
Dynamic Meta Modeling: A Graphical Approach
to the Operational Semantics of Behavioral

Diagrams in UML

Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, Stefan Sauer

University of Paderborn, Dept. of Mathematics and Computer Science
D-33098 Paderborn, Germany

engels|corvette|reiko|sauer@uni-paderborn.de

Abstract. In this paper, dynamic meta modeling is proposed as a new
approach to the operational semantics of behavioral UML diagrams. The
dynamic meta model extends the well-known static meta model by a
specification of the system’s dynamics by means of collaboration dia-
grams. In this way, it is possible to define the behavior of UML diagrams
within UML.
The conceptual idea is inherited from Plotkin’s structured operational
semantics (SOS) paradigm, a style of semantics specification for concur-
rent programming languages and process calculi: Collaboration diagrams
are used as deduction rules to specify a goal-oriented interpreter for the
language. The approach is exemplified using a fragment of UML state-
chart and object diagrams.
Formally, collaboration diagrams are interpreted as graph transformation
rules. In this way, dynamic UML semantics can be both mathematically
rigorous so as to enable formal specifications and proofs and, due to
the use of UML notation, understandable without prior knowledge of
heavy mathematic machinery. Thus, it can be used as a reference by tool
developers, teachers, and advanced users.

Keywords: UML meta model, statechart diagrams, precise behavioral semantics,
graph transformation

1 Introduction

The UML specification [20] defines the abstract syntax and static semantics
of UML diagrams by means of (meta) class diagrams and OCL formulas. The
dynamic (operational) semantics of behavioral diagrams is only described infor-
mally in natural language. However, when using UML models for communica-
tion between development teams, for project documentation, or as a contract
between developers and customers, it is important that all partners agree on a
common interpretation of the language. This requires a semantics specification
which captures, in a precise way, both the structural and the dynamic features
of the language.

Another fundamental requirement for the specification of a modeling lan-
guage is that it should be readable (at least) by tool developers, teachers, and
advanced users. Only in this way, a common understanding of the semantics of
the language can be developed among its users.

Presently, most approaches to dynamic UML semantics focus on the imple-
mentation and simulation of models, or on automatic verification and reasoning.
Reggio et al. [23], for example, use algebraic specification techniques to define the
operational semantics of UML state machines. Lillius and Paltor [17] formalize
UML state machines in PROMELA, the language of the SPIN model checker.
Knapp uses temporal logic [15] for formalizing UML interactions. Övergaard [21]
presents a formal meta modeling approach which extends static meta modeling
with a specification of dynamics by means of a simple object-oriented program-
ming language that is semantically based on the π-calculus. The formalisms used
in the cited approaches provide established technologies for abstract reasoning,
automatic verification, execution, or simulation of models, but they are not es-
pecially suited for explaining the semantics to non-experts.

In contrast, the technique of meta modeling has been successful, because it
does not require familiarity with formal notations to read the semantics specifi-
cation. Our approach to UML semantics extends the static meta model based on
class diagrams [20] by a dynamic model which is specified using a simple form of
UML collaboration diagrams. The basic intuition is that collaboration diagrams
specify the operations of a goal-driven interpreter. For instance, in order to fire
a transition in a statechart diagram, the interpreter has to make sure to be in
the source state of the transition, and it might have to ask for the occurrence of
a certain trigger event. This trigger event may in turn depend on the existence
of a link mediating a method call, invoked by the firing of a transition in another
statechart diagram, etc. Conceptually, this may be compared to the behavior of
a Prolog interpreter trying to find a proof for a given goal.

Despite the graphical notation, the specification is mathematically rigorous
since collaboration diagrams are given a formal interpretation based on graph
transformation rules (see, e.g., [24, 6, 7] for a recent collection of surveys and
[1] for an introductory text) within our approach. In particular, they can be
considered as a special form of graphical operational semantics (GOS) rules [4],
a generalization of Plotkin’s structured operational semantics (SOS) paradigm
for the definition of (textual) programming languages [22] towards graphs.

The paper is organized as follows: The approach to dynamic meta modeling is
exemplified using an important fragment of UML statechart and object diagrams
which is introduced along with a sample model in Sect. 2. In Sect. 3, we introduce
the structural part of our meta model, a fragment of the standard meta model
with meta classes extended by meta operations. The semantics specification in
terms of collaboration diagrams is presented in Sect. 4, and in Sect. 5 it is shown
how this specification can be used to compute the behavior of the sample model
introduced in Sect. 2. Finally, in Sect. 6 we summarize and outline some future
perspectives.

2 Statechart and Object Diagrams

Our approach to dynamic meta modeling shall be exemplified by the operational
semantics of UML statechart and object diagrams. Statechart diagrams are used
to specify the local behavior of objects (of a certain class) during their lifetime.
Similarly to an event-condition-action rule, a transition consists of a triggering
event, an activation condition, and a list of actions. Additionally, we regard
the invocation of operations on an object as well as the calls to operations of
other objects by the object under consideration as particularly relevant for this
purpose. Therefore, we restrict our specification to transitions with call events
and/or call actions. Conditions, other kinds of events and actions, composite and
pseudo states, as well as more advanced structural concepts like inheritance and
composition of classes are not considered.

The considered model extract refers to a problem of general importance, since
the life cycle description of objects in a statechart diagram has to be related to
the messaging mechanisms between interacting objects and the invocation of
methods on such objects. A recent solution [3] suggests to model dynamic be-
havior by state machines and to view methods as private virtual objects to allow
for concurrent execution by delegation. In contrast, we propose dynamic meta
modeling as a basis for an integration of events, messages, and method invoca-
tion. In the following, we present an example that will allow us to demonstrate
the application of our approach.

ControlBoxMachine

run()
stop()

set_red()
set_green()

monitor

monitor

idle running show_green show_red

run / monitor.set_red()
set_red

stop / monitor.set_green() set_green

machine : Machine display:ControlBox

« »current

« »context « »context

« »current

Fig. 1. A sample model (initial configuration)

Figure 1 shows a model consisting of two classes Machine and ControlBox re-
lated by an association stating that objects of class Machine may be monitored
by objects of class ControlBox. In the Machine statechart diagram, transitions are
labeled with combined event/action expressions like run/monitor.set red(). That
means, in order for the transition to fire, a call event for the operation run()

has to occur, and by firing the transition the method set red() shall be called on
the ControlBox object at the opposite end of the monitor link. As a result, the
ControlBox object should change its state from show green to show red. No fur-
ther actions are issued by the ControlBox statechart diagram. Notice that we do
not model the implementation of operations. Therefore, the relevant interaction
between objects (like switching the display by the machine) is described using
call actions on the statechart level (rather than implementing it in the method
run()).

The initial configuration of the system is given by an object diagram together
with a specification of the control state of each object. In our example, machine
is in state idle and display is in state show green as shown in Fig. 1 by the
stereotyped �current� relationships.

After presenting the static meta model and the firing rules of UML statechart
diagrams in the next sections, we shall examine part of the life cycle of the objects
introduced above.

3 Meta Classes and Meta Operations

In the UML semantics specification [20], the abstract syntax of statechart di-
agrams is specified by a meta class diagram. In order to define the structural
model of an interpreter for this languages, this model has to be extended by state
information, for example to represent the current control state of an object.

Class

State Machine

State Transition
fire (Object)

Event
occur (Object)

Action
perform (Object)

CallAction
target:TargetExpr
op:OperationExpr

CallEvent

Operation

run (Object)

current 1

outgoing

trigger

effect
ingoingtarget

source

ModelElement
name:Name

Object
call (TargetExpr,

OperationExpr)
LinkEnd

Link

2

featureowner

instance

connection

classifier
context

operation

occurrence

*

* 1

*

1..*

1
1

*
*

*

1

*

*

1

0..1

Fig. 2. Meta class diagram

Figure 2 shows the classes from the UML meta model that are relevant for the
subclass of statechart diagrams we are considering (partly simplified by flattening
the meta class hierarchy). A statechart diagram, represented by an instance of
meta class StateMachine, controls the behavior of the objects of the class it is
associated with. For this purpose, we extend the meta model by an association

current which designates the current control state of an object within the state
diagram. States and transitions are represented by instances of the corresponding
meta classes, and transitions are equipped with a trigger CallEvent (like run in
our scenario) and an effect CallAction (like control.set red()). A CallEvent carries
a link to the local operation which is called. Unlike in the standard meta model,
a CallAction is not directly associated with an operation, as this would result in
static binding. Instead, an attribute OperationExpr is provided.

The state space of the diagrammatic language consists of all instance graphs
conforming to the meta class diagram. Each instance graph represents the state of
an interpreter given by the“programs”(e.g., statechart diagrams) to be executed,
the problem domain objects with their respective data states (given, e.g., by the
values of attributes and links), and their control states.

The relation between class and instance diagrams can be formally captured by
the concept of type and instance graphs [5].1 Given a type graph TG, representing
a class diagram, a TG-typed instance graph consists of a graph G together with
a typing homomorphism g : G → TG associating to each vertex and edge x of
G its type g(x) = t in TG. For example, the instance graph of the meta class
diagram in Fig. 2 that represents the abstract syntax of the model in Fig. 1 is
shown in Fig. 3.

Fig. 3. Abstract syntax of sample model

The class diagram in Fig. 2 does not only contain meta classes and associ-
ations, but also meta operations like perform(Object) of class Action. They are
the operations of our interpreter for statechart diagrams. Given the type graph
1 By graphs we mean directed unlabeled graphs G = 〈GV , GE , srcG, tarG〉 with set
of vertices GV , set of edges GE , and functions srcG : GE → GV and tarG : GE →
GV associating to each edge its source and target vertex. A graph homomorphism
f : G → H is a pair of functions 〈fV : GV → HV , fE : GE → HE〉 compatible with
source and target.

TG representing the structural part of the class diagram, the meta operations
form a family of sets M = (MOPw)w∈TG+

V
indexed by non-empty sequences

w = v1 . . . vn of parameter class names vi ∈ TGV . By convention, the first
parameter v1 of each meta operation represents the class to which the opera-
tion belongs (thus there has to be at least one argument type). For example,
the meta operation perform(Object) of class Action is formally represented as
perform ∈ MOPAction,Object.

After having described the abstract syntax of our model in terms of meta
classes and meta operations, the implementation of the meta operations shall be
specified using collaboration diagrams in the next section.

4 Meta Modeling with Collaboration Diagrams

The static meta model of the UML defines the abstract syntax of the language
by means of meta class diagrams. Seen as a system specification, these class
diagrams represent the structural model of an UML editor or interpreter. In this
section, we shall extend this analogy to the dynamic part of a model, i.e., we
are going to specify the dynamics of an interpreter for statechart and object
diagrams. Interaction diagrams and, in particular, collaboration diagrams are
designed to specify object interaction, creation, and deletion in a system model.
Dynamic meta modeling applies the same language concepts to the meta model
level to specify the interaction and dynamics of model elements of the UML.

The specification is based on the intuition of an interpreter which has to
demonstrate the existence of a certain behavior in the model. Guided by a re-
cursive set of rules stating the conditions for the execution of a certain meta op-
eration, the interpreter works its way from a goal (e.g., the firing of a transition)
towards its assumptions (e.g., the occurrence of a trigger event). The behavioral
rules are specified by collaboration diagrams consisting of two compartments.
The head of the diagram contains the meta operation which is specified by the
diagram. The body specifies the assumptions for the execution of the meta oper-
ation, its effect on the object configuration, and other meta operations required.

For example, the conditions for a transition to fire and its effect on the
configuration are specified in the collaboration diagram of Fig. 4: An object o
may fire a transition if that object is in the corresponding source state, the (call)
event triggering the transition occurs, and the operation associated with this
call event is invoked by the meta operation run(o). In this case, the object o
changes to the target state of the transition, which is modeled by the deletion
and re-creation of the current link.

Thus, in order to be able to continue, the interpreter looks for a call event
triggering the transition. This call event can be raised if the associated operation
is called on the object o as specified in Fig. 5 using the meta operation call. The
signature of this meta operation of meta class Object contains two parameters:
The first one holds a path expression to direct the call to its target object (it
equals nil when the target object is reached), and the second one specifies the

trans.fire(o)

s1:State trans:transition s2:State

ce:Callevent op:Operation

o:Object

source target

trigger

{destroy} {new}

current
current

occur(o) run(o)

Fig. 4. The firing of a transition by an object

Fig. 5. Issuing a CallEvent

name of the operation to be called (and possibly further parameters). The name
of the operation op has to match the operation expression transmitted by call.

Note that this does not guarantee the execution of the body of the called
operation. In fact, no rule for meta operation run of meta class Operation is
provided. The specification of the structure and dynamics of method implemen-
tations is the objective of action semantics as described by the corresponding
request for proposals [18] by the Object Management Group. So far, UML pro-
vides only“uninterpreted strings” to capture the implementation of methods. We
believe that our approach is extensible towards a dynamic semantics of actions
once this is precisely defined.

Fig. 6. Evaluating the target expression

An operation call like o.call(nil, op) in Fig. 5 originates from a call action
which specifies by means of a path expression the target of the call. Thus, in
order to find out whether a call is pending for a given object o, our interpreter
has to check two alternatives: Either a call action is performed on o directly with
target = nil, or there is a call at a nearby object with a target expression pointing
towards o. These two cases are specified by the two collaboration diagrams for
meta operation call in Fig. 6. The left diagram specifies the invocation of the
meta operation by a CallAction on an object start. (The object is not depicted
since it is given by the parameter of the premise.) Notice that the values of the
meta attributes target and op have to match the parameters of meta operation
call.

If the meta operation is not directly invoked by a call action, an iterative
search is triggered as specified by the right diagram: To invoke the meta operation
call(t,op) on an object successor which is connected to object current via a link,
whose link end named a is attached to the successor object, the meta operation
call(a.t,op) has to be invoked on current with the identical operation parameter
op and the extended path expression a.t. (We assume target to be in a Java-like
path syntax where the names of the links to be followed form a dot-separated
list.)

Notice, that the right rule in Fig. 6 is potentially non-deterministic: In a
state where the successor object has more than one incoming a link, different
instantiations for the current object are possible. In this case, the link to be
followed would be chosen non-deterministically.

Fig. 7. The performing of an action by an object

Figure 7 presents the rule for performing an action. In our scenario this should
be a CallAction initiating a call to another object, but the rule is also applicable
to other kinds of actions. An action is the (optional) effect of firing a transition,
i.e., the invocation of meta operation perform of meta class Action depends on
the firing of the associated transition. Thus, the rule in Fig. 4 has to be applied
again in order to derive the firing of the transition at the calling object.

As already mentioned in the introduction, this goal-oriented style of seman-
tics specification is conceptually related to the proof search of a Prolog inter-
preter. This intuition is made precise by the paradigm of graphical operational
semantics (GOS) [4], a graph-based generalization of the structured operational
semantics (SOS) paradigm [22], for the specification of diagram languages. In

the GOS approach, deduction rules on graph transformations are introduced in
order to to formalize the derivation of the behavior of models from a set of meta-
level diagrams, which is implicitly present in this section. In the next section, we
describe a simplified form of this approach especially tailored for collaboration
diagrams.

5 Computing with Collaboration Diagrams

In the previous section, collaboration diagrams have been used to specify the
firing rules of statechart transitions and the transmission of calls between ob-
jects. Now, concrete computations shall be modeled as collaboration diagrams
on the instance level. This allows us to represent changes to the object structure
together with the operations causing these changes. Moreover, even incomplete
computations can be modeled, where some of the method calls are still unre-
solved. This is important if we want to give semantics to incomplete models like
the one in Sect. 2 which requires external activation in order to produce any
activity.

The transition from semantic rules to computations is based on a formal
interpretation of collaboration diagrams as graph transformation rules. A rule
representing the collaboration diagram for operation trans.fire(o) in Fig. 4 is
shown in Fig. 8. It consists of two graphs L and R representing, respectively,
the pre- and the post-condition of the operation. In general, both L and R are
instances of the type graph TG representing the class diagram, and both are
subgraphs of a common graph C that we may think of as the object graph of the
collaboration diagram. Then, the pre-condition L contains all objects and links
which have to be present before the operation, i.e., all elements of C except for
those marked as {new} or {transient}. Analogously, the post-condition contains
all elements of C not marked as {transient} or {destroy}. In the example of Fig. 8,
graph C is just the union L∪R since there are no transient objects in the diagram
of Fig. 4.

s1:State

ce:CallEvent

s2:Statetrans:Transition

o:Object

source target

current current

trigger

op:Operation

s1:State

ce:CallEvent

s2:Statetrans:Transition

o:Object

source target

current current

trigger

op:Operation
trans.fire(o)

ce.occur(o) �

op.run(o)

Fig. 8. Collaboration diagram as a labeled graph transformation rule

Besides structural modifications, the collaboration diagram describes calls
to meta operations ce.occur(o) and op.run(o), and it is labeled by the opera-
tion trans.fire(o), the implementation of which it specifies. This information is

recorded in the rule-based presentation in Fig. 8 by means of additional labels
above and below the arrow. Abstractly, a collaboration diagram is denoted as

C : L
a

b
→ R

where C is the object graph of the diagram, L and R are the pre- and post-
conditions, a is the label representing the operation specified by the diagram,
and b represents the sequential and/or concurrent composition of operations
referred to (that is, called) within in the diagram. The expression ce.occur(o)
× op.run(o) in Fig. 8, for example, represents the concurrent invocation of two
operations.

We shall use the rule-based interpretation of collaboration diagrams in order
to derive the behavior of the sample model introduced in Sect. 2. The idea is to
combine the specification-level diagrams by means of two operators of sequential
composition and method invocation. The sequential composition of two diagrams

C1 : L1
a1

b1
→ R1 and C2 : L2

a2

b2
→ R2

is defined if the post-condition R1 of the first equals the pre-condition L2 of the
second. The composed diagram is given by

C1 ∪L2=R1 C2 : L1
a1; a2

b1; b2
→ R2

where C1∪L2=R1 C2 denotes the disjoint union of the graphs C1 and C2, sharing
only L2 = R1. The second operator on diagrams models the invocation of a
method from within the implementation of another method. This is realized by
substituting the method call by the implementation of the called method, thus
diminishing the hierarchy of method calls. Assume two rules

C : L
a

b[c]
→ R and C ′ : L′ c

d
→ R′

where the call expression b[c] of the first rule contains a reference to the operation
c specified by the second rule. (In the rule of Fig. 8, b[c] corresponds to ce.occur(o)
× op.run(o), and c could be instantiated with either ce.occur(o) or op.run(o).)
Then, the composed rule is given by

C ∪c C ′ : L ∪c L′ a

b[d]
→ R ∪c R′.

The call to c is substituted by the expression d specifying the methods called
within c. By C ∪c C ′ we denote the union of graphs C and C ′ sharing the self
and parameter objects of the operation c.2 In the same way, the pre- and post-
conditions of the called operation are imported inside the calling operation.
2 Notice that, in order to ensure that the resulting diagram is consistent with the
cardinality constraints of the meta class diagram, it might be necessary to identify
further elements of C and C′ with each other (besides the ones identified by c). For
instance, when identifying two transitions, we also have to identify the corresponding
source and target states. Formally, this effect is achieved by defining the union as a
pushout construction in a restricted category of graphs (see, e.g., [16]).

In Fig. 9 it is outlined how these two composition operators are used to build
a collaboration diagram representing a possible run of our sample model. The
given diagrams are depicted in iconized form with sequential composition and
invocation as horizontal and vertical juxtaposition, respectively. This presenta-
tion is inspired by the tile model [12], a generalization of the SOS paradigm [22]
towards open (e.g., incomplete) systems. In fact, in our example, such a seman-
tics is required since the model in Fig. 1 is incomplete, i.e., it does not specify
the source of the call events run and stop needed in order to trigger the machine’s
transitions.

[fire t3] [fire t4]

[call op3] [call op4]

[fire t1] [fire t2]

sequential composition

sy
n
ch

ro
n
iz

a
ti
o
n

t3.fire(o2) t4.fire(o2)

ce3.occur(o2) ce4.occur(o2)

t1.fire(o1) t2.fire(o1)

ce3.occur(o2)
op3.run(o2)

ce4.occur(o2)
op4.run(o2)

t1.fire(o1) t2.fire(o1)

ce1.occur(o1)
op1.run(o1)

ce2.occur(o1)
op2.run(o1)

;

;

;

Fig. 9. Composing a run of the sample model

Figure 10 shows an expanded version of the iconized diagram [fire t3] in the
top left of Fig. 9. It originates from an application of the operation trans.fire(o)
in the context of an additional transition.3 The diagrams [fire t4] to the right of
[fire t3] as well as [fire t1] and [fire t2] in the bottom are expanded analogously.

Figure 11 details the icon labeled [call op3]. It shows the invocation of several
operations realizing the navigation of the method call along the monitor link as
specified by the target expression, and the issuing of the call event. A similar
diagram could be drawn for [call op4].

Finally, in Fig. 12 the composite computation is shown covering the complete
scenario depicted in Fig. 1. It can be derived from the components in Fig. 9 in two
different ways: by first synchronizing the single transitions (vertical dimension)

3 In general, contextualization of rules has to be specified explicitly in our model
(in this we follow the philosophy of the SOS and the tile framework [22, 12]). In
the present specification, however, we can safely allow to add any context but for
the current links which ensure the coordinated behavior of the different statechart
diagrams.

Fig. 10. Operation trans.fire(o) in context

Fig. 11. Navigation of the method call

and then sequentially composing the two steps (horizontal dimension), or first
building local two-step sequences (horizontal dimension) and then synchronizing
them (vertical dimension).

Fig. 12. Composite rule for the scenario in Fig. 1

6 Conclusion

In this paper, we have proposed the use of collaboration diagrams formalized as
graph transformation rules for specifying the operational semantics of diagram
languages. The concepts have been exemplified by a fragment of a dynamic meta
model for UML statechart and object diagrams.

The fragment should be extended to cover a semantically complete kernel
of the language which can be used to define more specific, derived modeling
concepts. This approach is advocated by the pUML group (see e.g., [9]). Concrete
examples how to define such a mapping of concepts include the flattening of
statecharts by means of graph transformation rules [13] and the simplification
of class diagrams [14] by implementing inheritance in terms of associations.

Our experience with specifying a small fragment of UML shows that tool
support is required for testing and animating the specification. While the im-
plementation of flat collaboration diagrams is reasonably well understood (see,
e.g., [8, 10]), the animation of the results of an execution on the level of concrete
syntax is still under investigation. It requires a well-defined mapping between
the concrete and the abstract syntax of the modeling language. One possible so-
lution is to complement the graph representing the abstract syntax by a spatial
relationship graph, and to realize the mapping by a graphical parser specified by
a graph grammar [2].

A related problem is the integration of model execution and animation in
existing UML tools. Rather than hard-coding the semantics into the tools, our
approach provides the opportunity to allow for user-defined semantics, e.g., in
the context of domain-specific profiles. Such a profile, which extends the UML
standard by stereotypes, tagged values, and constraints [19], could also be used
to implement the extensions to the static meta model that are necessary in order
to define the operational semantics (e.g., the current links specifying the control
states of objects could be realized as tagged values).

On the more theoretical side, the connection of dynamic meta modeling with
proof-oriented semantics following the SOS paradigm allows the transfer of con-
cepts of the theory of concurrent languages, like bisimulation, action refinement,
type systems, etc. Like in the GOS approach [4], the theory of graph transforma-
tion can provide the necessary formal technology for transferring these concepts
from textual to diagram languages.

References

1. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske,
D. Plump, A. Schürr, and G. Taentzer. Graph transformation for specification
and programming. Science of Computer Programming, 34:1–54, 1999.

2. R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of graph transfor-
mation to visual languages. In Ehrig et al. [6], pages 105–180.

3. R. Breu and R. Grosu. Relating events, messages, and methods of multiple threaded
objects. JOOP, pages 8–14, January 2000.

4. A. Corradini, R. Heckel, and U. Montanari. Graphical operational semantics. In
A. Corradini and R. Heckel, editors, Proc. ICALP2000 Workshop on Graph Trans-
formation and Visual Modelling Techniques, Geneva, Switzerland, Geneva, July
2000. Carleton Scientific.

5. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

6. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

7. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 3: Concur-
rency and Distribution. World Scientific, 1999.

8. G. Engels, R. Hücking, St. Sauer, and A. Wagner. UML collaboration diagrams and
their transformation to Java. In R. France and B. Rumpe, editors, Proc. UML’99
Int. Conference, Fort Collins, CO, USA, volume 1723 of LNCS, pages 473–488.
Springer Verlag, October 1999.

9. A. Evans and S. Kent. Core meta modelling semantics of UML: The pUML ap-
proach. In France and Rumpe [11], pages 140–155.

10. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph
transformation language based on UML and Java. In H. Ehrig, G. Engels, H.-
J. Kreowski, and G. Rozenberg, editors, Proc. 6th Int. Workshop on Theory and
Application of Graph Transformation (TAGT’98), Paderborn, November 1998, vol-
ume 1764 of LNCS. Springer Verlag, 2000.

11. R. France and B. Rumpe, editors. Proc. UML’99 – Beyond the Standard, volume
1723 of LNCS. Springer Verlag, 1999.

12. F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling, and
M. Tofte, editors, Proof, Language and Interaction: Essays in Honour of Robin
Milner. MIT Press, 1999.

13. M. Gogolla and F. Parisi-Presicce. State diagrams in UML – a formal seman-
tics using graph transformation. In ICSE’98 Workshop on Precise Semantics of
Modelling Techniques, 1998. Tech. Rep. TUM-I9803, TU München.

14. M. Gogolla and M. Richters. Equivalence rules for UML class diagrams. In P.-A.
Muller and J. Bezivin, editors, Proc. UML’98 Workshop, pages 86–97. Universite
de Haute-Alsace, Mulhouse, 1998.

15. A. Knapp. A formal semantics of UML interactions. In France and Rumpe [11],
pages 116–130.

16. M. Korff. Single pushout transformations of equationally defined graph structures
with applications to actor systems. In Proc. Graph Grammar Workshop, Dagstuhl,
1993, volume 776 of LNCS, pages 234–247. Springer Verlag, 1994.

17. J. Lillius and I. Paltor. Formalising UML state machines for model checking. In
France and Rumpe [11], pages 430–445.

18. Object Management Group. Action semantics for the UML, November 1998. http:
//www.omg.org/pub/docs/ad/98-11-01.pdf.

19. Object Management Group. Analysis and design platform task force – white pa-
per on the profile mechanism, April 1999. http://www.omg.org/pub/docs/ad/

99-04-07.pdf.
20. Object Management Group. UML specification version 1.3, June 1999. http:

//www.omg.org.
21. G. Övergaard. Formal specification of object-oriented meta-modelling. In

T. Maibaum, editor, Fundamental Approaches to Software Engineering (FASE’00),
Berlin, Germany, number 1783 in LNCS, pages 193–207. Springer Verlag, March/
April 2000.

22. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department, 1981.

23. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML ac-
tive classes and associated state machines – a lightweight formal approach. In
T. Maibaum, editor, Fundamental Approaches to Software Engineering (FASE’00),
Berlin, Germany, number 1783 in LNCS, pages 127–146. Springer Verlag, March/
April 2000.

24. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, 1997.

