high diffusion anisotropy. We also found 
that higher diffusion anisotropy is correlated with better intellectual performance in 
specific WM regions. Based on these measures and algorithms, future studies may be able 
to detect individual genes contributing to fiber architecture, and relate white matter 
integrity to cognition. 
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Abstract. Diffusion tensor imaging (DTI) is widely used to character-
ize tissue microarchitecture and brain connectivity. However, traditional
tensor techniques cannot represent multiple, independent intra-voxel ori-
entations, so DTI suffers serious limitations in regions of crossing fibers.
We present a new application of compressed sensing, Crossing Fiber An-
gular Resolution of Intra-voxel structure (CFARI), to resolve multiple
tissue orientations. CFARI identifies a parsimonious tissue model on a
strictly voxelwise basis using traditional DTI data. Reliable estimates of
multiple intra-voxel orientations are demonstrated in simulations, and
intra-voxel fiber orientations consistent with crossing fiber anatomy are
revealed with typical in vivo DTI data.

1 Introduction

Diffusion weighted MRI provides unique, non-invasive contrasts that are sensi-
tive to in vivo cytoarchitecture [1]. One widespread application, diffusion tensor
imaging (DTI), is a clinically practical approach enabling the study of three-
dimensional tissue structure through a tensor model [2]. With DTI, the tensor
eigenstructure of each voxel provides local measures of diffusivity, anisotropy, and
tissue orientation, which can establish global connectivity through fiber tracking
[3]. Tensors represent only one independent, dominant direction per voxel, so
DTI suffers from serious limitations in regions where distinct fiber populations
with differing orientations occupy the same voxel. This is known as the “cross-
ing fiber problem,” and in these regions the dominant tensor orientation may be
ambiguous or misleading [4]. Substantial effort has been devoted to overcoming
the crossing fiber problem through resolution of intra-voxel structure.

Acquisition of many diffusion weighted directions and use of large diffusion
sensitizations enable the study of the diffusion process in more detail than is pos-
sible with typical DTI protocols. Multiple intra-voxel tissue orientations have
been visualized with three-dimensional, non-parametric diffusion propagators
[5] and their two-dimensional projections (e.g., [6, 7]). Parametric modeling ap-
proaches based on deconvolution have also been suggested [8, 9]. Applications of
these methods to clinical research is severely hindered by their requirements for
elaborate and time-consuming data acquisition protocols.
? This project was supported by NIH/NINDS 1R01NS056307.
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There has been increasing interest in identifying multiple intra-voxel orienta-
tions from data that are available with typical clinical DTI sequences. Kim et al.
used independent component analysis to fit a prolate tensor mixture [10], while
Peled et al. employed cylindrically constrained two-tensor models to identify two
independent directions within a voxel [11]. These approaches are highly sensi-
tive to noise, and Peled et al. suggested limiting application to areas of known
fiber crossing to avoid erroneous detections. Recently, Ramirez-Manzanares et al.
proposed an approach similar to deconvolution in which diffusion basis functions
represent tissue diffusivities [12]. A major obstacle confronting these approaches
is the complexity of representing heterogeneous intra-voxel structure. Using re-
stricted two-component models [10, 11] greatly reduces variability, but risks over-
or under-fitting. Alternatively, substantial spatial regularization and probability
models have been suggested to stabilize a more general approach [12].

To address the crossing fiber problem, we suggest that one is interested in a
parsimonious (and reproducible) explanation of the observed signals in terms of
orientated intra-voxel components. Although initially developed as an alterna-
tive to Nyquist sampling, compressed sensing (CS) offers a simple and elegant
solution to precisely this problem (cf. [13]). In CS, data are represented in two
uncorrelated basis sets, one during sensing and another during reconstruction.
When the signals under consideration can be sparsely represented in the recon-
struction basis, there are efficient and robust algorithms to recover the infor-
mation from noisy observations taken with the sensing basis. In practice, it is
efficient to use a random sensing basis for CS, but randomization is not required.

In this manuscript, we demonstrate a new method of resolving crossing fibers
through CS which we call Crossing Fiber Angular Resolution of Intra-voxel struc-
ture (CFARI). Our method is presented in the spirit of prior deconvolution meth-
ods, in which one assumes that a only small number of tissues architectures are
relevant for any given voxel. Prior approaches have restricted the model order or
employed extensive spatial regularization. With CFARI, we explicitly identify a
parsimonious tissue model on a voxelwise basis and achieve reliable estimates of
multiple intra-voxel orientations on both simulated and in vivo DTI data.

2 Methods

CFARI is based on the classical non-exchanging, multi-compartment tissue model
[2]. Each voxel consists of a finite mixture of discrete and independent compart-
ments, and the diffusivity within each compartment is defined by the Stejskal-
Tanner tensor formulation. The observed signal, Sk, along the kth diffusion
weighting direction (gk) is determined by the exponential mixture model,

Sk = S0

N∑
i=1

fie
−bgT

k Digk + η . (1)

S0 is a noise-free reference signal in the absence of diffusion weighting, N is
the number of possible compartments (tensors) within each voxel, fi is the (un-
known) mixture component for each compartment, b is the diffusion sensitization
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parameter, Di is the tensor associated with the ith compartment, and η is a noise
term that follows a Rician distribution. It is assumed that the reconstruction ba-
sis {Di}–i.e., the set of possible diffusion tensors that may comprise a voxel–is
fixed and known. Given this framework, the vector, y, of K observed attenu-
ations, where each attenuation is defined as yk = Sk/S0, can be rewritten in
matrix form as,

yK×1 = SK×NfN×1 + η̃K×1, (2)

where the matrix S comprises a set of exponential terms derived from Eq. 1 and
η̃ is a scaled noise term. At an SNR of greater than 5:1, Rician noise is well
approximated by a Gaussian distribution [14], so a least squares estimator is
appropriate. With Eq. 2, we may immediately write the CS criteria for selecting
the mixture components,

f = argmin
f
||Sf − y||L2 + β||f ||L1, (3)

where β is a strictly positive sparsity regularization parameter. Low β’s lead to
least squares fitting of the observed signal with the specified basis, while high β’s
force greater emphasis on a sparse model. There are efficient numerical methods
to address optimization problems of the form of Eq. 2; in this work, we use the
interior point method of Koh et al.[15].

Since CFARI is designed to work with existing, traditional DTI data, the
sensing basis—i.e., the choices of b-values and diffusion encoding directions—is
considered to be determined by external requirements (such as reliability of clin-
ical contrasts). There are two remaining design choices that must be addressed:
the reconstruction basis and the sparsity regularization parameter. Here, we
choose a simple mixture model: the Di’s are chosen to be cylindrically sym-
metric, of equal diffusivities, and regularly distributed on a sphere. The lateral
columns of the spinal cord provide a good model of homogeneous white matter
tracts; accordingly, we model all Di’s as cylindrically symmetric tensors with
FA=0.71 and λ1 = 2×10−3 mm2/s. To provide regularly spaced orientations on
the sphere, we choose a fifth order tessellation of a dodecahedron (having 241
symmetric orientations) as the orientations, yielding N = 241 distinct possible
mixture components. The regularization parameter β was selected empirically
through simulations to produce a trade off between minimal error and robustness
against model mismatch.

Data were motion corrected with FSL FLIRT (FMRIB, Oxford, UK). CFARI
was performed using custom Matlab software and the l1 ls toolbox [15]. Fiber
tracking was performed with custom software, INtravoxel Fiber Assignment by
Continuous Assignment (INFACT), which is loosely based on FACT [3] and
visualized with DTIStudio (Johns Hopkins University, Baltimore, MD). Briefly,
INFACT initializes fiber tracking at every voxel with the dominant direction with
the highest weighting fi. Tracking proceeded in both directions by continuous
piecewise linear assignment. At each step, the orientation was selected as the
dominant direction with the nearest neighbor voxel that minimized the following
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importance weighting, wi = fi|vi · vlast|γ , where vi is the principle eigenvector of
tensor Di, vlast is the unit vector representing the last step in tracking, and γ is a
regularization parameter that emphasizes continuity. Ad hoc experiments showed
that γ = 4 was a reasonable choice. Investigations into tracking in complex, in
vivo 3-D environments and probabilistic fiber tracking strategies are ongoing.

3 Experiments

3.1 Simulations

Monte Carlo simulations of a typical clinical DTI sequence were performed using
two repetitions of 30 diffusion weighting directions [16], five averaged unweighted
reference acquisitions, and Rician distributed noise. The SNR of the simulations
was defined as the ratio of the noise standard deviation on the complex coeffi-
cients and the (noise-free) unweighted signal intensity.

Simulations explored the reliability of orientation estimation from a bi-tensor
model to explore the joint influence of β and model mismatch at an SNR of
25:1. For each of 50 linearly spaced axial diffusivities from 0.5 × 10−3 (FA=0)
to 3.0 × 10−3 mm2/s (FA=0.81), 50 logarithmic steps in β were explored from
10−2 to 102. For each pair, the expected error was assessed with 50 Monte
Carlo iterations where two, distinct, random tensors were selected and the er-
ror was evaluated using CFARI with a reconstruction basis consisting of 241
tensors. The process was repeated for reconstruction bases with FAs of 0.55
(λ1 = 1.3×10−3), 0.71 (λ1 = 2.0×10−3), and 0.81 (λ1 = 3.0×10−3). Error was
assessed as the mean angular difference between each estimated orientation and
the closest orientation in the truth model, weighted by the estimated fraction:
E =

∑
i fi minj∈model 6 (vi,vj).

The following three simulations were performed with β = 5 and the truth
model and the reconstruction basis set with FA=0.71. (1) To investigate the
choice of angular orientations, the expected error was compared when 136 orien-
tations (fourth order tessellated dodecahedron) and 376 orientations (sixth order
tessellated dodecahedron) were used as the reconstruction basis at an SNR of
15:1. (2) To explore the SNR dependence of CFARI, 100 Monte Carlo iterations
were performed at 19 linearly spaced SNR levels between 5:1 and 50:1 with a
mixture of 1, 2, or 3 random tensors. (3) The angular resolution of CFARI was
explored at an SNR of 15:1 with 1,000 Monte Carlo random combinations of
two tensors. The estimated error was mapped against the angular separation of
the tensors and smoothed with a Parzen kernel (Gaussian, σ = 10◦). The maxi-
mum attenuation of the basis set was matched to the average maximum image
attenuation in the corpus callosum by setting λ1 = 1.5× 10−3 mm2/s.

Intra-voxel crossing fibers were studied with a simulated phantom in which
two fiber tracts of FA=0.71 run from opposite corners (SNR=15:1 and β = 5).
Each tract’s partial fraction falls off with a Gaussian curve (FWHM=8 voxels).
The two tracts were augmented with an isotropic component (λ1 = λ2 = λ3 =
3× 10−3 mm2/s) such that the total fraction of each voxel summed to 1.
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Results. β influences the error rate, but error rates were stable over two
orders of magnitude (Fig. 1A-C). To avoid possible null solutions, we selected
and recommend using β = 1 to 15. Once several hundred tensors were used
to span the space of orientations, little influence on the specific choice of basis
set was observed. Simulated errors were not significantly different (two-tailed
t-test, p≥0.5) when using 136 orientations (11.82◦ ± 0.75) and 376 orientations
(11.62◦ ± 0.69). Errors increased at low SNR (Fig. 1D), and showed some angu-
lar variability (Fig. 1E). In the crossing fibers simulation, the CFARI intra-voxel
structure visually corresponded to truth model, and fiber tracking was success-
ful passed through the intersection with CFARI while resulting in non-sensible
results for traditional FACT tracking (Fig. 2).

3.2 In Vivo Study

For an empirical comparison, two DTI studies on a 3T system (Intera, Philips
Medical Systems, The Netherlands) of a healthy 33 year old female were selected
from ongoing clinical research protocol. Written informed consent was obtained
prior to investigation. Each study used a multi-slice, spin echo, single-shot EPI
sequence (SENSE = 2.0) to acquire 60 slices (parallel to AC-PC) with 2.2 mm
nominal resolution, reconstructed in plane to 0.9375 mm, covering the brain,
brainstem, and cerebellum. Diffusion weighting was applied with the Jones30 (b
= 700 s/mm2, TR/TE = 6768/69 ms). Five unweighted reference images were
acquired and averaged in k-space.

CFARI identified intra-voxel orientations that are visually consistent with the
well-known locations and orientations of major fiber crossings (Fig. 3). Fibers
running lateral through the corpus callosum and superior through the internal
capsule are visible (Fig. 4). This region typically manifests as an “FA black hole”
on DTI and prevents tracking of corpus callosal fibers to the lateral hemispheres.
CFARI identifies sufficient crossing information such that fiber tracts may pass
from the corpus callosum to the lateral hemispheres, which is physiologically
indicated.

4 Discussion

CFARI provides a robust framework for identifying intra-voxel structure with
traditional DTI and show great promise in helping to resolve the crossing fiber
problem. Although similar in spirit to existing deconvolution approaches, CFARI
uses sparsity to stabilize estimation with limited data (rather than spatial con-
sistency or limited model order). The estimated intra-voxel structure is driven
only by information from individual voxels, so we can exploit incorporate spatial
regularization through fiber tracking “momentum.”

When the truth model is of higher FA (“more sharp”) than the reconstruc-
tion basis, CFARI is robust to model mismatch (Fig. 1A-C). Lowering the FA
of the basis set to improve robustness increases overall error. When the truth
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Fig. 1. First Row: Increasing β improved the accuracy, yet null solutions are found with
high β. Higher FA basis sets leads to more reliable orientation estimates when the truth
model matches the basis (compare A,B,C: 12◦, 8◦, and 6◦ error, respectively). When
the truth model had an FA less than the basis set, error rapidly increased (≥ 20◦).
However, the error did not substantially increase when the truth model was of higher
FA than the basis set. Second Row: CFARI errors improve with increasing SNR (D),
but do not rapidly converge for multi-tensor mixtures. The error are greatest for fibers
crossing near 55◦ (E).

A. Tensor Fit B. Enlarged Crossing Region

E. CFARI Directions F. Enlarged Crossing Region

C. Tensor Fiber Tracking 

G. CFARI Fiber Tracking

Fig. 2. Simulated crossing fibers with tensors and CFARI at an SNR of 15:1. For each
voxel, the five CFARI directions with the highest partial fraction are shown weighted
by partial fraction and FA.
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A. Tensor Colormap B. Tensor Intersection of CC and IC 

D. CFARI Overlaid on FA E. CFARI Intersection of CC and IC 

C. Tensor Enlargement

F CFARI Enlargement

Fig. 3. CFARI identified consistent intra-voxel structure in the crossing fibers between
the corpus callosum (CC, lower left, red) and internal capsule (IC, blue, lower right).
Conventional tensor modeling does not preserve the connectivity of the corpus callosum
to the lateral hemispheres.

Fig. 4. CFARI enables tracking (B) of fibers from the corpus callosum (red) to the
lateral hemispheres through the cortiospinal tract (blue). Traditional DTI (A) does
not reliably track through this crossing region.

model is precisely sparse, very high regularization parameters dramatically re-
duce erroneously detected orientations, however, this substantially reduces the
power of CFARI to detect multiple orientations. Thus, we recommend a high,
yet conservative value of β. Metrics to classify missed detections are warranted
and under study. CFARI identifies single tensors at low SNR with very little
error, but several degrees of error persist for multi-tensor mixtures even at high
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SNR (Fig 1D). This is expected because we use a constant β, but CS fitting does
not converge to a least squares estimate at high SNR when β is constant. The
proposed approach works well with clinical data, but it would be appropriate to
adjust β based on the the data to further generalize CFARI for a wider range
of SNR. In simulation, CFARI enabled tracking through a region of substantial
tract overlap and with partial volume effects with from isotropic contamination
(Fig. 2). In vivo, CFARI identified intra-voxel structures which visually agree
with the expected anatomy. Neither are possible with traditional DTI analysis.
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Abstract. This preliminary study explores novel methods using diffu-
sion weighted(DW) MR images as a biomarker to detect early GBM
brain tumor response to treatment. Apparent diffusion coefficient(ADC)
map, calculated from DW-MR images, can provide unique information
of tumor response at cellular level. In this study, we investigate whether
changes in ADC histograms between two scans, taken 5-7 weeks apart
before and after treatment, could predict treatment effectiveness before
lesion size changes are observed on later scans. The contribution of our
work is to exploit quantitative pattern classification techniques for the
prediction. For both pre- and post-treatment scans, we first compute
the histogram from the ADC values covered within the tumor. Then
we apply supervised learning on features extracted from the histogram
for classification. We evaluated our approach with pool data of 86 pa-
tients with GBM under chemotherapy while 40 responded and 46 did
not respond based on tumor size reduction. We compared Fisher’s lin-
ear discriminant analysis, AdaBoost and random forests classifier using
leave one out cross validation(LOOCV), resulting in the best accuracy
of 67.44%.

1 Introduction

Glioblastoma multiforme(GBM) is the most common and aggressive type of
primary brain tumor. There are many clinical trials underway to assess the
ability of new drugs and strategies to treat glioblastoma and extend the duration
of patient survival. The traditional way of assessing treatment response is to
measure the size of the tumors after the treatment. However, efficacy can only
be evaluated weeks or months after treatment.

Diffusion weighted MRI has tremendous potential for monitoring early changes
in tumor cellularity that are thought to be reflective of treatment response [1].
It provides image contrast determined by microscopic motion of water molecules
in the tissue. The mobility of water molecules is highly related to cell density
within tumors.

183



Apparent diffusion coefficient(ADC) is the parameter to measure water molecule
motions. In general, water movement inside cells is more restricted than outside.
Thus, increasing cell density tends to lower ADC, whereas increased edema(more
interstitial water) results in higher ADC values. Therefore, ADC values in treated
brain tumors could not only theoretically increase due to cell kill(and thus re-
duced cell density), but also decrease due to inhibition of edema.

A number of related studies have investigated methods to overcome the
overall complicated situation and separate the competing effects. In [2], they
observe the shift of ADC histogram and conclude that the mean ADC value
increases when tumor cells are killed. In [3], they calculate pixelwise the ADC
value changes along with time and display it as a functional diffusion map for
correlation with clinical response.

In this paper, we investigate statistical techniques and pattern classification
methods to predict tumor responses using ADC map. We extract statistical fea-
tures from the histogram of tumor ADC values, compare the feature differences
between pre- and post-treatment scans, and compare three machine learning-
based classification methods. By doing this, we explore the effectiveness of the
machine learning approaches in this clinical context.

This paper is organized as follows. The next section describes the image
analysis of the ADC map, histogram features and the three classifiers that we
compared. In the following result section, we report the results of our compara-
tive study for the different classifiers. The final section offers our discussion on
the experimental results as well as our future work.

2 Method

2.1 Image Protocols and Image Analysis

ADC map is calculated from diffusion weighted(DW) images. DW images can
be acquired with echo-planar pulse sequences plus DW gradients. The signal
intensity of DW images is equal to the signal intensity on a T2-weighted(T2w)
image decreased by an amount dependent on the rate of diffusion. [4]

SI = SI0 ∗ e−b∗ADC (1)

with b being the diffusion sensitivity factor, ADC being the apparent diffusion
coefficient, and SI0 being the signal intensity when b=0 sec/mm2. With b known,
ADC maps are calculated from DW images by equation 1.

Three steps are as follows to get the tumor contour on ADC maps. First of all,
radiologists contoured tumors on post-contrast T1-weighted(T1w) images using
a semi-automated segmentation tool [5]. Next, tumor contours were mapped
from T1w to ADC using rigid body transformation. The mapping was performed
using DICOM header information, i.e. image position and image orientation, to
compute transformation parameters. Finally, radiologists visually evaluated the
contours on ADC images and manually corrected the tumor contours on ADC.
An example of the mapping from T1w to ADC is shown in figure 1.
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Fig. 1. Examples of the tumor region mapping from post-contrast T1w to ADC map:
on the left is the post contrast T1w image with manually contoured tumor; on the
right is the ADC map with mapped tumor.

Afterwards, the histogram of the ADC value within the tumor region was
obtained. Figure 2 shows two examples of tumor ADC histograms for both pre-
and post-treatment. The upper histogram shows the ADC value distribution
before the drug treatment, while the lower one shows the ADC value distribution
after the drug treatment. On the left is an example of non-responding tumors,
while on the right is an example of responding tumors.

2.2 Feature Extraction and Classification

The difference of the features extracted from pre- and post-treatment histograms
are used as the input to a tumor response classifier.

According to the clinical studies [2, 6, 1, 7, 3], the ADC value should change
after treatment. In our data set, we observe the histograms for both responding
and non-responding tumors. We find out that histograms change not only in
mean, but also in shapes. Therefore, we bring in the idea of finding the patterns
in ADC histogram changes by use of statistical classification methods.

The features we get from histograms are statistical features of the distribu-
tion of the ADC values within the tumor: mean, standard deviation, skewness,
kurtosis, median, IQR(interquartile range), 25% percentile, and 75% percentile.

We obtain 8-dimensional feature vectors for both pre- and post-treatment
tumor histograms. Afterwards, we calculate the difference between pre- and post-
treatment tumor histogram by calculating both the absolute change and the
change rate of the features. Therefore, we have 16-dimensional vector as the
difference feature vector. Besides, we apply the earth mover’s distance(EMD) [8,
9] as a metric to directly evaluate the distance between the histograms. The
calculated EMD value is appended as the 17th element in the difference feature
vector.
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(a) (b)

Fig. 2. Examples of histograms from two tumors and two time points of pre-(top row)
and post-treatment(bottom row). (a):example of non-responding tumors. (b):example
of responding tumors.

The 17-dimensional difference feature vector will be the input to the classifier.
For classification, we investigate three classification techniques with different
characteristics: fisher linear discriminant analysis, AdaBoost and random forests
classifier. We will discuss the reasons why we choose these three classifiers in the
results section.

Fisher’s linear discriminant analysis(FLDA)[10] is a classification method
that projects high-dimensional data onto a line, and perform classification in
one dimensional space. The criterion for classification is to maximize the distance
between the projected mean between classes and minimize the projected variance
of each class. For our two-class case, the cost function and the solution are:

max J(w) =
|m1 −m2|2

s2
1 + s2

2

with solution : w = S−1
w (m2 −m1) (2)

where Sw stands for the within-class scatter matrix, m represents a mean, s2

represents a variance, and the subscripts denote the two classes. As for classifica-
tion criteria, assuming we have the projected class means well separated, we can
choose the average of the two projected means as a threshold for classification.

y(x) = wT x− 0.5 ∗ wT (m1 + m2) (3)

The AdaBoost algorithm, introduced by Freund and Schapire [11], is a boosting
algorithm that can combine simple and moderately accurate classifiers into a
final strong classifier to improve the final accuracy. It is iterative algorithm. In
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each iteration, a weak classifier is selected to minimize the average training error.
Afterwards, the weights on training samples are redistributed in such a way that
the weight of accurately classified samples will be reduced while the weight of ill
classified samples is raised. Therefore, AdaBoost “focuses in” on the informative
or “difficult” ones [10]. The final classifier aggregates the selected weak classifier
from each iteration, and the vote for each weak classifier is a function of its
accuracy.

Random forests(RF) [12] is a classifier that combines many decision trees.
Each tree depends on values of a random vector sampled independently and
with equal distribution. Each tree casts a unit vote for the most popular case
at input, and random forests outputs the class that is the mode of the classes
output by individual trees. Breiman [13] suggests the generalization error for
forests converges to a limit as the number of trees in the forest becomes large.
The error of a forest of tree classifiers depends on the strength of the individual
trees in the forest and the correlation between them. Using a random selection of
features to split each node yields error rates that compare favorably to Adaboost
but are more robust with respect to noise.

3 Results

3.1 Experimental Design

We included a total of 86 patients with GBM in our preliminary study. Tumors
were diagnosed by board-certified radiologists as responding or non-responding
to drugs based on the size change according to later scans. All the ones that
present over 50% increase in volume is defined as non-responders, whereas the
rest are defined as responders. The baseline scans and follow-up scans were 5-7
weeks apart. The DWI was performed in three or six orthogonal directions and
diffusion weighting is b=1000 sec/mm2. The axial plane resolution for DWI has
0.9375mm by 0.9375mm or 1.797mm by 1.797mm pixel size. The slice thickness
for DWI is 3,5, or 7mm.

The statistical features were extracted from histograms of ADC values within
the tumor region for both pre- and post-treatment scans. The difference between
pre- and post-treatment features was calculated as the input to the classifiers.
FLDA, AdaBoost, and RF tree classifiers were applied to the data, and results
from the three classifiers were compared. We implemented FLDA in Matlab,
while we used AdaBoost and RF classifier implemented in the open source data
mining software Weka [14]. We validated the performance by LOOCV method.

3.2 Classification Performance

FLDA was evaluated with all permutations of 2-feature pairs for our 17-dimensional
feature space. Among all the 136 combinations of feature pairs, the best classi-
fier was with EMD and 75 percentile difference, resulting in a correctly classified
rate of 67.44%. Figure 3 shows the scatter plot of the data samples with the two
features.

187



Fig. 3. The feature pair with the highest accuracy: ∗ denotes responding samples, while
o denotes non-responding samples.

Table 1. Comparison between AdaBoost and random forests classifier

Classifier Sensitivity Specificity Accuracy

AdaBoost 67.5% 63% 65.12%
Random forests 67.5% 63% 65.12%

Visual inspection on Figure 3 promptly reveals that our data is not linearly
separable even in the feature space with the best classification rate. This indi-
cates that non-linear classifiers may be more effective in solving our problem. For
this reason, we also considered AdaBoost and RF classifiers. Our LOOCV exper-
iments with the Weka implementation of AdaBoost resulted in 65.12% correct
classification rate with 10 learning iterations in average. Not only the resulting
accuracy is worse than the one for FLDA, but AdaBoost also selected the me-
dian difference, kurtosis ratio, 25 percentile difference, STD difference, skewness
ratio, and kurtosis difference, which are different from the ones selected by the
FLDA.

Next we evaluated the RF classifier as another non-linear classification ap-
proach. The report [15] suggests that RF classifier performs quite well, even in
the presence of noise in training data, while AdaBoost is susceptible to the noise
in training data in comparison with the bagging algorithm [16]. The results of
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Fig. 4. The ROC curve drawn from Weka on leave-one-out cross validation, with green
line for random forests classifier and red line for AdaBoost classifier.

our experiment with the Weka implementation show that the final random forest
is composed of 10 trees, each of which is constructed considering five random
features. The LOOCV accuracy of the resulting system was 65.12%, the same
as AdaBoost classifier.

In table 1, the sensitivity, specificity, and accuracy drawn from Weka re-
port for AdaBoost and RF classifier are compared. With the current dataset,
AdaBoost and RF classifier report the same results, yet worse than FLDA.

4 Discussion

In our preliminary study, we exploited statistical pattern classification approaches
towards early detection of treatment response using an ADC map.

Cell density and edema may be reflected in ADC values before size changes
are apparent on standard MRI sequences. Therefore ADC holds promise as a
biomarker, both in determining which tumors are more likely to respond to
treatment, and to determine which tumors are actually responding. This will
have major implications for clinical trials.

With our current dataset, we obtain comparable performance between all
three classifiers tested. More future work will be to use mixture models to quan-
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titize the tumor part and edema part since they show different patterns in his-
togram changes.
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Abstract. Diffusion tensor (DT) images provide information regarding
the micro-architecture of the underlying soft tissue. This directional in-
formation may be used to track white matter pathways as well as to
quantify connectivity patterns in the brain. Our objective is to build a
model of expected neuroanatomical fiber connections from a set of con-
trol data and to use this model to to detect in vivo evidence of disrup-
tion in the human language network. This connectivity model provides
the basis for a new DT-based measure, fiber-directed diffusion, which is
related to the Gaussian model of directional diffusion probability and
enables assessment of disconnection in cortical networks. We apply this
technique to study a specific form of fronto-temporal dementia (FTD),
semantic dementia (SD), which compromises semantic memory. Models
of language network connections are created in an atlas and warped to
a subject specific template to examine connectivity properties along the
language pathways. Differences between an elderly control population
and an SD population are detected in the left arcuate fasciculus and left
inferior longitudinal fasciculus, suggesting that SD neurodegeneration
induces loss of both connectivity and computational structure.

1 Introduction

Neurodegenerative disease affects millions of individuals each year while treat-
ment and understanding of these diseases, and their relationship to behavior,
remains generally elusive [1]. Post-Mort-em studies have revealed protein aggre-
gations that are focal in nature [2, 3], but increasing evidence suggests potential
involvement of entire systems of the brain [4, 5]. A unique window onto the
disease process can be gained through DT magnetic resonance imaging, which
quantifies subtle in vivo changes in brain connectivity [6, 7] which can be cor-
related with changes in cognition [8] or other clinical measurements [9, 10]. In
addition, white matter focused diffusion tensor MRI show promise for increasing
clinical diagnosis and detection of dementia phenotypes [8, 5].
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FTD is an early-onset neurodegenerative condition with an average age of
onset in the sixth decade of life [11–13]. The condition is almost as common
as AD in individuals less than 65 years of age [12, 14, 15] with survival typically
eight years from onset [11, 15]. The disease is due to a disorder of tau metabolism
or the accumulation of a ubiquinated protein known as TDP-43 [16]. The ma-
jor clinical features of FTD include primary progressive aphasia (PPA) or a
disorder of social comportment and personality together with limited execu-
tive resources [17–19], although there is substantial empirical evidence that all
patients with FTD have impairments in language [20]. Recent studies have be-
gun to demonstrate longitudinal decline on language measures in clinical [21, 20]
and pathologically-defined [22] populations. Semantic dementia (SD) is a form
of PPA characterized by fluent and circumlocutory spontaneous speech, which
may be empty in content, and is associated over time with difficulty understand-
ing single words and objects. Recent evidence suggests the primary involvement
of the left hemisphere language network in the evolution of SD [4, 20]. In SD,
the anterior temporal lobe is indicated and associated with decline in semantic
fluency [23]

The use of DTI in tract based studies is a topic that has received much
attention recently [24–27] and the TBSS method [28] has proven to be particu-
larly useful in whole-brain analysis of FA. Specifically, performing tractography
in tensor atlases has been shown to be a reliable method for extracting fiber
tracts of interest [29]. Here the focus is limited to the the language network and
we incorporate a metric that is sensitive to variation in tensor shape as well as
orientation in relation to a model of expected fiber direction. The key aspect of
this contribution is a new tool to quantify prior-based connective likelihood that
increases power for detecting population differences and aids in direct interpre-
tation of DT data in terms of a meaningful neuroanatomical context.

2 Methods

Our current approach extends previous DT based studies by building an explicit
model of the language network white matter pathways within a multi-variate
atlas in order to identify particular local regions that may be associated with
reduced connectivity. Image normalization is used to transform the model path-
ways into the space of a subject-specific atlas created from an elderly control
population. These expected fiber pathways are used to examine the underlying
tensor values in the control population as well as in SD patients.

2.1 Model fiber pathways in the language network

In order to identify fiber tracts of interest, a multi-variate atlas consisting of both
T1 and DT data is used. Regions of interest are identified in the T1 component
while the DT component is used for fiber tracking. The Camino Toolkit [30] is
used to perform whole-brain deterministic tractography where all voxels with an
fractional anisotropy (FA) greater than 0.15 are used as seed points. A constant
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step size of 0.3 mm is used along with linear interpolation of the principal di-
rection of diffusion vector field. Fibers are terminated when they enter a voxel
with FA less than 0.15 or when local curvature of a fiber exceeds 45 degrees. In
a manner similar to previous work [31, 29], ROI’s are carefully identified in order
to extract the fibers associated with the fiber bundles of interest: arcuate fasci-
culus (AF), inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF).
The extracted fiber bundles are illustrated in figure 1.

Fig. 1. Language network models are created using deterministic tracking in a multi-
variate atlas. These model fiber bundles are transformed to a population specific atlas.
Axial and sagittal views are presented with the arcuate fasciculus (orange), uncinate
fasciculus (green) and inferior longitudinal fasciculus (blue).

A subject-specific atlas is created from the DT images for an elderly control
population (N=11) and SD patients (N=7) [32]. Images of FA are calculated
from the DT component of the multi-variate atlas and from the elderly control
population. Symmetric normalization (SyN) [33] is used on the FA images to
determine a mapping between the templates. This mapping is then used to
transform the model fiber bundles into the elderly control template.

2.2 Examining connectivity along fibers

In order to identify potential alterations to tissue micro-architecture, we require a
metric that uses the fiber direction information provided by the model pathways
to interrogate the underlying tensor data in each individual. One such measure
is the fiber directed diffusion (FDD) [34] and here we use a normalized version
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of this metric (nFDD). FDD is the diffusion coefficient for diffusion along v, the
tangent to a fiber passing through diffusion tensor D.

FDD = vT Dv (1)

Here, for additional insight, we show how this metric relates to the eigenvalues
(λ1, λ2, λ3) and eigenvectors (e1, e2, e3) of D. By diagonalizing D, we obtain the
matrices R and Λ where R contains the eigenvectors of D, and Λ is a diagonal
matrix of the eigenvalues. This provides us with D = RT ΛR which leads to:

FDD = vT RT ΛRv (2)

FDD = vT [e1, e2, e3]Λ
[
eT
1 , eT

2 , eT
3

]T
v (3)

FDD = [v · e1, v · e2, v · e3]Λ [v · e1, v · e2, v · e3]
T (4)

FDD = λ1 (v · e1)
2 + λ2 (v · e2)

2 + λ3 (v · e3)
2 (5)

Our primary interest lies in examining the proportion of diffusion that occurs
in a direction coincident with the direction the fiber passing through the tensor
so we normalize by the trace of D:

nFDD =
vT Dv

tr(D)
=

λ1 (v · e1)
2 + λ2 (v · e2)

2 + λ3 (v · e3)
2

λ1 + λ2 + λ3
(6)

While this metric has not been studied extensively, it has a number of fea-
tures that make it suitable for use in this study. The normalization insures
that it’s values lie between 0 and 1.0 which facilitates statistical analysis. The
value will be high in areas that exhibit both high FA and a high degree of
similarity between the direction of the model fiber and the primary direction
of diffusion. Conversely, the value will be low in regions of decreased FA, such
as that resulting from demyelination and in regions of increased fiber tortuos-
ity which may also be an indicator of neurodegeneration. Finally, we indicate
that this measure is related to the Gaussian model of directional diffusion which
states that the probability of diffusion along a particular direction, v, is given
by

∑
i λi (v · ei) /

∑
i λi. Thus, this measurement provides a direct interpretation

of the underlying DT data in terms of a specific connective model alleviating,
to a degree, the difficulty associated with traditional, tract-blind scalar reduc-
tions of the diffusion tensor. We now show that this measure increases detection
sensitivity in a small population study of SD versus controls.

3 Results

For the UF and ILF, the corresponding model fibers in each hemisphere ap-
pear very similar. However, the AF in the left hemisphere is much larger than
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that in the right hemisphere, a property reported in previous work [35]. Each
individual’s template-aligned DT data is used to calculate the nFDD at every
point along the model pathways. A Student’s t-test is performed at each point
and we only consider results with an FDR-corrected p-value < 0.2. Compared
to elderly controls, SD subjects show multiple areas of reduced nFDD in the left
AF. Regions of reduced nFDD are also detected in the left ILF as is one region
of increased nFDD. These results are illustrated in figure 2.

Fig. 2. Regions of reduced nFDD were detected in both the left ILF (bottom) and the
left AF (top) as well as a small region of increased nFDD in the ILF. Both are shown
here in a sagittal view. The AF is translated along the z-axis to allow full visualization
of the ILF. Arrows indicate clusters where FDR corrected p-values were less than 0.2

To gain additional insight into the properties of the nFDD, alternative met-
rics typically found in DT studies were examined in a similar manner. These
additional metrics include FDD, FA, axial diffusion (AD), radial diffusion (RD)
and mean diffusion (MD). In the case of FDD, MD, and AD no significant differ-
ences are detected. RD analysis provides one small cluster near near the anterior
of the left AF with a peak t-value of 3.19. Analysis with FA provides similar re-
sults to nFDD in the left AF, but the clusters sizes are smaller and the peak
t-value is 6.1. Both FA and RD fail to identify any significant differences in the
left ILF.
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4 Discussion

This study demonstrates that diffusion tensor tractography may be combined
with image registration techniques to create a system-based model for delineating
white matter connectivity differences in SD. Additionally, we utilize a metric,
nFDD, that leverages both the shape and orientation information provided by
the tensor to identify localized white matter differences between control and
patient populations. An examination of typical metrics used in DT-based studies
illustrates the ability of nFDD to detect subtle white matter differences that may
not be identified by more standard measures.

The study of an SD population provides a particularly relevant population
for examining connectivity. The semantic fluency impairments exhibited by SD
patients is a type of conduction aphasia. In this case, symptoms result primarily
from a reduction in communication between cortical regions [36]. The left AF is
believed to play an integral role as it provides communication between Wernicke’s
area and Broca’s area. This clinical background supports the evidence of reduced
connectivity in the left AF provided by our fiber tract-based study.

The use of a model of expected fiber orientation provides the framework that
allows nFDD to be used. Here we focused on attempting to identify localized
regions of alteration in white matter structure. However, the model pathways
provide a framework for examining connectivity on a larger scale. Future work
will focus on examining potential methods for using this wide spread connectivity
information to look for more subtle white matter changes such as those that may
result from diffuse axonal injury. By integrating the nFDD along the expected
pathways it may be possible to elucidate information regarding more wide-spread
losses in connectivity than is possible with the current localized methods.
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Abstract. Diffusion tensor MRI (DTI) is a promising brain imaging
technology with applications in clinical diagnosis, brain development and
pathology, and basic neuroscience. There is a strong interest in the clin-
ical community for using DTI in concert with conventional MRI and
combining white matter connectivity with morphological and functional
analyses. This paper presents a processing pipeline for the joint analysis
of structural and diffusion tensor MRI. This pipeline addresses the simul-
taneous alignment and filtering of diffusion weighted images to correct
eddy current artifacts and the alignment of those images to structural T1
MRI to correct for susceptibility artifacts, and this paper demonstrates
the importance of performing these corrections. It also shows how a T1-
based, group specific atlas can be used to generate grey matter regions
of interest that can drive subsequent connectivity analyses. The result is
a system that can be combined with a variety of tools for MRI analysis
for tissue classification, morphometry, and cortical parcellation.

1 Introduction

Diffusion tensor imaging (DTI) is a promising brain imaging technology with a
variety of clinical and scientific applications. Recent research results suggest that
DTI could be useful for diagnosing ischemia and brain injuries, studying brain
development and aging, and characterizing neurological disorders [1], as well as
mapping white-matter pathways [2]. While qualitative evaluations of tractog-
raphy are still interesting and quite common, the neuroscience community is
moving quite strongly toward using DTI for quantitative evaluations of white-
matter characteristics either directly on the image of tensors [3] or in conjunction
with a method for specifying regions of interest. DTI is proving to effective for
quantifying properties of white-matter regions, but perhaps the most promising
use of this technology is in the analysis of brain connectivity. Connectivity, how-
ever, is not a strictly local property, and there is a strong interest in the clinical
community for using DTI in concert with conventional MRI, and combine the
analysis of connectivity with morphological and functional analyses. Yet the lit-
erature shows very little research that has achieved a joint, quantitative analysis
of DTI and structural MRI at the level of specific white-matter tracts or paths.

The combination DTI with structural or functional MRI raises some chal-
lenging technical problems. One of the main issues is the problem of geometric
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alignment. The diffusion-weighted images (DWIs), typically acquired with an
echo-planar imaging sequence (EPI), taken at different gradient directions, are
subject to several types of geometric distortion. First is the problem of eddy
currents, which result from the fast switching of magnetic fields of the gradi-
ents, necessary for time-effective acquisitions. These residual currents result in
a scaling, shift, and shear (affine) warp along the gradient direction. The EPI
sequences are quite fast, and thus there is typically little head motion during
the acquisition of a single gradient. However, the overall sequence can take min-
utes, causing a further misalignment (3D rigid transformation) between gradient
directions. These gradient-dependent affine warps and rigid motions can cause
artifacts when the DWI images are combined to produce tensors.

A second source of distortion are inhomogeneities in the magnetic field caused
by differences in the magnetic susceptibility within field of view of the scanner.
EPI requires a homogeneous magnetic field, and magnetic interfaces within the
human head (e.g. sinuses and bone) result in local image distortion or signal
dropout. The result is that all of the DWI images undergo a nonlinear warp
(relative to a typical T1 structural image) along the phase-encoded direction of
the sequence.

The combination of these affects not only undermines the quality of the ten-
sor estimates, but significantly impacts one’s ability to either use structural and
functional MRI to either drive the DTI analysis (e.g. seed regions for tracts) or
jointly analyze connectivity with other quantities such as functional response,
cortical thickness, and morphology. This paper presents a set of algorithms for
the joint analysis of structural and diffusion-weighted MRI. This pipeline ad-
dresses the simultaneous alignment and filtering of DWI images to correct eddy
current artifacts and the subsequent alignment of those images to structural,
T1 MRI to correct for susceptibility artifacts, and this paper demonstrates the
importance of performing these corrections. It also shows how a T1-based, group
specific atlas can be used to generate grey-matter regions of interest that can
drive subsequent connectivity analyses. The result is a system that can be com-
bined with a variety of tools for MRI analysis for tissue classification, morphom-
etry, and cortical parcellation.

2 Related Work

There are two areas of related research. These are previous methods for prevent-
ing or correcting EPI distortions and earlier work that explicity combines DTI
and structural/functional images.

In general, eddy current distortion is addressed either through the pulse se-
quence [4], or by applying a data-driven, post-processing step to register the
DW images to a baseline image [5, 6]. Here we consider the post-processing ap-
proach because of the ability to deal with a large body of retrospective data and
data from large, ongoing studies, for which acquisition parameters are already
in place.

The other major source of geometric distortion is susceptibility artifacts,
which are modeled as a nonlinear, patient specific warp along the phase-encoding
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direction of the EPI sequence. This can be done by either acquiring associated
field maps and explicity modeling the distortion [7] or using a data-driven, post-
processing algorithm that coregisters, via a nonlinear warp, the EPI and struc-
tural (e.g., T1) images of the same patient [8]. The most promising approach,
is, in principle to use the field maps to explicitly account for the susceptibil-
ity. In practice, however, there are some challenges. First, field maps themselves,
when they are available, are noisy and must undergo some preprocessing. Second,
effective use of field for distortion correction requires knowledge of a set of acqui-
sition parameters, which are not always readily available and can have somewhat
distinct interpretations between different sequences and scanners. Finally, even
with field maps there remain errors in the system, in both the accuracy of the
field maps and (somewhat smaller) distortions in the structural or functional
data. Thus, if the goal is alignment to anatomical (T1) data, field maps will get
the data close, but there is, in many cases, still a need to correct for residual,
nonlinear distortions. Therefore, we propose a data driven approach that explic-
itly aligns the baseline image to a T1 image using a diffeomorphic flow along
the phase direction. A framework to combine diffusion and structural images has
been proposed in [9, 10]. A general nonlinear 3D registration was used to map
the diffusion imagery to the T1 MRI. For group analysis, a DTI atlas was built
from individual DWIs and the ROIs were manunally chosen on the atlas. Then
the ROIs were mapped back to each subject’s DWIs to perform tractography
analysis. Our registration approach differs in that our transformations explicitly
model head motion, eddy currents, and susceptibility artifacts to combine DTI
and structural imaging. Furthermore, we build a structural atlas from the indi-
vidual T1 images in which we define grey matter ROIs. These ROIs are then
mapped back to each individual DTI for white matter pathway analysis.

The second body of relevant work is the scientific research in combining anal-
ysis of structural or functional MRI with DTI. There are several studies that
explore statistical relationships between fMRI and DTI-derived quantities. For
instance, Baird et. al [11] describe a combined analysis of DTI and fMRI and
correlations between BOLD responses (object recognition task) and FA levels in
the corpus callosum. FA correlations are computed per subject with values in
active regions, avoiding the need for direct, per-subject correspondence between
DTI and fMRI images. Upadhyay et al. [12] use activation regions (auditory
stimuli) to seed a probabilistic tractography analysis, and rely on registration to
an atlas of both anatomical and DTI images. Olesen et. al [13] show a correlation
between FA and BOLD responses in a developmental (pediatric) study, and rely
on linear warps of DTI and structural data to a common atlas. Quantitative re-
sults for BOLD response and FA are computed on a regional basis. There is some
work outside of functional MRI on combining DTI with anatomical scans. For
instance, Gilmore et. al [14] analyze postnatal development of white matter by
combining T1, T2, and DTI analysis. They use a 3D spline deformation to align
anatomical scans to the DTI. Studholme [15] describes a joint anatomical/DTI
registration strategy and demonstrates improved localization.
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3 Combined DTI and Structural Analysis Pipeline

In this section we detail the steps involved in the proposed pipeline for combining
DTI and structural image analysis. The process is demonstrated using images
from five healthy individuals from the control group of an ongoing autism study.
We used high-resolution T1 and T2 weighted MR images and a DT-MRI for
each individual. The output of the pipeline is a diffusion tensor image, expressed
in the coordinates in which it is acquired, but which has undergone a nonlinear,
geometric correction so that it aligns it to an associated anatomical image by a
rigid transformation. A general outline of our pipeline, illustrated in Figure 1, is
as follows:

1. Preprocess structural images to remove skull, correct bias field, normalize
intensities, and segment tissue classes (to provide a white matter mask).

2. Correct diffusion tensor images for eddy currents, head motion, and EPI
distortions, resulting in coregistered T1, T2, and DTI for each subject.

3. Build a structural atlas from all subjects’ T1 images. Seed regions for tract
endpoints are manually delineated in the structural atlas and then mapped
from the atlas to each individual.

4. Automatically segment white matter tracts and quantify diffusion properties
using volumetric pathway analysis.

These steps are described in detail below.

Fig. 1. Joint structural and diffusion image analysis pipeline.
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3.1 Structural Image Preprocessing

We coregister and segment the T1 and T2 MR images into gray matter, white
matter and cerebrospinal fluid (CSF) tissue classes using a modified version of
the Expectation Maximization method described in [16]. This process includes
bias field correction of the images as well as an intensity normalization based
on the tissue classes. We then rigidly align the T1, T2, and segmentation label
images to the B0 image using a normalized correlation image match between B0
and T2 .

Fig. 2. Eigenvector color image overlayed
on T1 using uncorrected DTI (left) and DTI
corrected for head motion, eddy current,
and EPI distortion (right).

Fig. 3. Comparison of fiber track-
ing in the uncorrected (left) and cor-
rected (right) DTI.

3.2 Diffusion Image Preprocessing

We first correct diffusion weighted images for head motion and eddy current
distortions using the method described in [6]. Each diffusion weighted image
is registered to the B0 image using mutual information and a transformation
model of the linear effects of eddy current distortions combined with a rigid
transformation to model head motion.Each gradient direction is rotated through
the rotation matrix derived from the corresponding head motion correction. The
updated gradient directions are used to address the issue of tensor reorientation.

Next, we correct for EPI distortions by warping the B0 image to the T2
weighted MRI. Let IB0, IT2 be the B0 and T2 images, respectively, defined on
the image domain Ω ⊂ R3. We model EPI distortions by a displacement field,
h : Ω → Ω, restricted to lie in the phase-encoding direction, in our case, along
the y-axis. To ensure that the resulting image transformation is smooth and
preserves topology, we use a diffeomorphic image registration [17] .

The results of the DTI alignment to the T1 image for one case are shown in
Figure 2. Both DTIs are displayed as a colormap of the major eigenvector direc-
tion overlayed onto the T1 image. Notice that the original image has artifacts at
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the posterior edge due to misalignment of the DWI from eddy current and head
motion. Also, the EPI distortion can be seen in the frontal lobe. The corrected
image alleviates these problems and matches well with the T1.

To demonstrate the effects the distortion correction steps can have on DTI
analysis, we performed a fiber tracking from the genu of the corpus callosum in
both the uncorrected and corrected DTIs. Figure 3 shows the resulting fibers
overlayed on a midsagittal slice from the T1 image. Because tractography com-
bines tensor orientation with relative tensor positions, we expect tracts in the
corrected data will differ from those in the original DTI acquisition. In Figure 3
we see that the corrected DTI produces more fibers, and that these fibers extend
farther to the gray matter than in the uncorrected image.

Fig. 4. The structural atlas built from the five T1 images with manually outlined
frontal forceps seeds (left). The seeds mapped to each of the individual cases (right).

3.3 Group Atlas

We wish to delineate white-matter tracts as connecting specific grey-matter re-
gions, which form the endpoints. Manual delineation of these endpoint regions
for a large number of cases is tedious and prone to inconsistencies. To address
these issues, we propose to manually delineate the seed regions in a structural
atlas. The seeds can then be mapped back to the individual images. A structural
group atlas is built from the T1 images of each individual using an unbiased dif-
feomorphic atlas building method [18]. This procedure results in an atlas image
Î and diffeomorphic transformations hi that match each T1 image Ii to the atlas.
This atlas is then used to manually delineate the endpoints of the white matter
tracts of interest, producing binary seed images, Ŝj . These seed images are then
mapped back to the individual images, Ii, via Sij = Ŝj ◦ h−1

i .
Figure 4 shows the atlas built from the five subjects’ T1 images. Endpoints

of the forceps major, forceps minor, and left and right cingulum were manually
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Fig. 5. Automatically extracted volumetric pathways [20] of the major and minor for-
ceps and the cingulum bundles in each of the five cases.

delineated in the atlas. The forceps minor seeds are shown with the atlas in Fig-
ure 4. Finally, the forceps minor seeds mapped from the atlas to each individual
are shown on the right side of Figure 4.

3.4 DTI Analysis

Because we are interested in white-matter paths that connect specific grey-
matter regions, we opt for the optimal path strategy for DTI tractography [19].
In this paper we use the seeds mapped from the atlas to each individual as input
for the automatic segmentation of the white matter tracts using the region-to-
region volumetric method of described [20]. In that method, a voxel in an image
is identified as belonging to a pathway if there is a path between the two in-
put regions, passing through that voxel, with a cost that is within a specified
tolerance of the of overall optimum.

We ran the volumetric connectivity analysis for each of the five cases in our
study using the seeds mapped from the atlas as input. The resulting volumet-
ric pathways for the major and minor forceps and the left and right cingulum
bundles are shown in Figure 5.

4 Conclusion and Discussion

We have presented a comprehensive framework for combining structural and
diffusion tensor MRI. This includes correction of the diffusion weighted images
for head motion, eddy current artifacts, and EPI distortions caused by magnetic
field inhomogeneity. We also demonstrated how an anatomical atlas built from
the T1 images can be used to define seeds for all of the diffusion tensor images
simultaneously. Finally, volumetric pathway analysis was used to automatically
segment white matter tracts.
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The pipeline presented in this paper provides the necessary foundations for
performing a joint analysis of anatomical information derived from T1, functional
data from fMRI, and white matter properties derived from DTI. We expect this
will be important in studying correlations between white matter connectivity
and functional activity, as well as structural gray matter properties, such as
cortical thickness or volume. Also, the combination of structural and diffusion
imaging allows us to construct detailed anatomical atlases, which could serve
as a coordinate system for group analysis, and could be combined with cortical
parcellation techniques to produce whole-brain connectivity maps. This T1/DTI
alignment also provides an opportunity to include the DTI images in the atlas
building procedure, for instance, using the T1/DTI registration method in [15].
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Abstract. GTRACT is an open source toolkit for the analysis of mag-
netic resonance diffusion weighted images. The toolkit provides algo-
rithms for the analysis of diffusion weighted images using a Tensor frame-
work. This includes tools for motion and eddy current correction, noise
filtering, Tensor estimation, anisotropy mapping, and rigid and non-rigid
registration with anatomical image data. Fiber tracking algorithms have
also been included allowing users to extract specific fiber tracts from
the within the Tensor field. The tools have been designed to support a
pipeline processing of the data. A graphical user interface to the tools is
provided using the Slicer3 execution model. The tools support the NRRD
image format and output tracts in VTK format which is supported by
the NA-MIC toolkit and can be visualized in Slicer3.

1 Introduction

Knowledge of brain connectivity plays a role in better understanding the nor-
mal brain, abnormal development, and neurodegeneration. Diffusion tensor (DT)
imaging has been utilized to study a large number of neurological and psychiatric
disorders including: cerebral ischemia, diffuse axonal injury, multiple sclerosis,
epilepsy, alzheimers disease, brain tumors, schizophrenia, and metabolic disor-
ders. The use of diffusion tensor imaging for these applications has developed
into a quantitative measure of brain connectivity similar to quantification of the
brain tissue compartments (grey matter, white matter, and CSF) using tissue
classification. Analysis of DT data has included region-of-interest (ROI) based
analysis of anisotropy maps, voxel based morphometry, and tractography.

One of the main interests in DT imaging is its ability to potentially describe
fiber tracts between two locations in the brain. Diffusion tensor measurements
are defined for each voxel and post processing algorithms are required to extend
these to form fiber tracts. The main assumption in DT tractography is that the

? Funding for this work was provided by grants NIH NS050568.

208



direction of the fibers is collinear with the direction of the largest eigenvector.
These methods are based on connectivity between regions being estimated from
the long-range continuity in the diffusion tensor field. This technique has the
potential to be invaluable for visualization and quantification of connectivity
between brain regions. Much of the initial work in fiber tracking began using
streamline approaches. This approach was formalized by Basser et al. [1]. The
problem is similar to flow propagation in fluid dynamics.

This paper describes and open source toolkit, GTRACT, that provides a
complete diffusion tensor analysis pipeline. The tools included in this software
suite are described in the next section.

2 Methods

2.1 Preprocessing

The first task in diffusion tensor imaging is the conversion of image data from
DICOM format into a standard image format. GTRACT has chosen to conform
with the developing standard of using the NRRD (Nearly Raw Raster Data)
format that has explicit support for handling of the diffusion tensor gradient
information. A conversion program has been developed that supports the direct
conversion of DICOM formatted images into the NRDD format. Support for
both GE and Siemens image data has been tested including both mosaic and
single slice DICOM files from Siemens. The program reads the applied gradients
direction, b-value, and direction cosines from the appropriate DICOM fields.

The next step in the analysis pipeline is the removal of motion and eddy cur-
rent artifacts from the data. Diffusion weighted images, similar to fMRI data,
are collected over several minutes using a single shot EPI based sequence. The
resulting motion does not blur the images, but is instead modeled as rigid body
motion between the three dimensional volumes acquired. However, unlike fMRI
analysis, the signal intensity varies significantly between the acquired images.
The b=0 image is collected with no or limited diffusion weighting. Its signal in-
tensity is similar to a T2 weighted scan. The images with large diffusion weight-
ing have substantially reduced signal intensity and the signal between applied
directions is modulated based on the orientation of the underlying white matter.
Therefore, a mutual information metric is used to align the images. In addition
to subject motion, the scans are also susceptible to eddy current artifacts that
result from the application of the large diffusion encoding gradients. Since the
gradient orientations are changing throughout the experiment, the distortion in
the resulting images is dependent on the gradient direction. The distortion in
the images can be accounted for using an affine model for the image registration
process. GTRACT includes options for both rigid body and affine based trans-
formation models allowing the user to specify if they would like to model the
eddy current artifacts.

The fixed image for the image registration is typically the b=0 image and
each of the diffusion weighted images are fit to this baseline image. Since, the
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rotation of images changes the orientation of the diffusion gradient relative to
image orientation, the estimated rotation component from the transforms are
used to adjust the orientation of the diffusion gradient relative to the image
volume.

2.2 Tensor Analysis

Once images are co-registered, the diffusion weighted images are then ready to
be used for tensor estimation. The signal-to-noise ratio (SNR) is low in diffusion
tensor imaging especially in the images with applied diffusion gradients. Noise
filtering is one potential way to increase the SNR. For diffusion tensor imaging,
it is also relatively important to maintain the spatial resolution and minimize
blurring in the images especially if fiber tracking is desired downstream. There-
fore, the GTRACT software provides the user with the ability to perform low
pass edge preserving filtering in the form of a median filter. The radius of the
median filter can be specified in all three directions providing the ability to fil-
ter only in the plane of the acquired images for images with highly anisotropic
voxels or in all three dimensions if the images acquired with isotropic spacing.
After filtering, a tensor representation of the data based on the signal intensity
decay, b-values applied, and the diffusion directions is estimated.

From the diffusion tensor various anisotropy indices can be computed. The
scalar metrics support by GTRACT include: Fractional Anisotropy (FA), Rela-
tive Anisotropy (RA), Volume Ratio (VR), Lattice Index (LI), Coherence Index
(CI), Mean Diffusivity (ADC), Axial Diffusivity (AD), Radial Diffusivity (RD).
These scalars provide different information about the underlying white matter
and are all rotationally invariant metrics of the diffusion process.

2.3 Anatomical Alignment

One final step in the analysis of diffusion tensor scalar maps is the co-registration
of this data with a high resolution anatomical image. Often the high resolution
anatomical image is a 3D T1 weighted volume. Two registration methods are
supported for alignment with the anatomical image, rigid and B-spline. The
rigid registration performs a nine parameter fit with the anatomical images. This
registration can be used as the only registration method in the case that other
tools have been used to correct susceptibility artifacts such as field mapping
based approaches. The rigid registration can also be used to initialize the B-
Spline transform.

The B-Spline transform is a deformable transform, where the user can control
the amount of deformation based on the number of control points as well as the
maximum distance that these points can move. This allows the susceptibility
related distortions to be minimized in the diffusion weighted images without the
acquisition of the a field mapping dataset. It is recommended that for image
registration with the B-Spline transform that the anatomical image be skull
stripped (i.e. image containing only brain with skull removed). This requirement
exists because of the fat saturation that is applied to the EPI images eliminates
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Fig. 1. Alignment of the b=0 image with the anatomical T1 weighted image. The
anatomical images is the background image and the diffusion tensor b=0 image is
overlaid in color. (A) Shows the result after rigid registration, and (B) Shows the
result after B-spline registration. The improvements in the B-Spline registyration can
be seen back to the ventricular region. This is particularly evident in the boundary of
the genu of the corpus callosum and the ventricles.

most of the signal from the skull in the diffusion tensor images. An example of
the quality improvement in registration of the diffusion tensor images with the
anatomical image using a B-Spline registration is shown in Fig 1.

The registration with the anatomical dataset allows the user to map regions
of interest from the anatomical images into the space of the acquired diffusion
tensor imaging data where they can be used to seed fiber tracking algorithms as
described below. The registration also allows the user to map the scalar images
into the space of the anatomical images where they can be analyzed using ROI
or voxel based approaches.

2.4 Fiber Tracking

One of the great appeals of diffusion tensor imaging is the ability to generate
estimates of fiber tracts in vivo. While the GTRACT suite was originally devel-
oped around the GTRACT (Guided Tensor Restore Anatomical Connectivity
Tractography) algorithm [2], several modes of fiber tracking are now supported.
Free tracking is a basic streamlines algorithm as proposed by Basser et al. [1]
This algorithm starts fiber tracking from a single region of interest and contin-
ues tracking until it hits a termination criteria. Termination criteria include high
curvature, low anisotropy, and fiber length. The streamlines algorithm is similar
to the free tracking method except that only fibers terminating in an ending re-
gion defined by the user are retained. This allows the user to readily extract only
the fiber tracts of interest while ignoring all other tracts. The streamlines algo-
rithm includes the option for utilizing the Tensor deflection (TEND) algorithm
proposed by Lazar et al. [3]. The TEND algorithm is specified by the following
equation

vout = fe1 + (1− f) ∗ ((1− g)vin + gD · vin) (1)
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where vout is the outgoing vector direction, vin is the incoming vector direction
defined in the previous step, ein is the primary eigenvector direction, where D
is the diffusion tensor. The parameters f and g define the relative weight of the
three directional terms. In the case that the f = 0 and g = 0, this equation
simplifies to the standard streamline equation

vout = fe1 + vin (2)

Graph search tracking is the first step in the full GTRACT algorithm de-
veloped by Cheng et al. [2]. This method was developed to generate fibers in a
tensor representation where crossing fibers occur. The graph search algorithm
follows the primary eigenvector in non-ambiguous regions and utilizes branching
and a graph search algorithm in ambiguous regions. Ambiguous tracking regions
are defined based on two criteria: branching anisotropy threshold, and branching
curvature. When the anisotropy values are below the branching anisotropy value
or the curvature is above the branching angle, several tracking paths are con-
sidered. The first is the standard primary eigenvector direction. The second is
the secondary eigenvector direction. This is based on the assumption that these
regions may be oblate regions. If the user enables the random walk option, then
a third direction is also considered. This direction is defined by a cone pointing
from the current position to the centroid of the ending region. The interior angle
of the cone is specified by the user with the branch angle parameter. A vector
contained inside of the cone is selected at random and used as the third direc-
tion. This method can also utilize the TEND option where the current tracking
direction replaces the the primary eigenvector in the TEND algorithm.

The second phase of the GTRACT algorithm is guided tracking. This method
incorporates anatomical information about the track orientation using an initial
guess of the fiber track. In the original proposed GTRACT method, this would
be created from the fibers resulting from the graph search tracking. However,
in practice this can be created using any method or could be defined manually.
The graph search tracking may generate fairly rough tracks especially in regions
of low FA, therefore a center line fiber is estimated for the resulting tracts. This
tends to be a smooth estimate of the mean fiber position. In guided tracking,
the primary eigenvector direction is compared to the direction specified by the
guide fiber. If the angle deviates more than a user specified value (typically 20-30
degrees) then the direction specified by the guide fiber is utilized instead of the
primary eigenvector direction.

A second class of algorithms utilized for fiber tracking is based on energy
minimization. One such method is the fast marching fiber tracking algorithm.
This algorithm is based on the work by Parker et al. [4] In the fast marching
algorithm in the GTRACT suite of tools, anisotropy has been added to the
cost function calculation. The user has the ability to weight the contribution of
anisotropy to the cost function. This algorithm is broken into two parts. The
first phase of the algorithm generates a cost image. This starts with a seed
region specified by the user. The cost of the path tracking from the seed region
to every voxel in the brain is computed. The cost is based on the direction of
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Fig. 2. The GTRACT fast marching graphical user interface is shown in Slicer3 on the
left. On the right, tracts of the forceps major produced using the GTRACT tracking
algorithm and visualized in Slicer3 are shown.

the front, the primary eigenvector direction, and the anisotropy value. Once the
cost image is generated, the user can then generate tracts between any region
of the brain and the seed region specified in the previous step. Fiber tracks are
generated using a gradient descent solution from the defined regions back to the
seed points specified in the creation of the cost image.

2.5 Slicer3 Integration

The GTRACT software is built upon the National Alliance for Medical Image
Computing (NA-MIC) libraries including ITK, VTK, and Slicer3 [5]. The tool is
available from the Neuroimaging Informatics Tools and Resources Clearinghouse
(NITRC), http://www.nitrc.org.

The programs contained within the GTRACT have been built using the
Slicer3 execution model. This provides a convenient way to define command line
parameters for the program using an XML file description. The XML file also
serves as a way to create a graphical user interface within Slicer3 (Fig 2). The
resulting fiber tracts are saved in VTK format and contain the diffusion at each
point along the fiber tract. The resulting fiber tracts and tensor representation
can be readily visualized within the Slicer3 environment (Fig 2).

2.6 Fiber Tracking in Schizophrenia

Twelve male patients with a DSM-IV diagnosis of schizophrenia with (mean age
32±9.5 years) and ten normal controls (five males and five females, age 43.5±9.0
years) were recruited into this study. After informed consent was obtained from
the Institutional Review Boards at the University of Iowa and University of New
Mexico. Subjects were imaged twice on a 1.5T Siemens scanner within a twenty
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four hour period. A multi-modal imaging protocol was used to collect T1, T2 and
diffusion weighted images. Diffusion tensor images were obtained with the follow-
ing protocol: TE=80ms, TR=9500ms, flip angle=90◦, FOV=256x256mm, Ma-
trix=128x128, slice thickness=2.0mm, slice gap = 0.2mm, number of slices=65,
NEX=4, b-value=1000s/mm2, bandwidth=1346Hz/pixel, number of diffusion
directions=6.

The structural MR scans were analyzed using the BRAINS software [6]. A
standard image analysis pipeline was utilized that included the following steps:
1) spatial alignment of the T1 weighted scan along the AC-PC line and the inter-
hemispheric fissure; 2) co-registration of the T2 images to the spatially aligned
T1; 3) tissue classification; 4) brain extraction; and 5) neural network regional
brain labeling. The neural network defined regions of interest for the thalamus
and the cerebellar white matter (corpus medullary) were verified by an expert
anatomical rater and manually edited if required.

The diffusion tensor images were processed using a standard image anal-
ysis pipeline using the GTRACT tools. The diffusion weighted images were
co-registered to the b=0 image using a mutual information affine registration
to eliminate the effects of motion. Next, a 3x3x3 voxel neighborhood median
filter was applied to the diffusion weighted images, and then the tensor field
was calculated using a background suppression threshold of 100 on the b=0 im-
age. A fractional anisotropy (FA) image was then calculated. The b=0 image
from the DTI series was co-registered to the AC-PC aligned T1 image using the
same mutual information registration algorithm used for motion correction of
the diffusion tensor images. This registration was then inverted to map regions
of interest into the acquisition space of the diffusion weighted images. For the
tract tracing, we focused on one major pathway, which represents the connection
between the cerebellum and the thalamus. The artificial neural network defined
regions of interest were used as starting and ending regions for fiber tracking
with the GTRACT software.

The reliability of the fiber tracts were compared between the two time points
by correlating the FA along the fiber tracts. The resulting fiber tracts were
compared between patients with schizophrenia and normal controls.

3 Results

While the reliability of the GTRACT was previously addressed [2], correlations
for this sample were determined between the scanning sessions. Correlation co-
efficients of the FA values along the fiber tracts in the control subjects were
0.94 and 0.95 for the left cerebellum to right thalamus and right cerebellum to
left thalamus respectively. The patients with schizophrenia had slightly lower
correlation coefficients of 0.87 and 0.88.

For the fiber tracts connecting the left cerebellum to the right thalamus, the
patients with schizophrenia had a significant reduction (p<0.05) in FA values
along the fiber tracts. Most of this region was between the cerebellar peduncles
projecting towards the red nucleus. This difference in FA values between the
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patients and controls was similar in both the test and retest measurements.
For the tracts between the right cerebellum and the left thalamus a significant
reduction (p<0.05) in the FA values for the patients was found in the same
region.

4 Discussion

The GTRACT software suite is an open source toolkit for the analysis of dif-
fusion tensor data that includes tools for image format standardization, motion
and eddy current correction, alignment with anatomical images, tensor decompo-
sition, rotationally invariant scalar mapping, and fiber tracking. The reliability
of the estimated fiber tracts generated from this tool has been previously estab-
lished using digital phantoms and scan/rescan evaluation of fiber tracts running
between the cerebellum and thalamus. The reliability of the fiber tracts should
be accessed on a tract by tract basis. In addition, comparison between the various
fiber tracking algorithms is warranted.

These tools have been use to evaluate changes in the tracts running between
the cerebellum and thalamus. The tracts in the region of the cerebellar peduncles
projecting towards the red nucleus. Similar findings were found in the tracts run-
ning from the left cerebellum to right thalamus and between the left cerebellum
and right thalamus. This suggests that deficits in the connectivity between the
cerebellum and thalamus is not a reduced over the entire tract, but may reflect
discrete regions where deficits exist between these regions. Further exploration
to needed to fully understand how these changes are related to cognitive changes
and symptoms seen in schizophrenia.
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Abstract. We scanned 61 healthy adults with 105-gradient HARDI at 4 Tesla, and examined 
how the number of diffusion gradients affects the signal-to-noise ratio (SNR) for several 
common DTI-derived scalar measures: the fractional and relative anisotropy (FA, RA) mean 
diffusivity (MD), and volume ratio (VR). HARDI applies diffusion-sensitive magnetic field 
gradients to the brain at a range of spherical angles (typically >100) to analyze white matter 
microstructure and integrity. We optimized the angular distribution energy on gradient image 
subsets of size 1≤N≤94, to artificially reduce the angular sampling. 7 gradients are 
mathematically sufficient to determine FA/RA/MD/VR, but by increasing the number of 
diffusion-sensitized gradients from 20 to 94, SNR improved by 69.23% and 19.93% for VR and 
RA, and by 12.24% and 8.77% for FA and MD. Measures involving products of 3 eigenvalues 
(e.g., VR) were noisier, requiring more gradients to determine. FA SNR rose rapidly with more 
gradients than are routinely collected, suggesting advantages of HARDI even for standard 
neuroscientific studies. 
Keywords: High-Angular Resonance Diffusion Imaging, fractional anisotropy, relative 
anisotropy, mean diffusivity, volume ratio, Signal-to-Noise ratio. 
 

1   Introduction 

High-angular resolution diffusion imaging (HARDI) is a powerful extension of MRI, 
based on applying diffusion-sensitized gradients to the brain in 100 or more different 
directions.  This can quantify anisotropic water diffusion in brain tissue, providing 
exquisite insight into local fiber orientation and integrity. Many early diffusion 
imaging studies used the diffusion tensor model [1], which describes the anisotropy of 
water diffusion in tissues by estimating, from a set of K diffusion-sensitized images, 
the 3x3 covariance matrix of a Gaussian distribution. Each voxel’s signal intensity in 
the k-th image is decreased, by water diffusion, according to the Stejskal-Tanner 
equation [2]: Sk = S0 exp [-bgk

T
 D gk], where S0 is the non-diffusion weighted signal 

intensity, D is the 3x3 diffusion tensor, gk is the direction of the diffusion gradient and 
b is Le Bihan’s factor containing information on the pulse sequence, gradient 
strength, and physical constants. Although only 7 gradients are mathematically 
sufficient to determine the diffusion tensor, MRI protocols with higher angular and 
radial resolution (e.g., HARDI) have been proposed to resolve more complex 
diffusion geometries that a single tensor fails to model, e.g. fiber crossings and 
intermixing of tracts.  
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Recent technical advances have made HARDI more practical. A 14 minute scan can 
typically sample over 100 angles (with 2 mm voxels at 4 Tesla). HARDI’s improved 
signal-to-noise ratio can be used to reconstruct fiber pathways in the brain with 
extraordinary angular detail, identifying anatomical features, connections and disease 
biomarkers not seen with conventional MRI. If more angular detail is available, fiber 
orientation distribution functions (ODFs) can be reconstructed from the raw HARDI 
signal using deconvolution methods [3,4], yielding mathematically rich models of 
fiber geometries using probabilistic mixtures of tensors [5, 6], fields of von Mises-
Fisher mixtures [7], or higher-order tensors (i.e., 3x3x…x3 tensors) [8,9]. Recent 
work on stochastic tractography [10, 11] has also exploited the increased angular 
detail in HARDI, and fluid registration methods have also aligned HARDI ODFs 
using specialized Riemannian metrics [12].  

Ironically, most clinical studies with diffusion imaging still rely on simple scalar 
measures, such as fractional anisotropy (FA) or mean diffusivity (MD), which can be 
computed from the diffusion tensor approximation. FA poorly reflects the 
multidimensional complexity of the ODF, but it is sensitive to white matter 
deterioration in aging and neurodegenerative diseases, so many clinical studies have 
concluded that it is unnecessary to collect many more than the 7 gradient images that 
suffice to determine the diffusion tensor uniquely. Given the trade-off between the 
available signal-to-noise (SNR) and the time required to collect more gradient images, 
some studies argue that 20 gradient directions are sufficient to accurately compute FA 
[13,14], and such acquisition protocols are now typical. Here we aimed to determine 
whether this is optimal, by examining the signal-to-noise gains, for different standard 
diffusion-tensor derived indices (FA/MD/RA/VR), with the increased gradient 
numbers in HARDI. Although simulations suggest that SNR will increase with 
increasing gradient numbers in DTI [15-17], simulations may not represent the 
achievable SNR, as many sources of noise (e.g., subject motion, physiological sources 
of noise, susceptibility of real brain tissue) can only be modeled by empirically 
studying a population. As such, we scanned 61 subjects with 105-gradient HARDI, 
providing practical information on real human data that has not previously been 
available.  
 

2 Materials and Methods 
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 2.1 Subjects and image acquisition 

 105-gradient HARDI data were acquired from 61 healthy adult subjects (age: 
24.5±1.4SD years; 29 men/32 women) on a 4 Tesla Bruker Medspec MRI scanner 
using an optimized diffusion tensor sequence [16, 18]. 105 images were acquired: 11 
baseline (b0) images with no diffusion sensitization (i.e., T2-weighted images) and 94 
diffusion-weighted images (b-value 1159 s/mm2) in which gradient directions were 
evenly distributed on the hemisphere [2]. Imaging parameters were: TE/TR 92.3/8250 
ms, 55 x 2mm contiguous slices, FOV = 23 cm. The reconstruction matrix was 128 x 
128, yielding a 1.8x1.8 mm2 in-plane resolution. The total scan time was 14.5 
minutes.  

 2.2 Data processing 

HARDI data for all 61 subjects were loaded into MedINRIA, a DTI analysis 
program developed by the INRIA research project Asclepios [19]. MedINRIA 
provides state-of-the-art algorithms for tensor reconstruction and denoising, with a 
simple user interface and triaxial/3D viewer (http://www-
sop.inria.fr/asclepios/software/MedINRIA; Figure 1). To eliminate extracerebral 
tissues, a subject-specific binary mask of the brain was created based on a Partial 
Volume Classification (PVC) of the corresponding registered 3D T1-weighted 
structural images [20] and aligned by 9-parameter transformation to the 
corresponding diffusion tensor images. 
 

 
 
Figure 1. Tensor Reconstruction and Eigenstructure Visualization from HARDI. The 105 
gradient images per subject were reconstructed using a tensor approximation at each voxel. The 
diffusion tensor eigenvalues were retained to compute the scalar diffusion parameters 
FA/MD/RA/VR. Here the RGB color code indicates the normalized principal eigenvector 
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direction (x,y,z) of the local diffusion tensor, showing that the HARDI sequence resolves fiber 
geometry and orientation in detail (red colors show the corpus callosum; bottom left). 

In the Diffusion Tensor (DT) model, a tensor is fitted at each voxel to the set of 
diffusion images, and maps of indices sensitive to fiber integrity such as fractional or 
relative anisotropy (FA, RA), mean diffusivity (MD) or volume ratio (VR), may be 
computed from the tensors’ eigenvalues (1, 2, 3). [18] pointed out that the 
performance of FA and MD estimation depends on the tensor estimation method. In 
MedINRIA, a Log-Euclidean (LE) metric is used for tensor estimation, in which 
matrices with null or negative eigenvalues are at an infinite distance from any positive 
definite matrix. For each subject, DT images (denoted by Dij, 1≤ i, j ≤3) and FA, RA 
MD, and VR maps were computed from the HARDI signals standard formulae 
(Equation 1). 

 
 
 
 

(1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 2. Spherical distribution of angles at which diffusion-sensitized gradient 
images were collected, for the 105-gradient HARDI sequence. Each red dot represents 
one gradient image.  
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We artificially reduced the angular sampling of the 105-gradient sequence by 
optimizing the angular distribution energy [2] on subsets of size 1≤N≤94 of the 
diffusion-sensitized gradient images. Since each gradient image is applied in a 
direction that may be represented as one point (ai, 1≤i≤105) on the surface of the unit 
sphere (Figure 2), the optimality of a gradient vector set is typically defined using 
PDEs based on electrostatic repulsion, or based on summed spherical distance metrics 
that attempt to maximize the distance between points on the sphere. Although other 
approaches are possible (see [22]), in our formulation, we optimized the angular 
distribution energy by maximizing the summation of the least distances between all 
points in the Riemannian manifold (Equation 2). In Equation 2, ai and aj represent 
two different points on the unit spherical surface. 
 
 

    (2) 
 

For each subject and angular resolution (1≤N≤94), we computed SNR for the FA, 
MD, RA and VR maps by using all optimized gradient subsets and all 11 baseline (b0) 
images, to measure SNR effects with a constant number of b0 images (this 
conservative approach slightly favors sequences with fewer gradients, for which 
fewer than 11 baseline images would typically be collected). Each map’s SNR was 
defined as the ratio of the mean voxel value to the standard deviation of the voxel 
values. Although this definition does subtract the biological variation in DTI-derived 
signal across the brain, that component of variation may be assumed constant for all 
gradient subsets (1≤N≤94), and is therefore not a confound when comparing SNR 
across gradient numbers. We preferred this approach over selecting a relatively 
homogeneous region or subset of voxels for our computations; we acknowledge that 
alternative SNR definitions may be reasonable when specific anatomical tissue 
classes are the target of study.   
 

3 Results and Discussion 

A traditional DTI sequence with a total of 30 gradients might be computed from 27 
diffusion-sensitized gradient imaging and 3 baseline images. As we had collected 11 
baseline images, to avoid confounding effects we kept the number of b0 images 
constant while varying the number of diffusion-sensitized images. Figure 3 shows 
some representative maps of FA, MD, RA and VR based on HARDI17, HARDI38 
and HARDI105 (where the numbers refer to the total number of gradient images). 
 
We found that SNR rose sharply for FA, MD, RA and VR and reached 90% of the 
available SNR with 22, 19, 31 and 64 of the available 94 diffusion-sensitized 
gradients. By increasing the number of diffusion-sensitized gradients from 20 to 94, 
SNR improved by 69.23% and 19.93% for VR and RA, and by 12.24% and 8.77% for 
FA and MD (Figure 4). Measures involving products of 3 eigenvalues (e.g., VR) 
were noisier, requiring more gradients to determine, but even FA SNR rose rapidly 
with more gradients than are routinely collected.  
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HARDI offers increased SNR even for routine brain mapping studies using tensor-
derived measures, such as FA, which requires only 7 gradients to determine 
analytically. Our findings are consistent with studies by Hasan et al. [23], who used 
bootstrap methods, Monte Carlo simulations and phantom data to show that 
SNR(RA)/SNR(FA) rises with moderate increases in angular sampling, from 6 to 21. 
FA and RA are also analytically derivable from each other using closed form 
formulae, so that the standard deviation of FA, (FA)=(1/3)(FA/RA)3(FA), giving 
SNR(FA)/SNR(RA)=3/(3-2FA2)=1+2RA2, if SNR(FA)=FA/(FA). This means that 
the maximum SNR advantage SNR(FA)/SNR(RA) is 3 at the highest theoretical 
anisotropy value (FA=RA=1).  Paradoxically, researchers have largely followed the 
advice that 7-20 gradients suffice to determine F. This reduces acquisition times, but 
longer acquisitions may provide better SNR not just for tractography but also for 
routine scalar maps of fiber integrity. Whether or not this increased SNR translates 
into smaller minimal sample sizes to detect clinically relevant effects depends on the 
biological variation in these measures across subjects, which deserves further study. 
Landman et al. [21] also noted that the diffusion tensor orientation (principal 
eigenvector) depends not just on the angular sampling, but also on patient motion, 
field inhomogeneity, and EPI-related distortions), and at low SNR, FA measures may 
not just be noisy, but also biased. Further studies of scanner field strength, spatial 
resolution, tolerability, motion artifacts, and clinical effect sizes will clarify the added 
benefit of HARDI’s SNR for neuroscientific studies. 
 
 

4   Conclusions 

Based on our current results, more than 20 DWIs should be enough to achieve a 
satisfactory SNR results for FA, ADC and 30 DWIs for RA, but for VR, more DWIs 
are needed to improve the SNR. 
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Figure 3. SNR increases for all 4 DTI-derived scalar measures as the number of HARDI 
gradients is steadily increased. Rows 1-4 show axial slices through the MD map (also known as 
ADC or average diffusion coefficient), FA map, RA map and VR map. Column 1 is computed 
from HARDI17 (i.e., the 11 b0 and 6 non-b0 images), Column 2 is from HARDI38 (i.e., 27 non-
b0 images), and Column 3 is from HARDI105 (the full protocol of 94 non-b0 images). 
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Figure 4. SNR trends with increasing numbers of HARDI gradients. For MD (top left), FA 
(top right), RA (bottom left), and VR (bottom right), the red curves show the average SNR from 
all 61 subjects, while the top and bottom curves represent the subjects with best and worst 
SNR. Similar trends appear for the individuals and for the group average SNR. Parameters that 
involve products of eigenvalues tend to be noisier (e.g., VR), and benefit more from greater 
angular sampling. The average and individual plots are all monotonically increasing, and FA 
does not plateau until well beyond the number of gradients typically collected (~20).  
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Abstract. High Angular Resolution Diffusion Imaging (HARDI) is dee-
med to capture worthy information about the structure in which the dif-
fusion process takes place. HARDI allows us to examine relatively wide
angular frequency range of diffusion signal that, due to the complexity
of both the diffusion process and its milieu, may spread over multiple
frequency bands. Therefore, we opt for multiscale analysis ensuring that
all frequencies are adequately probed, but also we favor those frequencies
that are trusted more important for our specific aims. Inherent spheric-
ity of the HARDI signal motivated us to take on the concepts of multi-
scale spherical wavelet decomposition and its derivatives. This permits
a sparse and denoised representation of both the HARDI signal and its
Funk-Radon transform (the diffusion orientation distribution function
(ODF)), presumably associated to the angular distribution of brain fibre
bundles via structural link with diffusion. We apply the method to real
physical phantoms showing fibre bundles crossing, as well as to a real
brain data set. The results reveal the potential of the method to infer
interesting structural information captured only by a small number of
spherical wavelet coefficients.

1 Introduction

High Angular Resolution Diffusion Imaging [1, 2] has been introduced with the
aim of exploring the non-Gaussianity of the diffusion process, and in an attempt
to resolve complex fibre constellations, typically indiscernible by diffusion tensor
imaging (DTI) [3]. HARDI offers much richer descriptions of diffusion process
(at a resolution accessible by conventional MR scanners), however it sets heavy
computational burden for data processing. Since the directions of maximal dif-
fusion (that are implied by average principal fibre orientations inside a voxel)
are unknown a priori, HARDI explores the space in a uniform manner, and
thus despite its obvious gain over DTI, it still suffers from a certain amount
of information redundancy. A number of approaches for “simplification” and
regularization of Apparent Diffusion Coefficient profiles (ADCp) resulting from
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HARDI by projection onto predefined bases were demonstrated [1, 4, 5]. The
preliminary work was oriented towards spherical harmonics (SHs) [1, 4], that of-
fered a suitable spherical basis for high ADCp compression as well as some fast
algorithms for diffusion orientation function (ODF) reconstruction [6, 7]. How-
ever, the SH decomposition is not localized and is therefore not fully adapted to
the problem at hand (e.g., ODF sparsity). Nonetheless, SHs have been success-
fully applied to recently introduced deconvolution methods for fibre orientation
density (FOD) estimation [8–10], followed by a number of other, possibly more
signal-adapted bases [10]. It is interesting to note that deconvolution methods
for FOD estimation probe the signal locally, thanks to the finite spacial sup-
port of the convolution kernel, which allows for sparse representations. However,
the low-pass nature of this kernel makes the deconvolution methods extremely
susceptible to noise. Posing additional constraints, such as positivity and regu-
larity [9, 10], is thus imperative for reliable FOD reconstruction. A good side of
these deconvolution techniques is that they can yield accurate FOD estimates
even at relatively low b-values, as well as they do not necessitate multiple b-value
acquisition schemes. Recently, Michailovich et al. [11], derived an elegant frame-
work for multiscale ridgelet analysis of HARDI signal. Using matching pursuit
technique, the authors managed to reduce the representation of the signal to as
little as 10 basis functions in the defined ridgelet frame.

In our study, designed in parallel and conducted independently of [11] (as well
as postulated on different starting points, and somewhat different final goals),
we propose to denoise and sharpen ODF directly, employing multiscale spherical
wavelet analysis. Nonetheless, despite its different spirit, a part of our approach
appears to be directly linked to a segment of the study of Michailovich et al.
Herein, we show this association and adopt a part of the method (the ridgelet
construction) from [11], to avoid signal integration over perpendicular planes.

We explicitly search for the relevant and localized diffusion information on
multiple scales. The algorithm we employ is an extension of the well known
“à trous” algorithm from 2D to the sphere [12]. It is an undecimated (hence,
redundant) wavelet transform, with cubic B-spline scaling function, defined on
the sphere. The transformation redundancy actually helps us to avoid Gibbs
aliasing inherent to orthogonal or bi-orthogonal basis [13]. Also, although the
explicit data reconstruction may not be mandatory for a number of applications
(e.g., the FOD estimation), the positive side of the algorithm is that it is fully
invertible (unlike some other spherical wavelet algorithms [12]), and that it allows
us to introduce data conditioned constraints for the reconstruction. By linking
the wavelet analysis in ODF “space” with a similar analysis in the signal space
via Funk-Radon transform, we define a framework to probe the HARDI data in
such a way that our study of the signal results directly in a sparse representation
of angular content of diffusion. Since our preliminary study on spherical wavelets
included experiments on HARDI signal, we start out by reviewing them, to
subsequently pass on to the main subject of this report.
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(a) (b)

Fig. 1. Physical phantom at: (a) 90◦, and (b) 45◦ (fast spin-echo map and ROI)).

2 Methods

2.1 Data acquisition: We demonstrate the method on two real physical phan-
toms [14], emulating two fibre bundles crossing at 45◦ and 90◦, respectively [14].
The phantom data were acquired on a 1.5T Signa MR system (GE Healthcare,
Milwaukee), TE/TR =130ms/4.5s,12.0s (45◦ and 90◦ phantom, respectively),
BW=200KHz. To enhance the SNR (keeping SNRmin > 4), large voxel dimen-
sions were used (FOV = 32cm, matrix size of 32x32). We analyze the data
acquired at two b-values of b = 2000/8000 smm−2, along 4000 uniformly dis-
tributed orientations (see Fig. 1). The method is also applied to a real data set,
acquired on a 1.5T Signa MR system (GE Healthcare, Milwaukee), TE/TR=100.2
ms/19s, BW=200KHz, FOV=24cm on a 128x128 matrix, TH=2mm, 60 axial
slices, b = 0/3000 smm−2 (SNR ≈ 2), 200 uniformly distributed orientations.
This dataset is part of the publicly available HARDI database [15].

2.2 Spherical wavelet transform of HARDI: For preliminary tests of HARDI
signal decomposition of diffusion phantoms, we used an undecimated, spheri-
cal wavelet transform. For the herein described application, we employed an
isotropic transform, with cubic B-spline scaling function. This function is shown
to be very close to Gaussian, converges to zero rapidly, and in addition, it ful-
fills the dilation equation [12]. The algorithm is derived directly from the Fast
Fourier Transform (FFT)-based wavelet transform [13], and being defined on
the sphere, it relies on SH transform. The scaling function, Φlc(θ, φ), where lc
is the cutoff frequency, and where (θ, φ) follow the physics convention (i.e., θ is
longitude and φ is azimuth) exhibits azimuthal symmetry, and thus, its spherical
harmonics transform does not depend on the phase m:

Φlc(θ, φ) = Φlc(θ) =

lc
∑

l=0

Φ̂lc(l, 0)Yl,0(θ, φ), (1)

where Yl,m are the SH basis functions, and Φ̂lc is the SH transform of Φlc .

This greatly simplifies the convolution with HARDI signal h(θ, φ), which
reduces to:

ĉ0(l, m) = ̂(Φlc ∗ h)(l, m) =

√

4π

2l + 1
Φ̂lc(l, 0)ĥ(l, m), (2)

227



where operator ∗ stands for the convolution, ĉ0(l, m) are the SH coefficients of
the resulting convolution corresponding to order l, and phase number m, and
ĥ(l, m) are the SH coefficients of HARDI signal h.

The multiresolution decomposition of h is performed on a dyadic scale, by
convolving h with the rescaled versions of the scaling function Φlc (dyadically
dividing the cutoff frequency lc): cj = Φ2−j lc ∗ h, where j ( j = 1 . . . J ) is
the scale, and Φ2−j lc is a rescaled Φlc with 2j times lower cutoff frequency. The
decomposition can be done recursively as cj+1 = cj ∗ fj (setting c0 = h), where
fj represents a low pass filter associated to each scale j, is a function of the

scaling function Φlc , and whose SH transform F̂j is defined as follows:

F̂j(l, m) =







Φ̂
2
−(j+1)

lc
(l,m)

Φ̂
2−jlc

(l,m)
if l < 2−(j+1)lc and m = 0

0 else
(3)

Following the approach of the “à trous” algorithm, the wavelet coefficients
are defined as the difference between two consecutive low-pass filtered versions
of h:

wj+1 = cj − cj+1, (4)

This relation implies that the high-pass filter g to obtain the wavelet coeffi-
cients directly, is given in SH base by: Ĝj(l, m) = 1−F̂j(l, m), where fj is defined
in SH, as in (5) above, at each scale j. The scaling function itself is defined in
SH space: Φ̂lc = 3

2
B3(

2l
lc

), and B3(x) = 1

12
(|x − 2|3 − 4|x − 1|3 + 6|x|3 − 4|x +

1|3 + |x+2|3). The eq. 4 above implies a straightforward reconstruction scheme:

c0(θ, φ) = cJ (θ, φ) +
J

∑

j=1

wj(θ, φ), (5)

However, the basis redundancy necessitates the usage of additional con-
straints for synthesis. For this preliminary application to HARDI, we followed the
same algorithm as in [12]. We impose a least squares constraint to the solution

at each scale and obtain the following, recursive relation: ĉj = ĉj+1

¯̂
F + ŵj+1

¯̂
G,

where
¯̂
F and

¯̂
G are filters conjugate to F̂ and Ĝ (defined above).

Wavelet coefficients filtering To meet the request on data sparsity (which
directly leads to their compression), we introduce an additional step that follows
after the signal decomposition. This step concerns wavelet coefficients shrinkage
(or filtering), which is, further, shown to be extremely effective in data denoising
and contrast sharpening [16]. Wavelet filtering is, in general, a non-linear trans-
formation of the wavelet coefficients, at each analyzed scale. It is well known
that with the aim of sparse signal representation, the filtering should be done
by minimizing the L0 norm of these coefficients. It is also known that the L0
minimization leads to a NP-hard problem, and that the minimization of L1 norm
results in the sparsest solution, closest to the one obtained by L0 minimization.
It is worthwhile noting that if the wavelet basis were orthogonal, filtering based
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on hard thresholding would provide us with the exact solution to the L0 mini-
mization [13]. Since the noise of diffusion weighted MR in each direction follows
Rician distribution, it is difficult to estimate the exact distribution of noise on
wavelet coefficients that is, at each scale, given as a convolution of noise over
different directions with the wavelet band-pass filter. Hence, to define a 95%
threshold for wavelet coefficient shrinkage, we perform permutations of signal
coefficients along different directions, calculate the wavelet coefficients of thus
synthesized signals, order them increasingly by their magnitude, and locate the
value at 95%. The average of this value from all permutations defines the 95%
threshold. At each wavelet scale we preserve only those coefficients whose mag-
nitude is larger than the threshold. This way, the signal is denoised, and the
number of coefficients for its final representation is highly reduced.

2.3 Spherical wavelet transform of ODF: The cubic B-spline based wavelet
transform of HARDI signal is proven useful for data compression, but as afore-
mentioned, that is not our final goal. We are rather interested in obtaining a
sparse representation of ODF (or similarly, a sparse representation of FOD).
This may show quite beneficial for fibre tracking applications. If we assume that
ODF is given as a finite sum of probability distribution functions on the sphere,
where each of these functions describes the angular probability of finding a WM
fibre bundle along a predefined set of directions (centered at a prescribed direc-
tion) [7], then a natural decomposition of ODF would be onto a basis of such
functions. Typically, for a fibre bundle oriented along a certain direction d, its
contribution to ODF in the observed voxel is thought to be a Gaussian func-
tion on the sphere, centered at d (under the assumption of gaussianity of the
diffusion process [7]). However, due to complex WM architecture, including dif-
ferent types of fibre-crossings and similar non-trivial fibre configurations, as well
as due to limited capacity of imaging tools to resolve such configurations, the
bandwidth of the elementary ODF-building function cannot be assumed uniform
across the imaged WM. For that reason, we favor multiscale approach for ODF
analysis. Consequently, we employ spherical wavelet transform to ODF, similarly
to what has been described for HARDI signal. Despite our aspiration to decom-
pose ODFs, we would like to work directly on HARDI signal by incorporating
the link between the signal and its ODF over Funk-Radon transform, and thus
avoid noise propagation. Since both the HARDI signal and its ODF are sym-
metric and real functions on the sphere, they can be represented by modified SH
basis,Yn(l, m), that is symmetric and real, taking into account only pair orders
l, as defined in [7].

Further, this signal symmetry also allows us to symmetrize cubic B-spline
scaling function Φ, and its associated wavelet function W . As the latter two are
also real, they can be likewise represented by the same symmetric and real SH
basis. Letting u represent a unit direction on the sphere and N the maximal
order of modified SH basis corresponding to the chosen cutoff frequency lc, we
first express the convolution on the sphere between the ODF, Ψ , and scaling
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function Φ as

(Ψ ∗ Φ)(u) =
N

∑

n=1

Ψ̂nΦ̂nYn(u). (6)

Then, the Funk-Radon transform (FRT) [2] of the signal, expressed as great circle
integrals over perpendicular directions to u, is solved analytically [7] yielding:

Ψ(u) =

∫

v⊥u

δ(u, v)h(v)dv

︸ ︷︷ ︸

FRT

=⇒ Ψ̂n = 2πPln(0)Ĥn, (7)

where δ is spherical Dirac delta function, h the HARDI signal defined on the
sphere, Pln the Legendre polynomial of order ln corresponding to order n of the
modified SH basis, and Ψ̂n, Φ̂n, and Ĥn stand for the nth component of the
spherical harmonic transform of Ψ , Φ, and h respectively. Eqs. 6 and 7 imply the
following identity:

(Ψ ∗ Φ)(u) =

N
∑

n=1

2πPln(0)ĤnΦ̂nYn(u), (8)

On the other hand, if we observe the integral of the convolution of the signal
h and scaling function Φ over the great circle in the plane perpendicular to u,
we can derive the following identity :

∫

v⊥u

δ(u, v)(Φ ∗ h)(v)dv =

∫

v⊥u

δ(u, v)

N
∑

n=1

Φ̂nĤnYn(v)dv

=

N
∑

n=1

Φ̂nĤn2πPln(0)Yn(u),

(9)

It follows from Eqs. 6-9 that (Ψ ∗ Φ)(u) =
∫

Ω
δ(u, v)(Φ ∗ h)(v)dΩ.

Since spherical wavelets were defined as a difference of two scaling functions
at successive scales (Eq. 4), the identity in Eq. 8 is equally applicable to wavelet
functions W . This means that projecting ODF onto the spherical wavelet ba-
sis (defined in Sec. 2.2) equals to projecting the HARDI signal onto the same
basis and integrating those HARDI signal projections along the great circles
perpendicular to given ODF directions.

Michailovich et al [11], elegantly derived a ridgelet frame in the signal space,
with the ridgelet-generating function based on Gauss-Weierstrass kernel. They
decompose the signal onto the ridgelet frame, and use the obtained ridgelet coef-
ficients to decompose the ODF onto the Funk-Radon duals of the ridgelet frame.
We now show that the integration over great circles of HARDI signal convoluted
by cubic B-spline scaling function equates to HARDI signal convolution by the
ridgelet generated from cubic B-spline scaling function. Following the outline
for ridgelet generation described in [11], and using the identity from eq. 1, the
ridgelet generating function ΦB based on the cubic B-spline scaling function is
defined as:
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ΦB(u) =

∫

Ω

δ(u, v)Φ(v)dv =
N

∑

n=1

Φ̂n2πPln(0)
︸ ︷︷ ︸

Φ̂Bn

Yn(u) (10)

and thus the Eqs. 6 and 10 result in:

(Ψ ∗ Φ)(u) =

N
∑

n=1

Φ̂BnĤnYn(u), (11)

Similar to wavelet definition, we define the ridgelets as the difference of
ridgelet generating functions ΦB at two successive resolution scales j, WRj+1 =
ΦBj − ΦBj+1. Then, directly from equation 11:

(Ψ ∗ W )(u) =

N
∑

n=1

ŴRnĤnYn(u), (12)

In words, to find the projections of ODF onto the wavelet basis, we directly
project HARDI signal onto the ridgelet basis:

Ψ(u) = (Ψ ∗ ΦJ )(u)ΦJ +

J
∑

j=1

(Ψ ∗ Wj)(u)Wj

= (h ∗ ΦBJ)(u)ΦJ +

J
∑

j=1

(h ∗ WRj)(u)Wj

= Ψ(u)L + Ψ(u)H ,

(13)

where ΨL and ΨH denote the low and high frequency components of Ψ . Decom-
posing ODF in such a manner, we can proceed by wavelet coefficient filtering,
similar to what we did with wavelet coefficients of HARDI. This way, we ob-
tain a sparse and denoised ODF. However, despite potentially high rate of ODF
wavelet shrinkage, the low frequency component is still present. In our opinion,
for the appropriately chosen resolution levels for ODF decomposition, this low
frequency component may be limited to sufficiently low angular frequency band
that effectively carries no relevant information on fibre bundle angular distribu-
tion. Our main goal is to extract a small number of interesting ODF components
that would facilitate WM fibre tracking and similar applications. Thus, instead
of presenting our sparse angular distribution function by both low and high fre-
quency component, we rather focus on the “high” frequency part only, effectively
neglecting the lowest frequency ODF contribution. In other words, we focus on
sharp ODF, ΨH , as opposed to ODF Ψ in its entirety. In this respect, our sharp
ODF is expected to resemble the FOD that is in essence a sort of a high-pass
filtering adapted to data. For that reason, we compare our results with both
the analytical SH q-balls method [7], and the FOD reconstructions from spher-
ical deconvolution (SD) [8, 9]. Note that for the ridgelet decomposition of the
HARDI signal, the algorithm can no longer be recursive (due to cancellation of
the 2πPln(0) term). We thus modified the original recursive analysis scheme and
employ the ridgelet/wavelet filters directly to the base-scale signal/ODF.
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(a) (b) (c) (d)

Fig. 2. Spherical wavelet compression of HARDI signal. (a) Original HARDI signal
corresponding to a 45◦-crossing voxel of the physical phantom shown in Fig. 1; (b)
Synthesized and reduced HARDI signal after the wavelet analysis and hard thresholding
of the wavelet coefficients at 95%, at each scale; (c) HARDI signal (magenta) and
residuals (light green) per direction on the sphere; (d) Residuals on the sphere (higher
values shown in red, lower in blue).

3 Experiments and Results

3.1 Spherical wavelet transform of HARDI: The method for wavelet
decomposition, followed by the hard thresholding of the wavelet coefficients and
synthesis upon the reduced wavelet basis, was applied to the HARDI signal of a
central voxel of the 45◦-crossing phantom (shown in Fig. 1). The cutoff frequency,
lc, was set to 12, and the analysis was performed at two scales. Fig. 2 depicts
the result of the analysis. The magnitude and shape of the residuals indicate a
reasonably good accord between the chosen wavelet basis and the data.

3.2 Spherical wavelet transform of ODF applied to physical phantoms:

We applied our method for spherical wavelet decomposition of ODF to 45◦-
and 90◦-crossing real physical phantoms. To enable the subsequent comparison
of results with the results of similar analysis performed on the real data of a
healthy volunteer, we subsampled the directions to the same set of 200 directions
as our real dataset (Sec. 2.1). Also, to adapt our analysis frequency bands to
the frequency content of the data, the original cubic B-spline kernel was twice
dilated in the frequency space. The data were decomposed onto 2 resolution
scales, and the cutoff frequency was set to lc = 12. Figure 3 depicts the results
for the 45◦ and 90◦ crossing phantom at different b-values. Note that the result
in (g) was obtained on the 45◦-crossing phantom that was resampled to 500
uniform directions. In that case, a cutoff frequency lc = 30 was used to show the
resolution necessary to resolve a 45◦ fibre crossing at b = 2000smm−2 since it
could not be resolved using lower frequencies. To employ such a high frequency,
the number of directions had to be increased proportionally. For comparison
purposes, we also reconstructed analytical q-ball as well as two types of FODs
(following the algorithms of [8, 9]) with filtered spherical deconvolution (FSD)
and with constrained spherical deconvolution (CSD), at different order l. The
low-pass filter for FSD was [1 1 1 0.5 0.1 0.02 0.002] applied to SH order l = [0 2
4 6 8 12]. For CSD, the regularization parameter λ = 1, threshold for positivity
constraint τ = 0.1, and convergence was set to 10 iterations.
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3.3 Spherical wavelet transform of ODF: Similar analysis was performed
on a slice of a real data set, only for these experiments, the cutoff frequency was
set to lc = 8, to diminish the high-frequency noise as much as possible. After the
sharp ODF is reconstructed, the negative values are hard thresholded to zero.
The results are shown in figure 4.

4 Discussion

In this study, we employed the methods for HARDI and ODF mutliscale de-
composition based on the spherical wavelet and rigdelet analysis. We tested
the methods on real physical phantoms and real brain data. The experiments
allowed us to demonstrate the algorithm efficiency to represent the relevant fea-
tures with only scarce number of wavelet coefficients, thus providing a high level
of data compression and denoising. For example, a reconstruction of the signal
or ODF/FOD with a SH basis of order 12 required 91 coefficients whereas our
reconstrustion used 20 spherical wavelet coefficients (10 per scale).

More importantly, our approach for wavelet-based ODF sharpening proves
to be efficient in extracting pertinent angular information, concealed by signal
spread out over relatively wide range of frequencies that cannot be seen with clas-
sical ODF alone. This may show valuable for WM fibre tracking. The results of
FOD working on similar frequency bands resemble our ODF sharpening results.
This is not surprising, since, as aforementioned, SD acts like a high-pass filter and
in that sense approaches the philosophy of wavelet analysis. Some of the results
on real physical phantoms suggest that SD outperforms wavelet-based decom-
position and sharpening, but one must bear in mind that SD filters are derived
directly from the data, which is much easier to do on physical phantoms, such
the ones employed in this study, than on real data. This is why, the estimated
kernel on real data may not be equally optimal for all the investigated regions.
It is possible that it should be defined differently depending on the region of the
brain. Hence, SD methods assume a deconvolution kernel that is data-dependent
and thus, “b-value dependent”, whereas our approach does not. Perhaps more
care needs also to be taken when defining wavelet scaling functions or rigdelet
generating functions, and render them more adaptive to the data, which is one
of the issue that we plan to address in future work. Finally, we find the tests on
real data rather encouraging. It appears that the problem that SD experiences at
high noise levels, does not affect wavelet analysis as much (despite the inherent
“Bessel”-blurring). In fact, thanks to the multiscale approach and denoising at
different resolution levels, our ODF sharpening technique outperforms SD, even
when we deal drastically with the negative values for the latter, and even with
no explicit constraints put on signal reconstruction from its significant wavelet
coefficients. Incorporating data adapted constraints will also take part in our
future work.

We would like to stress again that although there is a link between our work
and the work in [11], the two studied were conducted independently, in parallel
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and towards somewhat different targets. However, because the ridgelet frame
of [11] was well adapted to our approach, we adopted that part of the method,
as aforementioned. In addition, we showed the spherical wavelet method on the
real brain data for the first time (to our knowledge) and focused on the high
frequency decomposition of the ODF, which reveals interesting angular structure.
To conclude, this report was done with the aim of stressing the potential of
spherical, localized, and multiscale bases in HARDI analysis.
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45◦ crossing phantom at b = 2000 smm−2

sh-qball (a) (b) (c) (d) (e) (f) (g)

45◦ crossing phantom at b = 8000 smm−2

sh-qball (a) (b) (c) (d) (e) (f)

45◦ crossing, b = 2000 smm−2 45◦ crossing, b = 8000 smm−2

fSD fSD CSD CSD fSD fSD CSD CSD
l = 8 l = 12 l = 8 l = 12 l = 8 l = 12 l = 8 l = 12

90◦ crossing phantom at b = 2000 smm−2

sh-qball (a) (b) (c) (d) (e) (f)

90◦ crossing phantom at b = 8000 smm−2

sh-qball (a) (b) (c) (d) (e) (f)

90◦ crossing, b = 2000 smm−2 90◦ crossing, b = 8000 smm−2

fSD fSD CSD CSD fSD fSD CSD CSD
l = 8 l = 12 l = 8 l = 12 l = 8 l = 12 l = 8 l = 12

Fig. 3. ODF and FOD reconstruction for the 45◦ (rows 1-3) and 90◦ (rows 4-6) cross-
ing phantom. Rows 3 and 6 illustrate the spherical deconvolution (SD) profiles, filtered
(fSD) [8] and constrained (CSD) [9]. Shown are in rows (1, 2) and (4, 5): the full an-
alytical ODF (sh-qball) at order l = 12; (a) the full ODF Ψ reconstructed as a sum
of the ΨL and the thresholded ΨH (Eq. 13) (the maximum number of the significant
coefficients was 10 at both scales); (b) the scaling (Φ) coefficients of lowest resolu-
tion (scale j = 2); (c) the sharp ODF reconstructed with wavelet coefficients at both
scales after thresholding; (d) wavelet coefficients of the first resolution scale (highest
frequencies) after thresholding; (e) wavelet coefficients of the second resolution scale
after thresholding; (f) sharp ODF reconstruction using only the two highest magnitude
coefficients at each scale; (g) the sharp ODF reconstructed from 20 largest magnitude
wavelet coefficients at both resolution scales, for the HARDI signal subsampled to 500
uniformly distributed directions, and with lc = 30 (see the text for the explanation).
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sh-qball, l = 8 (a) (b)

(c) (d) (e)

fSD l = 4 fSD l = 6 CSD l = 6 +ve

CSD l = 12 T2-weighted + ROI CSD l = 12 +ve

Fig. 4. ODF and FOD reconstructions on real data. From left to right, and from top
to bottom: full ODF calculated analytically [7] in the SH space with l = 8; (a) full
ODF Ψ reconstructed as a sum of the ΨL and the thresholded ΨH (the maximum
number of the significant coefficients was 10 at both scales); (b) scaling coefficients at
lowest resolution (scale 2); (c) wavelet coefficients of the first resolution scale (highest
frequencies) after thresholding; (d) wavelet coefficients of the second resolution scale
after thresholding; (e) the sharp ODF reconstructed with wavelet coefficients at both
scales after thresholding. Last two rows illustrate filtered and constrained spherical
deconvolution (fSD, CSD) for low and high order reconstructions. ’+ve’ indicates that
the negative values were hard-thresholded to zero. The SNR of the real data diffusion
acquisition is quite poor and is a challenge for SD methods.
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Abstract. In this paper we extract the geometric characteristics from
an antipodally symmetric spherical function (ASSF), which can be de-
scribed equivalently in the spherical harmonic (SH) basis, in the symmet-
ric tensor (ST) basis constrained to the sphere, and in the homogeneous
polynomial (HP) basis constrained to the sphere. All three bases span
the same vector space and are bijective when the rank of the SH series
equals the order of the ST and equals the degree of the HP. We show,
therefore, how it is possible to extract the maxima and minima of an
ASSF by computing the stationary points of a constrained HP.
In Diffusion MRI, the Orientation Distribution Function (ODF), repre-
sents a state of the art reconstruction method whose maxima are aligned
with the dominant fiber bundles. It is, therefore, important to be able
to correctly estimate these maxima to detect the fiber directions. The
ODF is an ASSF. To illustrate the potential of our method, we take
up the example of the ODF, and extract its maxima to detect the fiber
directions. Thanks to our method we are able to extract the maxima
without limiting our search to a discrete set of values on the sphere, but
by searching the maxima of a continuous function. Our method is also
general, not dependent on the ODF, and the framework we present can
be applied to any ASSF described in one of the three bases.

1 Introduction

In Diffusion MRI there exist numerous state of the art reconstruction algorithms
which attempt to recover an integrated image by incorporating partial and di-
rectional information from diffusion weighted (DW) signals. The reconstructed

? Partially supported by the contracts ANR-06-BLAN-0074 ”Decotes” and INRIA-
ARC Diffusion-MRI.
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and integrated image is often represented as values on a sphere at every voxel.
The geometric characteristics of these antipodally symmetric spherical functions
(ASSF) provide a sub-voxel resolution superior to the raw DW-MR images.

There are numerous aquisition schemes, and many reconstruction algorithms,
that result in a number of distinct ASSFs, which represent different physical phe-
nomena. For example there exist Diffusion Tensor Imaging (DTI) [1] which repre-
sents the Apparent Diffusion Coefficient (ADC), Generalized DTI (GDTI) [2–4]
which also represents the ADC, Q-ball imaging (QBI) [5, 6] which represents the
Orientation Distribution Function (ODF), Spherical Deconvolution (SD) which
represents the fiber Orientation Density (fOD), and Maximum Entropy Spherical
Deconvolution (MESD) [7] which is a generalization of the Persistent Angular
Structure (PAS) method, and which recovers the angular structure of the particle
displacement probability density function; to enumerate a few methods.

For certain of these ASSFs, their geometric characteristics have direct physi-
cal consequences. For example the maxima of the ODF and the fOD correspond
to the fiber bundle directions. It is, therefore, important to be able to correctly
estimate the maxima of these ASSFs to detect fiber directions (see Fig-1).

Fig. 1. An antipodally symmetric spherical function (ASSF) reconstructed from DWIs.
The maxima of the ODF, for example, indicate fiber bundles. It is important to cor-
rectly estimate the maxima of these ASSFs.

It is common to analytically represent an ASSF in the Spherical Harmonic
(SH) basis – analytical QBI for example, or in the Symmetric Tensor5 (ST)
basis constrained to the sphere – DTI or GDTI for example. These bases are
bijective when the rank of the SH series equals the order of the symmetric tensor.
The basis of Homogeneous Polynomials (HP) constrained to the sphere, is also
bijective to the ST basis and spans the same vector space when the degree of the
HP equals the order of the ST. It is, therefore, possible to represent an ASSF
described in either the SH basis or the ST basis as a constrained HP.

In this paper, we take advantage of this constrained HP representation of an
ASSF, to extract the maxima of the ASSF, by computing the stationary points
of the constrained HP. We then rank the stationary points by their polynomial
values to extract the maxima of the ASSF (see Fig-2).
5 A symmetric tensor of any order requires that the coordinate array representating

the tensor be invariant under all permutation of indices. It is often also referred to
as a supersymmetric tensor.
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Fig. 2. An antipodally symmetric spherical function (ASSF) can be represented in
three equivalent bases – spherical harmonics, symmetric tensor constrained to the
sphere, or homogeneous polynomial (HP) constrained to the sphere. As a constrained
HP it is possible to compute its stationary points to extract the maxima of the ASSF.

We illustrate our method on the ODF by computing its maxima, which cor-
respond to fiber bundle directions. This method is, however, independent of the
ODF, or of the ODF estimation process. It is, therefore, applicable to any ASSF
that can be represented in either the SH, ST or HP basis. Also, since it is inde-
pendent of the estimation process of the ASSF (ODF for example), this method,
as we shall see, can be used to quantize the error of the estimation process of
the ASSF. This can have important implications for evaluating the quality of
the estimation process (ODF for example).

Another strength of our method, lies in the fact that it is not limited to
searching for the maxima of the ASSF in a finite set of values on the sphere, but
rather searches the maxima of a continuous function.

2 Methods

We begin the methods section by establishing the equivalence of the SH, ST and
HP bases when describing an ASSF. First let us consider the ST and the HP
bases, and then the HP and SH bases.

2.1 SH basis, constrained ST basis, constrained HP basis There is a
useful connection between the space of STs and the space of HPs, e.g.[8, 9]. A
symmetric tensor of dimension n and order d has a one-to-one correspondance
with a homogeneous polynomial in n variables of total degree d. For example if
we consider a 4-way array of dimension 3, then a tensor element aijk`, is associ-
ated to the monomial aijk`xixjxkx` and the whole tensor to the homogeneous
polynomial

∑3
i=1

∑3
j=1

∑3
k=1

∑3
`=1 aijk`xixjxkx`. In other words, for an order

d symmetric tensor of dimension n, an individual index i, j, k, . . . , can take
values from 1 to n, and the total number of indices qualifying a tensor element
a (in the case of aijk`, it is four) has to be d. A similar construction exists for
non-symmetric tensors and multi-homogeneous polynomials.
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To illustrate this through an example, consider the 2×2×2 tensor, i.e. order
three symmetric tensor A of dimension two, with a111 = 1, a121 = a211 = a112 =
2, a221 = a122 = a212 = 3 and a222 = 4. The tensor consists of two 2 × 2 slices,
i.e.

A(: : 1) =
[

1 2
2 3

]
and A(: : 2) =

[
2 3
3 4

]
.

The element a111 maps to the monomial x3
1, the elements a121, a211 and a112

map to the monomial 2x2
1x2, the elements a221, a122 and a212 map to the mono-

mial 3x1x
2
2, and a222 maps to 4x3

2. Finally, A corresponds to the homogenous
polynomial f = x3

1 + 6x2
1x2 + 9x1x

2
2 + 4x3

2.
Now let us consider the SH basis and the HP basis. Spherical functions are

naturally decomposed and expressed in a SH basis because SHs form an or-
thonormal basis for complex functions on the sphere and have many properties
that facilitate computation [10, 11]. The correspondence between coefficients of
the real and symmetric SH series and the coefficients of the HP constrained to
the sphere are derived here.

In [2, 12], it was proved that both even order SHs up to rank d and the
HPs of degree d restricted to the sphere are bases for the same vector space. It
is, therefore, possible to define a general linear transformation M between the
two bases which shall be recomputed here by expressing the coefficients of the
modified SH series cj in terms of the coefficients of the homogeneous polynomial.

Let an ASSF S be decomposed in the modified SH basis such that [10, 11, 2,
12],

cj =
∫

Ω

S(g(θ, φ))Yj(θ, φ)dΩ, (1)

where g(θ, φ) is a normalized radial direction in spherical coordinates and Yj is
the jth coefficient of the real and symmetric SH basis [12].

Given a homogeneous polynomial P of degree d in three variables and con-
strained to the sphere

P(x = [x1, x2, x3]t) =
3∑

i1=1

3∑
i2=1

· · ·
3∑

id=1

ai1i2···id
xi1xi2 · · ·xid

, (2)

where ai1i2···id
are also the elements of the corresponding order d symmetric

tensor A of dimension three, and x is of unit length to constrain P to the
sphere; P can be rewritten in the form

P(x) =
N∑

k=1

µkak

d∏
p=1

xk(p), (3)

where N are the number of independent elements of A, ak is the kth indepen-
dent element of A, µk is its corresponding multiplicity, and

∏d
p=1 xk(p) is the

corresponding monome (see[12]).
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If P also describes the same ASSF S, then S in (1) can be replaced by (3) to
obtain an expression in matrix form, where cj is the jth element of the vector
C = MA and d is the number of elements in the SH basis:

cj =
N∑

k=1

ak

∫
Ω

µk

d∏
p=1

xk(p)(θ, φ)Yj(θ, φ)dΩ =⇒ C = MA , where (4)

M =



µ1

∫
Ω

d∏
p=1

x1(p)(θ, φ)Y1(θ, φ)dΩ . . . µN

∫
Ω

d∏
p=1

xN(p)(θ, φ)Y1(θ, φ)dΩ

...
. . .

...

µ1

∫
Ω

d∏
p=1

x1(p)(θ, φ)YN (θ, φ)dΩ . . . µN

∫
Ω

d∏
p=1

xN(p)(θ, φ)YN (θ, φ)dΩ


.

(5)
It has been shown in [12] that the N x N square matrix M is a change-of-

basis matrix, and is invertible. Therefore, given a vector C of SH coefficients,
M−1 can be used to compute the coefficients of the constrained HP.

This establishes the bijectivity between the the SH basis, the constrained ST
basis, and the constrained HP basis.

2.2 Constrained Polynomial maxima extraction Now that it is possible
to express an ASSF in terms of a HP constrained to a sphere, the problem
of determining the maxima of the ASSF reduces to computing the stationary
points of the homogeneous polynomial P on the unit sphere. Once the stationary
points are all computed, they can be sorted by their values in P to threshold
and extract the maxima.

Therefore, to be more specific the following non-linear optimization problem
has to be solved

maxx P(x) subject to ‖x‖2
2 − 1 = 0, (6)

where x = (x1, x2, . . . , xn) are the variables and P is of degree d, i.e. P ∈ R[x]d.
In our case, d is even and n = 3.

The size of the problem (6) (degrees of the polynomials involved, number
of solutions) is relatively small, and thus there is no need to rely on general
algorithms for polynomial optimization subject to constraints, e.g. [13]. Instead,
we use the method of Lagrange multipliers for our problem. The reader may
also refer to Karush-Kuhn-Tucker conditions [14] that provide the necessary
conditions for the solution to (6) to be optimal.

We consider the polynomial F (x, λ) = P(x) − λ (‖x‖2
2 − 1). Then, the solu-

tion(s) of (6) is (are) among the solutions of the system

∂F

∂x1
=

∂F

∂x2
= · · · = ∂F

∂xn
= ‖x‖2

2 − 1 = 0. (7)

It is easy to see that the equations in (7) are linear in λ. Thus one can be
solved for λ and substituted in the others. The derived system is equivalent to
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the system obtained by requiring the vectors ∇P and x = [x1, x2, . . . , xn], to be
parallel. This yields the system∣∣∣∣∣ ∂P

∂xi
xi

∂P
∂xj

xj

∣∣∣∣∣ = 0 for 1 ≤ i < j ≤ n and ‖x‖2
2 − 1 = 0.

This system describes the values x that maximize P on the unit sphere but
also the other points where P has local extrema. For n = 3 variables and P a
polynomial of degree d = 4, we obtain 3 equations of degree 4 and one of degree
2. One of them (of degree 4) being redundant, by Bezout’s theorem this system
has at most 4×4×2 = 32 solutions. If x is a solution, them −x is also a solution.
Thus the system defines at most 16 directions for the local extrema of P.

We choose to solve the corresponding systems combining two of the state of
the art algorithms in polynomial system solving, i.e. subdivision methods and
generalized normal forms algorithms. We solve the system using both methods
and keep the best solutions by evaluating them in the polynomial system. The
main virtue of both the algorithms is that they rely on algebraic techniques and
thus unlike numerical iterative methods for polynomial system solving, they are
neither slow, and nor do they diverge when dealing with ill conditioned systems.

Subdivision methods [15] approximate only the real solutions. Initialy, they
consider a hyper-box where all the (real) solutions of the system are searched
(here one can take the box [−1, 1]3 which contains the unit sphere) and they
subdivide it until a specified precision is reached, excluding boxes which do
not contain roots. Preconditionning techniques are exploited to speed up the
root approximation process. Bounding techniques are used to handle properly
polynomials with approximate coefficients.

The other family of algorithms that can also be applied to polynomials with
approximate coefficients is based on generalized normal form computations [16],
which extend classical Gröbner basis methods [17]. Unlike Gröbner basis, this
algorithm is numerical stable and thus suitable for solving polynomial systems
with approximate coefficients. The method exploits the multiplicative structure
of the quotient algebra of the polynomial ring by the (zero dimensional) ideal
generated by a system of polynomial equations. Eventually, the resolution of the
polynomial system is transformed into a generalized eigenvalue and eigenvector
problem [18]. In practice, all the complex roots are computed within some tol-
erance, and those which are (almost) real are kept.

2.3 Analytical spherical harmonic estimation of the ODF Having estab-
lished the theoretical framework of our method, we would like to illustrate it
on a concrete example. We pick for that purpose the ODF computed analyti-
cally in the SH basis from QBI. The ODF is an ASSF. We, therefore, present
for completeness, the analytical ODF estimation from High Angular Resolution
Diffusion Imaging (HARDI) aquisitions. Our approach is, however, independent
of the ODF or the ODF estimation process, and can be applied to any ASSF
expressed in one of the SH, the ST or the HP bases.
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The diffusion ODF is defined as the angular portion of the averaged diffusion
PDF. It can be obtained from diffusion spectrum imaging (DSI) or from QBI. [5]
showed that it was possible to reconstruct the diffusion ODF directly from raw
HARDI measurements on a single sphere by the Funk-Radon transform (FRT).
The ODF is intuitive because it has its maximum(a) aligned with the underlying
population of fiber(s). [6, 19] proposed a simple analytical spherical harmonic
(SH) reconstruction of the ODF. The FRT integral can be evaluated analytically
which leads to a linear, robust and computationnally fast ODF reconstruction.

Letting Y m
d denote the SH of rank d and degree m (m = −d, ..., d) in the

standard basis and Yj (j(d, m) = (d2 + d + 2)/2 + m) be the SH in the modified
real and symmetric basis [12, 6], the analytical ODF solution is

Ψ(θ, φ) =
N∑

j=1

2πPd(j)(0)cj︸ ︷︷ ︸
fj

Yj(θ, φ), (8)

where N = (d + 1)(d + 2)/2, cj are the SH coefficients describing the input
HARDI signal [12], fj are the SH coefficients describing the ODF Ψ , dj is the
rank associated with jth SH basis element (for j = {1, 2, 3, 4, 5, 6, 7, ...}, dj =
{0, 2, 2, 2, 2, 2, 4, ...}) and Pdj

a Legendre polynomial.

3 Experiments

For our initial experiments, we test our method for a SH basis of rank-4, or
equivalently a ST basis of order-4, or equivalently a HP basis of degree-4.

We test on synthetic data with known ground truth maxima directions. We
perform two types of tests along similar lines. We consider an ASSF to be a
set of scalar values defined on a sphere. In the first type of tests we generate a
spherical function with four maxima (antipodally symmetric, therefore, we can
consider the maxima to be along two distinct directions), to test our approach
on a purely mathematical framework. We generate the spherical function by first
randomly choosing the two maxima-directions separated by a pre-defined angle.
Along these directions (and their opposite directions) we then set the function
to have value 1, and everywhere else on the sphere to have value 0. Essentially
we generate a spherical dirac function. We then fit a rank-4 SH function to
this spherical data, for our maxima extraction tests. We call this the dirac test
(section-3.1).

In the second type of tests, we use the multi-tensor model [12], to synthet-
ically generate DW signals with fiber crossings. We simulate one and two fiber
voxels with known ground truth directions. In the case of two fiber voxels, the two
fibers have equal volume fractions are are separated by 90o. The diffusion tensor
profile used for a fiber has diag(D) = [1390,355,355]x10−6 mm2/s, FA = 0.7
which corresponds to our real dataset diffusion profile. This synthetic data gen-
eration is relatively standard and has the advantage of producing known ground
truth ADC and ODF profiles as well as ground truth fiber orientations. We add
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no noise to the signal. We then estimate the analytical ODF in the SH basis
with rank-4 from this signal, on which we perform the maxima extraction tests.
We call this the ODF test (section-3.2).

Both tests, essentially involve three steps, which can be summarized as:

1. A set of ground truth directions {di} are used to generate either a set of
values on the sphere (section-3.1) or DW signals (section-3.2) such that the
maxima of the set of values on the sphere or the ODF estimated from the
DW signals respectively, have their maxima alligned with {di}.

2. In section-3.1 we estimate a rank-4 SH series to best fit the set of values
on the sphere. In section-3.2 we estimate an ODF of rank-4 from the DW
signals.

3. We then convert the SH coefficients to the HP basis (or the equivalent ST
basis) and formulate the constrained polynomial problem, which we call F .
We compute its stationary points {Rj}, and sort them by their polynomial
value, and then threshold the list to retrieve a set of computed maxima {d′

k}.

We then proceed to compare {d′

k} to {di}. This is only possible when k = i.
When the two sets are comparable, we pair the computed directions with the
ground truth directions such that their difference is minimized. Then we first
compute the angle between di and d

′

i in degrees which we denote as ang(di, d
′

i)
o.

If this angle is non zero, we proceed to quantize the errors in steps 1, 2 and 3.
Since, {d′

i} are the stationary points of F , the value of ||∇F(d
′

i)|| indicates the
amount of error in step 3. Computing ||∇F(di)|| on the other hand indicates
the amount of error in steps 1 and 2. In both the dirac tests and the ODF tests
the error in step 1 can be considered to be nominal, since in the dirac tests the
spherical function is analytically generated, and in the ODF tests we don’t use
any noise while generating the DW signals. So essentially ||∇F(di)|| is a measure
of the error in step 2, which for the dirac tests is a truncated SH fit, and for the
ODF tests is a truncated ODF estimation.

3.1 Dirac test In these tests we have four antipodally symmetric maxima,
or two distinct maxima-directions (the two other are the opposites of these),
separated by a pre-decided angle. We test our method for separation angles of
65o and of 90o. We construct one hundred test cases for each separation angle,

ang(d, d
′
)o ||∇F(d

′
)|| ||∇F(d)||

m v m v m v

65o 0.281947 0.165978 4.70385e-11 2.91655e-21 5.00318e-05 3.28434e-10

90o 0.0308949 0.0242211 4.00631e-11 2.82319e-21 1.09740e-05 1.55176e-11

Table 1. (m=mean, v=variance). The correct number of maxima were extracted.

||∇F(d
′
)|| gives a measure of the error in step 3, and ||∇F(d)|| gives a measure of the

error in step 2. The error in step 3 is orders of magnitude smaller than the error in
step 2. Our approach can be used to quantify the error in step 2 due to the truncation
of SH series.
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but randomly chosen maxima-directions, to compute the maxima directions and
to compare the errors in steps 2 and 3. Since two maxima are extracted, for all
the errors computed, such as ang(di, d

′

i)
o, ||∇F(di)||, and ||∇F(d

′

i)|| we keep the
maximum of the two errors in each test (and remove the index i). The results
are presented in Table-1.

In each of these tests we extract the correct number of maxima. We, however,
notice that for a rank-4 SH estimation of the dirac spherical function, if we
decrease the separation angle from 65o, then the maxima were not prominently
distinct any more, and we did come across cases when the number of estimated
directions didn’t match the number of ground truth directions. We suspect,
therefore, that our approach can be also used to determine the angular resolution
of a truncated SH series, depending upon the truncation length.

We also realise that the error in step 3: ||∇F(d
′
)||, is orders of magnitude

smaller than the error in step 2: ||∇F(d)||. Again our approach can be useful
in determining the goodness of fit of a truncated SH series to a set of scalars
defined on a sphere.

3.2 ODF test In these tests we used the multi-tensor model [12] to generate
DW signals, from where we estimate the ODF in the SH basis with rank-4.

We again construct one hundred test cases for both the one fiber and the
two fiber simulations, and the ground truth directions are chosen randomly. The
results are summarized in Table-2. Again in each of the tests we extract the
correct number of maxima. We notice that the mean error in step 2 of the ODF
tests: ||∇F(d)|| (Table-2), i.e. the ODF estimation in the truncated (rank-4) SH
basis, entails an error that is orders of magnitude larger than the mean error
in step 2 of the dirac tests: ||∇F(d)|| (Table-1). This can be explained by the
fact that the ODF estimation is a much more complex process than a simple
rank-4 SH fit. The error in the ODF estimation step is of course much larger
than the error in step 3: ||∇F(d

′
)|| (Table-2), where we compute the maxima

using the homogeneous polynomial representation. A graphical illustration of
our approach from this test can be seen in Fig-3a.

We also tested our method on real data[20] and successfully extracted max-
ima from ODFs with various fiber configurations. We tested in a region of interest
(ROI) of a coronal slice, where complex fiber structures are known to exist in

ang(d, d
′
)o ||∇F(d

′
)|| ||∇F(d)||

m v m v m v

1-Fib 0.0104625 4.22152e-05 2.07053e-11 1.49751e-21 0.000490269 9.16956e-08

2-Fib90o 0.0254106 3.85231e-05 5.5777e-11 1.7602e-21 0.0036013 2.4827e-06

Table 2. (m=mean, v=variance). The correct number of maxima were extracted from

the ODF estimation. ||∇F(d
′
)|| gives a measure of the error in step 3, and ||∇F(d)||

gives a measure of the error in step 2 – the ODF estimation. The error in step 3 is
orders of magnitude smaller than the error in step 2. Our approach can be used to
quantify the error in the ODF estimation due to the truncation of SH series.

245



Fig. 3. Our approach applied to extract the maxima of an ODF in the SH basis with
rank-4. a) We test on synthetic data, the dark blue lines are the ground truth directions.
In the more prominent green are the computed directions. b) We test on a coronal slice
of a real dataset within a region with complex fiber crossings. We see highlighted the
fibers extracted by our method. We see that our approach can successfully extract the
maxima of the ODF which are the fiber directions.

the white matter. The ROI contained fiber bundles from the cortico-spinal tract,
superior longitudinal fibers (traversing the plane) and the corpus callosum (in
the plane). The visual results can be viewed in Fig-3b.

Finally on the real dataset we compared our method against a discrete ap-
proach[6] which searches for the maxima on the discretized mesh of the ODF.
For the discrete approach we used an icosahedron scheme on the sphere with
tesselations of order 2, 3, 4, 5, 6 with 21, 81, 321, 1281, 5121 mesh-points respec-
tively on a hemisphere. For the discrete method on each of these meshes and
our approach, after extracting the maxima, we computed the error ||∇F(d)||
for each voxel and from there the mean and the variance. Figure-4 compares
the mean error and the variance of the discrete approach on increasingly refined
meshes to those of our method.

4 Discussion & Conclusion

We took advantage of the fact that an ASSF can be equivalently represented
in any of three bijective bases – the SH basis, the ST basis constrained to the
sphere, and the HP basis constrained to the sphere. This permitted us to extract
the geometric characteristics, i.e. the maxima of an ASSF by computing the
stationary points of a constrained homogeneous polynomial problem.

We tested this approach on synthetic tests, first on a purely mathematically
generated dirac spherical function, and then on the ODF computed analytically
in the SH basis. The ODF is a state-of-the-art reconstruction algorithm in diffu-
sion MRI, who’s maxima are aligned with the underlying dominant fiber bundles.
Therefore, it is of utmost importance to be able to extract these maxima cor-
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Fig. 4. Mean error (||∇F(d)||: red bar) with ln of the variance (blue vertical intervals)
of the discrete search method (DSM) plotted as a function of the mesh resolution,
compared against our homogeneous polynomial (HP) method on a real dataset.

rectly. We took the ODF as an example, to concretely illustrate our method.
But our method is independent of the ODF or of the ODF estimation process.
It can be applied to any ASSF that can be written in either the SH basis, or the
ST basis or the HP basis.

Our method has also the added strength of searching for the maxima of a
continuous function, and is, therefore, not limited to searching for the maxima
of an ASSF in a finite set of values on the sphere.

We tested our method with a rank-4 SH series, or equivalently order-4 ST,
or equivalently a degree-4 HP. In the future we plan to test for greater values of
rank/order/degree.

We also discovered that, using our polynomial approach, it was possible to
quantify the error in the ODF estimation process that takes place due to the
truncation of the SH basis to a finite rank. This interesting point could be further
developed too.
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algébriques. Volume 59 of Mathématiques et Applications. Springer-Verlag (2007)

19. Hess, C., Mukherjee, P., Han, E., Xu, D., Vigneron, D.: Q-ball reconstruction
of multimodal fiber orientations using the spherical harmonic basis. Magnetic
Resonance in Medicine 56 (2006) 104–117

20. Anwander, A., Tittgemeyer, M., von Cramon, D.Y., Friederici, A.D., Knosche,
T.R.: Connectivity-based parcellation of broca’s area. Cerebral Cortex 17(4)
(2007) 816–825

248



A Simulation Environment for High Angular
Resolution DTI

Gregory T. Balls1 and Lawrence R. Frank1,2,3

1 UCSD Center for Scientific Computation in Imaging
2 UCSD Center for Functional MRI
3 San Diego VA Healthcare System

Abstract. Simulations of diffusion in neural tissues have traditionally
been limited to analytical solutions, to grid-based solvers, or to small-
scale Monte Carlo simulations. None of these approaches has had the ca-
pability to simulate realistic complex neural tissues on the scale of even a
single voxel of reasonable (i.e. clinical) size. An approach is described that
combines a Monte Carlo Brownian dynamics simulator capable of simu-
lating diffusion in arbitrarily complex polygonal geometries with a signal
integrator flexible enough to handle a variety of pulse sequences. Taken
together, this package provides a complete simulation environment for
diffusion tensor MRI experiments. Results are shown for aligned fibers,
varying packing density and permeability, and for crossing straight fibers.

1 Introduction

The sensitivity of MRI to the anisotropic diffusion of water within neural
tissues provides some insight into the tissue structure. Spatial (diffusion
tensor imaging, or DTI [1]) and spectral (q-space imaging [2]) variations
of the diffusion weighted imaging (DWI) signal can be compared to the
expected pulse signal response for simplified models of tissue structure.
Analytical solutions are not available for structures with the complexity
of real neural tissues, however. An alternative approach is to simulate the
DWI experiment numerically, including diffusion, tissue effects, and the
influence of the pulse sequence. Much work has already been done in this
area, with simulations ranging from grid-based finite difference methods
to smoothed particle hydrodynamics to Monte Carlo Brownian dynam-
ics [3–8], but most simulations are limited to simplified geometries. For
example, [3] is limited to diffusion within a sphere, [5] simulates the one
dimensional problem between two plates, and [7] simulates random walks
only in rectangular domains. Earlier related work by Frank and Rapp
[9] modeled diffusion within tubes along splines, but could not model
arbitrary geometries.
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We have created a computational environment capable of simulating
the entire DTI experiment by embedding MCell [10–12] , a sophisticated
Monte Carlo simulator for cellular microphysiology, within an MRI simu-
lator that tracks particle location, state, and signal amplitude and phase,
and whose output is connected to a suite of analysis and visualization
tools. The simulation environment is capable of modeling highly complex
tissue structures, testing new pulse sequences, and developing new post-
processing and analysis techniques. Here we demonstrate initial results
testing the effects of fiber permeability and packing density on fractional
anisotropy (FA).

2 Theory

2.1 Diffusion Weighted Imaging Simulation

For spins moving according to a time-dependent function x(t), the signal,
S, generated by a standard spin echo or gradient echo sequence is given
by the ensemble average of all the spins:

S = S0

〈
eiγ

∫ TE

0
aG(t)·x(t)dt

〉
. (1)

In this equation S0 is the echo amplitude in the absence of any gradient
field; γ is the gyromagnetic ratio; a is +1 for gradient echo sequences
while for spin echo sequences it is +1 before and −1 after the 180◦ RF
pulse; G(t) is the applied diffusion weighting vector; and x(t) is the spin
position.

By simulating the diffusion of Np individual spins with MCell, we can
calculate the integral in (1) numerically:

S =
S0

Np

Np∑
j=1

eiγ
∑Nt

i=0
aG(ti)·xj(ti)dt, (2)

where dt is the length of the time step used in the Monte Carlo simulation,
Nt is the total number of time steps, and G and x are evaluated at each
time step ti.

The user interface to our simulation allows gradient directions which
are defined by tessellating an icosahedron, as in [13]. Users may specify
the tessellation level from 1 to 5 (12 to 2562 gradient directions). The
methods within the simulator itself support arbitrary gradient directions.
Our current implementation can model both gradient echo and spin echo
pulse sequences. The user interface allows users to specify the diffusion
time, ∆, the gradient pulse duration, δ, and the gradient strength, G, as
well as the gradient ramp time, tr. The b-value is calculated automatically.
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2.2 Simulating Diffusion by Monte Carlo Random Walk

Equation 2 allows us to calculate the signal given the diffusion gradient
and spin locations. The spin locations are in turn computed by simulating
particle diffusion. MCell [10–12] models diffusion of individual particles
by a 3D Brownian-dynamics random walk. Time is discretized into time
steps of length dt. The location of each diffusing particle is updated every
time step by a random displacement vector (or ray). If the ray traced by
the diffusing particle intersects a boundary, the particle is reflected.

For each type of diffusing molecule, random walk diffusion steps are
scaled according to the associated diffusion coefficient, D. The fractional
probability of finding a molecule between r and r + dr at time t can be
given as

pr(r, t) =
4πr2dr

(4πDt)3/2
e−r2/4Dt, (3)

or, when defined in terms of the dimensionless parameter s = r/
√

4Dt,

pr(s) =
4√
π

s2e−s2
ds. (4)

MCell allows for much longer simulation time steps than simpler ran-
dom walk algorithms using Cartesian lattices which require very small
lattice sizes for accurate simulation of diffusion in the presence of small
gaps and restrictions [11]. A look-up table containing a large number
(1024 by default) of equally probable values of step length s is initialized
using (4). MCell stores another look-up table of equally probable radial
directions, constructed with symmetry properties necessary to avoid di-
rectional bias. For each simulated time step, dt, a step length and radial
direction are chosen at random from these look-up tables. The diffusion
step is scaled by the appropriate factor (

√
4Dt), and the ray describing the

diffusing molecule’s path for this time step is traced, reflecting elastically
off any barriers in its path.

2.3 Tissue Generation

Geometry is represented by polygonal surfaces of arbitrary detail and
complexity. A polygonal surface is defined, as in the MCell model de-
scription language, by listing the locations its vertices and the vertices
for each face.

We model membrane permeability using MCell’s support for chemical
reactions. Diffusing particles that hit a surface may undergo a reaction (be
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transmitted) with a probability determined by the reaction rate for that
particle and surface. Particles transported through a boundary continue
on their original path; particles that are not transported reflect elastically
off the boundary. The diffusion coefficient for a particle is updated as
necessary when it is transmitted. We are thus able to create models with
multiple diffusion coefficients, with, e.g. distinct diffusion coefficients for
the axonal core, myelin sheathing, and extraaxonal (bath) fluid.

Users may design tissues using the bundle editor interface, shown in
Fig. 1.A, which allows users to specify multiple fiber bundles according to
fiber radius, bundle radius, and number of fibers per bundle. Each bundle
may be curved along a spline.

Users may also generate simple bundles of straight, aligned fibers with
a specified orientation and packing density. These bundles can be arranged
with regular hexagonal packing as in Fig. 1.B, or regions can be filled with
randomly placed fibers with sizes varying around a mean radius as in Fig.
1.C. For regular hexagonal packing, users specify the fiber radius and
the center-to-center spacing between fibers. For randomly packed fiber
bundles, users specify the mean fiber radius, the standard deviation of
the the fiber radii, the desired filling fraction, and the maximum number
of attempts to place a fiber. In addition to long, straight fibers, we can
also fill surrounding and interstitial spaces with randomly placed and
oriented ellipsoidal cells with axis lengths randomly distributed around
a given mean, as in Fig. 3. The user again specifies the mean radius and
standard deviation as well as the total voxel filling fraction.

2.4 Analysis and Visualization of Simulation Results

The simulation environment includes analysis tools for high angular res-
olution diffusion-weighted MRI [13] to compute the spherical harmonic
decomposition (SHD) and quantities derived from it, such as the the q-ball
orientation distribution function (ODF) [14] according to the method de-
scribed by Anderson [15]. We have also developed a visualization package
implemented with the Visualization Toolkit (VTK) [16]. The visualiza-
tion package displays the fibers simulated, the computed signal, the SHD,
and the ODF. Output from the simulation is also compatible with other
analysis packages, such as AFNI [17], which can be used to calculate de-
rived quantities such as fractional anisotropy (FA) and mean diffusion
(MD).
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Fig. 1. A. A snapshot of the bundle editor. A curved fiber bundle following a user
designed spline crosses through the simulated volume (outer box) and measured voxel
(inner box). B. A 200 µm3 voxel filled with hexagonally packed fibers with a radius of
12 µm. Volume fraction filled is 0.54. C. A 200 µm3 voxel filled with randomly packed
fibers with a mean radius of 12 µm and a standard deviation of 2 µm. Volume fraction
filled is 0.57.

3 Results

In order to demonstrate some of the features of our simulation environ-
ment, we have simulated diffusion experiments with straight hexagonally-
packed cylindrical fibers. For all the results discussed here, we used the
following parameters: G = 4 G/cm, ∆ = 60 ms, δ = 15.75 ms, and
b = 2003 s/mm2. We chose to keep the diffusion coefficient uniform with
D = 0.75µm2/ms. We generated straight fibers with radii of 1.2 µm diam-
eter. The signal was measured on a 100µm3 voxel centered in a 200 µm3

simulated space, using 12 gradient directions oriented toward the vertices
of a regular icosahedron. The motion of 4096 individual particles was
simulated.
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For our first simulation, we tested the sensitivity of permeability
changes with fibers packed to a density of 80%. Fiber permeability was
varied by varying the associated reaction rate on a logarithmic scale
from 4.6× 10−9 M−1s−1 to 2.2× 10−8 M−1s−1. The calculated fractional
anisotropy (FA) decreased as permeability increased, falling from a high
of 0.65 for a reaction rate of 4.6× 10−9 M−1s−1 to a low of 0.36 when the
reaction rate was increased to 2.2× 10−8 M−1s−1, as shown in Fig. 2.A.

Next, keeping the fiber permeability fixed with a reaction rate of 1.0×
10−9 M−1s−1, the fiber density was varied from 50% to 90% (near the
maximum for hexagonally packed cylinders). The calculated FA increased
with increasing fiber density, from 0.51 to 0.65, as shown in Fig. 2.B.

Fig. 2. A. FA as a function of the reaction rate defining fiber permeability. B. FA as a
function of fiber density.

We simulated crossing fiber bundles, with fiber bundles placed per-
pendicular to one another and filling 80% of the voxel volume, with both
bundles filling equal volume fractions of the voxel. The surrounding space
was filled with randomly oriented ellipsoidal cells with an average diame-
ter of 2.0µm. Permeability of all the surfaces was kept fixed with a reac-
tion rate set to 1.0×10−9 M−1s−1. The fibers and cells for this simulation
are shown next to the resulting q-ball orientation distribution function
(ODF) [14] in Fig. 3. The ODF was derived from the spherical harmonic
decomposition [13] following the method described by Anderson [15].

4 Discussion

Our software allows researchers to simulate various MRI experiments
(pulse sequences, gradient directions, b-values, etc.) and to understand
better what features will can be detected before any MRI scans are even
done. As a tool in experiment design, then, our software could be useful
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Fig. 3. Crossing packed fibers surrounded by randomly oriented ellipsoidal cells (left)
and the resulting q-ball orientation distribution function (right).

in finding the most cost-effective MRI prescription capable of detecting
changes of interest to a study.

The constructed geometry used in this initial demonstration is fairly
simplistic, with straight, densely packed fibers, but the ability to vary
packing density, fiber permeability, and both interior and exterior diffu-
sion coefficients allows us to test a wide range of realistic models. The
underlying support for complex geometries is quite flexible, and future
work will include more realistic large scale models.

Our simulation environment is capable of modeling several structural
sources of anisotropy in white matter, including variations in diffusion co-
efficients, particle concentrations, and membrane permeabilities. Beaulieu
[18] provides a comprehensive revieiw of these sources of anisotropy and
discusses several models of pathology that we believe are amenable to test-
ing within our framework, such as demyelination and membrane degrada-
tion. In addition, other modes of water motion present in white matter,
such as active transport due to molecular water pumps [19], should also
be tractible with our simulation tools, and will be a focus of future work.

We are in the process of adding a more flexible model for pulse se-
quence specification to support other types of sequences (e.g. hyperecho
sequences). We have also begun work on modeling the effects of T1 and
T2 decay. Finally, we are extending the scale of possible models by using
a parallelized version of MCell [10], allowing us to simulate much larger
geometries.
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Abstract. In diffusion tensor imaging, tensors represent the oriented
probability of intra-voxel water diffusion. These positive definite, sym-
metric matrices form a non-Euclidean space which poses challenges for in-
terpolation and analysis. In particular, most tensor interpolation schemes
have a non-linear effect on the clinically important tensor attributes of
fractional anisotropy and mean diffusivity, resulting in tensor “swelling.”
We propose a new interpolation method that explicitly preserves user-
specified interpolation of fractional anisotropy and mean diffusivity, while
independently interpolating diffusion directions. The approach leads to
an efficient technique that is practical for routine use.

1 Introduction

Diffusion tensor imaging (DTI) is widely used to characterize the structure and
connectivity of white matter in health and disease [1]. In this context, tensors
represent 3-D diffusion processes on a voxel-wise basis. DTI has been largely
analyzed in medical studies in terms of the derived contrasts of anisotropy and
diffusivity which have been shown to be sensitive to specific clinical findings.
Mean diffusivity (average of the tensor eigenvalues) is acutely sensitive to edema
in stroke, and anisotropy and orientation are essential for establishing local and
global connectivity with fiber tracking [2, 3].

Previous investigations on tensor interpolation have focused on establishing
metric spaces in which shortest paths lead to monotonic interpolation of impor-
tant tensor contrasts. Positive definite tensors have been described as elements
of a Riemannian manifold with an affine invariant metric [4–7]. Arsigny et al. [8]
proposed the Log-Euclidean framework as a computationally efficient close ap-
proximation. Rohlfing et al. [9] derived a biophysically motivated approach based
on Kullback-Leibler divergence. These approaches guarantee monotonic interpo-
lation of tensor determinants, but not necessarily of anisotropy and diffusivity.
Recently, Kindlmann et al. [10] proposed the geodesic-loxodrome framework in
which shortest paths are determined with respect to orthogonal tensor invariants.
This method ensures monotonic interpolation of diffusivity, anisotropy, and de-
terminant. Furthermore, tensor directions are interpolated as rotation matrices.
Despite its desirable mathematical properties, this approach is severely limited
? This project was supported by NIH/NINDS 1R01NS056307.
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in practice by computational complexity, and extension from pairwise process-
ing to 2-D or 3-D interpolation also appears to be a challenging obstacle. In this
work, we present a novel closed-form tensor interpolation method, Concise Local
Estimation of Anisotropy and Rotation (CLEAR), based on the requirement of
preserving specific interpolation of the clinically significant tensor properties of
fractional anisotropy (FA), mean diffusivity (MD), and determinant.

The strategy of CLEAR is to first interpolate the tensor contrasts—MD,
FA, and determinant—and then determine a tensor that possesses these inter-
polated contrasts and whose eigenvectors represent an appropriate directional
interpolation of the source tensor eigenvectors. In the following, we establish an
exact, one-to-one correspondence between the tensor eigenvalues and the derived
contrasts (MD, FA, determinant). With this result, we can interpolate monoton-
ically the contrasts using any linear or nonlinear image interpolation method and
recover the underlying tensor characteristics. The tensor orientations are inter-
polated separately. This approach leads to a computationally efficient procedure
where tensor swelling is avoided and the regularity of derived clinical quantities
is preserved.

2 Methods

In DTI, tensors (symmetric 3 × 3 matrices) represent 3-D Gaussian diffusion
processes. A tensor, D, may be diagonalized into eigenvectors (v1,v2,v3) and
eigenvalues (λ1,λ2,λ3), where the eigenvalues represent the diffusivity in each
of the eigenvector directions. The diffusion process has been commonly inves-
tigated through scalar contrasts based on the eigenvalues, mainly mean dif-
fusivity (MD = 1

3 (λ1 + λ2 + λ3) = 1
3 trD) and fractional anisotropy (FA =√

3
2

(λ1−MD)2+(λ2−MD)2+(λ3−MD)2

λ1
2+λ2

2+λ3
2 ). To represent a valid physical diffusion pro-

cess, the tensor must have positive eigenvalues, and thus interpolation methods
have to ensure they interpolate the determinant |D| monotonically. The orien-
tation of the principal eigenvector, v1, (we assume λ1 ≥ λ2 ≥ λ3 > 0) is also
used to study local connectivity and reconstruct global fiber tracts.

Because of the importance of these tensor contrasts in situations where ten-
sor interpolation is required—e.g., for atlas registration, data resampling, and
fiber tracking—it is sensible to generate a linear or monotonic interpolation of
the tensor contrasts rather than to interpolate the tensor matrix coefficients
themselves. Assuming that the contrasts are each independently interpolated,
we show here that the tensor associated with these contrasts can be (almost
uniquely) determined. First, we show that there exists an exact, closed-form re-
lation giving the tensor eigenvalues as a function of the target contrasts FA, trD,
and |D|. We have the following relations with the unknown eigenvalues:

|D| = λ1λ2λ3 = a

trD
3

= 1
3 (λ1 + λ2 + λ3) = b (1)

2
3

FA2 = (λ1−b)2+(λ2−b)2+(λ3−b)2
λ1

2+λ2
2+λ3

2 = c
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This gives a nonlinear system of three equations with three unknowns that we
would like to solve for λ1, λ2, and λ3. We define the following complex-valued
intermediate variables:

α = (c− 1)[b3(2− 5c) + 2a(c− 1)]
β = (α+

√
α2 + 2b6c3)

1
3

γ = b− 2−
1
3 b

2c
β + 2−

2
3

β
c−1

δ =
√

9b2 + b2 12−18c
c−1 + 6bγ − 3γ2

(2)

Algebraic manipulations of (1) and (2) yield:

λ1 = γ λ2 =
1
2

(3b− γ + δ) λ3 =
1
2

(3b− γ − δ) (3)

Eq. 3 is unique up to eigenvalue permutation and exists for all combinations
of non-negative eigenvalues except when all three eigenvalues are equal. In that
limit case, FA is zero and either the trace or determinant determine all three
eigenvalues. While Eq. 3 identifies the eigenvalues that correspond to a particular
set of target contrasts, it is possible that the interpolation kernel will result in
a valid set of contrasts (i.e., FA ∈ [0, 1], trD > 0, and |D| > 0) for which
the corresponding eigenvalues are complex or negative. To ensure a physically
plausible interpolation in this case, we project the eigenvalues into the domain
of positive reals while minimizing the following mismatch energy term:

E=

FA−

√
3
2

(λ1−MD)2+(λ2−MD)2+(λ3−MD)2

λ12+λ22+λ32

FA


2

+
(

trD−(λ1+λ2+λ3)
trD

)2
+
(
|D|−λ1λ2λ3

|D|

)2 (4)

Minimization was achieved through Nedler-Mead simplex search. Projection was
typically required when interpolating between rather isotropic tensors. To our
knowledge, this is the first time that these formulae have been derived.

Now that we have a direct relation from contrasts to eigenvalues, we can
perform a three-step interpolation procedure where we first interpolate the con-
trasts, recover the corresponding eigenvalues, and finally interpolate the tensor
directions independently. Consider a set of N tensors, D1,...,DN and a set of
weights, w1,...,wN , with

∑N
1 wi = 1. For the interpolation examples presented

herein, the weights are chosen based on a trilinear interpolation kernel that uses
the eight nearest neighbors (in 3-D). Nonlinear kernels, such as sinc or data
adaptive interpolation (cf. [11]) could be substituted easily if deemed necessary.

We start by identifying the tensor contrasts for each voxel, i.e., FA1,...,FAN ,
trD1,...,trDN , and |D1|,...,|DN |. We interpolate each scalar contrast as follows:

|̂D| = exp
N∑
i=1

wi log |Di| t̂rD =
N∑
i=1

witrDi F̂A =
N∑
i=1

wiFAi (5)

Here, FA and trace are linearly combined while the determinant is logarithmi-
cally combined (in analogy with the Log-Euclidean method). We then recover
λ̂1, λ̂2, λ̂3 using Eq. 3.

259



To completely specify the interpolated tensor, we must define its eigenvectors.
Eigenvector matrices are orthonormal matrices, yet, diffusion eigenvectors are
determined only up to a sign change because the diffusion process is symmetric.
There are eight possible orthonormal matrices that explain the same physical
diffusion process. Which eigenvector matrix is estimated for any particular set of
observations is an artifact of the tensor estimation method, not a property of the
physical system. Thus, averaging in rotation space as proposed in [12] would lead
to different results based on the arbitrary choice of vector orientations. Instead,
we use a simple iterative algorithm that minimizes the angular distance between
the weighted mean vector and either each eigenvector or its reflection:

1. v̂ ←
∑N
i=1 wivi

||
∑N
i=1 wiv1,i||

Normalize weighted mean coordinates.

2. while(∃vi · v̂ < 0) Iterate while any vectors are misoriented.
3. ∀vi · v̂ < 0 : vi ← −vi Orient all vectors toward the weighted mean.
4. v̂ ←

∑N
i=1 wivi

||
∑N
i=1 wiv1,i||

Recompute weighted mean.

If the initial mean vector is zero, a random non-zero initialization is used. As
the total angular distance between the putative weighted mean and the set
of eigenvectors is bounded and strictly decreasing at each step, the algorithm
will converge. In practice, convergence is rapid and typically within N/2 steps.
Note that there are ambiguous configurations in regions where the interpolated
directions are covering the entire angular domain, e.g. when interpolating two
orthogonal directions or N coplanar directions separated by an angle of π

N . These
configurations are intrinsic to the problem, but can be detected by measuring
the angular variation between the eigenvectors and their mean. In practice, this
problem will arise in areas with mostly isotropic or very noisy tensors, both cases
where the actual main diffusion direction is likely to be unknown or irrelevant.

To obtain three orthonormal mean eigenvectors, we consider first the set of
principal eigenvectors, v1,1,...,v1,N , which encode the main direction of diffusion.
Using the method above, we identify the weighted mean principal eigenvector,
v̂1. We then rotate each tensor around the axis formed by v̂1 and the respective
v1,i by the minimum angle such that v1,i is aligned with the v̂1. Using the set of
rotated tensors, we compute the weighted mean secondary eigenvector, v̂2, which
must lie in the plane orthogonal to v̂1. The tertiary eigenvector is computed as
the cross product of the weighted mean primary and secondary eigenvectors.

3 Experiments

Synthetic Data. Four prolate (i.e. with λ2 = λ3) tensors were placed at the
corners of a grid and interpolated with linear (Euclidean), Log-Euclidean, and
CLEAR interpolation. The interpolated tensor at each spatial location within
the grid was determined with tensor averaging using four bilinear weights (see
Fig. 1). Unlike the linear and Log-Euclidean methods, CLEAR interpolates
the path between rotated tensors as a series of rotated tensors. There is no
“squashing” effect on FA as can be appreciated by the blue areas indicating
non-monotonic changes (Row D). CLEAR avoids the tensor “swelling” effect
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Fig. 1. Interpolation of simulated tensor fields. Results for linear (left), Log-Euclidean
(center), and CLEAR (right) tensor interpolation methods are shown. Row A: Four 3-
D prolate tensors located on the corners were bilinear interpolated. Rows B-D: Image
intensities are proportional to the contrast indicated at left for the four corner ten-
sors interpolated to a 100x100 grid. Log-Euclidean and CLEAR result in logarithmic
determinant interpolation (Row B), while linear and CLEAR result in bilinear trace
interpolation (Row C). Linear and Log-Euclidean result in non-monotonic decreases in
FA, while CLEAR results in bilinear FA interpolation (Row D).
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on the determinant as seen with linear interpolation (Row B) and non-linear
changes in trace as with Log-Euclidean (Row C).
In Vivo Data. A representative region of interest from an axial slice of a diffu-
sion tensor field was selected from a study of a young, healthy control. A multi-
slice, single-shot EPI sequence achieved whole brain coverage (2.2 mm isotropic
nominal resolution, k-space interpolated to 0.828 mm, three repetitions). Each
sequence used 30 diffusion encoding directions (b-value of 700 s/mm2) and five,
averaged minimally weighted volumes on a 3T MR scanner (Intera, Philips Med-
ical Systems, The Netherlands). Tensor estimation was performed offline with a
custom, non-negative tensor estimator [13]. The reconstructed tensor field was
upsampled by 4× 4 with linear, Log-Euclidean, and CLEAR interpolation.

As an illustrative example, we demonstrate the benefits and pitfalls of the
three interpolation techniques by examining an in vivo region of high curvature
(Fig. 3). A quantitative comparison between the observed tensors (A-D) and
each of the interpolated fields (E-M) is not straightforward, as different norms
on tensor differences will favor different methods. Visually, the CLEAR method
results in the smoothest interpolation over the field. The linear method results
in abrupt changes in determinant (G). The Log-Euclidean results in block-like
structure in the anisotropy of the longitudinal fasciculus (H). CLEAR provides
a smooth interpolation of orientation (K), anisotropy (K), and diffusivity (L,M).
The eigenvalue projection step (Eq. 4) was necessary in the gray matter and
along the ventricular interface (Fig. 2). In regions where projection was necessary,
contrasts were altered by a median of 0.05% (95th percentile=1.41%).
Performance. A prototype implementation of the proposed algorithm in Java
on a 1.6 GHz Intel CPU run in 10 µs for arbitrary trilinear interpolation between
eight tensors. The majority of time in the prototype is spent on matrix manipu-
lation, which could be optimized. The eigenvalue determination described in (3)
runs in 2.5 µs, while the weighted mean vector computation runs in 1.3 µs.

4 Discussion

This paper demonstrates that one can interpolate tensors by independently in-
terpolating quantities of clinical and scientific interest–eigenvalue contrasts (FA,
MD, and determinant) and eigenvectors. This work is the first to derive ex-
plicit formulae for computing eigenvalues from determinant, trace, and FA. The
proposed interpolation method, CLEAR, preserves the intuitive behavior of con-
trasts and orientation. In simulations and in vivo, the results are visually intuitive
and appealing. Regions of directional uncertainty are mostly located in the CSF,
where the diffusion information is not clinically relevant. These singularities are
the price to pay for separating eigenvector and eigenvalue interpolation, and the
ultimate application or clinical goal will dictate if these few singularities are ac-
ceptable in exchange for a well controlled interpolation of the eigenvalues and
preservation of the tensor main direction. One could also mitigate the issue by
applying anisotropic filtering to the interpolation process [11]. Alternatively, the
interpolation method could include a penalty term that balances modification
of eigenvalues against angular rotation uncertainties.
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Fig. 2. Projection of non-physical solutions. The anatomic reference (A) shows that
projection was not required in major white matter regions (B). In regions where pro-
jection was necessary (C), the percentage change in contrasts was small.
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Fig. 3. Interpolation of the genu of the Corpus Callosum (CC) and longitudinal fas-
ciculus (LF) near the lateral ventricle (V): region of interest (ROI) selected on an
orientation color coded anisotropy map (A,B). MD (C) and log-determinant (D) are
shown at the reconstructed resolution. Upsampled (4 × 4) and interpolated contrasts
are shown for linear (E-G), Log-Euclidean (H-J), and CLEAR (K-M) tensor interpola-
tion. While the linear interpolation has smooth FA and MD (E,F), it exhibits abrupt
changes in the determinant (G). The Log-Euclidean interpolation exhibits FA artifacts
in regions of high anisotropy and curvature (H). CLEAR avoids all these problems.
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Abstract. This paper proposes a methodology to segment tubular fiber
bundles from diffusion weighted magnetic resonance images (DW-MRI).
Segmentation is simplified by locally reorienting diffusion information
based on large-scale fiber bundle geometry. Segmentation is achieved
through simple global statistical modeling of diffusion orientation. Uti-
lizing a modification of a recent segmentation approach by Bresson et
al. [19] allows for a convex optimization formulation of the segmentation
problem, combining orientation statistics and spatial regularization. The
approach compares favorably with segmentation by full-brain streamline
tractography.

1 Introduction

Diffusion weighted (DW) magnetic resonance imaging (MRI) allows for in-vivo
measurements of water diffusion in tissues such as the human brain. While
brain white matter appears uniform in structural MRI, DW-MRI measurements
can provide estimates of macroscopic fiber bundle direction as well as indicate
changes in tissue properties. However, the relation between DW-MRI signal and
white matter ultra-structure is only known partially. For example, how axonal
organization and geometry relates to a measured diffusion profile in general re-
mains an open question. Fiber bundle direction correlates with the major diffu-
sion direction in fiber bundle areas comprised of large numbers of approximately
unidirectional axons [1]. This allows for the estimation of distinct fiber bundles
from DW-MRI measurements.

A variety of approaches to extract white matter bundles from diffusion
weighted images exist. They may be classified into streamline-based approaches
and voxel-based approaches. The streamline-based approaches utilize stream-
line tractography to come up with bundle segmentations. This can for example
be direct voxelization of the streamlines, voxelization preceded by streamline
clustering [21], or stochastic tractography [16, 11]. Voxel-based approaches aim
at extracting white matter bundles directly from the voxel data without using
streamline tractography. Approaches include voxel-based clustering [18], surface-
evolution using global statistics [6, 23] or local similarity terms [10], optimal
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connectivity methods [17], region-growing [9], hidden Markov measure fields [15]
and fuzzy segmentation [14].

This paper proposes a segmentation approach based on reorienting the dif-
fusion measurements. Reorientation information is derived from large-scale fiber
bundle geometry; it facilitates region-based fiber bundle segmentation with
global statistics. The approach is computationally efficient, is simple, allows for
reliable optimization, and is robust to local noise effects.

Briefly summarizing the remainder of this paper, in Sec. 2, we give an
overview of the system. Sec. 3 introduces the local coordinate system used for the
reorientation of diffusion information. Sec. 4 describes how to extend the local
coordinate system to the complete image volume. The reorientation of diffusion
data is described in Sec. 5. Sec. 6 and 7 describe the statistical modeling of fiber
bundle direction and its use for bundle segmentation respectively. Results are
given in Sec. 8. Sec. 9 concludes the paper with a discussion of the approach,
and an outlook on possible future work.

2 System Overview

This section summarizes the key steps in the proposed segmentation approach.
The overall goal of the method is to be able to segment tubular fiber bundles
from diffusion weighted images. Segmentation requires a suitable similarity mea-
sure for voxel grouping into object foreground and object background. While a
multitude of segmentation methods for diffusion weighted images exists (see
Sec. 1) arguably the methods used in practice are based on streamlining: direct
voxelization of streamlining results, clustering of streamlines, or stochastic trac-
tography. This is surprising, because (i) streamlining approaches are sensitive
to noise and (ii) volumetric segmentation algorithms developed outside the area
of diffusion weighted imaging have either not been applied to DW-MRI or only
with limited success. A major impediment to adopting existing volumetric seg-
mentation approaches for DWI segmentation is the nature of DWI data. DWI
data is (i) vector-valued (tensor-valued if diffusion tensors are computed), is (ii)
axial (identifying antipodal directions), typically has (iii) low signal to noise ratio
and is of relatively low resolution, and is (iv) spatially non-stationary (i.e., large
scale orientation changes are expected to occur within individual fiber bundles).

Fig. 1 illustrates diffusion tensors changing direction along a fiber bundle and
the same set of diffusion tensors when realigned relative to a representative fiber
tract. This realignment process is at the core of the approach proposed in this
paper. Realignment simplifies the original problem by making it spatially sta-
tionary. Segmentation methods for vector-valued images can then be employed
for fiber bundle segmentation. Note that standard streamline tractography usu-
ally incorporates a weak, implicit form of spatial realignment by disallowing
orientation changes considered too drastic.

The proposed approach is:

1) For every candidate point in the image volume, find the closest point on the
representative fiber tract.
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(a) Original fiber bundle. (b) Realigned fiber bundle.

Fig. 1. Tensor reorientation concept. The spatially varying tensor orientation can
largely be removed by reorientation with respect to a representative fiber tract (blue).

2) Regard the candidate point as part of the fiber bundle if its diffusion infor-
mation is similar to the diffusion information at the closest point.

3) Create a spatially consistent segmentation based on the similarities of 2).

The key questions are, what is meant by “closest,” “similar,” and “spatially
consistent.” The direct approach to measure closeness is to look at Euclidean
distance. Euclidean distance typically does not yield unique point to point cor-
respondences. Sec. 4 thus proposes a method based on frame diffusion. Since the
focus of this paper is the segmentation of tubular fiber bundles, the overall fiber
bundle geometry can be approximately described by the space curve given by a
representative fiber tract. The (regularized) Frenet frame of the space curve can
then be used as a local coordinate frame and as the basis for frame diffusion; see
Sec. 3.

Many probabilistic and deterministic similarity measures have been proposed
for diffusion weighted imaging (in particular, for diffusion tensor imaging; see for
example [6, 10]). One of the simplest measures of diffusion similarity is to mea-
sure angular deviations of the major directions of diffusion. This is in line with
streamline tractography which typically uses only the principal diffusion direc-
tion for streamline propagation5 and will be used in a probabilistic formulation
in this paper as discussed in Sec. 6. To achieve spatial consistency, which cannot
be achieved by local segmentation decisions based on directional statistics and
reorientation of diffusion measurements alone, regularization is necessary. Sec. 7
describes the proposed segmentation approach based on a slight modification of
the convex optimization formulation by Bresson et al. [19].

3 The Regularized Axial Frenet Frame

To parameterize tubular fiber bundles, a suitable coordinate system is necessary.
For space-curves, the Frenet frame can be used. Given a parameterized curve
C(p) : [0, 1] 7→ R3, such that Css 6= 0, Cs 6= 0 (i.e., without singular points of
order 0 and 1 [4]) the Frenet frame is given by

Ts = κN , Ns = −κT − τB, Bs = τN ,
∂

∂s
=

1
‖Cp‖

∂

∂p
.

5 Tensor derived measures other than principal diffusion direction are typically only
used as tract termination criteria.
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T = Cp

‖Cp‖ is the unit tangent vector, N and B are the normal and the binormal,
κ and τ denote curvature and torsion respectively, and s denotes arc-length. See
Fig. 2 for a depiction of the Frenet frame. Computing T from C is immediate.
Computing N yields B = T ×N and thus the desired local coordinate frame.

In this paper the space curve is given by a representative fiber tract. For
the experiments of Sec. 8 streamline tractography was used to compute the
representative fiber. For a more robust approach, streamlining should be replaced
by an optimal path method [8]. In what follows, a known representative fiber
tract is assumed.

Since the Frenet frame is based on differential properties of the space curve it
is sensitive to noise. Instead of using the Frenet frame directly, the frame diffusion
is instead based on a regularized version of the Frenet frame. Fig. 2 (right) shows
a progressively more regularized Frenet frame. Note that for the reorientation
of diffusion information (see Sec. 5) the Frenet axes can be flipped. All compu-
tations in this paper identify antipodal directions; derivatives are computed by
prealigning all vector-valued quantities locally before derivative computation.

T

T

T

T

B

B
N

N

B

B

N

N

Fig. 2. The Frenet frame {T ,N ,B} consisting of tangent, normal, and binormal to C.
Regularization helps to obtain smoothly varying frames from noisy data (right).

4 Frame Diffusion

Instead of declaring a point in space to correspond to its closest point (mea-
sured by Euclidean distance) on the representative tract, here, correspondence
is established implicitly through a diffusion process. This allows for smoother
correspondences avoiding orientation jumps which occur at shock points for the
Euclidean distance map. Since orientation is the quantity of interest, the orien-
tation information is diffused away from the representative tract. Tschumperle
and Deriche [22] regularize diffusion tensor fields by evolutions on frame fields.
This can be used to define the diffusion of the frame field off the reference tract.
Formally,

Fθ(x, θ) = ∆xF, x ∈ Ω \ C, F(x, θ) = Fb, x ∈ C, (1)

where F = {T a,N a,Ba} is the set of the axes implied by the regularized Frenet
frame, Fb denotes the boundary condition given by the Frenet-frame-implied
axes on the tract, x ∈ R3 denotes spatial position, θ artificial evolution time,
and ∆x = ∂2

∂2x + ∂2

∂2y + ∂2

∂2z the spatial Laplacian operator. The frame diffusion
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problem (1) can be solved [22] by evolving a set of three coupled vector diffusions:
Tθ = ∆T − (∆T · T )T − (∆N · T )N − (∆B · T )B,

Nθ = ∆N − (∆T · N )T − (∆N · N )N − (∆B · N )B,

Bθ = ∆B − (∆T · B)T − (∆N · B)N − (∆B · B)B

which may be rewritten [22] as the rotations

Tθ = R× T , Nθ = R×N , Bθ = R× B,

where R = T × ∆T + N × ∆N + B × ∆B and F = {T a,N a,Ba} is given by
identifying antipodal directions. While the statistics used for the segmentation
in Sec. 7 only use directional information, diffusing the complete frame informa-
tion specifies a local rotation. This allows for easy extension of the methodol-
ogy to formulations using for example the full tensor information or orientation
distribution functions. Fig. 3 shows two 2D examples of frame diffusion. The
resulting diffused frame field is smoother. Interestingly, the partial half-circle
example shows that, to a limited extent, frame diffusion can be used to fill in
missing information. This is a useful feature in case it is not possible to obtain
one connected representative fiber tract.

(a) Initialization. (b) Diffused. (c) Initialization. (d) Diffused.

Fig. 3. Frame diffusion yields smooth frame fields and thus smooth reorientations. Ini-
tializations using Euclidean distance point correspondences show frame discontinuities.

5 Frame Reorientation

The diffused frames can be used to reorient diffusion measurements locally to
a canonical frame M6. This reorientation can be applied to any representation
of diffusion information, e.g., the diffusion tensor, orientation distribution func-
tions, etc. For clarity, reorientation is explained here for the case of diffusion
tensors T . Given the diffused frame {T ,N ,B} and the associated rotation ma-
trix F = [T ,N ,B] a tensor T is reoriented by applying the relative rotation
MFT , i.e., by

T r = MFT TFMT .

The tensor reorientation yields tight tensor statistics while allowing a segmen-
tation algorithm to apply spatial regularizations in the original space. It greatly
simplifies computations by avoiding an explicit warping to straighten a curved
fiber bundle.
6 See Sec. 6 for a way to determine the canonical frame automatically
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6 Orientation Statistics

We now describe the probabilistic modeling of fiber bundle orientations.

6.1 Watson Distribution

The Watson distribution is one of the simplest distributions for directional ran-
dom variables [24, 2, 20]. It is radially symmetric around a mean direction µ,
with a spread controlled by the concentration parameter k.

The Watson distribution on the unit sphere S2 has probability density

pw(q|µ, k) =
1

4π 1F1( 1
2 ; 3

2 ; k)
ek(µT q)2

, pw(q|µ, 0) =
1
4π

,

where µ is the mean direction vector, k the concentration parameter7, q ∈ S2 is
a direction represented as a column vector, and 1F1(·; ··) denotes the confluent
hypergeometric function. The Watson distribution is bipolar for k > 0, with
maxima at ±µ and uniform for k = 0. To model the interior of a fiber bundle, µ
is set to the tangential direction of the canonical frame M . Reorienting diffusion
information results in a tight Watson distribution with large concentration pa-
rameter k. The statistics outside the fiber bundle are modeled using the uniform
distribution, since no preferred direction can be assumed in general in the fiber
exterior.

While it is possible to use more complicated probability distributions (e.g.,
the Bingham distribution, or distributions on the diffusion tensor directly) to
model a fiber tract orientation distribution, the Watson distributions chosen (in
conjunction with the reorientation scheme) have the advantage of modeling the
interior and the exterior of the fiber bundle with only one free parameter, the
concentration k, greatly simplifying the estimation task and allowing for an easy
interpretation of the estimated probability distribution.

6.2 Parameter estimation for the Watson distribution

The distribution parameters k and µ are easy to estimate. Given a set of N
points qi ∈ S2 (written as column vectors and representing spatial directions),
the maximum likelihood estimate of µ is the major eigenvector of the sample
covariance [5] C = 1

N

∑N
i=1 qiq

T
i and 1 − λ1 (with λ1 the largest eigenvalue of

C) is the maximum likelihood estimate of 1
k . Estimation of µ is performed only

as a means of estimating the canonical frame direction and computed only on
the representative tract. It is assumed fixed throughout the segmentation pro-
cess described in Sec. 7. Only the concentration parameter k is estimated during
bundle segmentation. For increased estimation robustness, robust estimators for
the concentration parameter k may be used to account for cases where orienta-
tion measurements are either incorrect or cannot be reliably determined (as for
example for isotropic tensors).
7 To avoid ambiguities the concentration is denoted as k; κ denotes curvature in this

paper.
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7 Segmentation

We now integrate the diffusion data reorientation method and the statistical
modeling described in Sec. 6 within a probabilistic version of the Chan-Vese [3]
segmentation framework [7] using the probability distributions of Sec. 6.

7.1 Optimization Problem

The probabilistic Chan-Vese segmentation approach [3] is a piecewise-constant
approximation problem, minimizing the energy functional

Ecv(Ωi, p1, p2) =
∫

∂Ωi

ds+λ

∫
Ωi

(− log p1(f(x)) dΩ+λ

∫
Ω\Ωi

(− log p2(f(x)) dΩ,

(2)
where f(·) denotes an image feature (here, direction), p1 and p2 are the likeli-
hoods for the interior and the exterior of the segmentation respectively, Ω is the
computational domain and Ωi is the interior domain. Choosing

p1(q) = pw(q|µ, k), p2(q) = pw(q|µ, 0) =
1
4π

,

constitutes the segmentation approach. See Sec. 6.1 for a discussion of this choice.

7.2 Numerical Solution

According to a slight modification of the solution approach in [19], the proba-
bilistic Chan-Vese energy minimization problem 2 (on log-likelihood functions
instead of image intensities) can be recast as the minimization of

Ecvb(u, c1, c2) =
∫

Ω

‖∇u(x)‖ dΩ +
∫

Ω

λr1(x, c1, c2)u + αν(u) dΩ (3)

where

ν(ζ) = max{0, 2|ζ − 1
2
| − 1}, (the exact penalty function),

r1(x, c1, c2) = log
p2(f(x))
p1(f(x))

= log
(

1F1(
1
2
;
3
2
; k)

)
− k

(
µT q

)2
.

The boundary is recovered as Ωi = {x : u(x) > ξ}, ξ ∈ [0, 1]. Eq. 3 can be solved
efficiently through a dual formulation of the total-variation norm [19]:

1) Solve for u keeping v fixed:

min
u

{∫
Ω

‖∇u‖ dx +
1
2θ
‖u− v‖2

L2

}
(4)

2) Solve for v keeping u fixed:

min
v

{
1
2θ
‖u− v‖2

L2 +
∫

Ω

λr1(x, p1, p2)v + αν(v) dx

}
(5)
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3) Repeat until convergence.

Eq. 5 has the solution v = min{max{u(x)− θλr1(x, p1, p2), 0}, 1} and Eq. 4 can
be solved using a fixed-point iteration

u = v − θdiv p, pn+1 =
pn + δt∇(div(pn)− v

θ

1 + δt|∇(div(pn)− v
θ |

, p = (p1, p2, p3), δt ≤ 1
6
.

To enforce segmenting a bundle containing the representative tract set{
v = 1 for all points on the representative tract,
v = 0 for all points at a distance d ≥ dmax from the representative tract.

The segmented fiber bundle is the set of voxels with u ≥ 1
2 which are contained

in the connected component containing the voxels of the representative tract.
This is also the volume which is used throughout the evolution to update the
estimation of the concentration k of the fiber bundle’s Watson distribution.

8 Results

This section gives results for the proposed segmentation approach. Synthetic
examples are discussed in Sec. 8.1. Sec. 8.2 presents results for a real DW-
MRI of the brain and compares them to segmentation results obtained through
streamline tractography.

8.1 Synthetic example

A synthetic tensor example was generated. Tensors are assumed of uniform shape
with eigenvalues (1.5, 0.5, 0.5)e−3 oriented along a circular path to model a fiber
bundle. Tensors oriented orthogonally to the circular path model the outside.
Diffusion weighted images were generated using the Steijskal Tanner equation
Sk = S0e

−bgT
k Tgk , where Sk denotes the diffusion weighted image acquired by

applying a gradient direction gk with b-value b, and T the diffusion tensor. Pa-
rameters were S0 = 1000, b = 1000 with 46 gradient directions equally spaced
on the unit sphere. Rician noise of σ = 70 was introduced to the baseline im-
age S0 (non-diffusion weighted) and the diffusion weighted images Sk. Fig. 4
shows the original data and the resulting segmentation on the top row (with
the streamline indicating the computed representative tract) and the reoriented
data with associated segmentation on the bottom row. For this synthetic exam-
ple, reorientation results in an almost perfectly uniform tensor distribution on
the inside and the outside of the simulated fiber bundle. Consequently, while the
proposed approach fails at segmenting the original data, it segments the reori-
ented data well. Note, that the failure to segment the original data is not merely
a result of the segmentation method employed. Any segmentation relying purely
on region-based statistics will either have to include some of the background in
its bundle segmentation or will severely under-segment the bundle itself, since
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background and foreground are not clearly separable based on global statistics.
While including edge-based terms may improve the segmentation of the origi-
nal data, regional terms will be of limited use and will locally counteract the
edge influence requiring a delicate balance between region-based and edge-based
energies to faithfully segment the simulated fiber bundle.

(a) Original. (b) Original. (c) Reoriented. (d) Reoriented.

Fig. 4. Synthetic segmentation example overlaid on a color by orientation representa-
tion. Reorientation results in a successful segmentation (k = 10, θ = 0.01, λ = 0.7).

8.2 Real example

The real example was computed for the cingulum bundle using a 3T DW-MRI
upsampled to isotropic resolution (0.93 mm3) with 8 baseline images and 51
uniformly distributed gradient directions (b=586). The representative tract was
computed using streamline tractography.

Fig. 5 shows color by orientation representations for a sagittal slice through
the brain with the cingulum bundle (mainly in green) before and after reorienta-
tion. The reoriented image shows a consistently green cingulum bundle, whereas
in the original image the cingulum bundle is colored blue when wrapping pos-
teriorly around the corpus callosum, indicating a change of orientation from
anterior-posterior to superior-inferior. Example segmentation results of the pro-
posed approach are shown for the reoriented and the original data. Algorithm
parameters were set to θ = 0.01, λ = 0.5. The concentration parameter was set
to k = 100 and converged to k = 19.5 throughout the evolution for the reori-
ented dataset. The surface models generated from the computed segmentations
show that the segmentation for the reoriented data approximates the cingulum
bundle more faithfully.

Finally, to demonstrate the strength of the reorientation approach, Fig. 6
gives an example for the cingulum bundle segmentation at a posterior slice of the
cingulum bundle where the cingulum bundle wraps around the corpus callosum.
While in the reoriented case the segmentation is successful and the direction of
the cingulum bundle is uniform (green), the segmentation on the original data
fails in this part of the fiber bundle.

To compare the proposed methods to alternative segmentation approaches,
the cingulum bundle was segmented using a region of interest based approach
(the same regions of interest used to generate the representative fiber tract for
reorientation). Two small axial regions of interest were defined for the cingu-
lum bundle (superiorly to the corpus callosum). Streamline tractography with
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(a) Before reorientation. (b) Before reorientation. (c) Original.

(d) After reorientation. (e) After reorientation. (f) Reoriented.

Fig. 5. Sagittal slice of the cingulum bundle, before and after tensor reorientation.
The cingulum bundle appears more uniform in direction (green) after reorientation.
Reorientation greatly improves the segmentation result of the proposed approach.

(a) Original (O). (b) Segmented (O). (c) Reoriented (R). (d) Segmented (R).

Fig. 6. Posterior coronal slice: Color by orientation shows advantage of reorientation.

voxelization, full brain streamline tractography with voxelization, as well as seg-
mentation on the original and reoriented data using the proposed approach was
performed. Fig. 7 illustrates segmentation results for these methods for coronal
slices in the superior part of the cingulum bundle (where the cingulum bun-
dle is not strongly curved). As expected streamline tractography and full brain
streamline tractography mainly capture the interior of the fiber bundle, with
full brain tractography performing qualitatively better than standard region of
interest based streamline tractography (streamlines were seeded one per voxel
in the regions of interest). The proposed segmentation approach captures the
cingulum bundle well for the reoriented and for the original data, showing the
utility of segmenting in orientation space. However, the reoriented segmentation
results are better where the cingulum bundle curves strongly, as shown in Fig. 6.

9 Conclusion and Discussion

This paper proposed a new segmentation method for tubular fiber bundles. It is
based on reorientation of diffusion measurements resulting in more uniform data
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Original FBS S O RO

Fig. 7. Superior coronal slices: Original data; results for streamline (S) and full brain
streamline (FBS) tractography, for the proposed segmentation on original data (O) and
on reoriented data (RO). Only the proposed approach segments up to the perceived
bundle boundary in orientation space.

distributions inside the fiber bundle of interest. Segmentation is performed by
an efficient convex approximation of the probabilistic Chan-Vese energy using
region-based directional statistics. The approach compares favorably to stream-
line approaches for bundle segmentation. However, since no realistic ground-
truth for DW-MRI is available to date quantitative analysis is difficult. Ex-
tensions to sheet-like structures are conceivable, where the representative tract
would be replaced by a representative sheet [12, 13] (using the major diffusion
direction combined with the normal to the medial sheet to define a frame for
reorientation). Population studies could be performed by either performing seg-
mentation in atlas space, or by using an atlas defined representative tract and
subject-specific bundle segmentations.
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Abstract. The Non-Local means algorithm has been introduced re-
cently in image processing and its application to denoising in Magnetic
Resonance Imaging is an active field of research. Recent publications pro-
posed a fast implementation suited for three-dimensional filtering and
also applied it to Diffusion Tensor MRI. However, the Rician noise that
affects this acquisition modality introduces a bias of the local intensity
mean which could lead to wrong interpretation of the images. We pro-
pose two simple extensions to the NL-means algorithm to deal with this
bias, one recursive and one based on the conventional approach. We also
present a new, simpler, and fast implementation of the algorithm which
performs as well as the original NL-means algorithm in our context.

1 Introduction

Noise in magnitude Magnetic Resonance (MR) images is usually modeled by a
Rician distribution, due to the existence of uncorrelated Gaussian noise with zero
mean and the same variance σ2

n in both the real and imaginary parts of the com-
plex k-space data. If no phase errors are considered, the magnitude signal can be
represented as M(x) =

√
(A + nr)2 + (ni)2, where A = A(x) denotes the origi-

nal signal level if no noise is present, and nr and ni are the real and imaginary
components of the noise, each of them following a Gaussian distribution with zero
mean and the same standard deviation σn. Several filtering methods to improve
Signal-to-Noise Ratios in MRI have been proposed in literature, like the conven-
tional approach (CA) [1], maximum likelihood based methods [2], maximum a
posteriori estimation [3], Linear Minimum Mean Square Error (LMMSE) based
schemes [4], wavelet-based methods for noise removal [5], Perona and Malik’s
anisotropic diffusion, non-parametric neighborhood statistics [6, 7] techniques,
or filtering using log-Euclidean space [8]. Other classes of algorithms are based
on the redundancy of local patches in the images to remove the noise. Recently,
the Non-Local means (NLM) was introduced in [9] and performs very well in
removing the noise. However, the initial algorithm is computationally heavy es-
pecially for 3D images and a fast version was proposed in [7] and especially
applied to 3D MRI data sets, and to 3D DT-MRI [10]. According to these last
publications, the NLM algorithm outperforms previous techniques such as the
anisotropic diffusion and total variation techniques. In the context of DT-MRI
[10], three variants of the NLM algorithm have been proposed and compared and
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Algorithm 1 NL-means algorithm. The parameters are: - the input n-
dimensional image denoted I, - the window size t ∈ N, - the pattern window
size f ∈ N, and - the pattern similarity threshold h ∈ R.
1: for each voxel p do
2: for each voxel q ∈ N2t+1(p), q 6= p do . window centered on p
3: df (p, q) = 1

(2f+1)n

P
δ∈[−f,f ]n ‖I(p + δ)− I(q + δ)‖2

4: wp(q) = e
−

df (p,q)

h2

5: end for
6: wp(p) = maxq 6=p wp(q)
7: Ires(p) = 1P

wp(q)

P
q∈N2t+1(p) wp(q).I(q)

8: end for

the best results have been obtained by applying separately the NLM to each of
the directional diffusion weighted images (DWI) and by estimating the DT-MRI
from the denoised DWI. However, these previous works don’t take into account
the specific characteristics of the Rician noise that corrupts magnetic resonance
images, and in particular affects their mean intensities. As a result, the filtered
image may be biased with respect the original one, which is a major drawback
for instance when filtering DWI for tensor estimation. In this paper, we propose
a new NLM scheme to deal with the bias in the image after filtering Rician
noise. We show how the original image intensity can be better recovered, and
in diffusion tensor images we show how this correction improves the estimated
eigenvalues of the diffusion tensor.

2 Unbiased Non-Local Means for Rician data

2.1 Non-Local means algorithm

The NLM algorithm is based on the idea that the intensity of a pixel in a noisy
image can be recovered by averaging the set of pixels that share a similar local
pattern in the whole image. This simple idea is intuitively very well suited to
texture denoising, where the direct neighbors of a pixel can have very different
intensities and a few patterns or patches are repeated many times. However, in
practice, it gives very good results even in non-textured images where the image
intensity can be considered as a continuous function. One reason to the efficiency
of the NLM algorithm is that it is able to shape any kind of local vicinity when
defining the averaging weights. The NLM algorithm is described by the algorithm
1. The central voxel p is given as weight the maximal distance found with all
the other voxels of the searching window, preventing the preservation of isolated
points. The pattern similarity threshold is typically chosen as proportional to
the standard deviation of the noise. In [7], the authors use h2 = 2βσ2

n, where β
is a coefficient between 0.5 and 1.
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2.2 Unbiasing the NLM algorithm

Regardless of the method used to calculate the local mean, a window around the
voxel or a non-local means algorithm, we are estimating the mean of parameter
M(x), i.e. ̂E{M(x)} = 〈M(x)〉. In a Rician distribution, the value of E{M(x)} is
not the original signal value, denoted A(x). Accordingly, the volume 〈M(x)〉 will
be biased with respect to the original volume. The mean of a Rician distribution

is defined as E{M} = σn

√
π
2 e
− A2

4σ2
n

[(
1 + A2

2σ2
n

)
I0

(
A2

4σ2
n

)
+ A2

2σ2
n
I1

(
A2

4σ2
n

)]
, and

after some algebra

A2 = 2〈M(x)〉σn

√
2
π

exp
(

A2

4σ2
n

)
I0

(
A2

4σ2
n

)
+ I1

(
A2

4σ2
n

) − 2σ2
n

I0

(
A2

4σ2
n

)
I0

(
A2

4σ2
n

)
+ I1

(
A2

4σ2
n

) (1)

being 〈M(x)〉 the output of the NLM algorithm. The unbiased Non-Local Means
(UNLM) for a Rician distribution is defined as

Iub(x) =
√

max(A2(x), 0) (2)

where A2(x) is estimated from eq. (1). This may be done following an iterative
fixed point method. To avoid the iterative method, an alternative based in the
Rician second order moment is proposed. In a Rician distribution E{M2} =
A2 +2σ2

n, so we can average the squared image intensities instead of the original
intensities. Combined with a robust estimation of the noise standard deviation
σn, we can remove the bias from the squared intensity average by subtracting
2σ2

n before applying the square root to obtain the estimated denoised intensity.
The modified algorithm is almost the same as the original one, where line 7 is
replaced by:

Ires(p) =

√√√√max

(∑
q∈N2t+1(p) wp(q).I2(q)∑

wp(q)
− 2 σ2

n, 0

)
, (3)

the weights wp(q) being still computed from the original image I. As the for-
mulation is similar to the conventional approach [1], we will call it Non-Local
Conventional Approach (NLCA).

2.3 On the distance measure between local patches

If we consider the two local patches as the observation of random variables A
and B, the weights of the NLM algorithm are calculated as:

d(A,B) = E((A−B)2) = (E(A)−E(B))2+V ar(A)+V ar(B)+Cov(A,B) (4)

The terms E(A), E(B), V ar(A) and V ar(B) can be pre-computed very fast in
a recursive separable way, for example using Gaussian smoothing if we define
a Gaussian weighting window. The term Cov(A,B) requires more processing,
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Algorithm 2 Modified unbiased NLM algorithm, denoted NLCA (Non-Local
Conventional Approach). The parameters are: - the input n-dimensional image
denoted I, - the window size t ∈ N, - the standard deviation of the Gaussian
smoothing kernel σ, and - the pattern similarity threshold h ∈ R.
1: Precompute Iσ = I ∗Gσ

2: for each voxel p do
3: for each voxel q ∈ N2t+1(p) do . window centered on p

4: wp(q) = e
− (Iσ(p)−Iσ(q))2

h2

5: end for

6: Ires(p) =

s
max

„ P
q∈N2t+1(p) wp(q).I2(q)P

wp(q)
− 2 σ2

n, 0

«
7: end for

but could be speed-up using Fourier Transform. However, we argue that the dis-
tance between two patches should be rotational invariant to allow more efficient
smoothing. In fact, the level of noise reduction will depend on the uniformity
of the weights within voxels of same intensity values in the non-noisy image, if
Xi, i ∈ [1, k], k ∈ N are all random variables of zero-means and standard devi-
ation σ, and wi are averaging weights, V ar(

∑
i wiXi) =

∑
i w2

i σ2 which means
that we can approximate at each point the reduction in the noise variance as the
sum of the square of the averaging weights applied in the local window. Since
a rotation in the local patch will not change the intensity of its center, using a
measure that is not rotational invariant will limit the denoising performance of
the filter. Thus, we propose a modification of the NLM algorithm, which is based
only based on the local intensities of the smoothed image to define the distance
between patches. Smoothing is performed by Gaussian convolution as a pre-
processing step. In practice, we get the same denoising efficiency as equation (4)
at a much lower computational cost: the complexity is divided by (2f +1)n. The
parameter f is replaced by the standard deviation σ of the Gaussian smoothing
which is directly related to the size of the smallest size of the structures we would
like to preserve, as described by algorithm 2. The only drawback of the modified
version is that it does not preserve as well very small texture elements, but this
kind of texture is not present in conventional brain MRI.

2.4 Comparison of the standard and modified NL-means

In this section, we evaluate the effect of the new pattern distance measure by
comparing two versions of the unbiased NLM: one using the original distance
and one using the new proposed distance. We use two synthetic 2D images of
size 50× 50 pixels represented in fig. 1. The first image is a disk with simulated
partial volume effect, and object intensity 140 with background intensity 40.
The second image is a smooth star with 2 level of intensities 120 and 160 and a
background of intensity 40, and simulated partial volume effects. Both images are
corrupted with a Rician noise of standard deviation 15. We ran the two versions
of the unbiased NLM filter, both are unbiased using equation (3), one uses the
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Original Corrupted Distance d1 Distance d2

Fig. 1. Two synthetic 2D images of 50× 50 pixels, corrupted with Rician noise.

distance defined as in algorithm 1, denoted d1, and the other uses the distance
defined as in algorithm 2, denoted d2. We looked for the optimal parameters of
the Mean Square Error measure based on the following sets of values: for both d1

and d2, t ∈ [3, 12] and h ∈ [10, 30]; for d1, f ∈ [1, 7]. and for d2, σ from 0.8 to 1.5
with a step of 0.1. The following table show the best MSE obtained from both
methods and the corresponding best set of parameters. The denoising level of
each approach is similar, with a slightly better result for the proposed distance
in the case of the star synthetic image.

Standard distance d1 Proposed distance d2

t f h MSE time t σ h MSE time
disk 12 3 28 6.63 0.429 sec 12 1 24 6.65 0.121 sec
star 6 4 17 29.02 0.216 sec 6 0.8 17 27.17 0.039 sec

3 Validation

Synthetic experiments have been carried out to validate the unbiased NLM
scheme previously introduced. First, a synthetic image from the BrainWeb data-
base has been corrupted with Rician noise with different values of σn. The im-
age is filtered using either the NLM, the UNLM or the NLCA algorithms. Al-
though the purpose of this paper is to compare the unbiased algorithms with
the original one, to provide a wider reference, two well-known methods have
also been used: (i) Anisotropic Diffusion filtering, using a Green diffusion func-
tion with a threshold K = 5, and 30 steps with a time-step ∆t = 0.1, and
(ii) The Conventional Approach by McGibney et al. [1], using 3 × 3 × 3 win-
dows and manually setting the value of σn. It is an unbiased method, defined
as Âc(x) =

√
max(〈M2(x)〉 − 2σ2

n, 0). To compare the filtering performance of
the different methods, two quality indexes are used: the Structural Similarity
(SSIM) index [11] and the Quality Index based on Local Variance (QILV) [12].
Both give a measure of the structural similarity between the ground truth and
the estimated images. However, the former is more sensitive to the level of
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σn = 5 σn = 7 σn = 10

SSIM QILV MSE SSIM QILV MSE SSIM QILV MSE

Noise 0.9470 0.9955 25.33 0.9037 0.9872 50.25 0.8320 0.9535 103.95

CA 0.9417 0.7062 69.75 0.9382 0.7079 70.87 0.9310 0.7117 73.40
AD 0.9202 0.8257 72.60 0.9098 0.8221 77.05 0.8937 0.8164 87.18

NLM 0.9641 0.9566 26.33 0.9532 0.9538 30.35 0.9347 0.9484 40.14
UNLM 0.9728 0.9593 24.28 0.9719 0.9588 25.11 0.9698 0.9583 26.71
NLCA 0.9721 0.9576 23.02 0.9709 0.9577 23.67 0.9678 0.9573 25.30

σn = 15 σn = 20 σn = 25

SSIM QILV MSE SSIM QILV MSE SSIM QILV MSE

Noise 0.7190 0.8611 237.16 0.6274 0.7114 424.83 0.5563 0.5485 666.50

CA 0.9139 0.7197 80.21 0.8924 0.7311 90.5 0.8676 0.7436 104.99
AD 0.8707 0.8087 115.30 0.8520 0.8041 160.86 0.8327 0.8051 229.59

NLM 0.9051 0.9359 68.91 0.8791 0.9212 115.92 0.8551 0.9031 184.50
UNLM 0.9633 0.9572 31.32 0.9508 0.9574 38.89 0.9307 0.9574 51.15
NLCA 0.9576 0.9577 29.86 0.9379 0.9581 38.11 0.9071 0.9586 52.16

Table 1. Quality measures: SSIM, QILV and MSE for the 3D volume experiments.
The best value of each column is highlighted.

noise in the image and the latter to any possible blurring of the edges. Both
indexes are bounded; the closer to one, the better the image. The mean square
error (MSE) is also calculated. These three quality measures are only applied
to areas of the original image of strickly positive intensities to avoid taking
into account the background area. The average measure over 10 experiments
is considered for each σn and each filter. Results are presented in Table 1 and
illustrated in Fig. 2. Proposed unbiased schemes show the better and similar
results, even for high noise levels. When working with DT-MRI, some scalar
measures are directly related to the eigenvalues of the diffusion tensors. Since
tensor estimation results are noise-dependent, noise removal before tensor esti-
mation should lead to an improved tensor estimation. However, using a biased
filtering method leads to a bias in the estimated tensors. To study the effect
of bias and unbiased schemes over the tensors eigenvalues, a 128 × 128 syn-
thetic 2D tensor field has been created, as shown in Fig. 3-(a), where tensors
are depicted using ellipses. For better representation, ellipses are represented ev-
ery few pixels. Tensors with three different eigenvalue combinations were chosen
λa = [1.9 10−3, 0.4 10−3] λb = [2 10−3, 0.1 10−3],λc = [2 10−3, 1.25 10−3]}.
The field was created with the same number of tensors of each kind. Afterwards,
the diffusion weighted images (DWI) were simulated using the Stejskal-Tanner
equation [13] with a constant baseline with a level of 1000. The DWI and the
baseline are corrupted with Rician noise and the tensors are re-estimated, us-
ing a Least Squares approach, Fig. 3-(b). To better illustrate the effect of the
bias over the estimated Tensors, as the bias depends on σn, we have selected
a scenario with high level of noise (σn = 175) and a moderate-high number of
gradients (N = 15), to assure a good estimation. Results are presented in Fig. 3
(tensor field) and in Fig. 4 where the distribution of the eigenvalues is depicted
in a 2D histogram for 20 experiments. The original sets of eigenvalues are de-
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(a) Original (b) Noisy (c) CA (d) AD

(e) NLM (f) UNLM (g) NLCA

Fig. 2. Slice of the volume in the experiments for σn = 15.

(a) Original (b) Noisy (c) NLM (d) UNLM (e) NLCA

Fig. 3. Synthetic tensor field used in the experiments. σn = 175, 15 different gradients.

picted as black dots. Notice that the NLM filter is able to reduce considerably
the effect of noise in the estimation, but the estimated eigenvalues are still bi-
ased in relation with the original ones, see Fig. 4-(b). As a result, the tensor field
depicted in Fig. 3-(c) is more homogeneous than the noisy one, but the tensor
are also smaller. The UNLM and NLCA are both able to correct this bias, see
Fig. 4-(c-d) where the maxima of the histogram are placed in the original values.
However, the price to pay is an increased variance of the estimation. Although
the performance of both unbiased methods is very similar, NLCA is faster than
UNLM, since no iterative method is needed to remove the bias.

4 Conclusions

Two different methods to effectively remove the bias in NLM schemes for MRI
have been proposed. They are based on moments of the Rician distribution.
In addition, a new fast implementation of the NLM algorithm is also proposed.
The experimental results show a good quantitative performance in terms of noise
removal, edge preservation, and minimization of the error. Experiments also show
that, when working with DWI, a reduction of the bias of the images induces a
reduction on the bias of the estimated eigenvalues of the diffusion tensor.
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(c) UNLM
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(d) NLCA

Fig. 4. Two dimensional histograms of the distribution of the estimated eigenvalues.
σn = 175, 15 different gradients. In black the original eigenvalues. The proposed meth-
ods (UNLM and NLCA) show a smaller bias in the estimation.
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Abstract. There is a major effort in medical imaging to develop al-
gorithms to extract information from DTI and HARDI, which provide
detailed information on brain integrity and connectivity. As the images
have recently advanced to provide extraordinarily high angular resolution
and spatial detail, including an entire manifold of information at each
point in the 3D images, there has been no readily available means to view
the results. This impedes developments in HARDI research, which need
some method to check the plausibility and validity of image processing
operations on HARDI data or to appreciate data features or invariants
that might serve as a basis for new directions in image segmentation, reg-
istration, and statistics. We present a set of tools to provide interactive
display of HARDI data, including both a local rendering application and
an off-screen renderer that works with a web-based viewer. Visualizations
are presented after registration and averaging of HARDI data from 90
human subjects, revealing important details for which there would be no
direct way to appreciate using conventional display of scalar images.

1 Introduction

Diffusion magnetic resonance imaging [1] applies gradient fields during image
acquisition, allowing local measures of water diffusion preferences to be made. In
diffusion tensor imaging (DTI), a reference image and at least six diffusion images
are acquired with non-collinear gradients and used to reconstruct a volume of
rank-2 tensor models [2]. The shapes of these tensors provide information about
the underlying structure within the biological sample. For brain imaging, DTI
provides valuable insight into the white matter architecture, with a distinct
advantage over traditional MRI structural imaging where this architecture is
not well-resolved.

While the 2nd-order tensor model is capable of describing regions of the
brain that have consistent structure, the model breaks down in voxels that con-
tain multiple fibers. To address this problem, Tuch et al. proposed High Angular
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Resolution Diffusion Imaging (HARDI) [3]. HARDI uses larger numbers of direc-
tions, often 100 or more, to acquire measurements of the diffusion. The sampled
data can be used to estimate the orientation distribution function (ODF), which
gives the probability of directional water diffusion within each voxel. One repre-
sentation of the ODF is in the form of a spherical harmonic basis [4], allowing the
shape at each voxel to be compactly represented by a truncated set of spherical
harmonic coefficients (SHCs). While HARDI presents several advantages over
DTI, it significantly raises the complexity of data processing and visualization.

A number of other packages support display and processing of DTI data, e.g.,
SCIRun (http://www.sci.utah.edu), TrackVis (http://www.trackvis.org), DTIS-
tudio (http://www.dtistudio.org), Slicer (http://www.na-mic.org/Wiki/index.php/
Slicer), and MedINRIA (http://www-sop.inria.fr/asclepios/software/MedINRIA).
Camino (http://www.cs.ucl.ac.uk/research/medic/camino) can fit 2 and 3-tensor
models to HARDI data, and it exports models for viewing in other programs;
however it has limited capabilities for display. None of these tools specifically sup-
port visualization of spherical-harmonic-based ODF models. While there have
been various published works [5, 6] that make use of these types of data, the
customized tools used to explore these data do not appear to have reached the
neuroimaging community yet.

There is a clear need for visual methods to evaluate the results of image
processing operations on HARDI data or to investigate features in the data.
One important application for visualization of ODFs is in the interpretation of
HARDI registration results. Techniques have been developed for the registra-
tion of DTI [7–9] that account for the inherently non-Euclidean nature of DTI,
which requires that the tensors be reoriented during spatial normalization and
averaging. HARDI further complicates this problem, as it allows for more de-
tailed shapes that may represent, for example, the crossing of two nerve tracts.
The rotational approach, which can be determined if we compute a registration
using a tensor model, may be insufficient to account for the distortions required
to match the ODF across subjects.

In this paper, we present a set of tools for producing interactive visualization
of HARDI ODF models based on the modified spherical harmonic basis presented
by Descoteaux et al. [4]. We demonstrate their capabilities using individual and
averaged HARDI data.

2 Methods

HARDI data from 90 subjects were acquired on a 4T Bruker Medspec MRI
scanner using an optimized diffusion tensor sequence [10]. These data included
both 30-direction (HARDI30) and 105-direction (HARDI105) diffusion imaging.
For the HARDI30 data, imaging parameters were: 21 axial slices (5 mm thick),
FOV = 23 cm, TR/TE 6090/91.7 ms, 0.5 mm gap, with a 128x100 acquisition
matrix. The reconstruction matrix was 128x128, yielding a 1.8x1.8 mm2 in-plane
resolution. The total scan time was 3.05 minutes. For the HARDI105 data, 105
images were acquired: 11 baseline (b0) images with no diffusion sensitization
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and 94 diffusion-weighted images (b-value 1159 s/mm2) in which gradient di-
rections were evenly distributed on the hemisphere [10]. Imaging parameters
were: TR/TE 92.3/8250 ms, 55 x 2mm contiguous slices, FOV = 23 cm. The
reconstruction matrix was 128x128, yielding a 1.8x1.8 mm2 in-plane resolution.
The total scan time was 14.5 minutes. For each subject, rank-2 diffusion tensor
images were computed from the HARDI signals using MedINRIA software. The
first component of the diffusion tensor (Dxx) was manually stripped of non-brain
tissues to produce a brain mask for the subsequent processing and display.

Orientation distribution functions (ODF) for water diffusivity were estimated
voxel-wise from the HARDI signals using the Funk-Radon Transform (FRT). The
HARDI measurements were expanded as a spherical harmonic (SH) series, which
simplified the FRT to a linear matrix operation [5]. The estimated ODF was
normalized to unit mass, creating a diffusion probability density function (PDF)
parameterized by spherical angle. The representation for the ODF followed the
model described in [4], using the modified spherical harmonic basis
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where Pm
l is the associated Legendre polynomial. The modified SH basis takes

advantage of the symmetries in the spherical harmonics to produce a real-valued
set of basis functions, simplifying computation for data pre-processing and ren-
dering. The diffusion ODF at each voxel is then represented by

ODF [k](θ, φ) =
N

∑

j=1

ODFCj [k]Yj(θ, φ) (3)

where ODFCj [k] is the j-th coefficient of the spherical harmonic transform for
the k-th voxel. N = (l + 1)(l + 2)/2, and can be truncated at different levels.
Higher orders of coefficients correspond to higher frequencies on the sphere, thus
truncating at higher orders allows the shape of the ODF to be more complicated,
while truncating at lower levels will produce much smoother shapes.

We aligned and averaged the HARDI30 datasets for 90 subjects using a non-
linear fluid registration approach. An initial affine transformation was computed
to produce a suitable initial alignment for the fluid method. The masked Dxx

image was registered to the ICBM53 average brain template using an affine 9-
parameter transformation produced by the software FLIRT [11] and resampled to
isotropic voxel resolution (dimension: 128x128x93 voxels, resolution: 1.7x1.7x1.7
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mm3). The resulting transformation parameters were used to rotationally reori-
ent the tensor at each voxel and then affine align the tensor-valued images based
on trilinear interpolation of the log-transformed tensors. All affine-registered DT
images were then registered to a randomly selected subject’s image, using an
inverse-consistent fluid registration algorithm that minimized the symmetrized
Kullback-Leibler divergence of the two tensor-valued images [12]. This minimiza-
tion allows us to achieve better correspondence in the white matter structures
than would be achieved with scalar image matching. We note that DT data
are not available from the ICBM53 template, hence we are not able to apply
tensor-matching directly to the template. The images of the diffusion ODFs
were resampled to the target space by applying the corresponding DTI map-
ping. To keep the direction of the diffusion ODFs oriented with the direction of
the underlying fibers, the ODFs were reoriented using the Preservation of Prin-
cipal Direction (PPD) method [7], where the principal direction of the ODF was
determined based on principal component analysis of the ODF [12].

We developed a Windows-based interactive software package for 3D visual-
ization of the ODF shapes using OpenGL and C++. Each shape is represented
as a glyph based on a sampling of the values of ODF [k](θ, φ). The software
can load a series of SHC volumes and display orthogonal views of slices through
the coefficient data, as well a 3D view of the reconstructed glyph shapes. Its
graphical user interface (GUI) provides controls to adjust the number of coeffi-
cients (N), the number of samples for θ and φ, as well as a window size for how
many voxel ODFs are displayed at once. When the parameters are adjusted, a
new series of glyphs are computed and the display is updated. The software can
also display additional volume files in register with the HARDI data, as well as
surface models of other anatomical structures, such as the cortex or streamline
models of fiber tracts, and tensor glyphs for analyzing DTI data. Because each
voxel is represented by a detailed shape model, we note that the rendering time
for high levels of detail can be prohibitive for interaction. Thus, the software
allows the user to navigate using a lower-fidelity set of glyphs and produce the
detailed rendering when an appropriate view has been selected.

The software provides user-selectable color models for the ODF glyphs, in-
cluding the R2 measure proposed in [13],

c =

∑

j:l=2 |cj |
∑

∀j |cj | (4)

where cj is the j-th SHC. This represents the fraction of energy in the l = 2
components and is an indicator of structural content. We implemented other
measures described in [4] and a color model that shades each glyph according to
the direction of the maximum in the ODF. The latter uses an encoding similar
to DTI, where red corresponds to left-right directions, green corresponds to
anterior-posterior directions, and blue corresponds to superior-inferior directions.

We also developed an off-screen renderer that can generate slice views of the
ODFs. This renderer provides a command-line interface with all the parameters
of the GUI, but it can produce images with dimensions as high as 16K by 16K
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(a) (b)

(c) (d)

Fig. 1. Glyphs computed from a HARDI105 data set. (a) DTI ellipsoid glyphs (b)
HARDI ODF (6 SHCs) (c) HARDI ODF (15 SHCs) (d) HARDI ODF (28 SHCs).

pixels. Images can be produced in JPEG format, as well as the Zoomify format
(Zoomify, Inc., Santa Cruz, CA), which produces a multi-resolution pyramid
decomposition of the image into tiles of smaller images. We applied this rendering
package using a clustered-computing environment, allowing us to send each slice
in the HARDI volume to a different compute node. The resulting images were
stored directly into a web-accessible directory, with an automatically constructed
web-interface that allowed navigation through each slice of data, zooming to
any level of detail, and switching among axial, coronal, and sagittal views of
the HARDI data. This allows for convenient sharing of research results online,
obviating the need for special hardware and allowing for rapid display of results
without downloading the entire set of volumetric data.

3 Results

We applied the methods described in the previous section. The results were
displayed using a notebook computer with an Intel Centrino Duo 2.16Ghz pro-
cessor and an NVidia 7950GTX graphics card. We observed that frame rates
suitable for interaction (approximately 10 frames / second) were achieved for
whole-slice masked data with 15 × 15 samples in (θ,φ), which were represented
by approximately 2 million triangles per slice.
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Fig. 2. Visualization of orientation distribution functions. (left) Data from a single
subject. (middle) Data from a second subject, resampled after alignment to match
the first subject. (right) An average map of orientation distribution functions for 90
subjects. Each image is colored using the R2 measure. The top row is a set of zoomed
views of the images beneath them. The white matter structure is readily apparent in
these images. We note that the group average image demonstrates visually that the
averaged ODF for each voxel retains significant shape characteristics.

Figure 1 shows renderings of a region near the corpus callosum in a slice of
DTI and ODF data from a single subject. The first view shows the DTI glyph
model, normalized to unit mass to be consistent with the ODFs. The other views
show the SH representation of the ODF, with N = 6, N = 15, and N = 28.
These correspond to increasing values of the l-parameter, i.e., l ∈ {2, 4, 6}. The
sampling in (θ,φ) was 50×50. The color encoding scheme for each frame indicates
the maximum direction for the tensor or ODF. We observe that, as expected,
the ODF representation provides significantly more detail than the DTI version.
This is seen, e.g., in the upper left corner of the images where the corticospinal
tracts (blue) and the corpus callosum (red) meet. The tensors in this region
are fairly isotropic, making their direction ambiguous. In the ODF models, the
crossings become more apparent as there are multiple local maxima. As we move
to higher numbers of coefficients (N = 28), we see what appears to be an increase
in the noise in the image. Selection of an appropriate level at which to truncate
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Fig. 3. The zoomify-enabled web-view of a HARDI dataset, produced automatically
by our software. The user can navigate to different slices and orientations, and zoom
to high levels of detail. The image being viewed is 8192 x 8192 pixels.

the SH series remains an open area of research; visualizations such as these may
assist in better understanding the impact of the coefficients.

Figure 2 shows the results of the registration of the HARDI30 data for 90 hu-
man subjects, as described in the previous section. These visualizations indicate
the transformations that are induced upon the ODF model and demonstrate the
process that occurs as the spherical harmonic representations of the ODF are av-
eraged. Orientations of the second subject (middle panel) can be seen to closely
match those of the first subject (left panel) in many regions. The 90-subject
average (right panel) clearly preserves many of the features of the individual
brains, though much of the higher order detail has been smoothed by the av-
eraging process. We note that the shapes of the ODFs in the average map are
similar to those in Fig. 1.b., where N = 6 SHCs were used.

We also applied the off-screen renderer to the HARDI105 data. Figure 3
shows the resulting web interface, which provides access to 2GB of pre-rendered
image data. The images were computed with a 75 × 75 sampling of (θ, φ) space
with an image resolution of 8192×8192 pixels. The total wall-clock time to com-
pute this collection was less than 10 minutes using a 111-node 2.4GHz Opteron
cluster. We note that the cluster is a shared resource, and its load may vary
greatly. Renderings of individual slices at this resolution required less than one
minute of compute time. We were able to use the web-based interface to share
results directly among collaborators, including ones on different continents. In
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the rendering shown in Fig. 3, we observe features that would not normally be
detectable with DTI. For example, on the upper right that corpus callosum fibers
become interspersed with other white matter tracts orthogonal to them. We also
observe spatially varying contrast inside the striatum.

4 Discussion

We have introduced a new set of tools for the visualization of ODF models
computed from HARDI. These tools allow the display of intricate details, and we
applied them to produce novel views of averaged multi-subject HARDI data. The
visualizations reveal that the continuum-mechanical HARDI registration method
applied in this paper, based on fluid convection of HARDI functions, does in fact
preserve, and even enhance, key features in population studies of HARDI. We
believe these tools will be of practical use to the neuroimaging community, and
we will be distributing them online. We will be applying these visualization tools
to understanding aspects of HARDI imaging to examine disease characteristics.
We will use these visualization tools to understand features of the ODF data
acquired at 3T and 7T in patients with Alzheimer’s disease. We will also explore
improving the rendering capabilities through the use of GPU programming.
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